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Abstract
Providing feedback on programming assignments is a tedious
task for the instructor, and even impossible in large Massive
Open Online Courses with thousands of students. Previous
research has suggested that program repair techniques can
be used to generate feedback in programming education.
In this paper, we present a novel fully automated program
repair algorithm for introductory programming assignments.
The key idea of the technique, which enables automation and
scalability, is to use the existing correct student solutions to
repair the incorrect attempts. We evaluate the approach in
two experiments: (I)We evaluate the number, size and quality
of the generated repairs on 4,293 incorrect student attempts
from an existing MOOC. We find that our approach can
repair 97% of student attempts, while 81% of those are small
repairs of good quality. (II) We conduct a preliminary user
study on performance and repair usefulness in an interactive
teaching setting. We obtain promising initial results (the
average usefulness grade 3.4 on a scale from 1 to 5), and
conclude that our approach can be used in an interactive
setting.

CCS Concepts • Applied computing→ Computer-
assisted instruction; • Software and its engineering→
Software testing and debugging;

Keywords programming education, MOOC, dynamic anal-
ysis, program repair, clustering
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Figure 1. High-level overview of our approach.

1 Introduction
Providing feedback on programming assignments is an inte-
gral part of a class on introductory programming and re-
quires substantial effort by the teaching personnel. This
problem has become even more pressing with the increasing
demand for programming education, which universities are
unable tomeet (it is predicted that in the US by 2020 therewill
be one million more programming jobs than students [1]).
This has given rise to several Massive Open Online Courses
(MOOCs) that teach introductory programming [28]; the
biggest challenge in such a setting is scaling personalized
feedback to a large number of students.

The most common approach to feedback generation is to
present the student with a failing test case; either generated
automatically using test input generation tools [40] or se-
lected from a comprehensive collection of representative test
inputs provided by the instructor. This is useful feedback,
especially since it mimics the setting of how programmers
debug their code. However, this is not sufficient, especially
for students in an introductory programming class, who are
looking for more guided feedback to make progress towards
a correct solution.
A more guided feedback can be generated from modi-

fications that make a student’s program correct, using a
program repair technique as pioneered by the AutoGrader
tool [33]. Generating feedback from program repair is an ac-
tive area of research: One line of work focuses on improving
the technical capabilites of program repair in introductory
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education [9, 31, 32], while another line of research focuses
on pedagogical questions such as how to best provide repair-
based feedback to the students [20, 37]. In this paper we
propose a new completely automated approach for repairing
introductory programming assignments, while sidelining
the pedagogical questions for future work.

Our approach The key idea of our approach is to use the
wisdom of the crowd: we use the existing correct student
solutions to repair the new incorrect student attempts1. We
exploit the fact that MOOC courses already have tens of
thousands of existing student attempts; this was already
noticed by Drummond et al. [13].

Fig. 1 gives a high-level overview of our approach: (A) For
a given programming assignment, we automatically cluster
the correct student solutions (A-F in the figure), based on a
notion of dynamic equivalence (see §2.1 for an overview and
§4 for details). (B) Given an incorrect student attempt (G in
the figure) we run the repair algorithm against all clusters,
and then select a minimal repair (R2 in the figure) from the
generated repair candidates (R1-R3 in the figure). The repair
algorithm uses expressions from multiple correct solutions to
generate a repair (see §2.2 for an overview and §5 for details).

Intuitively, our clustering algorithm groups together sim-
ilar correct solutions. Our repair algorithm can be seen as
a generalization of the clustering approach of correct solu-
tions to incorrect attempts. The key motivation behind this
approach is as follows: to help the student, with an incorrect
attempt, our approach finds the set of most similar correct so-
lutions, written by other students, and generates the smallest
modifications that get the student to a correct solution.
We have implemented the proposed approach in a tool

called Clara and evaluated it in two experiments:
(I) On 12,973 correct and 4,293 incorrect (total 17,266)

student attempts from an MITx MOOC, written in Python,
we evaluate the number, size and quality of the generated
repairs. Clara is able to repair 97% of student attempts, in
3.2s on average; we study the quality of the generated repairs
by manual inspection and find that 81% of the generated
repairs are of good-quality and the size of the generated
repairmatches the size of the required changes to the student’s
program. Additionally, we compare AutoGrader and Clara,
on the same MOOC data.

(II) We performed a preliminary user study about the per-
formance and usefulness of Clara’s repairs in an interactive
teaching setting. The study consisted of 52 participants who
were asked to solve 6 programming assignments in C. The
participants judged the usefulness of the generated repair-
based feedback by 3.4 in average on a scale from 1 to 5.

1We distinguish correct and incorrect attempts by running them on a set of
inputs, and comparing their output to the expected output. This is the stan-
dard way of assessing correctness of student attempts in most introductory
programming classes.

Our experimental results demonstrate that Clara can, com-
pletely automatically, generate repairs of high quality, for a
large number of incorrect student attempts in an interactive
teaching setting for introductory programming problems.

This paper makes the following contributions:
• We propose an algorithm to automatically cluster cor-
rect student solutions based on a dynamic program
analysis.
• We propose a completely automated algorithm for pro-
gram repair of incorrect student attempts that lever-
ages the wisdom of the crowd in a novel way.
• We evaluate our approach on a large MOOC dataset
and show that Clara can repair almost all the pro-
grams while generating repairs of high quality.
• We find in a real-time user study that Clara is suffi-
ciently fast to be used in an interactive teaching setting
and obtain promising preliminary results from the par-
ticipants of the user study on the usefulness of the
generated feedback.

Differences to our earlier Technical Report. Our approach
first appeared as a technical report2, together with a pub-
licly available implementation3. While our core ideas are the
same as in the technical report, we since have made several
improvements of which we state here the two most impor-
tant: (1) The repair algorithm uses expressions from different
correct solutions in a cluster, as opposed to using only a sin-
gle correct solution from a cluster. (2) We conducted a user
study and added an extensive manual investigation of the
generated repairs to the experimental evaluation.

Structure of the paper. In §2 we present an overview of our
approach, in §3 we describe a simple imperative language,
used for formalizing the notions of matching and clustering
in §4 and the repair procedure in §5. We discuss our imple-
mentation and the experimental evaluation in §6, overview
the related work in §7, discuss limitations and directions for
future work in §8, and conclude in §9.

2 Overview
We discuss the high-level ideas of our approach on the stu-
dent attempts to the assignment derivatives: “Compute
and return the derivative of a polynomial function (represented
as a list of floating point coefficients). If the derivative is 0,
return [0.0].” Fig. 2 (a), (b), (e) and (f) show four student
attempts to the above programming assignment: C1 and C2
are functionally correct, while I1 and I2 are incorrect.

2.1 Clustering of Correct Student Solutions
The goal of clustering is two-fold. (1) Scalability: elimination
of dynamically equivalent correct solutions that the repair
algorithm would otherwise consider separately. (2) Diversity
of repairs: mining of dynamically equivalent, but syntactically
2https://arxiv.org/abs/1603.03165v1
3https://github.com/iradicek/clara
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1 def computeDeriv(poly):

2 result = []

3 for e in range(1, len(poly)):

4 result.append(float(poly[e]*e))

5 if result == []:

6 return [0.0]

7 else:

8 return result

1 def computeDeriv(poly):

2 deriv = []

3 for i in xrange(1,len(poly)):

4 deriv+=[float(i)*poly[i]]

5
6 if len(deriv)==0:

7 return [0.0]

8 return deriv

1. result += [float(poly[e]*e),]

2. if(e==0): result.append(0.0)
else:
result.append(float(poly[e]*e))

3. result.append(1.0*poly[e]*e)

4. result.append(float(e*poly[e]))

5. result += [e*poly[e]]

1. if(len(result)==0):
return [0.0]
else: return result

2. if(len(result)>0):
return result
else: return [0.0]

3. return result or [0.0]

(a) Correct attempt C1. (b) Correct attempt C2. (c) Different expressions for result. (d) Different expressions for the return
statement.

1 def computeDeriv(poly):

2 new = []

3 for i in xrange(1,len(poly)):

4 new.append(

5 float(i*poly[i]))

6 if new==[]:

7 return 0.0

8 return new

1 def computeDeriv(poly):

2 result = []

3 for i in range(len(poly)):

4 result[i]=float((i)*poly[i])

5 return result

1. In return statement at line 7, change
0.0 to [0.0].

1. In iterator expression at line 3,
change range(len(poly)) to
range(1, len(poly)).

2. In assignment at line 4, change
result[i]=float(i*poly[i]) to
result.append(float(i*poly[i])).

3. In return statement at line 5, change
result to result or [0.0].

(e) Incorrect attempt I1. (f) Incorrect attempt I2. (g) Repair for I1. (h) Repair for I2.

Figure 2. Motivation examples of real student attempts on the programming assignment derivatives.

different expressions from the same cluster, which are used
to repair incorrect student attempts. We discuss the notion
of dynamic equivalence next.

Matching The clusters in our approach are the equivalence
classes of a matching relation. We say that two programs P
and Q match, written P ∼ Q , when: (1) they have the same
control-flow (see the discussion below), and (2) there is a
total bijective relation between the variables of P andQ , such
that related variables take the same values, in the same order,
during the program execution on the same inputs. This is
inspired by the notion of a simulation relation [29], adapted
for a dynamic program analysis: whereas a simulation rela-
tion establishes that a program P produces exactly the same
values as program Q at corresponding program locations for
all inputs, we are interested only in a fixed finite set of inputs.
Therefore, we also call this notion dynamic equivalence, to
stress that we use dynamic program analysis.

Control-flow Our algorithms consider two control-flows
the same if they have the same looping structure. That is,
any loop-free sequence of code is treated as a single block;
in particular, blocks can include (nested) if-then-else state-
ments without loops (similar to Beyer et al. [7]). We point
out that we could have picked a different granularity of
control-flow; e.g., to treat only straight line of code (without
branching) as a block. We have picked this granularity be-
cause it enables matching of programs that have different
branching-structure, and as a result our algorithm is able to
generate repairs that involve missing if-then-else statements.
Example. Programs C1 and C2, from Fig. 2 (a) and (b),

match, because: (1) they have the same control-flow since
there is only a single loop in both programs; (2) there is
the bijective variable relation τ = {poly 7→ poly, deriv 7→
result, ? 7→ ?, i 7→ e, return 7→ return}, where variables ? and
return are special variables denoting the loop condition and

the return value, whichwe need tomake the control-flow and
the return values explicit. For example, on the input poly =
[6.3, 7.6, 12.14], the variable result, takes the value [] before
the loop, the sequence of values [7.6], [7.6, 24.28] inside the
loop, and the value [7.6, 24.28] after the loop. Exactly the
same values are taken by the variable deriv; and similarly
for all the other variables. Therefore, C1 and C2 belong to
the same cluster, which we denote by C. For the further
discussion, we need to fix one correct solution as a cluster
representative; we pick C1, although it is irrelevant which
program from the cluster we pick.

Although the expressions in the assignments to variables
result and deriv generate the same values (i.e., they match
or they are dynamically equivalent), the assignment expres-
sions inside the loops are syntactically quite different; we
state the expressions in terms of the variables of the cluster
representative C1:

• append(result, float(poly[e]*e)) in C1, and
• result + [float(e)*poly[e]] in C2, where

the second expression has been obtained by replacing the
variables from C2 with variables from C1 using the variable
relation τ (e.g., we have replaced deriv with result, because
τ (deriv) = result). In our benchmark we found 15 syntacti-
cally different, but dynamically equivalent, ways to write
expressions for the assignment to result, and 6 different ways
to write the return expression (observing only different ASTs,
and ignoring formatting differences). Some of these examples
are shown in Fig. 2 (c) and (d), respectively. As we discuss in
the next section, these different expressions are used by our
repair algorithm.

2.2 Repair of Incorrect Student Attempts
Our repair algorithm takes an incorrect student attempt
(which we call an implementation) and a cluster (of correct
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Figure 3. High-level overview of the repair algorithm.

programs), and returns a repair ; a repair modifies the imple-
mentation such that the repaired implementation and the
cluster representative match. The top-level repair procedure
takes an implementation and runs the repair algorithm on
each cluster separately. Each repair has a certain cost w.r.t.
some cost metric. In this paper we use syntactic distance.
Finally, the repair with the minimal cost is chosen.

Fig. 2 (e) and (f) shows two incorrect programs, I1 and I2,
and the generated repairs in (g) and (h), respectively. These
repairs were generated using cluster C, with its representa-
tive C1. Our algorithm also considered other cluster besides
C (which are not discussed here), but found the smallest re-
pair using C. In the rest of this section we discuss the repair
algorithm on a single cluster.
Our algorithm generates repairs in two steps, which we

discuss in more detail next: (1) The algorithm generates a set
of local repairs for each implementation variable (its assigned
expression). (2) Using constraint-optimization techniques,
the algorithm selects a consistent subset of the local repairs
with the smallest cost. The high-level overview of the algo-
rithm is given in Fig. 3.

Local Repairs A local repair ensures that an implementa-
tion expression eimpl , either modified or unmodified,matches
a corresponding cluster representative expression eC . To
establish that the expressions match, we need a variable
relation that translates implementation variables to cluster
variables, so that the expressions range over the same vari-
ables.We point out that for expressionmatching it is sufficient
to consider partial variable relations that relate variables of
the expressions, as opposed to total variable relations that
relate all program variables, which we considered above for
program matching.
Let v be an implementation variable, with expression

eimpl assigned to it at some program location. We say that
(ω, erepaired ) is a local repair for v , if the expressions eC and
erepaired match, where ω is a partial variable relation that
establishes the matching. In this case the implementation
expression eimpl is modified to the repaired expression erepaired .
We discuss below how the algorithm generates the repaired

expression erepaired . We say that (ω, •) is a local repair for v ,
if the expressions eC and eimpl match, where ω is a partial
variable relation that establishes the matching. In this case
the implementation expression eimpl remains unmodified.

We illustrate the notion of local repairs on I1 with regard
to the cluster representative C1:

1. (ω1, •) is a local repair for new before the loop, where
ω1 = {new 7→ result}, since the expressions of new
and result match (i.e., they take the same values).

2. (ω2, if new==[]: return [0.0] else:
return new) is a local repair for return after the loop,
where ω2 = {new 7→ result, return 7→ return}, since
then the return expressions match.

3. (ω3, if poly==[]: return [0.0] else:
return poly) is a local repair for return after the loop,
where ω3 = {poly 7→ result, return 7→ return}, since
then the return expressions match.

The algorithm generates a set of such local repairs for each
variable and each program location in the implementation.

Finding a repair A (whole program) repair is a consistent
subset of the generated local repairs, such that there is exactly
one local repair for each variable and each program location
in the implementation. A set of local repairs is consistent
when all partial variable relations in the local repairs are
subsets of some total variable relation. For example, local
repairs (1) and (3) from above are inconsistent, since we have
ω1 (new) = result and ω3 (poly) = result, and hence there is
no total variable relation that is consistent with both ω1 and
ω3. On the other hand, local repairs (1) and (2) are consistent,
since there is a total variable relation consistent both withω1
andω2: {poly 7→ poly, new 7→ result, i 7→ e, ? 7→ ?, return 7→
return}.

There are many choices for a whole program repair, that
is, choices for a consistent subset of the generated local re-
pairs; however, we are interested in one that has the smallest
cost. Our algorithm finds such a repair using constraint-
optimization techniques.

Generating the set of potential local repairs The repair
algorithm takes expressions from the different correct solu-
tions in order to generate the set of potential local repairs
(erepaired discussed above). The algorithm translates these
expressions to range over the implementation variables, us-
ing a partial variable relation. Since each cluster expression
matches a corresponding cluster representative expression
(recall the discussion in the previous sub-section), this partial
variable relation ensures that erepaired matches a correspond-
ing cluster representative expression (i.e., that it is a correct
repair).

For example, the generated repair for I2, shown in Fig. 2 (h),
combines the following expressions from the cluster:
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• The first modification is generated using the expres-
sion range(1, len(poly)) from C1, at line 3, using
the partial variable relation {poly 7→ poly}.
• The second modification is generated using the ex-
pression (4.) from Fig. 2 (c), using the partial variable
relation {result 7→ result, poly 7→ poly, i 7→ e}.
• The third modification is generated using the expres-
sion (3.) from Fig. 2 (d), using the partial variable rela-
tion {return 7→ return, result 7→ result}.

3 Program Model
In this section we define a program model that captures key
aspects of imperative languages (e.g.,C, Python). This model
allows us to formalize our notions of program matching and
program repair.

Definition 3.1 (Expressions). Let V be a set of variables, K
a set of constants, and O a set of operations. The set of ex-
pressions E is built from variables, constants and operations
in the usual way. We fix a set of special variables V ♯ ⊆ V .
We assume thatV ♯ includes at least the variable ?, which we
will use to model conditions, and the variable return, which
we will use to model return values.

Def. 3.1 can be instantiated by a concrete programming
language. For example, for the C language, K can be chosen
to be the set of all C constants (e.g., integer, float), andO can
be chosen to be the set of unary and binary C operations as
well as library functions. The special variables are assumed
to not appear in the original program text, and are only used
for modelling purposes.

Definition 3.2 (Program). A program P = (LP , ℓinit ,VP ,UP ,
SP ) is a tuple, where LP is a (finite) set of locations, ℓinit ∈ LP
is the initial location, VP is a (finite) set of program variables,
UP : (LP × VP ) → E is the variable update function that
assigns an expression to every location-variable pair, and
SP : (LP × {true, false}) → (LP ∪ {end}) is the successor
function, which either returns a successor location in LP or
the special value end (we assume end < LP ). We drop the
subscript P when it is clear from the context.

We point the reader to the discussion around the semantics
below for an intuitive explanation of the program model.

Definition 3.3 (Computation domain,Memory). Weassume
some (possibly infinite) set D of values, which we call the
computation domain, containing at least the following val-
ues: (1) true (bool true); (2) false (bool false); and (3) ⊥
(undefined).

Let V be a set of variables. A memory σ : (V ∪V ′) → D
is a mapping from program variables to values, where the
set V ′ = {v ′ | v ∈ V } denotes the primed version of the
variables in V ; let ΣV denote the set of all memories over
variables V ∪V ′.

Intuitively, the primed variables are used to denote the
variable values after a statement has been executed (see the
discussion around the semantics below).

Definition 3.4 (Evaluation). A functionJ·K : E → Σ→ D is
an expression evaluation function, whereJeK(σ ) = d denotes
that e , on a memory σ , evaluates to a value d .

The function J·K is defined by a concrete programming
language. The function returns the undefined value (⊥) when
an error occurs during the execution of an actual program.

Definition 3.5 (Program Semantics). Let P = (LP , ℓinit ,VP ,
UP ,SP ) be a program. A sequence of location-memory pairs
γ ∈ (LP ×ΣVP )

∗ is called a trace. Given some (input) memory
ρ, we writeJPK(ρ) = (ℓ1,σ1) · · · (ℓn ,σn ) if: (1) ℓ1 = ℓinit ; (2)
σ1 (v ) = ρ (v ) for all v ∈ VP ; (3) (a) σj (v ′) = JUP (ℓj ,v )K(σj ),
and (b) σj+1 (v ) = σj (v

′), and (c) ℓj+1 = SP (ℓj ,σj (?′)), for
all v ∈ VP and 0 ≤ j < n; and (4) SP (ℓn ,b) = end, for any
b ∈ {true, false}.

For some trace element (ℓ,σ ) ∈ γ and a variable v , σ (v )
denotes the value of v before the location ℓ is evaluated (the
old value of v at ℓ), and σ (v ′) denotes the value of v after
the location ℓ is evaluated (the new value of v at ℓ). The
definition ofJPK(ρ) then says:
(1) The first location of the trace is the initial location ℓinit .
(2) The old values of the variables at the initial location
ℓinit are defined by the input memory ρ.

(3a) The new value of variable v at location ℓj is deter-
mined by the semantic function J·Kevaluated on the
expressionUP (ℓj ,v ).

(3b) The old value of variable v at location ℓj+1 is equal to
the new value at location ℓj .

(3c) The next location ℓj+1 in a trace is determined by the
successor function SP for the current location ℓj and
the new value of ? at ℓj (i.e., σj (?′)).

(4) The successor of the last location, ℓn , for any Boolean
b ∈ {true, false}, is the end location end.

Modelling of if-then-else statements In our implementa-
tion we model if-then-else statements differently, according
to when they contain loops and when they are loop-free
(as mentioned in §2.1). In the former case, the branching is
modelled, as usual, directly in the control-flow. In the latter
case, (loop-free) statements are (recursively) converted to
ite expressions that behave like a C ternary operator (as in
the example that follows).

Example.We now show how a concrete program (C1 from
Fig. 2 (a)) is represented in our model. The set of locations is
L = {ℓbefore, ℓcond , ℓloop, ℓafter }, where ℓinit = ℓbefore is the loca-
tion before the loop, and the initial location, ℓcond is the loca-
tion of the loop condition, ℓloop is the loop body, and ℓafter is
the location after the loop. The successor function is given by
S (ℓbefore, true) = S (ℓbefore, false) = ℓcond , S (ℓcond , true) =
ℓloop ,S (ℓcond , false) = ℓafter ,S (ℓloop, true) = S (ℓloop, false)
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= ℓcond , and S (ℓafter , true) = S (ℓafter , true) = end. Note
that for non-branching locations the successor functions
points to the same location for both true and false.
The set of variables is V = {poly, result, e, return, ?, it},

where it is used to model Python’s for-loop iterator. An iter-
ator is a sequence whose elements are assigned, one by one,
to some variable (e in this example) in each loop iteration.
The expression labeling function is given by:

• U (ℓbefore, result) = [],
• U (ℓbefore, it) = range(1,len(poly)),
• U (ℓcond , ?) = len(it)>0,
• U (ℓloop, e ) = ListHead(it),
• U (ℓloop, it) = ListTail(it),
• U (ℓloop, result) = append(float(poly[e]*e)),
• U (ℓafter , return) = ite(result==[], [0.0], result).

For any variable v that is unassigned at some location ℓ we
setU (ℓ,v ) = v , i.e., the variable remains unchanged.
Finally, we state the trace when C1 is executed on ρ =
{poly 7→ [6.3, 7.6, 12.14]}. We state only defined variables
that change from one trace element to the next. Otherwise,
we assume the values remain the same or are undefined (⊥)
(if no previous value existed). JC1K(ρ) = (ℓbefore, {poly 7→
[6.3, 7.6, 12.14], result ′ = [], i ′ = 0, it ′ = [1, 2]}), (ℓcond , {?′ =
true}), (ℓloop, {e ′ 7→ 1, it ′ = [2], i ′ 7→ 1, result ′ 7→ [7.6]},
(ℓcond , {?

′ = true}), (ℓloop, {e ′ 7→ 2, it ′ = [], i 7→ 3, result ′ 7→
[7.6, 24.28]}, (ℓcond , {?′ = false}), (ℓafter , {return 7→
[7.6, 24.28]}).

4 Matching and Clustering
In this section we formally define our notion of matching.

Informally, two programs match, if (1) the programs have
the same control-flow (i.e., the same looping structure), and
(2) the corresponding variables in the programs take the
same values in the same order. For the following discussion
we fix two programs, P = (LP , ℓinitP ,VP ,UP ,SP ) and Q =
(LQ , ℓinitQ ,VQ ,UQ ,SQ ).

Definition 4.1 (Program Structure). Programs P andQ have
the same control-flow if there exists a bijective function, called
structural matching, π : LQ → LP , s.t., for all ℓ ∈ LQ and
b ∈ {true, false}, SP (π (ℓ),b) = π (SQ (ℓ,b)).

We remind the reader, as discussed in §2 and §3, that we
encode any loop-free program part as single control-flow
location; as a result we compare only the looping structure
of two programs.
We note that both our matching and repair algorithms

require the existence of a structural matching π between
programs. Therefore, in the rest of the paper we assume that
such a π exists between any two programs that we discuss,
and assume that L = LP = LQ and S = SP = SQ , since they
can be always converted back and forth using π . Next, we
state two definitions that will be useful later on.

1 fun Match(Programs P, Q, Inputs I):
2 π = structural matching or abort

3 γP,ρ = JPK(ρ ) for all ρ ∈ I
4 γQ,ρ = JQK(ρ ) for all ρ ∈ I
5 M = VQ ×VP
6 for v2, v1 ∈ VQ ×VP :
7 for ρ ∈ I:
8 if γQ,ρ |v2 , γP,ρ |v1:
9 M = M \ {(v2, v1 ) }
10 break

11 return BijectiveMapping(M )

Figure 4. The Matching Algorithm.

Definition 4.2 (Variables of expression). Let e be some ex-
pression, by V (e ) = {v | v ∈ e} we denote the set of
variables used in the expresison e . We also say that e ranges
over V (e ).

Definition 4.3 (Variable substitution). Let τ : V1 → V2 be
some function that maps variables V1 to variables V2. Given
an expression e over variablesV1, i.e.,V (e ) ⊆ V1, by τ (e ) we
denote the expression, which we obtain from e , by substitut-
ing v with τ (v ) for all v ∈ V1. Note thatV (τ (e )) ⊆ V2.
Given a memory σ ∈ ΣV1 , over variables V1, we define

τ (σ ) = {τ (v ) 7→ σ (v ),τ (v )′ 7→ σ (v ′) | v ∈ V1}, that is, the
memory where v1 is substituted with v2, for all v2 = τ (v1).
We lift substitution to a trace γ = (ℓ1,σ1) · · · (ℓn ,σn ) ∈ (L ×
ΣV1 )

∗, by applying it to the each element:τ (γ ) = (ℓ1,τ (σ1)) · · ·
(ℓn ,τ (σn )) ∈ (L × ΣV2 )

∗.

In the rest of the paper we call a bijective function τ : V1 →
V2, between two sets of variablesV1 andV2, a total variable
relation betweenV1 andV2. Next we give a formal definition
of matching between two programs. Afterwards, we give
a formal definition of matching between two expressions.
The definitions involve execution of the programs on a set
of inputs.

Definition 4.4 (Program Matching). Let I be a set of inputs,
and let γP,ρ = JPK(ρ) and γQ,ρ = JQK(ρ) be sets of traces
obtained by executing P and Q on ρ ∈ I , respectively.

We say that P and Q match over a set of inputs I , denoted
by P ∼I Q , if there exists a total variable relation τ : VQ →
VP , such that γP,ρ = τ (γQ,ρ ), for all inputs ρ ∈ I . We call τ a
matching witness.

Intuitively, a matching witness τ defines a way of translat-
ingQ to range over variablesVP , such that P andQ translated
with τ produce the same traces.

Given a set of inputs I , ∼I is an equivalence relation on a
set of programs P: the identity relation on program variables
gives a matching witness for reflexivity, the inverse τ−1 of
some total variable relation τ gives a matching witness for
symmetry, and the composition τ1 ◦ τ2 of some total variables
relations τ1,τ2 gives a matching witness for transitivity.
The algorithm for finding τ is given in Fig. 4: given two

programs P andQ and a set of inputs I , it returns a matching
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witness τ , if one exists. The algorithm first executes both
programs on the inputs (lines 3 and 4), and then for each
variable v2 ∈ VQ finds a set of variables from VP that take
the same values during execution, thus defining a set of
potential matches M ⊆ VQ × VP (lines 5-10); here γ |v , de-
notes a projection of values of variable v from a trace γ , that
is: ((ℓ1,σ1) · · · (ℓn ,σn )) |v = σ1 (v

′) · · ·σn (v
′). The matching

witness is then a bijective mapping τ ⊆ M , if one exists (line
11); τ can be found inM by constructing a maximum bipar-
tite matching in the bipartite graph defined by M . We note
that this problem can be solved in polynomial time, w.r.t. the
number of the edges and vertices inM (e.g.,Uno [41]).

Definition 4.5 (Expression matching). Let Γ ⊆ (L × ΣVP )
∗

be a set of traces over variables VP , and let e1 and e2 be two
expressions over variables VP , at some location ℓ ∈ L.

We say that e1 and e2 match over a set of traces Γ, denoted
e1 ≃Γ, ℓ e2, if Je1K(σ ) = Je2K(σ ), for all (σ , ℓi ) ∈ γ where
ℓi = ℓ, and all γ ∈ Γ.

Expression matching says that two expressions produce
the same values, when considering the memories at location
ℓ, in a set of traces Γ. In the following lemma we state that
expression matching is equivalent to program matching; this
lemma will be useful for our repair algorithm, which we will
state in the next section.

Lemma 4.6 (Matching Equivalence). Let I be a set of inputs,
and let ΓI = {JPK(ρ) | ρ ∈ I } be a set of traces obtained by
executing P on I . We have the following equivalence: P ∼I Q
witnessed by τ : VQ → VP , if and only if, eP ≃ΓI , ℓ τ (eQ ), for
all (ℓ,v1) ∈ L × VP , where v1 = τ (v2), eP = UP (ℓ,v1), and
eQ = UQ (ℓ,v2).

Proof. “⇒”: Directly from the definitions. “⇐”: By induction
on the length of the trace γ =JPK(ρ) for some ρ ∈ I . □

Clustering We define clusters as the equivalence classes
of ∼I . For the purpose of matching and repair we pick an
arbitrary class representative from the class and collect ex-
pressions from all programs in the same cluster:

Definition 4.7 (Cluster). Let P be a set of (correct) pro-
grams. A cluster C ⊆ P is an equivalence class of ∼I . Given
some cluster C, we fix some arbitrary class representative
PC ∈ C.

We define the set EC (ℓ,v1) of cluster expressions for a pair
(ℓ,v1) ∈ L × VPC : e1 ∈ EC (ℓ,v1) iff there is some Q ∈ C
witnessed by τ : VQ → VPC such that v1 = τ (v2), e2 =
UQ (ℓ,v2) and e1 = τ (e2).

Note that it is irrelevant which program from C is chosen
as cluster representative PC ; we just need to fix some pro-
gram in order to be able to define the expressions EC over
a common set of variables VPC . We note that by definition
the sets of expressions EC have the following property: for
all e1, e2 ∈ EC (ℓ,v ) we have e1 ≃ΓI , ℓ e2 that is, expressions
e1 and e2 match.

Example. In §2.1 we discussed why the solutions C1 and
C2 match; therefore these two solutions belong to the same
cluster, which we denote here by C, and chose C1 as its rep-
resentative PC . Also, in Fig. 2 (c) and (d) we gave examples of
different equivalent expressions of assignment to the variable
result inside the loop body and the return statement after the
loop, respectively. To be more precise, these were examples
of sets EC (ℓloop, result) and EC (ℓafter , return), respectively.

5 Repair Algorithm
In the previous section we defined the notion of a matching
between two programs. In this section we consider an im-
plementation Pimpl and a cluster C (with its representative
PC) between which there is no matching. We assume that
Pimpl and PC have the same control-flow. The goal is to repair
Pimpl ; that is, to modify Pimpl minimally, w.r.t. some notion
of cost, such that the repaired program matches the cluster.
More precisely, the repair algorithm searches for a program
Prepaired , such that PC ∼I Prepaired , and Prepaired should be syn-
tactically close to Pimpl . Therefore, our repair algorithm can
be seen as a generalization of clustering to incorrect programs.

We first define a version of the repair algorithm that does
not change the set of variables, i.e., Vimpl = Vrepaired . Below
we extend this algorithm to include changes of variables, i.e.,
we allow Vimpl , Vrepaired . In both cases the control-flow of
Pimpl remains the same.
For the following discussion we fix some set of inputs I .

Let Γ = {JPCK(ρ) | ρ ∈ I } be the set of traces of cluster
representative PC for the inputs I .
As we discussed in the previous section, two programs

match if all of their corresponding expressions match (see
Lemma 4.6). Therefore the key idea of our repair algorithm
is to consider a set of local repairs that modify individual
implementation expressions. We first discuss local repairs;
later on we will discuss how to combine local repairs into a
full program repair.
Local repairs are defined with regard to partial variable

relations. It is enough to consider partial variable relations
(as opposed to the total variable relations needed for match-
ings) because these relations only need to be defined for the
expressions that need to be repaired.

Definition 5.1 (Local Repair). Let (ℓ,v2) ∈ L × Vimpl be a
location-variable pair from Pimpl , and let eimpl = Uimpl (ℓ,v2)
be the corresponding expression. Further, letω : Vimpl ⇀ VPC
be a partial variable relation such that v2 ∈ dom(ω), let
v1 = ω (v2) be the related cluster representative variable, and
let eC = UPC (ℓ,v1) be the corresponding expression.
A pair r = (ω, erepaired ), where erepaired is an expression

over implementation variables Vimpl , is a local repair for
(ℓ,v2) when eC ≃Γ, ℓ ω (erepaired ) andV (erepaired ) ⊆ dom(ω).
A pair r = (ω, •) is a local repair for (ℓ,v2) when eC ≃Γ, ℓ
ω (eimpl ) andV (eimpl ) ⊆ dom(ω).
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We define the cost of a local repair r = (ω, erepaired ) as
cost (r ) = diff (eimpl, erepaired ) and the cost of a local repair
r = (ω, •) as cost (r ) = 0.

We comment on the definition of a local repair. Let (ℓ,v2) ∈
L × Vimpl be a location-variable pair from Pimpl , let eimpl =

Uimpl (ℓ,v2) be the corresponding expression, and let r be a
local repair for some (ℓ,v2). In case r = (ω, •), the expression
eimpl matches the corresponding expression of the cluster rep-
resentative under the partial variable mapping ω; this repair
has cost zero because the expression eimpl is not modified.
In case r = (ω, erepaired ), the expression erepaired constitutes a
modification of eimpl that matches the corresponding expres-
sion of the cluster representative under the partial variable
mapping ω; this repair has some cost diff (eimpl, erepaired ). In
our implementation we define diff (eimpl, erepaired ) to be the
tree edit distance [38, 43] between the abstract syntax trees
(ASTs) of the expressions eimpl and erepaired .

Example. We remind the reader that in §2.2 we discussed
three examples of local repairs for I1 (Fig. 2). Formally, ex-
ample (1) is a local repair for (ℓ1, new), while (2) and (3) are
local repairs for (ℓ4, return). Next we state how to combine
local repairs into a full program repair.

Definition 5.2 (Repair). Let R be a function that assigns
to each pair (ℓ,v ) ∈ L × Vimpl a local repair for (ℓ,v ). We
say that R is consistent, if there exists a total variable rela-
tion τ : Vimpl → VPC , such that ω ⊆ τ , for all R (ℓ,v ) =
(ω,−). A consistent R is called a repair. We define the cost
of R as the sum of the costs of all local repairs: cost (R) =∑

(ℓ,v )∈L×Vimpl cost (R (ℓ,v )).
A repair R defines a repaired implementation Prepaired =

(L, ℓinit ,Vimpl,Urepaired ,S), whereUrepaired (ℓ,v ) = erepaired if
M (ℓ,v ) = (−, erepaired ), and Urepaired (ℓ,v ) = Uimpl (ℓ,v ) if
M (ℓ,v ) = (−, •), for all (ℓ,v ) ∈ L ×Vimpl .

Theorem 5.3 (Soundness of Repairs). PC ∼I Prepaired .

Proof. (sketch) From the definition ofR (ℓ,v2), we have eC ≃Γ, ℓ
τ (erepaired ), for all (ℓ,v2) ∈ L × Vimpl , where v1 = τ (v2),
eC = UC (ℓ,v1) and erepaired = Urepaired (ℓ,v2). Then it fol-
lows from Lemma 4.6 that PC ∼I Prepaired . □

In the above definition we use notation r = (ω,−) when
erepaired or • is not important in r ; similarly we use r =
(−, erepaired ) and r = (−, •) when ω is not important in r .
Example. The repair for example I1 (Fig. 2) corresponds

to the total variable relation τ = {poly 7→ poly, new 7→
result, e 7→ i, return 7→ return, ? 7→ ?}. The repairM includes
local repairs (1) and (2) from the previous examples, where
only (2) has cost > 0 (see the repair in Fig. 2 (g)).
Next we discuss the algorithm for finding a repair.

The repair algorithm The algorithm is given in Fig. 5:
given a cluster C, an implementation Pimpl , and a set of in-
puts I , it returns a repair R. The algorithm has two main
parts: First, the algorithm constructs a set of possible local

1 fun Repair(Cluster C, Implementation Pimpl, Inputs I):
2 π = structural matching or abort

3 Γ = {JPCK(ρ ) | ρ ∈ I }
4 for (ℓ, v2 ) ∈ L ×Vimpl:

5 LR(ℓ, v2 ) = ∅

6 eimpl = Uimpl (ℓ, v2 )
7 for v1 ∈ VPC :
8 eC = UPC (ℓ, v1 )

9 for ω : (V (eimpl ) ∪ {v2 }) → VPC s.t. ω (v2 ) = v1:

10 if eC ≃Γ, ℓ ω (eimpl ):
11 LR(ℓ, v2 ) = LR(ℓ, v2 ) ∪ {(ω, •) }
12 for e ∈ EC (ℓ, v1 ):
13 for ω : (V (e ) ∪ {v1 }) → Vimpl s.t. ω (v1 ) = v2:

14 LR(ℓ, v2 ) = LR(ℓ, v2 ) ∪ {(ω−1, ω (e )) }
15 return FindRepair(LR)

Figure 5. The Repair Algorithm.

repairs; we define and discuss the possible local repairs below.
Second, the algorithm searches for a consistent subset of the
possible local repairs, which has minimal cost; this search
corresponds to solving a constraint-optimization system.

Definition 5.4 (Set of possible local repairs). For all (ℓ,v ) ∈
L×Vimpl , we define the set of possible local repairs LR(ℓ,v ) as:
(1) (ω, e ) ∈ LR(ℓ,v ), if ω (e ) ∈ EC (ℓ,ω (v )); and (2) (ω, •) ∈
LR(ℓ,v ), if eC ≃Γ, ℓ ω (eimpl ), where eC = UPC (ℓ,ω (v )) and
eimpl = Uimpl (ℓ,v ).

The set of possible local repairs LR(ℓ,v ) includes all ex-
pressions from the cluster EC (ℓ,ω (v )), translated by some
partial variable relation ω in order to range over implemen-
tation variables. It also includes (ω, •) if eimpl matches eC
under partial variable mapping ω. Next we describe how the
algorithm constructs the set LR(ℓ,v ) (at lines 4-14).

For the following discussion we fix a pair (ℓ,v2) ∈ L×Vimpl
(corresponding to line 4), and some v1 ∈ VPC (corresponding
to line 7); we set eimpl = Uimpl (ℓ,v2) and eC = UPC (ℓ,v1).
Possible local repairs for (ℓ,v2) are constructed in two steps:
In the first step, the algorithm checks if there are partial
variable relations ω : Vimpl ⇀ VPC s.t. eC ≃Γ, ℓ ω (eimpl ) (at
line 9), and in that case adds a pair (ω, •) to LR(ℓ,v2) (at line
11). In the second step, the algorithm iterates over all cluster
expressions e = EPC (ℓ,v1) (at line 12), and all partial variable
relations ω : VPC ⇀ Vimpl (at line 13), and then adds a pair
(ω−1,ω (e )) to LR(ℓ,v2) (at line 14).We note thatω−1 (ω (e )) =
e ∈ EC (ℓ,v1) = EC (ℓ,ω

−1 (v2)), and thus (ω−1,ω (e )) is a
possible local repair as in Def. 5.4.

We remark that in both steps, the algorithm iterates over
all possible variable relations ω. However, since ω relates
only the variables of a single expression — usually a small
subset of all program variables, this iteration is feasible.

Finding a repair with the smallest cost Finally, the al-
gorithm uses sub-routine FindRepair (at line 15) that, given
a set of possible local repairs LR, finds a repair with smallest
cost. FindRepair encodes this problem as a Zero-One Integer
Linear Program (ILP), and then hands it to an off-the-shelf
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ILP solver. Next, we define the ILP problem, describe how
we encode the problem of finding a repair as an ILP problem,
and how we decode the ILP solution to a repair.

Definition 5.5 ((Zero-One) ILP). An ILP problem, over vari-
ables I = {x1, . . . ,xn }, is defined by an objective function
O = �

∑
1≤i≤n wi · xi , and a set of linear (in)equalities C,

of the form
∑

1≤i≤n ai · xi ⊵ b. Where � ∈ {min,max} and
⊵= {≥,=}. A solution to the ILP problem is a variable as-
signment A : I → {0, 1}, such that all (in)equalities hold,
and the value of the objective functions is minimal (resp.
maximal) for A.

We encode the problem of finding a consistent subset of
possible local repairs as an ILP problem with variables I =
{xv1v2 | v1 ∈ VPC and v2 ∈ Vimpl }∪{xr | r ∈ LR(ℓ,v ), (ℓ,v ) ∈
L × Vimpl }; that is, one variable for each pair of variables
(v1,v2), and one variable for each possible local repair r . The
set of constraints C is defined as follows:(∑

v2∈Vimpl xv1v2

)
= 1 for each v1 ∈ VPC (1)(∑

v1∈VPC
xv1v2

)
= 1 for each v2 ∈ Vimpl (2)(∑

r ∈LR(ℓ,v ) xr
)
= 1 for each (ℓ,v ) ∈ L ×Vimpl (3)

−xr + xu1u2 ≥ 0 for each r = (ω,−) ∈ LR (4)
and each ω (u2) = u1

Intuitively, the constraints encode:
1. Each v1 ∈ VPC is related to exactly one of v2 ∈ Vimpl .
2. Each v2 ∈ Vimpl is related to exactly one of v1 ∈ VPC .

Together (1) and (2) encode that there is a total variable
relation τ : Vimpl → VPC .

3. For each (ℓ,v ) ∈ L × Vimpl exactly one local repair is
selected.

4. Each selected local repair r = (ω,−) ∈ LR is consistent
with τ , i.e., ω ⊆ τ .

The objective function O = min (
∑

r ∈LR cost (r ) · xr ) en-
sures that the sum of the costs of the selected local repairs is
minimal.
Let A : I → {0, 1} be a solution of the ILP problem. We

obtain the following total variable relation from A: τ (v2) =
v1 iff A (xv1v2 ) = 1. For A (xr ) = 1, where LR(ℓ,v ) = r , we
set R (ℓ,v ) = r .

Adding and Deleting Variables The repair algorithm de-
scribed so far does not change the set of variables, i.e.,Vrepaired =
Vimpl . However, since the repair algorithm constructs a bijec-
tive variable relation, this only works when the implemen-
tation and cluster representative have the same number of
variables, i.e., |Vimpl | = |VPC |. Hence, we extend the algorithm
to also allow the addition and deletion of variables.

We extend total variable relations τ : Vimpl → VPC to rela-
tions τ ⊆ (Vimpl ∪ {⋆}) × (VPC ∪ {−}). We relax the condition
about τ being total and bijective: ⋆ and − can be related to
multiple variables or none. When some variable v ∈ VPC is

related to ⋆, that is τ (⋆) = v , it denotes that a fresh variable
is added to Pimpl , in order to matchv . Conversely, when some
variable v ∈ Vimpl is related to −, that is τ (v ) = −, variable v
is deleted from Pimpl , together with all its assignments.

An example of a repair where a fresh variable is added is
given in the extended version [19].

Completeness of the algorithm We point out that with
this extension the repair algorithm is complete (assuming
Pimpl and PC have the same control-flow). This is because
the repair algorithm can always generate a trivial repair:
all variables v2 ∈ Vimpl are deleted, that is τ (v2) = − for
all v2 ∈ Vimpl ; and a fresh variable is introduced for every
variable v1 ∈ VPC , that is τ (⋆) = v1 for all v1 ∈ VPC . Clearly,
this trivial repair has high cost, and in practice it is very rarely
generated, as witnessed by our experimental evaluation in
the next section.

6 Implementation and Experiments
We now describe our implementation (§6.1) and an experi-
mental evaluation, which consists of two parts: (I) an evalu-
ation on MOOC data (§6.2), and (II) a user study about the
usefulness of the generated repairs (§6.3). The evaluation
was performed on a server with anAMDOpteron 6272 2.1GHz
processor and 224 GB RAM.

6.1 Implementation
We implemented the proposed approach in the publicly avail-
able tool Clara4 (for CLuster And RepAir). The tool cur-
rently supports programs in the programming languages C
and Python, and consists of: (1) Parsers for C and Python
that convert programs to our internal program representa-
tion; (2) Program and expression evaluation functions for C
and Python, used in the matching and repair algorithms;
(3) Matching algorithm; (4) Repair algorithm; (5) Simple feed-
back generation system. We use the lpsolve [2] ILP solver,
and the zhang-shasha [4] tree-edit-distance algorithm.

Feedback generation We have implemented a simple feed-
back generation system that generates the location and a
textual description of the required modifications (similar to
AutoGrader). Other types of feedback can be generated from
the repair as well, and we briefly discuss it in §9.

6.2 MOOC Evaluation
Setup In the first experiment we evaluate Clara on data
from the MITx introductory programming MOOC [3], which
is similar to the data used in evaluation of AutoGrader [33].
This data is stripped from all information about student

identity, i.e., there are not even anonymous identifiers. To
avoid the threat that a student’s attempt is repaired by her
own future correct solution, we split the data into two sets.
From the first (chronologically earlier) set we take only the
4https://github.com/iradicek/clara
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Table 1. List of the problems with evaluation results for the MOOC data (with AutoGrader comparison).

Problem LOC AST size # correct # clusters # incorrect # repaired (% of # incorrect) avg. (median) time in s
name median median (% of # correct) Clara AutoGrader Clara AutoGrader

derivatives 14 33 1472 532 (36.14%) 481 472 (98.13%) 235 (48.86%) 4.9s (4.4s) 6.6s (5.2s)
oddTuples 10 25 9001 454 (5.04%) 3584 3514 (98.05%) 576 (16.07%) 3.0s (2.6s) 25.5s (13.3s)
polynomials 13 25 2500 234 (9.36%) 228 197 (86.40%) 17 (7.46%) 1.9s (1.6s) 4.3s (4.0s)

Total 11 25 12973 1220 (9.40%) 4293 4183 (97.44%) 828 (19.29%) 3.2s (2.7s) 19.7s (6.3s)

correct solutions: these solutions are then clustered, and the
obtained clusters are used during the repair of the incorrect
attempts. From the second (chronologically later) set we take
only the incorrect attempts: on these attempts we perform
repair. We have split the data in 80 : 20 ratio since then we
have a large enough number (12973; see the discussion below)
of correct solutions that our approach requires, while still
having quite a large number (4293) of incorrect attempts for
the repair evaluation. We point out that this is precisely the
setting that we envision our approach to be used in: a large
number of existing correct solutions (e.g., from a previous
offering of a course) are used to repair new incorrect student
submissions.

Results The evaluation summary is in Table 1; the descrip-
tions of the problems are in the extended version of the pa-
per [19]. Clara automatically generates a repair for 97.44%
of attempts. As expected, Clara can generate repairs in al-
most all the cases, since there is always the trivial repair
of completely replacing the student implementation with
some correct solution of the same control flow. Hence, it is
mandatory to study the quality and size of the generated
repairs. We evaluate the following questions in more detail:
(1) What are the reasons when Clara fails? (2) Does Clara
generate non-trivial repairs? (3) What is the quality and size
of the generated repairs?
We discuss the results of this evaluation below, while

further examples can be found in the extended version [19].

(1) Clara fails Clara fails to generate repair in 110 cases:
in 69 cases there are unsupported Python features (e.g.,
nested function definitions), in 35 cases there is no correct
attempt with the same control-flow, and in 6 cases a numeric
precision error occurs in the ILP solver. The only funda-
mental problem of our approach is the inability to generate
repairs without matching control-flow; however, since this
occurs very rarely, we leave the extension for a future work.
Hence, we conclude that CLARA can repair almost all pro-
grams.

(2) Non-trivial repairs Since a correct repair is also a triv-
ial one that completely replaces a student’s attempt with a
correct program, we measure how much a repair changes
the student’s program. To measure this we examine the rela-
tive repair size: the tree-edit-distance of the repair divided by
the size of the AST of the program. Intuitively, the tree-edit-
distance tells us how many changes were made in a program,

Figure 6. Histogram of relative repair sizes.

and normalization with the total number of AST nodes gives
us the ratio of how much of the whole program changed. Note,
however that this ratio can be > 1.0, or even ∞ if the pro-
gram is empty. Fig. 6 shows a histogram of relative repair
sizes. We note that 68% of all repairs have relative size < 0.3,
53% have < 0.2 and 25% have < 0.1; the last column (∞) is
caused by 436 completely empty student attempts. As an
example, the two repairs in Fig. 2 (g) and (h), have relative
sizes of 0.03 and 0.24.We conclude that Clara in almost all
cases generates a non-trivial repair that is not a replacement
of the whole student’s program.
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Figure 7. Comparison of the generated repairs size between
AutoGrader and Clara.

(3) Repair quality and repair size We inspected 100 ran-
domly selected generated repairs, with the goal of evaluating
their quality and size. Our approach of judging repair qual-
ity and size mirrors a human teacher helping a student: the
teacher has to guess the student’s idea and use subjective
judgment on what feedback to provide. We obtained the fol-
lowing results: (a) In 72 cases Clara generates the smallest,

474



Automated Clustering and Program Repair for Introductory . . . PLDI’18, June 18–22, 2018, Philadelphia, PA, USA

most natural repair; (b) In 9 cases the repair is almost the
smallest, but involves an additional modification that is not
required; (c) In 11 cases we determined the repair, although
correct, to be different from the student’s idea; (d) In 8 cases it
is not possible to determine the idea of the student’s attempt,
although Clara generates some correct repair.
For the cases in (d), we found that program repair is not

adequate and further research is needed to determine what
kind of feedback is suitable when the student is far from
any correct solution. For the cases in (c), the set of correct
solutions does not contain any solution which is syntacti-
cally close to the student’s idea; we conjecture that Clara’s
results in these cases can partially be improved by consider-
ing different cost functions which do not only take syntactic
differences into account but also make use of semantic infor-
mation (see the discussion in §9). However, in 81 cases (the
sum of (a) and (b)), Clara generates good quality repairs. We
conclude that Clara mostly produces good quality repairs.

Summary Our large-scale experiment on the MOOC data-
set shows that Clara can fully automatically repair almost all
programs and the generated repairs are of high quality.

Clusters Finally, we briefly discuss the correct solutions,
since our approach depends on their existence. The quality
of the generated repair should increase with the number of
clusters, since then the algorithm can generate more diverse
repairs. Thus, it is interesting to note that we experienced
no performance issues with a large number of clusters; e.g.,
on derivatives, with 532 clusters, a repair is generated on
average in 4.9s. This is because the repair algorithm pro-
cesses multiple clusters in parallel. Nonetheless, clustering
is important for repair quality, since it enables repairs that
combine expressions taken from different correct solutions
from the same cluster, which would be impossible without
clustering. We found that 2093 (around 50%) repairs were
generated using at least two different correct solutions, and
110 (around 3%) were generated using at least three different
correct solutions, in the same cluster.

6.2.1 Comparison with AutoGrader
While the setting of AutoGrader is different (a teacher has
to provide an error model, while our approach is fully auto-
mated), the same high-level goal (finding a minimal repair
for a student attempt to provide feedback) warrants an ex-
perimental comparison between the approaches.

Setup and Data We were not able to obtain the data used
in AutoGrader’s evaluation, which stems from an internal
MIT course, because of privacy concerns regarding student
data. Hence, we compare the tools on the same MITx in-
troductory programming MOOC data, which we used in
the paper for Clara evaluation. This dataset is similar to
the dataset used in AutoGrader’s evaluation. AutoGrader’s

authors provided us with an AutoGrader version that is op-
timized to scale to a MOOC, that is, it has a weaker error
model than in the original AutoGrader’s publication [33].
According to the authors, some error rewrite rules were in-
tentionally omitted, since they are too slow for interactive
online feedback generation.

Results The evaluation summary is in Table 1. AutoGrader
is able to generate a repair for 19.29% of attempts, usingman-
ually specified rewrite-rules, compared to 97.44% automati-
cally generated repairs by Clara. (We note that AutoGrader
is able to repair fewer attempts than reported in the original
publication [33] due to the differences discussed in the previ-
ous paragraph.) As Clara can generate repairs in almost all
the cases, these numbers are not meaningful on their own;
the numbers are, however, meaningful in conjunction with
our evaluation of the following questions: (1) How many
repairs can one tool generate that other cannot, and what are
the reasons when AutoGrader fails? (2) What are the sizes of
repairs? (3) What is the quality of the generated repairs, in
case both tools generate a repair?

We summarize the results of this evaluation below, while
a more detailed discussion can be found in the extended
version [19].

(1) Repair numbers In all but one case, when Clara fails
to generate a repair, AutoGrader also fails. Further, we man-
ually inspected 100 randomly selected cases where Auto-
Grader fails, and determined that in 77 cases there is a fun-
damental problem with AutoGrader’s approach: The mod-
ifications require fresh variables, new statements or larger
modifications, which are beyond AutoGrader’s capabilities.
This shows that Clara can generate more complicated repairs
than AutoGrader.

In the 100 cases wemanually inspectedwe also determined
that in 74 cases Clara generates good quality repairs, when
AutoGrader fails.

(2) Repair sizes We do not report the relative repair size
metric for AutoGrader, because we were not able to extract
the repair size from its (textual) output. However, Fig. 7 (a)
compares the relation of the number of modified expressions
when both tools generate a repair. We note that the number
of modified expressions is a weaker metric than the tree-edit-
distance, however, we were only able to extract this metric
for the repairs generated by AutoGrader.We conclude that
AutoGrader produces smaller repair in around 10% of the cases.
Fig. 7 (b) also compares the overall (not just when both

tools generate a repair) distribution of the number of changed
expression per repair. We notice that most of AutoGrader’s
repairs modify a single expression, and the percentage falls
faster than in Clara’s case.

(3) Repair quality Finally, we manually inspected 100 ran-
domly selected cases where both tools generate a repair. In
61 cases we found both tools to produce the same repair; in
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Table 2. List of the problems with evaluation details for user study.

Problem LOC # correct # clusters # incorr. # feedback # repair feedback time (in s) # grades
median (exist.+study) (exist.+study) (% of # incorr.) (% of # feedback) avg. median 1/2/3/4/5

Fibonacci sequence 12 512+84 70 + 17 (14.60%) 572 539 (94.23%) 440 (81.63%) 10.44 8.51 1 / 7 / 9 / 16 / 13
Special number 15 358+59 39 + 3 (10.07%) 121 109 (90.08%) 94 (86.24%) 3.77 2.38 2 / 3 / 8 / 9 / 13

Reverse Difference 17 342+46 48 + 8 (14.43%) 103 77 (74.76%) 68 (88.31%) 4.39 3.07 4 / 4 / 5 / 3 / 5
Factorial interval 14 391+44 56 + 8 (14.71%) 234 232 (99.15%) 185 (79.74%) 3.33 3.17 2 / 5 / 4 / 5 / 13

Trapezoid 14 281+41 36 + 15 (15.84%) 143 129 (90.21%) 121 (93.80%) 7.55 4.82 7 / 5 / 7 / 7 / 5
Rhombus 21 264+38 73 + 22 (31.46%) 525 417 (79.43%) 192 (46.04%) 9.16 5.35 6 / 9 / 6 / 5 / 3

19 cases different, although of the same quality; in 9 cases
we consider AutoGrader to be better; in 5 cases we consider
Clara to be better; and in 6 cases we found that AutoGrader
generates an incorrect repair. We conclude that there is no
notable difference between the tools when both tools generate
a repair.

6.3 User Study on Usefulness
In the second experiment we performed a user study, evalu-
ating Clara in real time. We were interested in the following
questions: (1)How often and fast is feedback generated (perfor-
mance)? (2)How useful is the generated repair-based feedback?

Setup To answer these questions we developed a web in-
terface for Clara and conducted a user study, which we
advertised on programming forums, mailing lists, and social
networks. Each participant was asked to solve six introduc-
tory C programming problems, for which the participants
received feedback generated by Clara. There was one addi-
tional problem, not discussed here, that was almost solved,
and whose purpose was to familiarize the participants with
the interface. After solving a problem each participant was
presented with the question: “How useful was the feedback
provided on this problem?”, and could select a grade on the
scale from 1 ("Not useful at all") to 5 ("Very useful"). Addi-
tionally, each participant could enter an additional textual
comment for each generated feedback individually and at
the end of solving a problem.
We also asked the participants to assess their program-

ming experience with the question: “Your overall program-
ming experience (your own, subjective, assessment)”, with
choices on the scale from 1 (“Beginner”) to 5 (“Expert”).

The initial correct attempts were taken from an introduc-
tory programming course at IIT Kanpur, India. The course is
taken by around 400 students of whom several have never
written a program before. We selected problems from two
weeks where students start solving more complicated prob-
lems using loops. Of the 16 problems assigned in these two
weeks, we picked those 6 that were sufficiently different.

Results Table 2 shows the summary of the results; detailed
descriptions of all problems are available in the extended
paper version [19]. The columns # correct and # clusters
show the number of correct attempts and clusters obtained
from: (a) the existing ESC 101 data (exist. in the table), and

(b) during the case study from participants’ correct attempts
(study in the table). We plan to make the complete data, with
all attempts, grades and textual comments publicly available.

Performance of Clara Feedback was generated for 1503
(88.52%) of incorrect attempts. In the following we discuss
the 3 reasons why feedback could not be generated: (1) In 57
cases there was a bug in Clara, which we have fixed after
the experiment finished. Then we confirmed that in all 57
cases the program is correctly repaired and feedback is gen-
erated (note that this bug was only present in this real-time
experiment, i.e., it did not impact the experiment described in
the previous section); (2) In 43 cases a timeout occurred (set
to 60s); (3) In 95 cases a program contained an unsupported
C construct, or there was a syntactic compilation error that
was not handled by the web interface (Clara currently pro-
vides no feedback on programs that cannot be even parsed).
Further, the average time to generate feedback was 8 sec-
onds. These results show that Clara provides feedback on a
large percentage of attempts in real time.

Feedback usefulness The results are based on 191 grades
given by 52 participants. Note that problems have a different
number of grades. This is because we asked for a grade only
when feedback was successfully generated (as noted above,
in 88.52% cases), and because some of the participants did
not complete the study. The average grade over all problems
is 3.4. This shows very promising preliminary results on the
usefulness of Clara. However, we believe that these results
can be further improved (see §9).
The participants declared their experience as follows: 22

as 5, 19 as 4, 9 as 3, 0 as 2, and 2 as 1. While these are useful
preliminary results, a study with beginner programmers is
an important future work.
Note. In the case of a very large repair (cost > 100 in our

study), we decided to show a generic feedback explaining a
general strategy on how to solve the problem. This is because
the feedback generated by such a large repair is usually not
useful. We generated such a general strategy in 403 cases.

6.4 Threats to Validity
Program size We have evaluated our approach on small to
medium size programs typically found in introductory pro-
gramming problems. The extension of our approach to larger
programming problems, as found in more advanced courses,
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is left for future work. Focusing on small to medium size
programs is in line with related work on automated feedback
generation for introductory programming (e.g., D’Antoni
et al. [9], Singh et al. [33], Head et al. [20]). We stress that
the state-of-the-art in teaching is manual feedback (as well
as failing test cases); thus, automation, even for small to
medium size programs, promises huge benefits. We also
mention that our dataset contains larger and challenging
attempts by students which use multiple functions, multiple
and nested loops, and our approach is able to handle them.
The focus of our work differs from the related work on

program repair (see §7 for a more detailed discussion). Our
approach is specifically designed to perform well on small
to medium size programs typically found in introductory
programming problems, rather than the larger programs
targeted in the literature on automated program repair. In
particular, our approach addresses the challenges of (1) a
high number of errors (education programs are expected
to have higher error density [33]), (2) complex repairs, and
(3) a runtime fast enough for use in an interactive teaching
environment. These goals are often out of reach for program
repair techniques. For example, the general purpose program
repair techniques discussed in Goues et al. [17] on the In-
troClass benchmark, either repair a small number of defects
(usually <50%) or take a long time (i.e., over one minute).

Unsoundness Our approach guarantees only that repairs
are correct over a given set of test cases. This is in accor-
dance with the state-of-the-art in teaching, where testing
is routinely used by course instructors to grade program-
ming assignments and provide feedback (e.g., for ESC101 at
IIT Kanpur, India [10]). When we manually inspected the
repairs for their correctness, we did not find any problems
with soundness. We believe that this due to the fact that pro-
gramming problems are small, human-designed problems
that have comprehensive sets of test cases.
In contrast to our dynamic approach, one might think

about a sound static approach based on symbolic execution
and SMT solving. We decided for a dynamic analysis because
symbolic execution can sometimes take a long time or even
fail when constructs are not supported by an SMT solver. For
example, reasoning about floating points and lists is difficult
for SMT solvers. On the other hand, our method only exe-
cutes given expressions on a set of inputs, so we can handle
any expression, and our method is fast. Further, our evalua-
tion showed our dynamic approach to be precise enough for
the domain of introductory programming assignments. The
investigation of a static verification of the results generated
by our repair approach is an interesting direction for future
work: one could take the generated repair expressions and
verify that they indeed establish a simulation with the cluster
against which the program was repaired.

7 Related Work
Automated Feedback Generation Ihantola et al. [21]
present a survey of tools for the automatic assessment of
programming exercises. Pex4Fun [40] and its successor Code-
Hunt [39] are browser-based, interactive platforms where
students solve programming assignments with hidden speci-
fications, and are presented with a list of automatically gen-
erated test cases. LAURA [5] heuristically applies program
transformations to a student’s program and compares it to a
reference solution, while reporting mismatches as potential
errors (they could also be correct variations). Apex [25] is a
system that automatically generates error explanations for
bugs in assignments, while our work automatically clusters
solutions and generates repairs for incorrect attempts.

Trace analysis Striewe and Goedicke [35] have proposed
presenting full program traces to the students, but the inter-
pretation of the traces is left to the students. They have also
suggested automatically comparing the student’s trace to
that of a sample solution [36]. However, the approach misses
a discussion of the situation when the student’s code enters
an infinite loop, or has an error early in the program that
influences the rest of the trace. The approach of Gulwani
et al. [18] uses a dynamic analysis based approach to find a
strategy used by the student, and to generate feedback for
performance aspects. However, the approach requires specifi-
cations manually provided by the teacher, written in a spe-
cially designed specification language, and it only matches
specifications to correct attempts, i.e., it cannot provide feed-
back on incorrect attempts.

ProgramClassification in Education CodeWebs [30] clas-
sifies different AST sub-trees in equivalence classes based
on probabilistic reasoning and program execution on a set
of inputs. The classification is used to build a search engine
over ASTs to enable the instructor to search for similar at-
tempts, and to provide feedback on some class of ASTs. Over-
Code [15] is a visualization system that uses a lightweight
static and dynamic analysis, together with manually pro-
vided rewrite rules, to group student attempts. Drummond
et al. [13] propose a statistical approach to classify interac-
tive programs in two categories (good and bad). Head et al.
[20] cluster incorrect programs by the type of the required
modifications. CoderAssist [23] provides feedback on student
implementations of dynamic programming algorithms: the
approach first clusters both correct and incorrect programs
based on their syntactic features; feedback for incorrect pro-
gram is generated from a counterexample obtained from an
equivalence check (using SMT) against a correct solution in
the same cluster.

Program Repair The research on program repair is vast;
we mention some work, with emphasis on introductory edu-
cation. The non-education program repair approaches are
based on SAT [16], symbolic execution [26], games [22, 34],
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program mutation [11], and genetic programming [6, 14].
In contrast, our approach uses dynamic analysis for scala-
bility. These approaches aim at repairing large programs,
and therefore are not able to generate complex repairs. Our
approach repairs small programs in education and uses mul-
tiple correct solutions to find the best repair suggestions, and
therefore is able to suggest more complex repairs.
Prophet [27] mines a database of successful patches and

uses these patches to repair defects in large, real-world ap-
plications. However, it is unclear how this approach would
be applicable to our educational setting. SearchRepair [24]
mines a body of code for short snippets that it uses for repair.
However, SearchRepair has different goals than our work and
has not been used or evaluated in introductory education.
Angelic Debugging [8] is an approach that identifies at most
one faulty expression in the program and tries to replace it
with a correct value (instead of replacement expression).

Yi et al. [42] explore different automated program repair
(APR) systems in the context of generating feedback in in-
telligent tutoring systems. They show that using APR out-
of-the-box seems infeasible due to the low repair rate, but
discuss how these systems can be used to generate partial
repairs. In contrast, our approach is designed to provide com-
plete repairs. They also conclude that further research is
required to understand how to generate the most effective
feedback for students from these repairs.
AutoGrader [33] takes as input an incorrect student pro-

gram, along with a reference solution and a set of potential
corrections in the form of expression rewrite rules (both
provided by the course instructor), and searches for a set of
minimal corrections using program synthesis. In contrast,
our approach is completely automatic and can generate more
complicated repairs. Refazer [32] learns programs transfor-
mations from example code edits made by the students, and
then uses these transformations to repair incorrect student
submissions. In comparison to our approach, Refazer does
not have a cost model, and hence the generated repair is
the first one found (instead of the smallest one). Rivers and
Koedinger [31] transform programs to a canonical form us-
ing semantic-preserving syntax transformations, and then
report syntax difference between an incorrect program and
the closest correct solution; the paper reports evaluation on
loop-less programs. In contrast, our approach uses dynamic
equivalence, instead of (canonical) syntax equivalence, for
better robustness under syntactic variations of semantically
equivalent code. Qlose [9] automatically repairs programs
in education based on different program distances. The idea
to consider different semantic distances is very interesting,
however the paper reports only a very small initial evalua-
tion (on 11 programs), and Qlose is only able to generate
small, template-based repairs.

8 Future Work
In this section we briefly discuss the limitations of our ap-
proach, and possible directions for future work.

Cost function The cost function in our approach com-
pares only the syntactic difference between the original and
the replacement expressions (specifically, we use the tree-
edit-distance in our implementation). We believe that the
cost function could take into account more information; e.g.,
variable roles [12] or semantic distance [9].

Control-flow The clustering and repair algorithms are re-
stricted to the analysis of programs with the same control-
flow. As the case of “no matching control-flow to generate
a repair” rarely occurs in our experiments (only 35 cases
in the MOOC experiment), we have left the extension of
our algorithm to programs with different control-flow for
future work. We conjecture that our algorithm could be ex-
tended to programs with similar control-flow (e.g., different
looping-structure).

Feedback Our tool currently outputs a textual description
of the generated repair, very similar to the feedback gener-
ated by AutoGrader. We believe that the generated repairs
could be used to derive other types of feedback as well. For
example, a more abstract feedback with the help of a course
instructor: A course instructor could annotate variables in
the correct solutions with their descriptions, and when a
repair for some variable is required, a matching feedback is
shown to a student.
While this paper is focused on the technical problem of

finding possible repairs, an interesting orthogonal direction
for future work is to consider pedagogical research questions,
for example: (1) How much information should be revealed
to the student (the line number, an incorrect expression,
the whole repair)? (2) Should the use of automated help
be penalized? (3) How much do students learn from the
automated help?

9 Conclusion
We present novel algorithms for clustering and program re-
pair in introductory programming education. The key idea
behind our approach is to use the existing correct student solu-
tions, which are available in tens of thousands in largeMOOC
courses, to repair incorrect student attempts. Our evaluation
shows that Clara can generate a large number of repairs
without any manual intervention, can perform complicated
repairs, can be used in an interactive teaching setting, and
generates good quality repairs in a large percentage of cases.
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