Inductive Termination Proofs with Transition
Invariants and their relationship to the
Size-Change Abstraction

Florian Zuleger

TU Wien
zuleger@forsyte.at

Abstract. Transition invariants are a popular technique for automated
termination analysis. A transition invariant is a covering of the transitive
closure of the transition relation of a program by a finite number of well-
founded relations. The covering is usually established by an inductive
proof using transition predicate abstraction. Such inductive termination
proofs have the structure of a finite automaton. These automata, which
we call transition automata, offer a rich structure that has not been ex-
ploited in previous publications. We establish a new connection between
transition automata and the size-change abstraction, which is another
widespread technique for automated termination analysis. In particular,
we are able to transfer recent results on automated complexity analysis
with the size-change abstraction to transition invariants.

1 Introduction

The last decade has seen considerable interest in automated techniques for pro-
ving the termination of programs. Notably, the TERMINATOR termination ana-
lyzer [14] has been able to analyze device drivers with several thousand lines
of code. The analysis in [14] uses the termination criterion suggested by Ry-
balchenko and Podelski in [25] (for a discussion of earlier work that implicitly
used the same principle we refer the reader to [6]): In order to show the well-
foundedness of a relation R, it is sufficient to find a finite number of well-founded
relations Ry,..., Ry with

RTCRU---URy, (%)

where R™ denotes the transitive closure of R.

An essential difficulty in using the above criterion lies in establishing the
condition (x), as reasoning about the transitive closure R usually requires in-
duction. For this reason, not only the above criterion but also an inductive
argument for establishing (%) was suggested in [25]. The inductive argument
was further developed in [26], where the use of transition predicate abstraction
(TPA) has been suggested for establishing condition (x). TPA is the basis for
the termination analysis in TERMINATOR. The starting point of our research are
the inductive termination proofs with TPA, which have the structure of finite

automata (as already observed in [26]). These automata, which we call tran-
sition automata, offer a rich structure that has not been exploited in previous
publications. It is precisely this automaton structure, which allows us to con-
nect inductive termination proofs with TPA to the size-change abstraction, and
transfer recent results on automated complexity analysis.

We contrast our approach with the fascinating line of work [6, 32, 30], which
aims at bounding the height of the relation R in terms of the height of the
relations Ry,..., Ri. In order to derive such bounds, [6,30] replace Ramsey’s
theorem, which has been used to prove (x) in [25], by more fine-grained Ramsey-
like arguments. In this paper, we show that inductive termination proofs with
TPA do not need to rely on Ramsey’s theorem and can be analyzed solely by
automata-theoretic techniques.

Size-change abstraction (SCA), introduced by Ben-Amram, Lee and Jones
in [22], is another wide-spread technique for automated termination analysis.
SCA has been employed for the analysis of functional [22,23], logical [31] and
imperative [3,10] programs and term rewriting systems [9], and is implemented
in the industrial-strength systems ACL2 [23] and Isabelle [20]. Recently, SCA
has also been used for resource bound and complexity analysis of imperative
programs [34]. SCA is attractive because of several strong theoretical results
on termination analysis [22], complexity analysis [12,33] and the existence of
ranking functions [5,33]. The success of SCA has also inspired generalizations
to richer classes of constraints [4,7,5]. The connection between TPA and SCA
has been the subject of previous research [19], which contains first results but
does not exploit the automaton structure of inductive termination proofs. In this
paper, we make the following contributions:

Result 1: Our main result (Theorem 7) makes it possible to transfer recent
results on automated complexity analysis with the size-change abstraction [12]
to transition automata. In particular, we obtain a complete and effective cha-
racterization of asymptotic complexity analysis with transition automata. This
result holds the potential for the design of new automated complexity analy-
zers, for example, by extracting complexity bounds from the inductive termi-
nation proofs computed by TERMINATOR. We illustrate our result in the fol-
lowing. We consider the programs P; and P, given by Example 1 and Exam-
ple 2 in Figure 1. One can model the transition relation of P; by the predicate
=x—1ANy = NVz =zAy =y—1 and the transition relation of P, by the
predicate ' =z — 1Ay =yVa' =x Ay =y— 1. The two relations R; and Ry
given by the predicates 2’ < z resp. ¥y’ < y are a transition invariant for both
programs; we give an inductive proof which establishes condition (%) for both
programs in Section 3. For motivation of our results we state here the relation
to [6]: With the program invariant + < N Ay < N (which can be computed by
standard techniques such as Octagon analysis [24]), the result of [6] allows us to
obtain the quadratic bound O(N?) on the complexity of both programs from the
transition invariant given by the relations R; and R,. However, this bound is
imprecise for Py, which has linear complexity. There is no hope in improving the
bound for P, because the result of [6] just relies on Ry and Rs. In this paper,

Ezxzample 1. Ezxample 2.
main(nat N) { main(nat N) {
nat x = N; nat y = N; nat x = N; nat y = N;
while (x>0 A y>0) { while (x>0 A y>0) {
if(?){ //transition a; if(?){ //transition a;
x——; y = N; X—=;
else { //tramsition as else { //transition as
y=—s Y=
Pl Pl

Fig. 1. The ? in the condition represents non-deterministic choice.

we demonstrate that the inductive termination proof offers more structure. We
show that just by analyzing the automaton structure of the proof we can deduce
the linear bound O(N) for Ps.

Result 2: Following [26] we examine a first termination criterion based on
the universality of transition automata and show that the universality of the
transition automaton implies the termination of the program under analysis
(Theorem 2). We then show that transition automata admit a more general
termination criterion based on the definition of an associated Biichi-automaton
(Theorems 3 and 1). This more general termination criterion has the advan-
tage that fewer predicates are needed for the termination proof (Example 7).
We finally show that this new criterion is in fact the most general termination
criterion admitted by transition automata (Theorem 4).

Result 3: We connect transition automata to the size-change abstraction in
Section 6. In particular, we show how to transfer several results from the size-
change abstraction to transition automata, demonstrating that techniques from
SCA are applicable for the analysis of inductive termination proofs with transi-
tion predicate abstraction. This is of fundamental interest for understanding the
relationship of both termination principles, because transition invariants have
been suggested in [25] as a generalization of size-change termination proofs (and
indeed later work has formally established that every size-change termination
proof can be mimicked by a transition invariant termination proof [19]).

Organization of the Paper. Section 2 gives the basic definitions. Section 3 re-
views transition predicate abstraction as introduced in [26]. Section 4 introdu-
ces transition automata and gives termination criteria. Section 5 reviews the
size-change abstraction. Section 6 defines ‘canonical’ programs for transition
automata and transfers results from the size-change abstraction to transition
automata. Section 7 concludes.

2 Basic Definitions

We use o to denote the usual product of relations, i.e., given two relations
B1, By C Ax A we define BjoBy = {(a1,a3) | there is an as € A with (a1,a2) €
B; and (ag,a3) € Ba}. Let B C A x A be a relation. B is well-founded if there

is no infinite sequence of states ajas --- with (a;,a;41) € B for all i. The tran-
sitive closure of B is defined by B* = |J,», B*, where B® = {(a,a) | a € A},
B! = B'o B. Let B C A x A be a well-founded relation. For every ele-
ment a € A we inductively define its ordinal height ||a|| g by setting |la||z =
sup(qpep ||bll g + 1, where sup over the empty set evaluates to 0. We note that
I-|| 5 is well-defined because B is well-founded. We define the ordinal height of
relation B as || B|| = sup,c4 |lal 5 + 1.

2.1 Automata

A finite automaton A = (Q, X, ,t, F) consists of a finite set of states, a finite
alphabet X, a transition relation 6 : X — 29%% an initial state + € @, and a
set of final states F' C). Automaton A is deterministic if for every 7 € @ and
a € X there is at most one 7/ € Q such that (7,7) € 6(a). We also write 7 2 7/
for (7,7') € d(a). We extend the transition relation to words and define §(w) =
d(a)o---0d(a;) for every w = ay---a; € X*. A run of A is a finite sequence
ai az ap . . .

r=1(—T — To--+ — 7. T I8 accepting if 7, € F. Automaton A accepts a
finite word w € X* if there is an accepting run r = ¢ A B 2 77 such
that w = ay - - - a;. We denote by L(A) = {w € X* | A accepts w} the language
of words accepted by A. Automaton A is universal if L(A) = X*.

A Biichi automaton A = {(Q,X,0,¢) consists of a finite set of states, a finite
alphabet X, a transition relation § : ¥ — 29*{=>1xQ and an initial state
t € Q. We also write 7 % 7/ for (1,d,7") € 6(a). A run of A is an infinite

sequence 1 = ¢ Z—1> T Z—2> To---. 1 is accepting if d; = > for infinitely many 4.
1 2

Automaton A accepts an infinite word w € X“ if there is an accepting run
r=1 Z—1> T Z—2> Ty -++ such that w = ajay---. We denote by L(A) = {w €
1 2

X | A accepts w} the language accepted by A. Automaton A is universal if
L(A) = 2w,

Remark. We use this slightly unusual presentation of automata in order to
conveniently represent the connection between automata and the size-change
abstraction later on. In particular, this connection is the reason for using the
symbols {>, >} instead of {0,1} for (non-)accepting transitions.

2.2 Programs.

A program P = (St,I, X, p) consists of a set of states St, a set of initial states
I C St, a finite set of transitions X, and a labeling function p : X — 25t%5t,
which maps every transition a € X' to a transition relation p(a) C St x St. We
extend the labeling function p to finite words over X and set p(7w) = p(ay1) o
plag)o---op(a;) for a finite word m = ajas - - - a;. A computation of P is a (finite
or infinite) sequence s; = sy —2 ... such that s; € I and (s;,5,41) € p(a;) for
all i. Program P terminates if there is no infinite computation of P. A relation
T C St x St is a transition invariant for P if ({J,cx p(a))™ C T. For a finite

computation s1 —5 o —25 .- si4+1 we call [the length of the computation.

Automaton A; Automaton As Automaton As

ai, a2 a1, a2 ai, a2
0 - ° 0 - e -
az az a2
ai

a2 ai, az
az

Fig. 2. Pictures of proof structures/ transition automata.

Variables and Predicates. A common program model is to consider some finite
set of variables Var and define the set of states St = Var — « as the mappings
from Var to some domain «. Sets of states can then be described by predicates
over Var and transition relations by predicates over Var U Var’, where Var’
denotes the set of primed versions of the variables in Var. Given a predicate p
over Var, we write o |= p for o € St if p is true when each variable z € Var
is replaced by o(z); given a predicate p over Var U Var’, we write o, = p for
0,6 € St if p is true when each variable x € Var is replaced by o(z) and each
variable 2’ € Var' is replaced by ¢(x). Given a set of predicates Pred over Var,
we write Rel(Pred) = {o € St | o |= p for all p € Pred} for the states which
satisfy all predicates in Pred. Given a set of predicates Pred over Var U Var',
we write Rel(Pred) = {(0,5) € St x St | o,¢ |=p for all p € Pred} for the pairs
of states which satisfy all predicates in Pred. We will also write Rel,(Pred) in
case we want to highlight the domain «.

Ezxample 3. We now express the two programs from Figure 1 in the above nota-
tion. For both programs, we consider the set of variables Var = {z,y} and treat
N as a symbolic constant. We choose the domain o = w according to the type
nat of x and y. For both programs we model each branch of the if-statement as
one transition. We set P; = ({z,y} — «a, Relo({z = N,y = N}),{a1,a2}, pi),
for i = 1,2, where we define the labeling functions p; using C' = {z > 0,y > 0}:

p1(a1) = Relo(CU{z’ = xz—1,y = N}),pi(a2) = Rel,(CU{z' = z,y = y—1}),
p2(a1) = Relo (CU{2" =2 =1,y =y}), p2(a2) = Relo(CU{z" = 2,y =y —1}),

3 Transition Predicate Abstraction

In this section, we review the definitions and results from [26] in order to motivate
our generalizations in Section 4. The development in [26] also considers fairness
requirements, which are not relevant for this paper and therefore left out.

Abstract-Transition Programs We fix some program P = (St, I, X, p). We split
up the definition of abstract-transition programs (see Definition 3 of [26]) into
two parts: proof structures and proof labelings. A proof structure is a finite
automaton A = (Q, X, 0,¢,-), where d(a) C Q x (@ \ {¢}) for all a € X. For

the moment, we ignore the acceptance condition; we will use it later on. A proof
labeling rel : Q — 2595t maps every state 7 € @ of a proof structure to a
transition relation rel(T) C St x St. A proof labeling is inductive if

rel(v) = Id g, and
rel(t) o p(a) C rel('), for all (7,7") € §(a) and for all a € X,

where Id g; is the identity relation over St. An abstract-transition program P# =
(A, rel) is a pair of a proof structure A and an inductive proof labeling.

Abstract-transition program are constructed from a fixed finite set of tran-
sition predicates that describe transition relations (see Section 4 of [26]). The
resulting abstract-transition programs have the following properties:

— (P1) The proof structure is a deterministic automaton (see Sec. 5.1 of [26]).

— (P2) For every word ajas - - - a, with p(ajas---ay,) # 0 there is a run ¢ =%
- 2 7, of A (see Lemma 1 from [26]).

— (P3) Every state 7 € @ \ {¢} is reachable from ¢ (the reader can check that
the abstraction algorithm of [26] starts from the initial state ¢ and adds only
states which are reachable from ¢).

We now state the core theorem of [26]; for illustration purposes, we also state
its proof, which is based on condition (), in the notation of this paper:

Theorem 1 (Theorem 1 of [26]). Let P# = (A, rel) be an abstract program
with property (P2). Then, ,.cq\(, rel(T) is a transition invariant for P. If
rel(7) is well-founded for every state 7 € Q \ {¢}, then P terminates.

Proof. For the first claim, we consider some (s,s’) € p(ajas---ay,) for some
word ajag---a, with n > 1. By property (P2) we have that there is a run
Lo 2 oo 22 7, of Al By the definition of an inductive proof labeling
we have p(ajas---ay,) C rel(r,). Thus, we get that (s,s’) € rel(r,). Hence,
we get (Uyex p(a))™ C Ureq\ oy 7el(7). The second claim then directly follows
from the first claim based on condition ().

Ezxample 4. We will define an abstract-transition program for P;. Let A; be the
proof structure from Fig. 2. Let rel; be the proof labeling defined by rely (1) =
Rel,({z' < z}) and rely(m2) = Relo ({2’ = 2,9y’ < y}), where o = w. It is easy
to verify that rel; is inductive. Hence, P1# = (A1, relq) is an abstract-transition
program. Moreover, rel;(71) and rel;(72) are well-founded due to the predicates
' < z and ¥y’ < y. The abstraction algorithm of [26] precisely computes Pl#
when called with the set of predicates Pred = {2/ < z,2' = z,y’ < y}.

Ezxample 5. We will define an abstract-transition program for P. Let A5 be the
proof structure from Fig. 2. Let rely be the proof labeling defined by rely(m) =
Rel, ({2’ < x}) and rela(72) = Relo({y' < y}), where a = w. Tt is easy to verify
that rels is inductive. Hence, P = (Aa, rely) is an abstract-transition program.
Moreover, rela(71) and rela(72) are well-founded due to the predicates ' < z
and /' < y. The abstraction algorithm of [26] precisely computes P} when called
with the set of predicates Pred = {2’ < x,y’ < y}.

Remark. The above proof of Theorem 1 only relies on property (P2). However,
properties (P1) and (P3) explain the requirement that every non-initial state
needs to be labelled by a well-founded relation: by (P3) every state 7 € Q \ {¢}
is reachable by some word ajas---an; by (P1) the word ajas - - - a,, necessarily
reaches 7; hence, 7 needs to be labelled by some well-founded relation. In this
paper, we will generalize Theorem 1 of [26] to non-deterministic proof structures;
for such proof structures it will make sense to also consider proof labelings where
not every state is labelled by some well-founded relation.

Remark. We further note that we can w.l.o.g. strengthen property (P2) to pro-
perty (P2’): For every word ajas - - - a,, there is a run ¢ A By 2 7, of
A. We show the following: Let P# = (A, rel) be an abstract-transition program
with property (P2). Then we can extend P# to some abstract-transition pro-
gram (A’ rel’) with property (P2’). Further, if rel(7) is well-founded for every
non-initial state 7, then rel’(7) is well-founded for every non-initial state 7.

We extend A to A’ by adding a sink state 7y, which has self-loops for every
a € X; for every state 7 and a € X we add an a-transition from 7 to 7y if 7 does
not have a a-successor. We extend rel to rel’ by setting rel’ (73) = 0. It is easy to
see that (P1)—(P3) ensure that rel’ is inductive and that (A’, rel’) has property
(P2’). Further rel’(1y) = () is well-founded; hence, the second claims holds.

Invariants. An invariant for a program P = (St, I, X, p) is a set Inv C St such
that (1) I C Inv and (2) {0 € St | there is a ¢’ € Inv with (¢’,0) € p(a)} C Inv
for all @ € X. For example, Inv = Rel,({x < N,y < N}) is an invariant for
P, and P,. Invariants can be used to strengthen the transition relations of a
program by restricting the transition relations to states from the invariant: Gi-
ven an invariant Inv for P we define Pyyengthen = (St, I, X, pstrengthen), Where
Pstrengthen (@) = p(a) N (Inv x Inv) for all a € X. Clearly, P and Pgrengthen
have the same computations. However, working with Pyengthen for termination
resp. complexity analysis is often beneficial because of the restricted transition
relations. Indeed, strengthening the transition relation is often necessary to find
a termination proof. For example, the TERMINATOR termination analyzer [14]
alternates between strengthening the transition relation and constructing a tran-
sition invariant. Similarly, complexity analyzers from the literature commonly
employ invariant analysis as a subroutine either before or during the analysis [1,
2,34,29,16-18]. The problem of computing invariants is orthogonal to the deve-
lopment in this paper. In our examples on complexity analysis we assume that
appropriate invariants — such as Inv = Rel,({x < N,y < N}) for P; and P, —
can be computed by standard techniques such as Octagon analysis [24].

4 Transition Abstraction

In this section, we take another view on the result of [26] that we presented in
the last section. On the one hand we aim at generalizing the termination analysis
of [26] to non-deterministic proof structures. On the other hand we do not only

want to reason about a single proof labeling but all possible proof labelings; to
this end we will define a minimal inductive proof labeling. We fix a program
P = (St,1,%, p) for the rest of this section.

A transition automaton A = (Q,X,0,t,F) is a finite automaton, where
d(a) CQx(Q\{}) forall a € ¥ and F C Q \ {¢}. We point out that a
transition automaton is a proof structure with final states.

Let A = (Q,X,6,:,F) be a transition automaton. We define a proof labe-
ling relmim @ Q@ — 2595t which precisely follows the structure of A: We set
relmin (t) = Id g, and for each 7 € Q \ {¢} we set

r€lmin(T) = U p(m),

word 7w with (¢,7)€8(m)

i.e., relyin(7) is the union of the transition relations along all words with a run
from the initial state to 7.
‘We now state the central definition of this section:

Definition 1 (Transition Abstraction). A transition automaton A is a tran-
sition abstraction of program P if rel ., (7) is well-founded for each T € F.

The notion of transition automata is motivated by Theorem 2, which extends
the termination criterion of [26] to non-deterministic proof structures. Proposi-
tion 3 below states that Theorem 2 indeed is an extension of Theorem 1 of [26].

Theorem 2. Let A be a transition automaton that is a transition abstraction
of program P. If A is universal, then P terminates.

Proof (Sketch). The theorem can be proved in the same way as Theorem 1 of [26]
whose proof we presented in Section 3 based on an application of condition (x);
we will later give a proof purely based on automata-theoretic techniques.

We first show that rel,,;, is the minimal inductive proof labeling:
Proposition 1. rel,,;, is inductive.

Proof. We consider some (7,7’) € d(a). We consider some word 7 with (¢, 7) €
0(m). Then, 7a is a word with (¢, 7") € §(7wa). Hence, p(ra) C rel ., (7). Because
this holds for all such words 7, we get el (7) 0 p(a) C relmin (7).

Proposition 2. Let rel : Q — 25t be some inductive proof labeling. Then,
1€l min(7) C rel(7) for all T € Q.

Proof. We note that rely,(¢) = rel(t) = Idg:. We will show that for all non-
empty words 7 that (¢,7) € d(m) implies p(m) C rel(7). The proof proceeds
by induction on the length of the word. For the induction start, we consider
a word m = a consisting of a single letter: Because rel is inductive, we have
pla) = Idgi o p(a) = rel(v) o p(a) C rel(r) for all (¢,7) € §(a). For the induction
step, we consider a word 7 = 7’'a with non-empty 7’: We fix some (¢,7) €
0(n’a). There is some (7,7') € §(a) with (7/,7) € d(a) and (¢,7') € d(n’). By
induction assumption we have p(n’) C rel(7'). Because rel is inductive, we have
rel(t") o p(a) C rel(r). Thus, p(n'a) = p(n’) o p(a) C rel(T).

With Proposition 2 we are now able to relate transition automata to the
abstract-transition programs presented in the last section:

Proposition 3. Let A =(Q,X,0,t,-) be a proof structure with property (P2’).
Let rel be an inductive proof labeling such that rel(T) is well-founded for every
state T € Q \ {¢}. With the set of final states F = Q \ {t}, the proof structure A
s a transition abstraction of program P; further, A is universal.

Proof. By Proposition 2 we have rel, (7) C rel(r) for all 7 € Q. Hence, A is a
transition automaton. By property (P2’), the automaton A has a run for every
word; with F' = @ \ {¢} each such run is accepting. Hence, A is universal.

FEzample 6. In Examples 4 and 5 we have argued that Pl# = (A, rely) and P2# =
(Ag, rely) are abstract-transition programs for P; resp. P>. We now consider
Ay and A, as transition automata, defining the final states by F = {m,m2}.
By Proposition 3, A; and A, are transition abstractions for P; resp. P, and
Theorem 2 can be applied.

We now define a transition automaton for program P; that is different from
the transition automaton A; considered in Example 6:

Ezxample 7. Let As be the automaton from Fig. 2 with the set of final states
F = {n,72}. We now argue that the transition automaton As is a transition
abstraction of P;. In order to reason about the well-foundedness of rel ., (71) and
7€l min (72), which are required by the definition of transition abstraction, we make
use of Proposition 2 as a proof principle: it is sufficient to define an inductive
proof labeling rels and argue that rels(71) and rels(m2) are well-founded.

We define relz by setting rels(m1) = Rel, ({2’ < x}) and rels(m2) = Relo({y' <
y}) with o = w. It is easy to verify that rels is inductive. Moreover, rel3(7;) and
relz(m2) are well-founded due to the predicates ' < z and 3’ < y. We conclude
that Ajs is a transition abstraction of P;. We observe that automaton As (resp.
A%) is not universal, and Theorem 2 cannot be applied.

Remark. We relate As to the abstraction algorithm of [26]. We extend As to the
automaton A} by adding a non-final state T¢e; we add an aq-transition from 7o
t0 Terue and self-loops to Ty for a; and ag. We set rels(Tyqe) = Relo({true}) =
St x St (note that St x St is not well-founded). The abstraction algorithm of [26]
will exactly compute the abstract-transition program Pf = (Aj, rel3) when cal-
led with the set of predicates Pred = {2’ < z,y’ < y}; we work with automaton
Ajs instead of A} because it has one state less and is easier to represent.

Remark. In the next subsection, we will establish the more general criterion of
factor-termination, which is satisfied by automaton As (resp. A%). Hence, we
obtain a new termination proof for the program P;, which has the advantage
to use fewer predicates than the termination proof in Example 4: we contrast
the set of predicates Pred = {2’ < z,y' < y} used in Example 7 with the set
Pred = {z’ < z,2’ = z,y’ <y} used in Example 4.

4.1 Factor Termination

In this section, we introduce the criterion of factor-termination. We first in-
troduce the criterion and then argue that factor-termination is a more general
termination criterion than universality. Finally, we state that factor-termination
is in fact the most general termination criterion based on transition abstraction.

The intuition behind the criterion of factor-termination is as follows: Given a
transition automaton A = (Q, X, 4, ¢, F'), we directly use the well-foundedness of
the relations rel,,;, (7), for final state 7 € F. We check for every infinite word 7 €
XY if thereis a 7 € F and a factorization m = mgmi 7o - - - into finite words m; such
that A has a run from ¢ to 7 on 7; for all ¢ > 1. Such a factorization implies that
there cannot be an infinite sequence of states s185... with (s;,8;41) € d(m;) C
relmin (T) because this would contradict the well-foundedness of rel ., (7).

We implement the above idea with Biichi-automata. We fix some transition
automaton A = (Q, X, §, ¢, F') for which we will define a Biichi-automaton F(A),
which is composed of Biichi-automata A, for every 7 € F, and an additional
initial state k. F(A) can non-deterministically wait in x a finite amount of time
before moving to one of the automata A.. Each A, checks for a factorization
with regard to 7 € F'. We first formally define the automata A, and then F(A).

We start with an intuition for the construction of A.. We take a copy of A
where all copied transitions are non-accepting. We obtain A, by adding addi-
tional accepting transitions that allow the automaton A, to move back to the
initial state whenever it could move to 7. The additional transitions allow A
to guess the beginning of a new factor; the Biichi-condition guarantees that an
accepting run factorizes an infinite word into infinitely many finite words.

Formally, we define A, = (@ x {7}, X, -, (¢, 7)), where for all a € X' we set

dr(a) ={((=",7), 2, (=",) | (=, 7") € 6(a)}V{((7",7), >, (1, 7)) | (', 7) € 6(a)}-

We state the main property of the automata A :

Proposition 4. A, accepts w € X% iff there is a factorization m = mimg -+
into finite words w; such that A has a run from ¢ to T on m; for all i.

Proof. Let r be an accepting run of A, on w. Hence, we can factor m = mymg - - -
into finite words 7; such that the accepting transitions of r exactly correspond
to the last letters of the words m;. We observe that the only accepting transitions
are of shape ((7/,7), >, (¢, 7)) for (7/,7) € d(a) (we denote this condition by (#)).
Further, automaton A, mimics A on the non-accepting transitions. Hence, on
each word ; the run r mimics a run of A except for the last transition; however,
the condition (#) guarantees that A can move to 7 with the last letter of ;.

The factorization automaton is the Biichi-automaton F(A) = (G, X, I', k),
where the set of states G = (Q X F)U{k} consists of pairs of an automaton state

and a final state plus a fresh initial state k. We define the transition relation I
by I'(a) = I'(a) UT5(a) U I3(a) for all a € X, where

I'(a) = U,cp 0-(a), In(a) = {(k, >,)}, and I3(a) = {(x,>,(t,7)) | T € F}.

Fig. 3. On the left: Automata F(A;) and F(Asz), which have the same states and
transitions except for the dashed transitions which only belong to F(A:). On the
right: Automaton F(Az). Bold arrows denote accepting transitions.

The factorization automaton F(A) can be understood as the disjoint union
of the initial state x and the Biichi-automata A.; the state x allows F(A) to
wait in k a finite amount of time before moving to the initial state of some A, .

Example 8. We draw the factor-automata of A;, As and Az in Fig. 3.

We are now able to formally state our new termination criterion: Transition
automaton A satisfies the factor-termination criterion if F(A) is universal. This
notion is justified by Theorem 3 below:

Theorem 3. Let A = (Q,X,0,1,F) be a transition automaton and let P =
(St, I, X, p) be a program such that A is a transition abstraction of P. If A
satisfies the factor-termination criterion, then P terminates.

Proof. We assume that F(A) is universal and that P does not terminate. Then

there is an infinite computation ¢ = s 2y 59 225 ... of P. We consider the
associated word m = ajag - - - . Because F(A) is universal, the word 7 is accepted

by some run r. Word m = 7,7, can be split in a finite prefix 7, and an infinite
suffix 7, such that F(A) stays in x while reading 7, before leaving x and then
reading 7,. We further see that while reading m,, F(A) stays within A, for some
7 € F. By Proposition 4, there is a factorization m, = w7y - - - such that A has
a run on each 7; from ¢ to 7. We split ¢ into corresponding subcomputations
a;. Qi 1—1
tj = Sij —J> "'37,']4171 L} S¢j+1

with 7; = a;; ---a;,,, 1. Hence, we have (s;;,si,,,) € p(7j) C relmin(T) for
all j. This gives us an infinite sequence s;, 54, ... with (s;;,5;;,41) € relpmin(7).
However, this results in a contradiction, because rel,;,(7) is well-founded by
the assumption that A is a transition abstraction of P.

Next, we show that the universality of a transition automaton A implies
the factor-termination of A; the proof uses the fundamental fact that a Biichi-
automaton is universal iff it accepts all ultimately-periodic words:

Lemma 1. Let A be a transition automaton. If A is universal, then A satisfies
the factor-termination criterion.

Proof. We assume that A is universal. We will show that F(A) accepts all
ultimately-periodic words. Let u, v be two finite words over X and consider the
ultimately-periodic word uv®. Since A is universal there is an accepting run of A
ending in some final state 7 € F. We will use this run to construct an accepting
run of F(A). In order to accept uv®, the automaton F(A) reads the word u
staying in the initial state x and moving to (¢,7) with the last letter of u (we
tacitly assume here that the length of u is at least one; however this is without
loss of generality as we can consider the word uv instead of u); F(A) then reads
the word v, mimicking the accepting run of A in A,, and moving to state (¢, 7)
with the last letter of v; A, then reads the next occurrence of v in the same way;
we note that the last transition, with which the automaton returns to the initial
state (¢, 7), is accepting; thus the constructed run on uv® is accepting.

Remark. The combination of Theorem 3 and Lemma 1 provides an alternative
proof of Theorem 2. We highlight that the proof of Lemma 1 proceeds purely
by automata-theoretic techniques and does not make use of condition (x); in
particular, Ramsey’s theorem is not needed to prove Theorem 1 of [26].

We now establish that factor-termination is a strictly more general termina-
tion criterion than universality:

Ezample 9. Let A3z be the automaton from Example 7, where we have established
that As is a transition abstraction of P; and that As is not universal. We have
drawn F(As) in Figure 3. It remains to argue that F(A3) is universal.

We show that F(As) is universal by a case distinction: Assume a word con-
tains infinitely many a;. F(As) waits for the first a; and moves to (¢,71) just
before the first aq; with the first a1, F(A3z) moves to (71, 71); then F(A3) again
waits for the next a;, moving to (¢, 71) just before the next a;, and so on. An
infinite word that does not contain infinitely many a1, only contains as from
some point on; F(As) accepts such a word by waiting in the initial state x until
there are only as left and then moves to (¢, 72); F(As) then can stay in (¢, 72)
while continuing to read the letters as.

We finally state that factor-termination is the most general termination cri-
terion based on transition abstraction:

Theorem 4. Let A be a transition automaton that does not satisfy the factor-
termination criterion. Then there is a program P such that A is a transition
abstraction of P, but P does not terminate.

We prove Theorem 4 (see Corollary 2) and further results in Section 6 ba-
sed on the close relationship of factorization automata and the size-change ab-
straction. We first introduce the size-change abstraction in the next subsection.

5 Size-change Abstraction

Size-change abstraction (SCA) can be seen as an instantiation of (transition-)
predicate abstraction with a restricted class of predicates: a size-change predicate
over some set of variables Var is an inequality z >y’ with z,y € Var, where >
is either > or > (recall that ' € Var’ denotes the primed version of y). A size-
change relation (SCR) is a set of size-change predicates over Var. A size-change
system (SCS) S = (Var, X, \) consists of a set of variables Var, a finite set of
transitions X and a labeling function A\, which maps every transition a € X to a
SCR A(a) over Var.

The SCA methodology requires an abstraction mechanism that abstracts
programs to SCSs. Various static analyzes have been proposed in the literature
which perform such an abstraction [22,23,31,3,10,9, 34, 20]. In this paper, we
are not concerned with how to abstract programs to SCSs (and thus we do not
describe an abstraction mechanism for programs). Rather, we will use results on
the strength of SCA [21,12] for the analysis of transition automata.

Results on the strength of SCA directly interpret SCSs as (abstract) pro-
grams, which can be seen as ‘most general programs’ that satisfies all the size-
change predicates. We now state the interpretation of SCSs as programs for which
we make use of the variable mappings and predicate interpretations defined in
Section 3. An SCS S = (Var, X, \) defines a program P,(S) = (St, St, X, p),
where St = Var — « and p(a) = Rely(A(a)) for all a € X; the program P, (5)
is parameterized by some domain « that we require to be well-founded.

We will build on theoretical results for SCA which have been obtained by
automata-theoretic techniques (we refer the interested reader to [13] for an over-
view). We begin by stating the syntactic termination criterion of [22]. Let S =
(Var, 2,) be an SCS. We define the Biichi-automaton DESC(S) = (D, X, i, k),
where the set of states D = Var U{x} consists of the variables and a fresh initial
state k, the alphabet X' is the same as the alphabet of S, the transition relation
 is defined by p(a) = pi(a) U pa(a) U ps(a) for all a € X, where uq(a) = Aa),
pa(a) = {(k, >, k)} and ps(a) = {(x, >,z) | € Var}. Intuitively the automaton
DESC(S) waits a finite amount of time in the initial state x and then starts to
trace a chain of inequalities z1 >1 oo >o x3 -+ - between the variables of S. The
Biichi-acceptance condition ensures that >; = > infinitely often. Now we are
ready to define the syntactic termination criterion of [22]: SCS S has infinite
descent if DESC|(S) is universal. This criterion is sound and complete:

Theorem 5 ([22],[21]). S has infinite descent iff Po(S) terminates over all
domains o. Moreover, if S does not have infinite descent, then Py (S) does not
terminate for some domain o < w (i.e., Po(S) does not terminate when variables
take values in some initial segment o = [0, N| of the natural numbers).

While the original motivation for studying SCA has been termination analy-
sis, we recently extended the theoretical results on SCA to complexity analysis:

Theorem 6 ([12]). Let S be an SCS that is size-change terminating. Then
there effectively is a rational number z > 1 such that the length of the longest
run of P, n1(S) is of asymptotic order O(N?) for natural numbers N.

Our result provides a complete characterization of the complexity bounds ari-
sing from SCA and gives an effective algorithm for computing the exact asymp-
totic bound of a given abstract program. The proof of Theorem 6 proceeds by
rephrasing the question of complexity analysis for SCSs as a question about the
asymptotic behaviour of max-plus automata. The main induction of the proof
relies on the Factorization Forest Theorem [28], which is a powerful strengthe-
ning of Ramsey’s Theorem for finite semigroups that offers a deep insight into
their structure (see [11] for an overview).

6 Canonical Programs for Transition Automata

In this section, we will relate transition abstraction and SCA. We will describe
the extraction of a size-change system S = S(A) from a transition automaton
A. We will argue that the associated program P, (.S) is canonical for A. We will
prove three results that justify the use of the word ‘canonical’:

1. We show that the criterion of factor-termination for A agrees with the cri-
terion of infinite descent for S (Corollary 1).

2. We show that A is a transition abstraction of P, (.S) for all domains « (Pro-
position 5). This result allows us to establish that factor-termination is the
most general termination criterion (Corollary 2).

3. If A is a transition abstraction for some program P, then every run of P
can be mimicked by a run of P,(S), where the domain « depends on P and
needs to be chosen appropriately (Lemma 3). This result allows us to transfer
the result on complexity analysis for SCSs (see Theorem 6) to transition
automata (Theorem 7).

6.1 Extracting Size-change Systems from Transition Automata

We fix some transition automaton A = (Q, X, 4§, F). Let F(A) = (G, X, I, k)
be the associated factorization automaton, where G = Q x F'U{x} and I'(a) =
I (a)UIz(a)UI5(a) for all a € X. We extract the associated size-change system
from F(A) and define S(A) = (Var, X, \) by setting Var = Q x F and A(a) =
I'i(a) for all a € X (i.e., S(A) is obtained from automaton JF(A) by restriction
to the non-initial states).

Ezample 10. We consider the transition automaton A;. We have drawn F(As)
in Figure 3. We now state the size-change system extracted from F(As): We
have S(A43) = ({t, 71,72} x {11, 72}, {a1, a2}, \), where X is given by

= Ma1) ={(t,71) = (11,71), (11,71) = (11, 71), (72, 72) > (72, T2)’,
(LuTl) > (LaTl)la (TlaTl) > ([’77—1)/7 (7—277—2) > ([’77—2)/}7

= Maz) = {(11,71) > (11,71), (1, 72) > (72, 72), (T2, T2) > (T2, T2)’,

(t1,71) > (t,71), (6, 72) > (¢, 72), (12, 72) > (1, 72)'}-

Ezample 11. We consider the transition automaton As. We have drawn F(As)
in Figure 3. We now state the size-change system extracted from F(A3). We
have §(A43) = ({t, 71,72} x {11, 72}, {a1, a2}, \), where X is given by

= Ma1) ={(,7) = (r, 1), (11, 71) = (11, 71)", (1, 72) = (71, 72)',
(r1,72) > (11, 72), (1, 1) > (¢, 71), (71, 71) > (¢, 71)'},

= Maz) = {(r1,71) = (11,71), (&, 71) = (72, 71), (72, 71) = (72, 71),
m1,72) > (11, 72), (6, 72) > (72, 72)', (72, T2) > (72, T2)',

(7
(r1,71) > (6,1), (6 72) > (6, 72), (2, 72) > (1, 72)'}

We comment on the intuition behind the definition of the SCS S = S(A). The
underlying idea has been to obtain a close correspondence between DESC(S)
and F(A). Indeed, DESC(S) and F(A) are almost identical, the only difference
is that the initial state of DESC/(S) allows moving to every state, whereas the
initial state of F(A) only allows moving to the initial states of the components
A,. However, this difference does not change the set of accepted words, as we
prove in the next lemma:

Lemma 2. Let S = S(A) be the SCS extracted from A. Then L(F(A)) =
L(DESC(S)).

Proof. We recall DESC(S) = (D, X, u, k), where D = Var U {s} and p(a) =
p1(a) U pz(a) U ps(a) for all a € X. We see that both automata have the same
set of states G = D = @ x F U{k}. From the definition of F(A) and DESC(S)
we further have that I'i(a) = p1(a), In(a) = pa(a) and I's(a) C us(a) for all
a€cX.

Thus, we get L(F(A)) C L(DESC(S)) because every run of A is also a
run of DESC(S). We now show L(F(A)) O L(DESC(S)): Let m be some word
accepted by DESC(S) and let r be an accepting run of DESC(S) on 7. We
can choose some factorization m = w37 such that the last transition in r» when
reading 7 is accepting. We note that after reading w1, DESC(S) must be in
some state (¢, _) because accepting transition always move to some state where
the first component is ¢. We further note that while reading mo, DESC(S) only
uses transitions from puq, because there is no transition returning to x. Hence,
the accepting run r of DESC(S) can be mimicked by F(A) as follows: F(A)
waits in the initial state x while reading 7 and then moves to the state (¢, -)
with the last letter of 7r;. After that F(A) follows the accepting run of DESC(S)
on mo, which can be done because of I'} = p;.

As immediate corollary we get the equivalence of the termination conditions:

Corollary 1. A has factor termination iff S has infinite descent.

6.2 Factor-Termination is the most general Termination Criterion

We consider the size-change system S = S(A) extracted from transition automa-
ton A. Our next result is that A is a transition abstraction for the program P, (.5)
associated to S. The crucial insight is that S exactly implements the minimal
requirements to satisfy the condition of transition abstraction: the inequalities
of S exactly follow the transition relation of A, where strict inequalities ensure
that the value of variable (¢, 7) decreases iff A visits an accepting state 7.

Proposition 5. A is a transition abstraction of Py (S) for all domains «.

Proof. Let a be some well-founded domain. We will show that A is a transition
abstraction of P, (S) using Proposition 2 as proof principle. For this we define a
size-change relation T, for each 7 € Q \ {¢}. We set T = {(¢,7') > (7, 7') | 7/ €
F}uTde where T2 = {(1,7) > (1,7)}, if 7 € F, and T2 = (), otherwise. It
is easy to check that we have Rel,(T,) o Relo(M(a)) C Rely(T,) for all (1,7') €
d(a). We now apply Proposition 2 and get rel (1) C Relo(T7) for all 7 € Q.
It remains to argue that the relations rel;, (7) are well-founded for all 7 € F.
This follows from rel,,;, (1) C Relo(T;) and the fact that Rel,(T,) is well-
founded due to the predicate T.9¢, which ensures the decrease of variable (¢, 7).

We are now in a position to prove Theorem 4, i.e., that factor termination is
the most general termination criterion for transition abstraction:

Corollary 2. Let A be a transition automaton that does not satisfy the factor-
termination criterion. Then A is a transition abstraction of Py (S) for all dom-
ains o, but Py (S) does not terminate for some o < w.

Proof. From Corollary 1 we get that S does not satisfy the infinite descent crite-
rion because A does not satisfy the factor-termination criterion. By Theorem 5
we know that the program P, (S) does not terminate for some o < w because
S does not size-change terminate. We have that A is a transition abstraction of
P.(S) by Proposition 5.

6.3 Complexity Analysis with Transition Automata

Let A = (Q,X,6,t,F) be a transition automaton and P = (St,I, X, p) be a
program such that A is a transition abstraction of P. Let S = S(A4) = (Var, X, \)
be the SCS extracted from A. We will show that every run of P can be mimicked
by a run of P,(S), where the domain « depends on P and needs to be chosen
appropriately. We first introduce the machinery necessary to define a.

We define the height of a transition abstraction as the maximum of the
heights of the well-founded relations rel;, (7), i.e., we set

height(A, P) = max | el min (T)] -

We set height®(A, P) = height(A, P) + 1; we work with height®(A, P), which
differs from height(A, P) by plus one for technical convenience; however, the
difference of plus one is not important for our results on asymptotic complexity
analysis.

We introduce another auxiliary definition. For every pair (7/,7) € Q X F we
define a relation Succp (7', 7) C St x St by setting

Sucep(t',7) = U p(m).

word m with (7/,7)€8(m)

We note that Succp(t,7) = relpin(7) for all 7 € F.

For every pair (7/,7) € Qx F we define a function rank, , : St — height®(A, P)
that maps a state s € St to an ordinal below height® (A, P), by setting

rankr - (s) = sup 15 et () + 15
(s,s")eSuccp (!,

where the sup over the empty set evaluates to 0. The following proposition is
immediate from the definitions:

Proposition 6. We have rank, -(s) = ||sll,;, . - for all s € St.

Proof. Let s € St be some state. From the definition of Succp we get Succp(i,7) =
7ﬁelmin(’r)' ThuSa we get ?“(l'{lkL7.,-(S) = SUP(s,s")eSuccp (i,7) ||s/||relm,,n(7—) +1=

Sup(s,s/)erelmm(r) ||S/||7"€lmm(7') + 1= ||5||7"€lmm(7')'

For every s € St we define a valuation o : Q X F — height®(A, P) by setting
os(7',T) = rank, - (s).

Lemma 3. Let a = height®(A, P). For all pairs of states (s,s') € p(a), where
a € X, we have (05,04) € Rely(A(a)).

Proof. Let a € X be some transition and let (s,s’) € p(a) be a pair of states in
the associated transition relation.

We consider an inequality (7,77) > (7/,7")" € A(a). By definition of A(a)
we have (7,7’) € d(a). From this we get {(s,s')} o Succp(7',7") C Succp(r,7")
because for every word 7 such that (7/,7") € 6(w) we have that (7,7") € d(a-)
and thus (s',s") € p(w) implies (s,s”) € p(a - 7). Hence, we get os(r,7") =
’f’(l?’lk-,—ﬂ—// (5) = Sup(s,s”)ESuccP(T,T”) ||S//||'rel,,mn(7'”) +1=
SUP(s/,s")eSuccp (r/,7) ||S”Hrelmm(7'”) +1= TankT',T"(s/) =0y (TI’T”)'

We consider an inequality (7/,7) > (¢, 7)" € A(a). By definition of A(a) we
have (7/,7) € 6(a). From this we get (s, s") € p(a) C Sucep (7', 7). From Proposi-

tion 6 we have rank, - (s") = [|s'[|,,,. (- Hence, we get o(7',7) = rank- - (s) =

Sup(s,s“)ESuccP(T’,T) HSH”rel,,,m(-r) +1> HS/Hrel (T) = rankL7T(S/) = Us’(ba T)'

We immediately obtain the following corollary:

Corollary 3. Let o = height®(A, P). Let 51 % s5 2 --- be a computation of
P. Then, 05, 2% 05, 22 -+ is a computation of Pa(S).

Finally, we are in a position to transfer Theorem 6:

Theorem 7. Let A be a transition automaton that satisfies the factor-termination
termination criterion. Let S = S(A). Let z be the rational number obtained from
Theorem 6 for S.

Let P = (St, In, X, p) be a program whose set of initial states Iy is parame-
terized by natural number N € N, such that A is a transition abstraction of P
and height(A, P) = O(N). Then, the length of the longest computation of P is
of asymptotic order O(N*).

Moreover, A is a transition abstraction for Py n)(S) and the length of the
longest computation of P, n1(S) is of asymptotic order O(N7).

Proof. By Proposition 5, A is a transition abstraction of Py n1(S) for all N €
N. From Theorem 6 we have that the longest computation of Pjg nj(S) is of
asymptotic order ©(N?).

Because of height(A, P) = O(N), we can find some a,b € N such that
height(A,P) < a- N + b for all N € N. By Corollary 3, for every computa-
tion of Py there is a computation of Pjy q.n44)(S) of equal length. Hence, the
longest computation of Py is of asymptotic order O((a - N + b)*) = O(N?).

We highlight that Theorem 7 gives a complete characterization of the com-
plexity bounds obtainable with transition abstraction and provides an effective
algorithm for computing these complexity bounds.

Theorem 7 allows us to derive the precise complexity for P; and Ps:

Ezample 12. We consider the size-change system S = S(A3), which we have
extracted in Example 10 from transition automaton A,. Theorem 6 allows us
to derive that Py n1(S) has complexity @(N). In Example 5 we defined an
abstract-transition program (As, rels) for Py; the inductive proof labeling rels
in conjunction with the invariant Inv = Rel,({x < N,y < N}) implies that
height(As, P,) = N. Hence, we can apply Theorem 7 and infer that P has
complexity O(N), which is the precise asymptotic complexity of Ps.

We consider the size-change system S = S(Aj3), which we have extracted in
Example 11 from transition automaton Az. Theorem 6 allows us to derive that
Pro,n7(S) has complexity ©(N?). In Example 4 we defined an abstract-transition
program (A, rely) for Pi; the inductive proof labeling rel; in conjunction with
the invariant Inv = Rel,({x < N,y < N}) implies that height(Ay, P;) = N.
Hence, we can apply Theorem 7 and infer that P, has complexity O(N?), which
is the precise asymptotic complexity of Ps.

7 Future Directions and Conclusion

In this paper, we have established a new connection between transition auto-
mata and the size-change abstraction. Our results suggest that all tools which
implement termination analysis with transition invariants based on an inductive
argument (such as TERMINATOR) can be retro-fitted to be complexity analy-
zers, which is an interesting direction for further research: While this paper has
investigated what information can be extracted from a fixed proof (i.e., from a
fixed set of transition predicates), there is also the question of what strategy
for predicate selection gives the best results. We have seen that the predicates
2’ < x and y' < y allow inferring the linear complexity of P»; these predicates
are simple and can be extracted from the if- resp. else branch of P, by simple
heuristics. On the other hand, the predicate ' + ¢y’ < x + y allows establishing
the linear complexity of P, using a single predicate; this predicate, however, is
more complex and requires more complicated heuristics for extraction. Finding
the right balance in predicate selection is an interesting topic for future research.

Ranking function construction is an alternative technique for termination
proofs: [33] states a complete construction for deterministic size-change systems.

[15, 8] describes practical but incomplete constructions for general programs ba-
sed on transition predicate abstraction. [15] states an example which has a tran-
sition invariant but no lexicographic ranking function over linear expressions; it
is interesting to better understand the connection between the different termina-
tion proof techniques and investigate under which conditions ranking functions
can be constructed.

Our results on transition abstraction and the previous results on size-change
abstraction heavily rely on automata-theoretic techniques. We speculate that
the study of the automaton structure of other inductive proofs, such as cyclic
proofs [27], might also yield interesting results.

Acknowledgements. This article is dedicated to the memory of Helmut Veith
who proposed to me the PhD topic of automatic derivation of loop bounds. Our
initial idea was to extend the termination analysis of TERMINATOR. With this
article I managed to return to this original idea.

References

1. Elvira Albert, Puri Arenas, Samir Genaim, German Puebla, and Damiano Zanar-
dini. Cost analysis of object-oriented bytecode programs. Theor. Comput. Sci.,
413(1):142-159, 2012.

2. Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. Multi-
dimensional rankings, program termination, and complexity bounds of flowchart
programs. In SAS, pages 117-133. Springer, 2010.

3. Hugh Anderson and Siau-Cheng Khoo. Affine-based size-change termination. In
APLAS, pages 122-140, 2003.

4. Amir M. Ben-Amram. Size-change termination with difference constraints. ACM
Trans. Program. Lang. Syst., 30(3), 2008.

5. Amir M. Ben-Amram. Monotonicity constraints for termination in the integer
domain. Logical Methods in Computer Science, 7(3), 2011.

6. Andreas Blass and Yuri Gurevich. Program termination and well partial orderings.
ACM Trans. Comput. Log., 9(3):18:1-18:26, 2008.

7. Laura Bozzelli and Sophie Pinchinat. Verification of gap-order constraint abstracti-
ons of counter systems. In VMCAI, pages 88—103, 2012.

8. Marc Brockschmidt, Byron Cook, and Carsten Fuhs. Better termination proving
through cooperation. In CAV, pages 413-429, 2013.

9. Michael Codish, Carsten Fuhs, Jiirgen Giesl, and Peter Schneider-Kamp. Lazy
abstraction for size-change termination. In LPAR), pages 217-232, 2010.

10. Michael Codish, Igor Gonopolskiy, Amir M. Ben-Amram, Carsten Fuhs, and Jiirgen
Giesl. Sat-based termination analysis using monotonicity constraints over the in-
tegers. TPLP, 11(4-5):503-520, 2011.

11. Thomas Colcombet. Factorisation forests for infinite words. In FCT, pages 226—
237, 2007.

12. Thomas Colcombet, Laure Daviaud, and Florian Zuleger. Size-change abstraction
and max-plus automata. In MFCS, pages 208-219, 2014.

13. Thomas Colcombet, Laure Daviaud, and Florian Zuleger. Automata and program
analysis. In FCT, pages 3—10, 2017.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination proofs for
systems code. In PLDI pages 415-426, 2006.

Byron Cook, Abigail See, and Florian Zuleger. Ramsey vs. lexicographic termina-
tion proving. In TACAS, pages 47-61, 2013.

Antonio Florian-Montoya and Reiner Hahnle. Resource analysis of complex pro-
grams with cost equations. In APLAS, pages 275-295, 2014.

Jiirgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian
Frohn, Carsten Fuhs, Jera Hensel, Carsten Otto, Martin Pliicker, Peter Schneider-
Kamp, Thomas Stréder, Stephanie Swiderski, and René Thiemann. Analyzing
program termination and complexity automatically with aprove. J. Autom. Rea-
soning, 58(1):3-31, 2017.

Sumit Gulwani and Florian Zuleger. The reachability-bound problem. In PLDI,
pages 292-304, 2010.

Matthias Heizmann, Neil D. Jones, and Andreas Podelski. Size-change termination
and transition invariants. In SAS, pages 22-50, 2010.

Alexander Krauss. Certified size-change termination. In CADE, pages 460-475,
2007.

Chin Soon Lee. Ranking functions for size-change termination. ACM Trans. Pro-
gram. Lang. Syst., 31(3):10:1-10:42, 2009.

Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle
for program termination. In POPL, pages 81-92, 2001.

Panagiotis Manolios and Daron Vroon. Termination analysis with calling context
graphs. In CAV, pages 401-414, 2006.

Antoine Miné. The octagon abstract domain. Higher-Order and Symbolic Compu-
tation, 19(1):31-100, 2006.

Andreas Podelski and Andrey Rybalchenko. Transition invariants. In LICS, pages
3241, 2004.

Andreas Podelski and Andrey Rybalchenko. Transition predicate abstraction and
fair termination. ACM Trans. Program. Lang. Syst., 29(3):15, 2007.

Reuben N. S. Rowe and James Brotherston. Automatic cyclic termination proofs
for recursive procedures in separation logic. In CPP, pages 53-65, 2017.

Imre Simon. Factorization forests of finite height. Theor. Comput. Sci., 72(1):65—
94, 1990.

Moritz Sinn, Florian Zuleger, and Helmut Veith. Complexity and resource bound
analysis of imperative programs using difference constraints. J. Autom. Reasoning,
59(1):3-45, 2017.

Silvia Steila and Keita Yokoyama. Reverse mathematical bounds for the termina-
tion theorem. Ann. Pure Appl. Logic, 167(12):1213-1241, 2016.

German Vidal. Quasi-terminating logic programs for ensuring the termination of
partial evaluation. In PEPM, pages 51-60, 2007.

Dimitrios Vytiniotis, Thierry Coquand, and David Wahlstedt. Stop when you are
almost-full - adventures in constructive termination. In ITP, pages 250-265, 2012.
Florian Zuleger. Asymptotically precise ranking functions for deterministic size-
change systems. In CSR, pages 426—442, 2015.

Florian Zuleger, Sumit Gulwani, Moritz Sinn, and Helmut Veith. Bound analysis
of imperative programs with the size-change abstraction. In SAS, pages 280-297,
2011.

