
Distrib. Comput. (2018) 31:187–222
https://doi.org/10.1007/s00446-017-0302-6

Parameterized model checking of rendezvous systems

Benjamin Aminof1 · Tomer Kotek1 · Sasha Rubin2 · Francesco Spegni3 ·
Helmut Veith1

Received: 11 May 2016 / Accepted: 27 April 2017 / Published online: 6 June 2017
© The Author(s) 2017. This article is an open access publication

Abstract Parameterized model checking is the problem of
deciding if a given formula holds irrespective of the number
of participating processes. A standard approach for solving
the parameterized model checking problem is to reduce it
to model checking finitely many finite-state systems. This
work considers the theoretical power and limitations of this
technique. We focus on concurrent systems in which pro-
cesses communicate via pairwise rendezvous, as well as the
special cases of disjunctive guards and token passing; spec-
ifications are expressed in indexed temporal logic without
the next operator; and the underlying network topologies
are generated by suitable formulas and graph operations.
First, we settle the exact computational complexity of the
parameterized model checking problem for some of our con-
current systems, and establish new decidability results for
others. Second, we consider the cases where model checking
the parameterized system can be reduced to model check-
ing some fixed number of processes, the number is known
as a cutoff. We provide many cases for when such cutoffs

B. Aminof, T. Kotek, S. Rubin, and H. Veith were supported by the
Austrian National Research Network S11403-N23 (RiSE) of the
Austrian Science Fund (FWF) and by the Vienna Science and
Technology Fund (WWTF) through Grants PROSEED, ICT12-059,
and VRG11-005. S. Rubin was supported by a Marie Curie fellowship
of the Istituto Nazionale di Alta Matematica. F. Spegni is supported by
UnivPM through Grant RSA-A 2014. A preliminary version of this
work already appeared at the CONCUR 2014 Conference [3]. Here
we extend it with more results, and full detailed proofs.
The tragic death of Helmut Veith prevented him from approving the
final version. All faults and inaccuracies belong to his co-authors.

B Francesco Spegni
f.spegni@univpm.it

1 Technische Universität Wien, Vienna, Austria

2 Università degli Studi di Napoli “Federico II”, Naples, Italy

3 Università Politecnica delle Marche, Ancona, Italy

can be computed, establish lower bounds on the size of such
cutoffs, and identify cases where no cutoff exists. Third, we
consider cases for which the parameterized system is equiv-
alent to a single finite-state system (more precisely a Büchi
word automaton), and establish tight bounds on the sizes of
such automata.

1 Introduction

Many concurrent systems consist of an arbitrary number of
identical processes running in parallel, possibly in the pres-
ence of an environment or control process. Theparameterized
model checking problem (PMCP) for concurrent systems is
to decide if a given temporal logic specification holds irre-
spective of the number of participating processes.

Although the PMCP is undecidable in general (see [28,
52]) it becomes decidable for some combinations of com-
munication primitives, network topologies, and specification
languages, e.g., [1,8,14,21,22,30,51]. Often, it is proved
decidable by a reduction to model checking finitely many
finite-state systems [2,16,24,28,36]. In many of these cases
it is even possible to reduce the problem of whether a param-
eterized system satisfies a temporal specification for any
number of processes to the same problem for systems with
at most c processes. In fact, it is usually of interest to find
such a number c that works for every specification formula
of a given temporal logic [2,10,16,26,28]. Such a number
is known as a cutoff for the given parameterized system.1 In
other cases the reduction produces a single finite-state sys-
tem, often in the form of a fair transition system (such as
a Büchi automaton), that represents the set of all execution

1 Cutoffs are also useful for parameterized synthesis, see e.g., [13,40,
43].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-017-0302-6&domain=pdf
http://orcid.org/0000-0003-3632-3533

188 B. Aminof et al.

traces of systems of all sizes. Note that PMCP is at least as
hard as ordinary model checking since one can consider a
replicated process that does not communicate with any oth-
ers.

The goal of this paper is to better understand the power and
limitations of these techniques, and this is guided by three
concrete questions.

Question 1. For which combinations of communication
primitives, specification languages, and network topologies
is the PMCP decidable? In case of a decidable configuration,
what is the computational complexity of the PMCP?

In case a cutoff c exists, the PMCP is decidable by a
reduction tomodel checking cmany finite-state systems. The
complexity of this procedure depends on the size of the cut-
off. Thus we ask:

Question 2. When do cutoffs exist? In case a cutoff exists,
can one compute a cutoff? And if so, is the computed cutoff
the smallest possible?

The set of execution traces of a parameterized system (for
a given process type P) is defined as the projection onto the
local states of P of all (infinite) runs of systems of all sizes.2

In case this set is ω-regular, one can reduce the PMCP of
certain specifications (including classic ones such as cover-
ability) to the language containment problem for automata
(this is the approach taken in [36, Section 4]). Thus we ask:

Question 3. Is the set of executions of the system ω-
regular? And if so, how big is a non-deterministic Büchi
word automaton recognizing this set?
System model

In order to model and verify a concurrent system we
should specify three items: (i) the communication primitive,
(ii) the specification language, and (iii) the set of topologies.

(i) In this work we focus on concurrent systems in which
processes have finitely many states and communicate
via pairwise rendezvous [36]. Pairwise-rendezvous is
like CSP message passing, and can model, for instance,
the communication in population protocols [9,32],
vector-addition systems with states (or equivalently,
Petri nets) [29], and concurrent Boolean programs with
locks or shared variables [12,42]. We also treat two
other communication primitives which are expressible
in terms of pairwise rendezvous, namely disjunctive
guards [24] and token-passing systems [2,16,28]. A
much more powerful communication is broadcast [27,
31], which is like Ethernet broadcast and the notifyAll
method in Concurrent Java [20]. The relative expres-
sive power of pairwise-rendezvous and various other
communication primitives, including disjunctive guards
and broadcast, is studied in [7], and decidability of the

2 Actually, the set of executions is defined to be the destuttering of this
set of projections, as explained in Sect. 2.6.

PMCP with all the mentioned communication primi-
tives, as well as others, is summarised in [14].

(ii) Specifications of parameterized systems are typically
expressed in indexed temporal logic [15] which allows
one to quantify over processes. For instance, the for-
mula ∀i �= j. AG(¬(critical, i) ∨ ¬(critical, j)) says
that no two processes are in their critical sections at
the same time. We focus on a fragment of this logic
where the process quantifiers only appear at the front of
a temporal logic formula—allowing the process quan-
tifiers to appear in the scope of path quantifiers results
in undecidability even with no communication between
processes [41].

(iii) The sets of topologies we consider all have either
bounded tree-width, or more generally bounded clique-
width, and are expressible in one of three ways.3

1. Using MSO, a powerful and general formalism for
describing sets of topologies, which can express e.g., pla-
narity, acyclicity and �-connectivity.

2. As iteratively constructible sets of topologies, an intuitive
formalism which creates graph sequences by iterating
graph operations [34]; many typical classes of topolo-
gies (e.g., all rings, all stars, all cliques) are iteratively
constructible.

3. As homogeneous sets of topologies, which includes, e.g.,
the set of cliques and the set of stars, but excludes the set
of rings.

Iteratively constructible and homogeneous sets of topolo-
gies areMSO-definable, the former in the presence of certain
auxiliary relations.
Prior work and our contributions

For each communication primitive (rendezvous, disjunc-
tive guards, token passing) and each question (decidability
and complexity, cutoffs, equivalent automata) we summarise
the known answers and our contributions. Obviously, the
breadth of questions along these axes is great, and we had to
limit our choices as towhat to address. Thus, this article is not
meant to be a comprehensive taxonomy of PMCP. That is, it
is not a mapping of the imaginary hypercube representing all
possible choices along these axes. Instead, we started from
the points in this hypercube that represent the most promi-
nent known results and, guided by the three main questions
mentioned earlier, have explored the unknown areas in each
point’s neighborhood.
Pairwise rendezvous

Decidability and complexity. The PMCP for systems com-
municating by pairwise rendezvous, on clique topologies,

3 In the body of the paper, sets of topologies are called “parameterized
topologies”.

123

Parameterized model checking of rendezvous systems 189

with a controller C ,4 for 1-index LTL\X specifications is
Expspace-complete [30,36] (Pspace-complete without a
controller [36, Section 4]). We show the PMCP is undecid-
able if we allow the more general 1-indexCTL∗\X specifica-
tions. Thus, for the results on pairwise rendezvous we fix the
specification language to be 1-index LTL\X. We prove that
thePMCPof1-indexLTL\X remains inExpspace even if one
allows homogeneous topologies (Pspace-complete without
a controller). We also prove that the program complexity
is in Expspace (Ptime without a controller). In contrast, if
one allows non-homogeneous topologies, the PMCP is much
harder, e.g., it is undecidable for the simple case of unidirec-
tional rings and 1-index safety specifications (this is implied
by [28,52]).

Cutoffs. We show that even for clique topologies there are
not always cutoffs.

Equivalent automata. We prove that the set of executions
of systems with a controller are not, in general, ω-regular,
already for clique topologies. On the other hand, we extend
the known result that the set of executions for systems with
only user processesU (i.e., without a controller) is ω-regular
for clique topologies [36] to homogeneous topologies, and
give an effective construction of the corresponding Büchi
automaton.
Disjunctive guards

Decidability and complexity. We show that, similar to
pairwise-rendezvous systems, the PMCP is undecidable if
we allow 1-index CTL∗\X specifications already for clique
topologies, and for 1-index LTL\X specifications already for
uni-directional ring topologies. Thus, we restrict our atten-
tion to specifications in 1-index LTL\X and homogeneous
topologies. We prove that the complexity of the PMCP is
Pspace-complete for homogeneous topologies (irrespective
of whether or not there is a controller). The program com-
plexity is in Ptime without a controller, and in co-NP with a
controller, and is co-NP hard already for the restricted case
of a parameterized clique topology.

Cutoffs. It is known that cutoffs exist for disjunctively
guarded clique topologies and are of size |U | + 2 [24]. We
prove that these cutoffs are tight. We then go on and prove a
more general cutoff theorem for disjunctively guarded sys-
tems in homogeneous parameterized topologies.

Equivalent automaton. We prove that the set of executions
is accepted by an effectively constructible Büchi automaton
of size O(|C |2 × 2|U |). It is very interesting to note that this
size is smaller than the smallest system size one gets (in the
worst-case) from the cutoff result, namely |C | × |U ||U |+2.
Hence, the PMCP algorithm obtained from the cutoff is less
efficient than the one obtained from going directly to a Büchi
automaton.As far asweknow, this is thefirst theoretical proof

4 A controller refers to a process-template that is not duplicated, i.e., it
occurs exactly once.

of the existence of the phenomenon that cutoffsmay not yield
optimal algorithms. We also prove that, in general, our con-
struction is optimal, i.e., that in some cases every automaton
for the set of executions must be of size 2Ω(|U |+|C|).
Token passing

In this section we focus onMSO-definable sets of topolo-
gies of bounded tree-width or clique-width, as well as on
iteratively-constructible sets of topologies.

Decidability and complexity. We prove that the PMCP
is decidable for indexed CTL∗\Xon such topologies. This
considerably generalizes the results of [2],where decidability
for this logic was shown for a few concrete topologies such
as rings and cliques.

Cutoffs. We prove that the PMCPs have computable cut-
offs for indexed CTL∗\X. From [2] we know that there is a
(computable) set of topologies and a system template such
that there is no algorithm that given an indexed CTL∗\X
formula can compute the associated cutoff (even though a
cutoff for the given formula exists). This justifies our search
of sets of topologies for which the PMCP for CTL∗\X has
computable cutoffs. We also give a lower bound on cutoffs
for iteratively-constructible sets and indexed LTL\X.

Equivalent automaton. Our ability to compute cutoffs for
1-index LTL\X formulas implies that the sets of execution
traces are ω-regular, and the construction of Büchi automata
which compute these traces is effective.

2 Definitions and preliminaries

A labeled transition system (LTS) is a tuple (S, R, I, Φ,

AP,Σ), where S is the set of states, R ⊆ S × Σ × S is the
transition relation, I ⊆ S are the initial states,Φ : S → 2AP

is the state-labeling, AP is a set of atomic propositions or
atoms, and Σ is the alphabet of transition labels. When AP
andΣ are clear from the contextwe drop them.A finite LTS is
an LTS inwhich S, R,Σ are finite andΦ(s) is finite for every
s ∈ S. Transitions (s, a, s′) ∈ R may be written s

a−→ s′. A
transition system (TS) (S, R, I,Σ) is an LTS without the
labeling function and without the set of atomic propositions.

A path of an LTS is a finite sequence of the form
s0a0s1a1 . . . sn ∈ (SΣ)∗S or an infinite sequence of the form
s0a0s1a1 . . . ∈ (SΣ)ω such that (si , ai , si+1) ∈ R for all i .
A state-labeled path of an LTS is the projection s0s1 . . . of
a path onto states S. An action-labeled path of an LTS is
the projection a0a1 . . . of a path onto transition labels Σ .
A run is an infinite path that starts in an initial state. Simi-
larly, a state-labeled run is a state-labeled path that is infinite
and starts in an initial state. However when it is clear from
the context we will say ‘run’ instead of ‘state-labeled run’
(e.g., LTL formulas are interpreted over runs s0s1 . . .). For a
path π , write Φ(π) for the induced sequence of labels, i.e.,
Φ(s0)Φ(s1)

123

190 B. Aminof et al.

If ρ = f0 f1 . . . is a sequence of vectors, i.e., fi : X → Y
(for some fixed sets X,Y), and x ∈ X , define the projection
ofρ to x , written projx (ρ), to be the sequence f0(x) f1(x) . . .

of elements of Y .
We now introduce notation for automata over infinite and

finite strings. For a finite set Σ , write Σω for the set of infi-
nite strings over Σ . Subsets of Σω are called languages.
A (nondeterministic) Büchi word-automaton (NBW) A is a
tuple (Σ, Q, I,Δ, F) where Σ is a finite input alphabet, Q
is a finite set of states, I ⊆ Q is the set of initial states,
Δ ⊆ Q × Σ × Q is the transition relation, and F ⊆ Q are
the accepting states. A run in A is an infinite path through A
that starts in an initial state. The run is successful if a state
from F appears infinitely often. The language accepted by
the automaton A is the set of all infinite strings α ∈ Σω that
label successful runs in A. Languages accepted by NBWs
are called ω-regular. A nondeterministic word automaton
(NFW) is similar, except that runs are finite, and a successful
run is one that ends in a state of F . The language of an NFW
is thus a subset ofΣ∗, i.e., a set of finite strings over alphabet
Σ . Languages accepted by NFWs are called regular.

Undecidability proofs will make use of reductions from
two-counter machines, known to be Turing powerful [46].
A 2CM is a finite set of instructions, say I1, . . . , Im , where
each instruction is from the following instruction set: HALT
(the machine stops when it reaches this instruction), INC(i)
(increment counter i by one), DEC(i) (decrement counter i
by one), and JZ(i, k) (if counter i is zero then goto instruction
Ik). Note that after performing each instruction (except for
HALT or a JZ that performs a goto) the 2CMmoves from it’s
current instruction I j to the next instruction I j+1.We assume
w.l.o.g. (by guarding every decrement with a test for zero)
that the machine never tries to decrement a zero counter.

2.1 Process template, topology, pairwise rendezvous
system

We define how to (asynchronously) compose processes that
communicate via pairwise rendezvous into a single system.
Weconsider discrete time (i.e., not continuous). Processes are
not necessarily identical, butwe assume there are only a finite
number of different process types. Roughly, at every vertex of
a topology (a directed graph with vertices labeled by process
types) there is a process of the given type running; at every
time step, either, and the choice is nondeterministic, exactly
one process makes an internal transition, or exactly two pro-
cesses with an edge between them in the topology perform a
synchronizing transition, i.e., they instantaneously synchro-
nize on a message (sometimes called an action) m ∈ Σsync.
The sender of the messagem performs anm! transition, and
the receiver anm? transition. In this model processes have no
IDs, and thus in particular, the sender can not direct the mes-
sage to a specific neighbouring process (nor can the receiver

choose from where to receive it), but the pair is chosen non-
deterministically.5

In the following we fix a countable set of atoms APpr, as
well as a finite synchronization alphabetΣsync (that does not
include the symbol τ). Define the communication alphabet:
Σ = {m!,m? |m ∈ Σsync}
Process template and system templateApairwise-rendezvous
process template is a finite LTS of the form P = (S, R, {ι},
Φ,APpr,Σ∪{τ }). SinceAPpr and the communication alpha-
bet are typically fixed, we will usually omit them. The
pairwise-rendezvous system arity is a natural number r ∈ N.
It refers to the number of different process types in the system.
We call the transitions of a process template local transitions.
A pairwise-rendezvous r -ary system template is a tuple of
process templates P = (P1, . . . , Pr) where r is the system
arity. The process template Pi = (Si , Ri , {ιi }, Φi) is called
the i th process template. We sometimes drop the adjectives
“r -ary” and “pairwise-rendezvous”.
Topology An r-topology is a finite structure G = (V, E,

T1, . . . , Tr)where E ⊆ V ×V , and the Ti ⊆ V partition V .6

The type of v ∈ V denoted t ype(v) is the unique j ≤ r such
that v ∈ Tj . We might write VG , EG and t ypeG to stress G.

We write [n] to denote the set {1, . . . , n}, for any n ∈ N.
We sometimes assume that V :=[n] for some n ∈ N. For
instance the 1-ary ring topology with V = {1, . . . , n} has
E = {(i, j) ∈ [n]2 | j = i + 1 mod n} and T1 = V .
Pairwise-rendezvous systemGiven a system arity r , a system
template P = (P1, . . . , Pr)with Pi = (Si , Ri , {ιi }, Φi), and

an r -topology G = (V, E, T), define the system P
G
as the

LTS (Q,Δ, Q0,Λ,APpr × V,Σsync ∪ {τ }) where

– The set Q is the set of functions f : V → ∪i≤r Si such
that f (v) ∈ Si iff t ype(v) = i (for v ∈ V, i ≤ r).
Such functions (sometimes written as vectors) are called
configurations.

– The set Q0 consists of the unique initial configuration fι
defined as fι(v) = ιt ype(v) (for all v ∈ V).

– The set of global transitions Δ are tuples (f,m, g) ∈
Q × (Σsync ∪ {τ }) × Q where one of the following two
conditions hold:

– m = τ and there exists v ∈ V such that f (v)
τ−→ g(v)

is a transition of the process template
Ptype(v), and for all w �= v, f (w) = g(w); this is
called an internal transition,

– m ∈ Σsync and there exists v �= w ∈ V with

(v,w) ∈ E such that f (v)
m!−→ g(v) is a transi-

tion of Ptype(v) and f (w)
m?−→ g(w) is a transition

5 We remark that allowing processes to send in certain directions, e.g.,
send left and send right in a bi-directional ring, quicklymakes the PMCP
undecidable [2].
6 In this paper, the sets in a partition may be empty.

123

Parameterized model checking of rendezvous systems 191

of Ptype(w) and for all z /∈ {v,w}, f (z) = g(z); this
is called a synchronous transition. We say that the
process at v sends the message m and the process at
w receives the message m.

– The labeling function Λ : Q → 2APpr×V is defined by
(p, v) ∈ Λ(f) ⇐⇒ p ∈ Φt ype(v)(f (v)) (for configu-
rations f , atoms p ∈ APpr and vertices v ∈ V).

In words then, a topology of size n specifies n-many
processes, which processes have which type, and how the
processes are connected. In the internal transition above only
the process at vertex v makes a transition, and in the syn-
chronous transition above only the process at vertex v and
its neighbour at w make a transition. Let π = f0 f1 . . . be a

state-labeled path in P
G
. The projection of π to vertex v ∈

V , denoted projv(π), is the sequence f0(v) f1(v) . . .of states
of Ptype(v). If t ype(v) = j we say that the vertex v runs (a
copy of) the process Pj , or that the process template at v is
Pj . We sometimes drop the adjective “pairwise-rendezvous”
and simply talk about a system.

2.2 Disjunctively-guarded systems and token passing
systems

We define disjunctively-guarded systems and token-passing
systems as restricted forms of pairwise rendezvous systems.
In fact, the restrictions are on the synchronization alphabet,
the system template, and in case of tokenpassing systems also
on the topology.Write Pi = (Si , Ri , {ιi }, Φi ,APpr,Σ∪{τ }).
Disjunctively-guarded system. A disjunctively-guarded sys-
tem template is a system-template P such that

– The synchronization alphabet isΣsync is ∪i≤r Si , and the
communication-alphabet Σ is {τ } ∪ {q!,q? | q ∈ ∪Si }.

– The state sets of the process templates are pairwise dis-
joint, i.e., Si ∩ S j = ∅ for 1 ≤ i < j ≤ r .

– For every state s ∈ Si (i ≤ r), there is a transition in Si

labeled s
s?−→ s.

– For every state s ∈ Si (i ≤ r), the only transitions in Si

labeled s? are of the form s
s?−→ s.

Observe that a process can take a transition q
s!−→ q ′ iff

there is some other process in state s, and that the receiver
of a message s stays in state s. We say that the transition

q
s!−→ q ′ is guarded by the state s. We say that a process in

a disjunctively-guarded system that is in a state s opens the
gate s.

In the following, given any pair of states q and q ′, and
given some finite set of states Y = {y1, . . . , yn}, we usually
write q

Y−→ q ′ instead of writing themultiple transitions q
y!−→

q ′ for y ∈ Y . We usually also forgo writing the τ -label (and
thus write q −→ p instead of q

τ−→ p).
A disjunctively-guarded system is a system formed using

disjunctively-guarded system templates. Our definition of
disjunctively-guarded systems on a clique topology is a
reformulation of the definition of concrete system in [24,
Section 2]: there, local transitions of process templates can
be guarded by disjunctive boolean formulas that observe
the local state of some other process. In our encoding, the
observer and the observed processes synchronize: the former
does the desired local transition, while the latter self-loops,
not changing its local state. For this encoding to work, we
require that the transition labels have the same name of the
local states of the observed process templates.
Token passing system. In this work we only consider the
case of token passing systems (TPS) with a single valueless
token [2,28]. A token passing system template is a system
template P such that

– Σsync = {tok}, i.e., the only synchronization operation
is passing the token.

– The system arity r satisfies r ≥ 2.
– Every set Si is partitioned into Stoki ⊆ {tok} × N and

Sntoki ⊆ {ntok}×N. We think of Stoki (resp. Sntoki) as the
states in which the process has (resp. does not have) the
token.

– If (s1, τ, s2) ∈ Ri , then s1, s2 ∈ Stoki or s1, s2 ∈ Sntok,
i.e., internal transitions do not affect whether the process
has the token.

– If (s1, tok!, s2) ∈ Ri , then s1 ∈ Stoki and s2 ∈ Sntoki , i.e.,
tok! is the action of token sending.

– If (s1, tok?, s2) ∈ Ri , then s1 ∈ Sntoki and s2 ∈ Stoki . i.e.,
tok? is the action of token receiving.

– ι1 ∈ Stok1 and for every i > 1, ιi ∈ Sntoki , i.e., a process
with template P1 starts with the token.

A token passing system is a system formed using a token
passing system template and a topologyG such that |T1| = 1,
i.e., exactly one process can start with the token.

Intuitively, at any timeduring the computation, exactly one
vertex has the token. The token starts with the unique process
P1, and later may be passed to processes in P2, . . . , Pr . This
means that the token passing systems considered in this work
inherently requires topologies with controllers (see Sect. 2.8
for details). At each time step either exactly one process
makes an internal transition, or exactly two processes syn-
chronize when one process sends the token to another along
an edge of G.

2.3 Parameterized topologies

Parameterized topology. An r -ary parameterized topology G
is a set of r -topologies such that membership in G is decid-

123

192 B. Aminof et al.

able. We may drop the adjective “r -ary”. The following are
typical examples of parameterized topologies.

– The set of all 1-ary ring topologies.
– The set of all r -ary clique topologies.
– The set of all 2-ary ring topologies (V, E, T1, T2) such

that |T1| = 1. In a given topology of this form, the unique
process at the vertex of type 1 is called a controller, and
the processes at the vertices of type 2 are called users.
See Sect. 2.8 for more on controllers and users.

Homogeneous parameterized topology. We now define the
homogeneous parameterized topologieswhich generalize the
clique parameterized topologies.

An r -ary parameterized topology G is homogeneous if
there is a directed graph H with vertex set VH = [r] and
edge set EH and a partition Bsng, Bclq , Bind of [r] such that
an r -ary topology G = (V, E, T1, . . . , Tr) ∈ G if and only
if

1. For every i ∈ Bsng there exists a unique v ∈ V such that
v ∈ Ti ;

2. For every i ∈ Bclq and u, v ∈ Ti : E(u, v) and E(v, u);
3. For every i ∈ Bind and u, v ∈ Ti : ¬E(u, v) and

¬E(v, u);
4. For every i �= j ∈ VH and u ∈ Ti , v ∈ Tj : E(u, v) if

and only if EH (i, j).

In other words, G is formed from H by substituting each
vertex in Bclq with a clique, each vertex in Bind with an inde-
pendent set, leaving every vertex in Bsng as a single vertex,
and connecting vertices as they were connected in H .

We say that G is generated by H and Bsng, Bclq , Bind .
The cardinality of Bsng is the number of controllers in G. In
case Bsng = ∅ we say that G is controllerless, and otherwise
we say that G is controlled. If Bind = ∅ and H is a clique,
then we say that G is an r-ary clique parameterized topology.
If Bind = Bsng = ∅ then G is called the r-ary controllerless-
clique parameterized topology.

We now give some examples. Fix the 2-topology H with
vertex set VH = {1, 2} and edge set {(1, 2), (2, 1)} and
t ype(i) = i for i ∈ [2].

Example (Cliques) The set of 2-ary cliques in which
exactly one index has type 1 is homogeneous generated by
the H above, Bclq = {2}, Bind = ∅ and Bsng = {1}.

Example (Stars) The set of stars in which exactly one
index has type 1 is homogeneous using H above, Bclq = ∅,
Bind = {2} and Bsng = {1}.

Example (Bipartite graphs) The set of topologies that are
complete bipartite graphs is homogeneous using H above,
Bind = {1, 2}, and Bclq = Bsng = ∅.

Example (Rings are not homogeneous) The length of
the longest simple path in any member of an homogeneous

parameterized topologygeneratedby H is atmost the number
of vertices in H . Thus the set of rings is not homogeneous
(for any H).

Call a homogeneous parameterized topology H non-
trivial if there exists i ∈ Bsng and j ∈ Bclq ∪ Bind such
that (i, j) ∈ EH and (j, i) ∈ EH . Informally, a non-trivial
homogeneous parameterized topology means that there is
bi-directional communication between a controller and arbi-
trarily many user processes. This notion is used for some of
the lower-bounds in Sects. 3 and 4.

2.4 Indexed temporal logic

We assume the reader is familiar with the syntax and seman-
tics ofCTL∗ and LTL, see e.g., [11]. Indexed temporal logics
were introduced by [15] to model specifications of certain
distributed systems. They are obtained by adding vertex
quantifiers to a given temporal logic over indexed atomic
propositions. For example, in a systemwith two process tem-
plates, the formula ∀i : t ype(i) = 1.AG((good, i)) states
that every process of type 1 on all computations at all points
of time satisfies the atom good. In a system with one pro-
cess template, the formula ∀i �= j. AG(¬(cri tical, i) ∨
¬(cri tical, j)) states that it is never the case that two pro-
cesses both satisfy the atom cri tical at the same time.7

Syntax Fix an infinite set Vars = {i, j, . . .} of vertex vari-
ables (called index variables). A vertex quantifier is an
expression of the form ∃x : t ype(x) = m or ∀x : t ype(x) =
m wherem ∈ N. An indexed CTL∗ formula over vertex vari-
ables Vars and atomic propositions APpr is a formula of the
form Q1i1, . . . , Qkik . ϕ, where each in ∈ Vars, each Qin
is an vertex quantifier, and ϕ is a CTL∗ state formula over
atomic predicates APpr × Vars.
Semantics An indexed CTL∗ formula φ is interpreted over a

system P
G = (Q,Δ, { fι},Λ,APpr × V,Σsync ∪ {τ }) (for

r -ary system template P and r -topology G = (V, E, T)). A
valuation is a function e : Vars → V .

For some state formulaφ, andvaluation e define (P
G
, e, q)

|� φ inductively. Path formulas are interpreted similarly, but

over (P
G
, e, π), where π is a run of P

G
. The only new cases

are the base case and the quantifier case.

7 The definition we give in this paper for indexed temporal logic uses
a longhand notation. Thus, in a system with a single process template,
instead of writing ∀i, j we write ∀i : t ype(i) = 1 ∀ j : t ype(j) = 1.
Also, for the sake of simplicity, we only consider the basic universal
and existential quantifiers, ignoring quantifiers of the form ∀i �= j that
require that the process assigned to i is different than the one assigned
to j (see for example [2] for a definition that allows such enhanced
quantifiers). All the results in this paper also hold for the case where the
enhanced quantifiers as defined in [2] are used, with the natural changes
applied to the proofs.

123

Parameterized model checking of rendezvous systems 193

Base case: For (p, i) ∈ APpr×Vars define (P
G
, e, q)

|� (p, i) to mean that (p, e(i)) ∈ Λ(q). In
words, the atom p holds at the state of the
process at vertex e(i) ∈ V .

Quantifier case: An i-variant of a valuation e is a valua-
tion e′ with e′(j) = e(j) for all j ∈ Vars
with j �= i . Define (P

G
, e, q) |� ∀i :

t ype(i) = m. φ to mean that for all i-
variants e′ of e, if t ypeG(e′(i)) = m then

(P
G
, e′, q) |� φ. The semantics of the

quantifiers ∃i : t ype(i) = m. are defined
similarly.

Finally, define P
G |� φ if it holds (P

G
, fι) |� φ for the

initial state fι of P
G
.

Notation In the rest of the paper we will apply the following
conventions, for the sake of readability.

– An atom (p, j) ∈ APpr×Vars is sometimes also written
as p j .

– A formula Q1i1, . . . , Qkik : ϕ. is called a sentence if
for every atom (p, j) ∈ APpr × Vars that occurs in the
formula, there is a quantifier that binds j , that is, j ∈
{i1, . . . , ik}.

– The formula is called universal (resp. existential) if all
the vertex quantifiers Q1i1, . . . , Qkik are universal (resp.
existential).

– For k > 1 we allow more general quantification such as
∀i �= j . The semantics are defined in the natural way, see
the full version of [2].

– In case of 1-ary systems, we may write ∀x instead of
∀x : t ype(x) = 1.

– In the syntax of indexed formulas we sometimes write
t ype(x) = Pm instead of t ype(x) = m.

– Write i-CTL∗ for the set of all indexed CTL∗ sentences,
and k-CTL∗ for the set of all k-indexed formulas in
i-CTL∗, i.e., formulas with k many quantifiers. Write
CTL∗

d for the fragment of CTL∗ with path-quantifier
nesting-depth atmost d [49].We similarly define indexed
versions of the various natural fragments of CTL∗, e.g.,
i-LTL, k-LTL\X and k-CTL∗

d\X.
– Say that P

G
is k-CTL∗

d\X-equivalent to P
G ′
, written

P
G ≡k-CTL∗

d\X P
G ′
, if they agree on all k-CTL∗

d\X
formulas: for every k-CTL∗

d\X formula φ it holds that

P
G |� φ iff P

G ′ |� φ.

Note. The index variables are bound outside of all the
temporal path quantifiers (A andE). In particular, for an exis-
tentially quantified LTL formula to be satisfied there must
exist a valuation of the index variables such that φ holds for
all runs (and not one valuation for each run). Thus this logic

is sometimes called prenex indexed temporal logic. Note that
if one allows vertex quantifiers inside the scope of temporal
path quantifiers then one quickly reaches undecidability even
for systems with no communication [41].

For the remainder of this paper specifications only come
from i-CTL∗\X, i.e., without the next-time operator X. It is
usual in the context of parameterized systems to consider
specification logics without the next-time operator. The rea-
son is that since we discretize time, when a process makes
an internal transition time proceeds by one step. However,
a formula that talks about one processes should usually not
be able to (as X allows) refer to the time advance caused by
other processes making internal moves.

2.5 The parameterized model checking problem

Fix an r -ary parameterized topology G, a set of r -ary system
templates P , and a set of indexed temporal logic sentences
F . The parameterized model checking problem (PMCP),
written PMCPG(P,F), is to decide, given a formula ϕ ∈ F
and a system template P ∈ P , whether for all G ∈ G, PG |�
ϕ. The complexity of thePMCPG(P,F), where the formula
ϕ ∈ F is fixed and only the system template is given as an
input, is called the program complexity.

2.6 Process executions

In this section we define process executions, and show in
Lemma 2 how to reduce reasoning about Indexed Temporal
Logic over homogeneous parameterized topologies to rea-
soning about process executions. In Corollary 1 we show
how to apply the automata-theoretic approach to reasoning
about the PMCP, and in Lemma 3 we show how to reduce
homogeneous systems to clique systems.

First we define the destuttering of a word, which roughly
means that one removes identical consecutive letters. The
destuttering of a word α ∈ Σω ∪Σ∗ is the word αδ ∈ Σω ∪
Σ∗, also denoted destutter(α), defined by replacing every
maximal finite consecutive sequence of repeated symbols in
α by one copy of that symbol. Note that ifα is infinite, thenαδ

is also infinite. Thus, the destuttering of (aaba)ω is (ab)ω; the
destuttering of aabω is abω; and the destuttering of (aaba)k

is (ab)ka. The destuttering of the set L ⊆ Σω, written Lδ ,
is the set {αδ |α ∈ L}. The stuttering closure of L , written
Lδc, is the set {α |αδ ∈ Lδ}.
Lemma 1 If L ⊆ Σω is ω-regular then so are the sets Lδc

and Lδ . Moreover, let Q be the set of states of the Büchi
automaton for L, then Lδ and Lδc are recognized by a Büchi
automaton in time O(|Q| × |Σ |).
Proof Given a Büchi automaton A recognizing L with states
Q, we first obtain an automaton A′ (with states Q × Σ)
also recognizing L by refining the states of A to remember

123

194 B. Aminof et al.

the last symbol read. We can obtain an automaton B for the
stuttering closure Lδc by adding transitions to A′: for every
state (q, a) of A′ add the transition (q, a)

a−→ (q, a); and for
every transition of A′ of the form (q, a)

a−→ (q ′, a) add the
epsilon-transition (q, a)

ε−→ (q ′, a). To obtain an automaton
for the destuttering Lδ , intersect B with an automaton for
those strings β ∈ Σω such that if βi = βi+1 then βi = β j

for all j > i . ��
It is known that LTL\X cannot distinguish between a word

and its destuttering (this follows, e.g., from [49]), which is
the main motivation for the next definition.
Process executions. Fix an r -ary parameterized topology G
and an r -ary system template P = (P1, . . . , Pr). Define
the set of (process) executions associated with a r -topology
G ∈ G and vertex v ∈ VG :

execG(P, v):={destutter(projv(π)) |
π is a state-labelled run of P

G}.

For t ≤ r , define the t-process executions inG to be the union
of all process executions associated with vertices of type t :

t- execG(P):=
⋃

{execG(P, v) | v ∈ VG , t ype(v) = t}.

Finally, define the set of t-process executions of the parame-
terized topology G:

t- execG(P):=
⋃

G∈G
t- execG(P).

Intuitively, t- execG(P) contains all sequences of Pt
states visited by some instance of Pt along some run. When
G or P are clear from the context we may omit them.

The following lemma says that we can reduce PMCP of
1-index LTL\X to model checking an ordinary LTL\X for-
mula over the set t- execG(P). Although we state it for
pairwise-rendezvous system templates, its proof only uses
symmetry (i.e., on a homogeneous topology G, we have that
t- execG(P) is equal to the set of executions execG(P, v)

of any single process v of type t), and the fact that LTL\X
can not distinguish between a word and its destuttering.

Lemma 2 Fix an r-ary homogeneous parameterized topol-
ogy G, pairwise-rendezvous system template P, and 1-index
LTL\X sentence of the form ψ = Qx : t ype(x) = t . φ (for
Q ∈ {∃,∀} and t ≤ r). Let φ′ be the LTL\X formula in which
every atom in φ of the form (a, x) has been replaced by the
atom a ∈ APpr. The following are equivalent:

1. ∀π ∈ t- execG(P) we have that π |� φ′,
2. For all G ∈ G and all v ∈ VG of type t in G, and all

π ∈ execG(P, v), we have that π |� φ′.

3. ∀G ∈ G, P
G |� ∀x : t ype(x) = t . φ

4. ∀G ∈ G, P
G |� ∃x : t ype(x) = t . φ

Proof It is easy to see that, for the case of a clique topology
G, the truth value of a 1-indexed LTL\X sentence of the form
∀x : t ype(x) = t . φ depends only on the set t- execG(P).
Observe that, on a homogeneous topologyG, due to symme-
try,we have that t- execG(P) is equal to the set of executions
execG(P, v) of any single process v of type t . Indeed, if v, v′

are both of type t , then for every run π of P
G
, there is a run

π ′ of P
G
, such that projv(π) = projv′(π ′). The run π ′

is obtained by simply replacing the roles of v and v′ on π

(i.e., by replacing any local transition of v with one of v′,
and vice-versa). This is possible since, being of the same
type t , the vertices v, v′ have exactly the same neighbouring
vertices. ��

In the automata-theoretic approach to model check-
ing [53], one reduces the question ofwhether every execution
of a system satisfies an LTL formula φ to the emptiness of the
intersection of A and A¬φ , where A is a non-deterministic
Büchi word automaton (NBW) accepting the set of execu-
tions of the system and A¬φ is an NBW accepting the set
of words for which ¬φ holds. Together with Lemma 2, this
gives us the following corollary:

Corollary 1 Assume the hypotheses of Lemma 2. Then

[∀G ∈ G · P
G |� ψ] if and only if the intersection of A

and A¬φ′ is empty, where A is an NBW for the language
{Φ(α) : α ∈ t- execG(P)} (and Φ is the state-labeling of
the process template with type t).

From homogeneous to clique. We show a general reduction
from homogeneous systems to clique systems. Moreover,
if the homogeneous system is controllerless then so is
the clique-system. Recall that homogeneous parameterized
topologies are generated by an r -ary topology H (where each
vertex has a unique type) and a partition Bind , Bclq , Bsng of
[r].
Lemma 3 Let G be an r-ary homogeneous parameter-
ized topology, and let P = (P1, . . . , Pr) be a pairwise-
rendezvous r-ary system template.

1. If G is controllerless, then there exists a pairwise-
rendezvous template P

′
such that 1- execG′(P

′
) =⋃{i- execG(P) : i ∈ Bclq ∪ Bind}, where G′ is the 1-

ary controllerless-clique parameterized topology. Also,
|P ′| = ∑

i |Pi |.
2. If G is controlled, then there exists a pairwise-ren-

dezvous 2-ary system template P
′ = (P ′

1, P
′
2) and a

2-ary controlled-clique parameterized topology G′, such
that 1- execG′(P

′
) is equal to

⋃{i- execG(P) : i ∈

123

Parameterized model checking of rendezvous systems 195

Bclq ∪ Bind}, and for every i ∈ Bsng,

i- execG(P) = destutter(proji (2- execG′(P
′
))).

Moreover, |P ′
1| is equal to

∑
i∈Bclq∪Bind

|Pi | and |P ′
2| is

equal to
∏

i∈Bsng
|Pi |.

3. If P is a disjunctively-guarded system template, then also
the system template P

′
in items1and2above canbe taken

to be disjunctively-guarded.

Proof We prove the controlled case (the controllerless case
is simpler). Given an r -ary system template P , let the con-
trolled homogeneous parameterized topologyG be generated
by H = (VH , EH) and some partition Bsng , Bclq , Bind of
VH .

The basic idea behind the reduction is that the process tem-
plate P ′

1 is the disjoint union of the Pi with i ∈ Bclq ∪ Bind ,
and the process template P ′

2 is the product of the Pi with
i ∈ Bsng . Thus, every process running P ′

1 can nondetermin-
istically decide (by starting in the corresponding component)
which of the Pi s to simulate, and the single process running
P ′
2 simulates all of the Pi s with i ∈ Bsng . Note that (by def-

inition of homogeneous) every G ∈ G is formed from some
function SG : VH → N such that every vertex i in H is
replaced with a clique (if i ∈ Bclq) or an independent set (if
i ∈ Bind), of size SG(i). In this case letG ′ be the 2-ary clique
of size 1 + Σr

i=1SG(i) (i.e., it has one vertex of type 1, and
the rest are of type 2). Let G′ be the set of all suchG ′ and note
that G′ is a 2-ary controlled clique parameterized topology.

We can simulate every computation of P
G
by a correspond-

ing computation of P
′G ′

, and vice versa, in which, for every
i ∈ Bclq ∪ Bind , exactly SG(i) processes make the nondeter-
ministic choice to use the portion of P ′

1 that is Pi . Observe
that, inG, a process associated with a vertex i ∈ VH can send
a message m to another process, which is associated with a
vertex j of H , if and only if either (i, j) ∈ EH , or, i ∈ Bclq

and i = j . We mirror this restriction in P
′G ′

as follows: in
P ′
1, every state that is in the Pi -component attaches i to every

message that it sends, and for every j ∈ Bclq ∪ Bind , a state
that is in the Pj -component can receive a message (m, i) if
and only if either (i, j) ∈ EH , or, i = j and j ∈ Bclq .
Similarly, in P ′

2, the i th co-ordinate (for i ∈ Bsng) attaches
i to the messages it sends, and for every j ∈ Bsng , the j th
co-ordinate of P ′

2 can receive message (m, i) if and only if
(i, j) ∈ EH .

Formally, suppose (for i ∈ VH) that Pi is the i th template
in P , say with state set Si . Assume w.l.o.g. that Si ∩ S j = ∅
for all i �= j , and that Σ = {m!,m? |m ∈ Σsync}. Define
the state set of P ′

1 to be the disjoint union of the Si s for

i ∈ Bclq ∪ Bind . Thus P ′
1 has multiple initial states.8 Define

the state set of P ′
2 to be the product of the Si s for i ∈ Bsng .

Formally, the states are functions t : Bsng → ∪i∈Bsng Si
such that t (i) ∈ Si . The initial state of P ′

2 is the function ι′2
assigning to each i ∈ Bsng the initial state of Pi .

The communication alphabet is the set Σ ′:={(m, i)!,
(m, i)? |m ∈ Σsync, i ∈ VH }. The transitions of P

G
are

simulated by P
′G ′

below. In the following, transitions send-
ing a message from i to j are simulated according to the sets
Bind , Bclq , Bsnd to which i and j belong: transitions from
i /∈ Bsng to j ∈ Bsng are simulated in items (A) and (D); tran-
sitions from i ∈ Bsng to j /∈ Bsng are simulated in items (B)
and (C); transitions from i /∈ Bsng to j /∈ Bsng are simu-
lated in items (A) and (C); and transitions from i ∈ Bsng

to j ∈ Bsng are simulated in item (E). Internal transitions
are simulated in items (F) and (G). The transitions from the
dummy initial state of P ′

1 to the initial states of i /∈ Bsng are
given in item (H).

(A) If i ∈ Bind ∪ Bclq , and s
m!−→ s′ is a transition of Pi , then

s
(m,i)!−−−→ s′ is a transition of P ′

1;

(B) If i ∈ Bsng , and s
m!−→ s′ is a transition of Pi , then

t
(m,i)!−−−→ t ′ is a transition of P ′

2 where t (i) = s, t ′(i) = s′
and t (l) = t ′(l) for l �= i ;

(C) if i = j ∈ Bclq , or (i, j) ∈ EH for i ∈ VH , j ∈ Bind ∪
Bclq , and s

m?−→ s′ is a transition of Pj , then s
(m,i)?−−−→ s′

is a transition of P ′
1;

(D) if (i, j) ∈ EH , i ∈ Bind ∪ Bclq , j ∈ Bsng , and s
m?−→ s′

is a transition of Pj , then t
(m,i)?−−−→ t ′ is a transition of P ′

2
where t (j) = s, t ′(j) = s′ and t (l) = t ′(l) for l �= j ;

(E) If i �= j ∈ Bsng , and s
m!−→ s′ is a transition of Pi , and

r
m?−→ r ′ is a transition of Pj , then t

τ−→ t ′ is a transition
of P ′

2 where t (i) = s, t ′(i) = s′, t (j) = r, t ′(j) = r ′,
and t (l) = t ′(l) for l /∈ {i, j};

(F) If i ∈ Bind ∪ Bclq , and s
τ−→ s′ is a transition of Pi , then

s
τ−→ s′ is a transition of P ′

1;

(G) If i ∈ Bsng , and s
τ−→ s′ is a transition of Pi , then t

τ−→ t ′
is a transition of P ′

2 where t (i) = s, t ′(i) = s′ and t (l) =
t ′(l) for l �= i ;

(H) If i ∈ Bind ∪ Bclq and ιi is the initial state of Pi then

ι′1
τ−→ ιi is a transition of P ′

1.

It is straightforward to check that we can indeed simulate

every computation of P
G
by a corresponding computation

8 These multiple initial states can be removed by introducing a dummy
initial state ι′1; in this case the statement of the Lemma needs to
be slightly amended to remove the first state of each execution in
1- execG′ (P

′
).

123

196 B. Aminof et al.

of (P ′
1, P

′
2)

G ′
, and vice versa, which takes care of items 1 and

2 in the statement.
For item 3, observe that the communication primitive used

by P
′
is the same as the one used in P . ��

2.7 Cutoffs and decidability

Cutoff A cutoff for PMCPG(P,F) is a natural number c
such that for every P ∈ P and ϕ ∈ F , the following are
equivalent:

(i) P
G |� ϕ for all G ∈ G with |VG | ≤ c;

(ii) P
G |� ϕ for all G ∈ G.

Observe that the model checking problem P
G |� ϕ (for ϕ

an indexedCTL∗\X formula) is decidable since P
G
is a finite

structure and ϕ can be replaced by a Boolean combination
of CTL∗\X formulas, e.g., ∃x .φ becomes

∨
x∈G φ.

Proposition 1 Let F be a set of indexed-CTL∗\X formu-
las. If PMCPG(P,F) has a cutoff then PMCPG(P,F) is
decidable.

Proof If c is a cutoff, let G1, . . . ,Gn be all topologies G in
G such that |VG | ≤ c. The algorithm that solves PMCP takes

P, ϕ as input and checks whether or not P
Gi |� ϕ for all

1 ≤ i ≤ n. ��
We remark that the previous proposition is not construc-

tive. It simply says that from the existence of a cutoff one
can deduce the existence of an algorithm.

The following theorem says that if there is a cutoff for the
set of 1-indexed LTL\X formulas then the set of executions
is ω-regular. Although it is stated for pairwise-rendezvous
system templates, the proof is generic.

Theorem 1 Fix an r-ary parameterized topology G, let P
be a pairwise-rendezvous r-ary system template such that
the set of atomic propositions APpr contains all the states
of process templates in P,9 and let F be the set of 1-index
LTL\X formulas overAPpr. IfPMCPG({P},F) has a cutoff,
then for every t ≤ r the set of executions t- execG(P) is ω-
regular.

Proof Let c be a cutoff, and let G̃ = {G ∈ G | |VG | ≤ c}
be the set of the topologies in G below the cutoff. Observe
that it is enough to prove that t- execG(P) = t- execG̃(P).

Indeed, it is not hard to see that given G ∈ G̃, and a vertex

v ∈ VG , we can easilymodify P
G
to anNBW that recognizes

the language execG(P, v). Thus, by taking the disjoint union
of all these NBW for every G ∈ G̃ and every vertex v ∈ VG
of type t , we can obtain an NBW accepting t- execG̃(P)

9 Note that it is very common to assume that the atomic propositions
are equal to the states.

(the finiteness of G̃ ensures that we indeed get a finite state
automaton).

We now show that t- execG(P) = t- execG̃(P). The

fact that t- execG̃(P) ⊆ t- execG(P) is obvious. For the
other direction, fix some G ∈ G, and consider some w ∈
t- execG(P). We claim that every prefix u of w is also the
prefix of some word w′ ∈ t- execG̃(P). The claim implies

that w ∈ t- execG̃(P) (and thus completes the proof) as

follows. For every G ∈ G̃, consider the tree of words in
t- execG(P) that are prefixes of w. Observe that, by the
claim above, all (the infinitely many) prefixes of w appear
in one of these trees, and recall that G̃ is finite. Hence, by
Kőnig’s lemma, there is an infinite path in one of these trees
that contains infinitely many such prefixes, and thus all such
prefixes. It follows that w ∈ t- execG̃(P).

It remains to prove the claim. Let u:=u1u2 . . . uk be a
prefix of w ∈ t- execG(P), and let ψu = ∀x : t ype(x) =
t .A¬φ where

φ = (u1, x)U((u2, x)U((u3, x)U(. . .U(uk, x)) . . .).

Intuitively, this formula says that no t-execution starts with
u. Note thatψu is a 1-indexed LTL\X formula over APpr (by
our assumption on APpr). Observe that since u is a prefix of

w, there exists G ∈ G such that P
G �|� ψu . Thus, since c is

a cutoff, it is also the case that P
G �|� ψu for some G ∈ G̃,

i.e., u is also a prefix of some word in t- execG̃(P). ��

2.8 Two prominent kinds of pairwise rendezvous
systems

The parameterized verification literature often distinguishes
between two kinds of concurrent systems: those with iden-
tical processes, and those in which there is a single process
that acts as a controller or environment.
Identical processes. Concurrent systems in which all pro-
cesses are identical are modeled with system arity r = 1.
In this case there is a single process template P , and the
topology is G = (V, E, T1) with T1 = V .
Identical processes with a controller. Concurrent systems
in which all processes are identical except for one process
(typically called a controller, or the environment) can be
modeled with system arity r = 2, and system templates
of the form (P1, P2), and we restrict the topologies so that
exactly onevertex has type 1 (i.e., runs the controller).Wecall
such topologies controlled. We often write (C,U) instead of
(P1, P2).Wewrite controller- execG(C,U) for the set of
executions of the controller process, i.e., 1- execG((C,U)).
We write user- execG(C,U) for the set of executions of the
user processes in this 2-ary system, i.e., 2- execG((C,U)).
When the parameterized topologyG is clear from the context,
we omit it.

123

Parameterized model checking of rendezvous systems 197

Let us emphasize that the token passing systems with val-
ueless tokens considered in this work are meaningful only
for controlled topologies, since by definition (see Sect. 2.2)
there exists exactly one copy of process template P1; this
copy is the unique process where the token is at the start of
the run.

3 Pairwise rendezvous systems

The known decidability results for model checking parame-
terized pairwise rendezvous systems are for clique topologies
and specifications from 1-indexed LTL\X [36]. Thus, we
might hope to generalize these results in two directions: more
general specification languages and more general topolo-
gies. Unfortunately, as the following theorems show, we can
not go too far in these directions. In Theorem 2 we show
that one can reduce the non-halting problem of two-counter
machines (2CMs), known to be undecidable, to the PMCP of
1-indexed CTL∗

2\X formulas, i.e., 1-indexed formulas with
at most 2 nestings of path quantifiers. Thus, allowing quite
limited branching time specifications results in undecidabil-
ity (already for cliques). This leads to the conclusion that
we should restrict the specification logic if we want decid-
ability (e.g., to LTL which has just 1 path quantifier), and
try instead to look at topologies other than cliques. Unfortu-
nately, as Theorem 3 shows, we also can not go too far in this
direction.

Theorem 2 PMCPG(P,F) is undecidable where F is the
set of 1-indexed CTL∗

2\X formulas, G is the set of 1-ary
clique parameterized topologies, andP is the set of pairwise-
rendezvous 1-ary system templates.

Proof We first prove the claim for systems with a controller.
Thus,P consists of system templates of the form (C,U) and
G is the set of 2-ary clique topologies with a single vertex,
say vertex 1, that runs the controller C .

We reduce the non-halting problem of two-counter
machines (2CMs) [46], which is known to be undecidable, to
the PMCP. See the preliminaries (Sect. 2) for the definition
of 2CM.

The basic idea, based on the reduction in [28], is that the
controller simulates the control flow of the 2CM, and the
other processes (called memory processes) are each holding
one bit of each of the two counters, and collectively storing
the counter values using a unary encoding (see Fig. 1). The
formula ψ to be model-checked is used to specify that the
simulated computation of the 2CMhalts, aswell as to enforce
correct simulation of JZ instructions.Due to the unary encod-
ing we employ, a clique of n + 1 vertices can simulate the
2CMwith counter values up to n. Since the 2CM halts if and
only if it halts with some bound n on the counter values, we
can reduce the non-halting problem of the 2CM to the PMCP.

(0,0)

(1,0) (1,1)

(0,1)

D
E
C
(1

)?

IN
C
(1

)?

DEC(2)?

INC(2)?

IN
C
(1

)?

D
E
C
(1

)?

INC(2)?

DEC(2)?

Fig. 1 Process template of memory processes for the proof of Theo-
rem 2

Usingpairwise rendezvous, simulating INC(i) andDEC(i)
is straightforward. For example, INC(2) can be simulated by
a synchronous transition using the message INC(2), where
the process at vertex v that is running the controller sends
INC(2) and updates it’s state from I j to I j+1 (simulating
the 2CM move to the next instruction), and some vertex
w running a memory process with a 0-valued counter 2
bit receiving INC(2) and updating this bit to 1. Simulat-
ing a JZ instruction is slightly more involved since there
is no direct way for the controller to query all memory pro-
cesses for their bit values. However, if all the bits of counter
i in all memory processes are 0, then none of these pro-
cesses is in a state with an outgoing local transition labeled
by DEC(i)? and thus, even if the controller is willing to
perform a synchronized transition on the message DEC(i),
it will not be able to. In order to make use of this obser-
vation, for every instruction of the form I j = JZ(i, k),
the controller process C has the following 3 outgoing tran-

sitions: I j
τ−→ I j+1, I j

τ−→ Ik, I j
DEC(i)!−−−−→ N Z , where

N Z is a special sink state labeled by the atomic propo-
sition nz. Thus (assuming that for 1 ≤ l ≤ m we label
the state Il of C by the atomic proposition l), the formula
ψ1 = G((jU j + 1) �⇒ E(jUnz)) specifies that the
move from I j to I j+1 is taken only when the counter i is not
zero, and the formula ψ2 = G((jUk) �⇒ ¬E(jUnz))
specifies that the move from I j to Ik is taken only when
counter i is zero. The full specification formula is thus
∀x : t ype(x) = C .A

[¬ψ ′
1 ∨ ¬ψ ′

2 ∨ ¬F(halt, x)
]
where

halt is an atomic proposition that holds in states correspond-
ing toHALT instructions and, for i ∈ {1, 2},ψ ′

i is the formula
ψi in which every atomic proposition a ∈ APpr is replaced
by the atomic proposition (a, x).

We now consider the case of 1-ary clique topology and a
single process template P , without controller. In this case,
P is simply the union of the controller and memory pro-
cess templates C,U used in the 2-ary clique case above,
with an extra initial state q0 that has two outgoing transitions

123

198 B. Aminof et al.

q1start q2 q3
a!

a?

Fig. 2 Process template U , used to prove Theorem 4

q0
τ−→ I1, q0

τ−→ (0, 0) one to each of the initial states of C
andU . Thus, each process can nondeterministically decide to
play the role of a controller or that of memory. Enforcing that
exactly one process plays the controller is done as follows.
We introduce a new state⊥ labeled by the atomic proposition

conflict, and add the transitions I1
problem!−−−−−→ ⊥, s

problem?−−−−−→
s, where s ranges over all states of P except for (0, 0). Hence,
the formula ψ3 = 1 ∧ ¬E(1Uconflict) is satisfied in a com-
putation of the system exactly at a point where one process
(playing the controller) is at state I1 (recall that the label 1
holds only in the state I1), and the rest (playing memory)
are at state (0, 0). The full formula to be model-checked is
thus ∀x ·¬ψ ′

1 ∨¬ψ ′
2 ∨¬Fψ ′

3 ∨¬F(halt, x) where ψ ′
3 is ψ3

but with every atom a ∈ APpr replaced by the indexed atom
(a, x) ∈ APpr × Vars. ��

Second, pairwise rendezvous systems can easily simulate
systems communicating using tokens with values. Thus, the
fact that PMCP on token passing systems and parameter-
ized ring topologies and safety property (for the controller)
is undecidable (see [28,52]) implies the same for pairwise
rendezvous systems.

Theorem 3 PMCPG(P,F) is undecidable where F is the
set of 1-indexed LTL formulas, G is the 2-ary controlled
ring parameterized topology, and P is the set of pairwise-
rendezvous 2-ary system templates.

Thus, in the rest of this section, we focus on linear logics
and homogeneous parameterized topologies.

3.1 Cutoffs

Unlike systems using disjunctive guards or a valueless token
for communication, systems using pairwise rendezvous do
not always have a cutoff for 1-index LTL\X formulas.

Theorem 4 Let G be the 1-ary controllerless clique param-
eterized topology, and let F be the set of 1-index LTL\X
formulas. There exists a pairwise-rendezvous process tem-
plate U such that PMCPG({U },F) has no cutoff.

Proof Define process templateU = (S, R, I, Φ) as in Fig. 2,
where Φ(qi) = {qi }. In a system with n + 1 such processes,
one possible behaviour is, up to stuttering, (q1q2)nqω

1 . This
run does not appear in any system with at most n processes.
Thus we can define a formula:

φm = q1 ∧ (q1 U · · · U (q1 ∧ (q1 U (q2 ∧ (q2 U q1))) . . .)︸ ︷︷ ︸
2m alternations

).

Intuitively, φm states that in the system some process (and
thus any process) is able to alternatively visit states q1 and q2
m times, building the desired prefix (q1q2)mq1. For a param-
eterized system with templateU , every number c ∈ N0, fails
to be a cutoff, since ∀n ≤ c ·Un �|� φc but Uc+1 |� φc. ��

Theorem 4 can easily be adapted to controlled topologies
by assigning the controller with the same process template
U as the users:

Theorem 5 Let G be a controlled 2-ary clique parameter-
ized topology and letF be the set of 1-index LTL\X formulas.
There exist pairwise-rendezvous process templates C and U
such that PMCPG({(C,U)},F) has no cutoff.

3.2 Equivalence to finite-state systems

We first recall the main result in [36, Section 4] (stated as
comments after [36, Theorem 4.8]), restated using our nota-
tion:

Theorem 6 ([36]) Let G be the 1-ary controllerless clique
parameterized topology. For every pairwise-rendezvous sys-
tem template P there is an NBW (of linear size and
computable in Ptime from P) that recognizes the set
1- execG(P).

We now show that a similar result holds for controllerless
homogeneous parameterized topologies.UsingLemma3,we
get:

Theorem 7 For every r-ary controllerless homogeneous
parameterized topology G, every pairwise-rendezvous r-ary
system template P, and every i ≤ r , there is a linearly
sized NBW (computable in Ptime) that recognizes the set
i- execG(P).

Proof We reduce the case of controllerless homogeneous
parameterized topology to 1-ary clique parameterized topol-
ogy using Lemma 3: given the theorem assumptions, there
exists a process template P ′ and a controllerless clique
parameterized topology G′ such that 1- execG′(P ′) =
∪i∈[r]i- execG(P). By Theorem 6, there is a linearly sized
NBW for 1- execG′(P ′), and thus, by intersecting it with the
constant size NBW that accepts all strings that start with the
label of ιi , we obtain the theorem (we assume without loss
of generality—simply by adding new atomic propositions if
needed, and then projecting them out of the final NBW—that
if i �= j then Φi (ιi) �= Φ j (ι j)). ��

Recall that by Theorem 1, if there is a cutoff for the set
of 1-indexed LTL\X formulas then the set of executions is
ω-regular for any r -ary parameterized topology. However,
by Theorem 5, 2-ary controlled clique parameterized topolo-
gies (andpairwise rendezvous communication) donot always
have a cutoff. Furthermore, by constructing an appropriate

123

Parameterized model checking of rendezvous systems 199

astart xa

xb b c

b!

a!

b!

c!

c!

Fig. 3 Controller process template

u1start u2 u3
a? b?

c?

Fig. 4 User process template

system template, and using a pumping argument, we are able
to show that the set of executions of systems with a controller
is not, in general, ω-regular:

Theorem 8 Let G be the 2-ary controlled clique parame-
terized topology. There exists a pairwise-rendezvous system
template (C,U) for which controller- exec(C,U) is
not ω-regular, and a pairwise-rendezvous system template
(C,U) for which user- exec(C,U) is not ω-regular.

Proof We first show a system template for which
controller- exec(C,U) is not ω-regular. Consider the
process templates in Figs. 3 and 4, assuming states are labeled
by their names. It is not hard to see that
controller- exec(C,U) = {a(xaa)n(xbb)mcω : 0 <

m ≤ n}. The following standard pumping argument shows
that controller- exec(C,U) is not ω-regular. Assume by
way of contradiction that it is, and let k > 1 be the number of
states of an NBW A accepting controller- exec(C,U).
Consider an accepting run of A on the word w = a(xaa)k

(xbb)kcω, and let q1, . . . , qk+1 be the first k+1 states that A
visits after reading the first b. Note that when reaching qk+1,
the automaton has not read any c yet. By the pigeonhole prin-
ciple, there are 1 ≤ i < j ≤ k+1 such that qi = q j and thus,
by pumping the loopqi . . . q j , one can get accepting runs of A
onwords which are not in controller- exec(C,U), which
is a contradiction.

We now show how to obtain U ′,C ′ such that the lan-
guage user- exec(C ′,U ′) is not ω-regular. The idea is
simply to have the controller switch places with some
user process as follows. Have both C ′ and U ′ contain two
disjoint copies of C and U (as defined above), and add
new initial states a′, u′

1 to C ′ and U ′ (respectively), with
the following transitions: a′ switch!−−−−→ u1, u′

1
switch?−−−−→ a,

and u′
1

τ−→ u1. Thus, when the new controller sends the
message switch, it starts behaving like a U process, and
the receiving new user process starts behaving like a C
process. All other user processes can now only take the

transition u′
1

τ−→ u1, and start behaving like U processes.
Hence, the language user- exec(C ′,U ′) is the union of
L:=u′

1controller- exec(C,U) and L ′:=u′
1u1u2u

ω
3 . Note

that L ′ isω-regular, that L = user- exec(C ′,U ′)∩¬L ′, and
that L is not ω-regular. Hence, since ω-regular languages are
closed under negations and intersection, it must be that the
language user- exec(C ′,U ′) is not ω-regular. ��

3.3 Complexity of PMCP

The complexity of PMCP for clique parameterized topolo-
gies is studied in [36]:

Theorem 9 ([36])Fix an r-ary controlled clique parameter-
ized topology G, let F be the set of 1-index LTL\X formulas,
andP the set of pairwise-rendezvous r-ary system templates.
ThenPMCPG(P,F) (as well as its program complexity) are
Expspace-complete.

Recall that the PMCPprogram complexity is the complex-
ity when the size of the specification formulas is ignored.
The lower bound (for PMCP and its program complexity)
follows from the fact that PMCP is Expspace-hard already
for clique topologies and the coverability problem [30]. The
upper bound for PMCP (and thus also for its program com-
plexity) is proved in [36, Theorem 3.6].

Combing this with Lemma 3 we immediately get:

Theorem 10 Fix an r-ary controlled homogeneous param-
eterized topology G, let F be the set of 1-index LTL\X
formulas, and P the set of pairwise-rendezvous r-ary sys-
tem templates. Then PMCPG(P,F) (as well as its program
complexity) are in Expspace.

The following theorem shows that for controllerless
homogeneous parameterized topologies (i.e., ones with
Bsng = ∅) the complexity of PMCP is better.

Theorem 11 Fix an r-ary controllerless homogeneous
parameterized topology G, letF be the set of 1-index LTL\X
formulas, and P the set of pairwise-rendezvous r-ary system
templates. ThenPMCPG(P,F) is Pspace-complete, and its
program complexity is in Ptime.

Proof The lower bound for the PMCP follows from the fact
that LTL\X model checking a single finite state system P ,
with no communication, is Pspace-hard [50]. For the upper
bound, take some system template P ∈ P and a specification
formulaψ :=Qx : t ype(x) = t . φ. By Lemma 2, it is enough
to check that ∀π ∈ t- execG(P) we have that π |� φ′. The
theorem follows by noting that this can be done by check-
ing for the non-emptiness of the product of an NBW for
¬φ′ (obtained using [53]), and the NBW for t- execG(P)

(obtained from Theorem 7). ��

123

200 B. Aminof et al.

Fig. 5 Gadgets used in the
proof of Theorem 12

(a) Ij reqj ackj donej Ij+1

sink

(1, 1), (0, 1) (1, 1), (0, 1)
(1, 1

), (0
, 1)

0, 0(b)

1, 0

0, 1 0, 1

1, 1 1, 1

reqj ackj

reqj ackj

4 Disjunctive guards

In this section we consider disjunctively-guarded systems
(see Sect. 2.2) arranged in parameterized homogeneous
topologies.

It is known that disjunctively-guarded systems are strictly
less expressive than pairwise rendezvous ones [7]. Nonethe-
less, the following theorem states that also for disjunctive
guards the PMCP of 1-indexed CTL∗

2\X formulas is unde-
cidable. The proof uses a reduction from the non-halting
problem of 2CMs, and follows a similar line to the one used
to prove Theorem 2. The main complication here is that,
unlike the case of pairwise rendezvous, mutual exclusion is
not easily obtainable using disjunctive guards, and thus more
complicated gadgets are needed to ensure that the counter
operations are simulated correctly.

Theorem 12 PMCPG(P,F) is undecidable whereF is the
set of 1-indexed CTL∗

2\X formulas, G is the 1-ary clique
parameterized topology, and P is the set of disjunctively-
guarded 1-ary system templates.

Proof We adapt the proof of the similar statement (Theo-
rem 2) for pairwise rendezvous. Recall that the proof of that
theorem proceeded by building, given a 2CM, a process tem-
plate P and a specification formula ψ , such that the 2CM

does not halt iff P
G |� ψ for every 1-ary clique G. Here, we

show how to adapt the process template P from that proof to
use disjunctive guards instead of pairwise rendezvous (con-
sequently, ψ also changes).

At first glance, it may look like all we have to do is replace

every transition of the form s
a!−→ s′ (resp. s a?−→ s′) with

the transition s
g−→ s′, where the guard g is the set of all

states that have an outgoing transition labeled bya? (resp.a!).
Unfortunately, this introduces the following problem: once
the controller is in a state I j , associated with an increment or
a decrement instruction, it opens the gate for any number of
memory components to update their bits, instead of just one.
Hence, we have to work harder.

What we do is to replace every transition of the form

s
a!−→ s′ (resp. s a?−→ s′) in the controller (resp. memory)

component of P , with a series of guarded moves, for every

a ∈ {INC(1),DEC(1), INC(2),DEC(2)}. The key point is
that if more than one memory component enters the second
stage of such a bit update sequence then it opens up the pos-
sibility for a computation segment that is impossible if only
onememory component enters this stage, and the presence of
such a segment can be detected by the specification formula.

We illustrate these sequences by considering the rep-
resentative case of INC(2). Figure 5a shows the corre-
sponding gadget used by the controller component, i.e.,

the sequence replacing a transition (I j
INC(2)!−−−−→ I j+1);

and Fig. 5b shows the corresponding gadgets—one per j
for which I j is an INC(2) instruction—used by the mem-
ory component, i.e., the sequences replacing the transitions

(0, 0)
INC(2)?−−−−→ (0, 1), and (1, 0)

INC(2)?−−−−→ (1, 1). The formula
that guarantees that instruction I j is simulated by incre-
menting at most one bit of counter 2 is φ j :=G(ack j �⇒
¬E(ack jU (done jUsink))). Similar gadgets and formulas
are used for the other increment and decrement transitions.

Finally, we replace a transition I j
INC(1)!−−−−→ N Z with the tran-

sition I j
{(1,0),(1,1)}−−−−−−−→ N Z , and the transition I j

INC(2)!−−−−→ N Z

with the transition I j
{(0,1),(1,1)}−−−−−−−→ N Z (recall that these tran-

sitions are used, for a JZ instruction I j , to test if a given
counter is indeed not zero). We conclude by modifying the
specification formula ψ , used in the proof of Theorem 2,
as follows. First, we update it to reflect the fact that we
now use sequences of transitions to get from a state I j to
I j+1 in the controller; e.g., we replace j U j + 1 with
j U req j U ack j U done j U j + 1. Second, we make
it disjunctive with

∨m
j=1 ¬φ j (where m is the number of

instructions of the 2CM) ��

We conclude that we should restrict the specification logic
if wewant decidability, and in the rest of this sectionwe focus
on 1-indexed LTL\X. The following theorem shows that we
also have to limit the topologies.

Theorem 13 PMCPG(P,F) is undecidable whereF is the
set of 1-indexed LTL\X formulas, G is the controlled ring
parameterized topology, and P is the set of disjunctively-
guarded 2-ary system templates.

123

Parameterized model checking of rendezvous systems 201

Proof As before, we give a reduction from the non-halting
problem of 2CM. It will be useful later to assumew.l.o.g. that
the 2CM contains no self-referring goto (i.e., an instruction
of the form I j = JZ(i, j)). Given a 2CM, with instructions
I1, . . . Im , we build a system template P = (C,U), where C
is a controller process template and U is a user process tem-
plate. The basic encoding is as in the previous undecidability
results—the controller simulates the control of the 2CM, and
each user process stores one unary bit for each counter. We
augment this basic encoding by also storing the currently
simulated instruction, as well as a status flag, in each user
process. For technical convenience, we also have the con-
stant flag false in each controller state. More formally, each
state ofU is of the form (j, f, c1, c2), where j ∈ {0, . . .m} is
a number of an instruction of the 2CM (we consider I0 to be
a dummy instruction); f ∈ {true, false} is a flag indicating
the status of the currently simulated instruction, and will be
explained later; and c1, c2 ∈ {0, 1} are the bits of the counters
1 and 2, respectively. The states of C are of the form (j, f),
with the same meaning as inU , except that f is always false
(i.e., the set of states is {0, . . .m}× {false}). The initial state
of C is (0, false), and of U is (0, false, 0, 0).

The transitions in U and C are as follows. For every i ∈
{0, . . . ,m}, and x ∈ {true, false}, let Yi,x be the set of all
states in C and U with the instruction number i and the flag

x . For every such Yi,x , there is a transition (j, false)
Yi,x−−→

(j ′, false) in C iff j = i , and I j ′ is the instruction that
should execute after I j , i.e., if i = 0 then j ′ = 1; if Ii is of
the form JZ(h, k) then if x = false (indicating that counter
i is zero) then j ′ = k, and otherwise j ′ = i + 1; and if i > 0
and Ii is not a JZ instruction and x = true then j ′ = i + 1,
however, if x = false (indicating that the instruction could
not be simulated, i.e., it was an increment and all bits were
already 1) then there is no transition. InU , there is a transition

(j, f, c1, c2)
Yi,x−−→ (j ′, f ′, c′1, c′2) iff j �= i , j ′ = i and (i):

if x = true then f ′ = true, c′1 = c1, and c′2 = c2; (ii): if
x = false then if the instruction Ii can not be simulated by
updating the bits c1 or c2 (e.g., Ii = INC(1) and c1 = 1) then
f ′ = false, c′1 = c1, and c′2 = c2, and otherwise f ′ = true,
and the relevant counter bit is updated according to Ii (e.g.,
Ii = INC(1), c1 = 0, c′1 = 1 and c′2 = c2). Note that if the
instruction Ii is of the form JZ(h, k), then in case (ii) above
we have that c′1 = c1, c′2 = c2; and if c j = 1 then f ′ = true,
and otherwise f ′ = false.

We now describe how the simulation works. Let G ∈ G
be a unidirectional ring with vertices v0, . . . vn arranged in
a clockwise fashion, with edges going anti-clockwise (i.e.,
from vi to vi−1), and assume that v0 is the controller. The
simulation of each 2CM instruction takes one “round” with
n steps, where at each step 0 ≤ i ≤ n process vi moves.
Observe that (by the structure of C) v0 can only move when
its neighbour vn has the same instruction number as it does,

and a user process vi can only move when vi−1 has a dif-
ferent instruction number than it does. Thus, the simulation
can only proceed in this rounds’ structure since the follow-
ing two invariants are maintained: (i) at the beginning of
each round all processes have the same instruction num-
ber j and; (ii) at the end of every step 0 ≤ i ≤ n inside
a round, processes v0, . . . , vi store the currently simulated
instruction, and processes vi+1, . . . , vn store the previously
simulated instruction. Recall that by our assumption, that the
2CM never jumps from an instruction I j back to itself, these
two instruction numbers are always different.

A single round simulating an instruction I j begins by v0
moving to the state (j, false); then, at each step 1 ≤ i ≤ n,
the user process vi “looks” at the state of vi−1, copies the
instruction number j , and proceeds according to the flag
f stored in vi−1: if f = false it means that the counter
operationwas not yet simulated (or in the case of a JZ instruc-
tion, all the relevant bits in v1, . . . , vi−1 were 0), whereas if
f = true then the operation was simulated (or in the case of
a JZ, one of the previous bits was 1). Thus, in the first case vi
tries to simulate the instruction if it can (e.g., if I j = DEC(2)
and c2 = 1 then it changes c2 to 0), and sets its flag to true if
it succeeded, and to false otherwise; whereas in the second
case it simply sets its flag to true (without changing the coun-
ters’ bits) to propagate the information that the Instruction is
done/resolved. At the end of the round, the value of the flag f
of vm holds the information needed for the controller tomove
at the beginning of the next round to the correct succeeding
instruction. Namely, if f = true then it means that an incre-
ment or a decrement was successful, or that a JZ should not
jump since the counter is not zero; and if f = false then it
means that an increment command was not simulated since
all the counter’s bits are already 1 (this deadlocks the simu-
lation), or that a JZ should jump since the counter is zero.

Let ψ :=∀x : t ype(x) = C .A¬F halt , where halt is
an atomic proposition that holds in states corresponding to
HALT instructions. Given G ∈ G of size n, it is not hard to
see from the description above that P

G
is deterministic, and

that it simulates the run of the 2CM as long as both counters
stay below n. Thus, the 2CM does not halt iff ψ holds for all
G ∈ G. ��

It is worth noting that the proof above can be easily mod-
ified to use 1-ary topologies and process templates as long
as the symmetry of the rings is broken somehow (e.g., using
spoked wheels instead of rings), thus allowing a virtual con-
troller to be designated. We conclude that we should restrict
the topologies if we want decidability, and in the rest of this
section we focus on homogeneous topologies.

4.1 Cutoffs

By [24], for the r -ary clique parameterized topology and
universal 2-indexed LTL\X formulas, there is a cutoff of size

123

202 B. Aminof et al.

|U |+2 (whereU is the process template). The following the-
orem extends this to homogeneous topologies (for the case of
1-indexed LTL\X). Our proof (even when restricted to clique
topologies) uses different and simpler reasoning than [24].
Note that Theorem 13 implies that an extension to general
parameterized topologies is not possible.

First we need the following definitions. Given an r -ary
parameterized homogeneous topology G, generated by an r -
ary topology H = (VH , EH , T̄) with Bsng , Bclq , Bind , let
the controller types IC :={i ∈ [r] | t ype−1(i) ∈ Bsng} be the
types in [r] that are associated with a singleton, and let the
user types IU :=[r]\I C be the types associated with a clique
or an independent set.

Theorem 14 Let F be the set of 1-index LTL\X formulas,
P be a disjunctively-guarded r-ary system template, and G
be an r-ary homogeneous parameterized topology. Then the
expression 2 + |I C | + Σi∈IU |Si |, where Si are the states of
Pi , is a cutoff for PMCPG({P},F).

Proof Assume w.l.o.g. (by renaming states and updating the
guards on the transitions tomatch) that i �= j �⇒ Si∩S j =
∅. Let SU := ∪i∈IU Si be the set of all user states. Let G
be generated by an r -ary topology H = (VH , EH , T̄) with
Bsng, Bclq , Bind . The cutoff number is c = 2+ |I C | + |SU |.
Let G′ be the set of topologies of G with at most c vertices. In
the following we will show that any trace w of a system with
more than c vertices is also present in a systemwith c vertices.
Formally: for every t ∈ [r], G ∈ G, and w ∈ t- execG(P),
we show that w ∈ t- execG ′(P), for some topology G ′ ∈
G′; and thus that t- execG(P) = t- execG′(P). Thus,
given a 1-indexed formula φ, by using Lemma 2 we get:

∀G ∈ G. P
G |� φ iff ∀π ∈ t- execG(P). π |� φ′ iff

∀π ∈ t- execG′(P). π |� φ′ iff ∀G ∈ G′. PG |� φ. This
allows us to conclude that c is a cutoff.

Assume any t ∈ [r],G ∈ G, and w ∈ t- execG(P).

Let π be a state-labelled run of P
G

such that w =
destutter(projv(π)) for some v ∈ VG , and let SUπ be the
states in SU that are visited along π . We construct a run π ′

in P
G ′
, of a suitably sized G ′, that induces w. The intuition

is that G ′ simulates every controller process (i.e., a process
associated with a vertex in Bsng) exactly; for every s ∈ SUπ
it uses one process to reach the guard s and keep it open for-
ever; and two more processes: a process x of type t whose
moves will induce w and, in case that x can induce w only
by moving finitely many times, another process y that moves
infinitely often on π (to ensure that π ′ is infinite, and thus a
run).

Consider the function first : SUπ �→ VG that maps a state
s to a process that has visited s first in π , i.e., first(s):=v

where v is such that there is some j ≤ |π | with π j (v) = s,
and in the prefixπ1, . . . π j−1 no process is in state s. Note that
first(s) is uniquely determined except if s is an initial state

of a process template (in which case it may be that f irst (s)
can be chosen in more than one way). We first enlarge the
topology G to obtain a topology Ĝ as follows: for every
s ∈ SU , we add a process Ps to the clique or independent
set containing first(s). We say that Ps is a companion of
the process first(s). Observe that a process j may have zero,
one, or many companion processes, and let J be the set of
processes with at least one companion.

Let π̂ be a run of P
Ĝ

that is obtained from π by aug-
menting every move of a process j ∈ J with a sequence of
identical moves of its companion processes, with the restric-
tion that when a process Ps reaches the state s it stays
there forever. More formally, we begin by designating all
companion processes as active. We then consider the transi-
tions of π in order; a transition in which a process j ∈ J
changes states (by taking some internal or synchronizing
local transition p

α−→ q) is replaced with the following
sequence of transitions: if Pq is an active companion of
j then have Pq take this local transition and designate it
as inactive, then have all the remaining active companions
of j , as well as j , take this transition (in some arbitrary

order). It is easy to see that π̂ is a run of P
Ĝ
. Indeed,

since all the companions of j are in the same clique (or
independent set) as j , they have exactly the same neigh-
bours as j , and thus see the same open guards—allowing
them to mimic j . Furthermore, for every v ∈ VG we have
that destutter(projv(π)) = destutter(projv(π̂)), since the
process at v made exactly the samemoves in both runs—only
sometimes waiting longer between moves in π̂ . Observe that
(by the definition of f irst and by the construction of π̂), for
every state s ∈ SU , the first process on π̂ to visit s is the
companion process Ps , and that once Ps reaches s it never
leaves. It follows that if we take any two processes x, y in VG
(such that ymoves infinitelymany times onπ), together with
all the controller processes and all the companion processes,
we can obtain—by simply deleting all transitions in π̂ that
involve the other processes—a run π ′ in a system G ′ of size
at most 2 + |I C | + |SUπ | in which destutter(projx (π ′)) =
destutter(projx (π̂)). The theorem follows by recalling that
destutter(projx (π)) = destutter(projx (π̂)) for all x ∈
VG , and that destutter(projx (π)) = w for some x ∈ VG . ��

The following theorem shows that the cutoff in Theo-
rem 14 is tight for controllerless cliques, up to an additive
constant. A similar result has been shown in a slightly more
complex scenario (viz. controlled clique topologies with 2-
indexed LTL\X) [10].
Theorem 15 LetG be the 1-ary controllerless clique param-
eterized topology, letF be the set of 1-indexLTL\X formulas,
and let d > 0. There is a disjunctively-guarded system tem-
plate P of size d such that d + 1 is the smallest cutoff for
PMCPG({P},F).

123

Parameterized model checking of rendezvous systems 203

s1start s2 . . . sd
s1 s2 sd−1

sd

Fig. 6 Process U = (SU , RU , IU , ΦU) used to prove Theorem 15

Proof Consider the process template depicted in Fig. 6,
where ΦU (si) = {si }. It is easy to see, by induction on i ,
that if a process can take the local transition guarded by si
then there must be at least one process in each state s j for
all j ≤ i . Hence, for a process to take the transition from sd
to s1 there must be at least d + 1 processes in the system. It
follows that the formula φd = ∀x · AG((sd , x) → G(sd , x))
holds in all systems with at most d processes, but not in a
system with more than d processes. ��

4.2 Equivalence to finite-state systems

There are several techniques for solving the PMCP for
1-indexed LTL\X formulas for systems using disjunctive
guards. One of these is the automata theoretic approach. The
main ingredient we need in order to apply this approach is to
find an NBW that accepts the set of all possible executions
of the system, for any number of copies of user processes
U . We begin by showing that, in general, such an automaton
is necessarily big, i.e., exponential in the size of the process
templates. We show this by suitably encoding the language
of palindromes.

Theorem 16 Let G be the 2-ary controlled clique parame-
terized topology. For every l > 0, there exist a disjunctively-
guarded system template (C,U), where the sizes of C and
U are Θ(l), such that the smallest NBW whose language is
controller- exec(C,U) has size at least 2Ω(l).

Proof Fix l ∈ N, and consider the Boolean formula
φl :=∧

i∈[l][xi ⇐⇒ x2l−i+1]. Observe that φl is equiv-
alent to

∧
i∈[l]

[
(¬xi ∨ x2l−i+1) ∧ (xi ∨ ¬x2l−i+1)

]
, and let

C,U be defined as in Figs. 7 and 8 (see also the descrip-
tion in the proof of Theorem 20) with respect to φl . Note
that the sizes of C and U are linear in l. Let L be the lan-
guage of finite words of the form p1a1 p2a2 . . . p2la2l where
each ai ∈ {xi , xi } (1 ≤ i ≤ 2l), and ai = xi if and only if
a2l−i+1 = x2l−i+1 (1 ≤ i ≤ l).

Observe that controller- exec(C,U) is exactly the ω-
regular language L · c1c2 . . . cm · (done)ω. By projecting out
the letters p1, . . . , pn, c1, . . . , cm , and replacing all transi-
tions on x1, . . . , xn with transitions on 0, and all transitions
on x1, . . . , xn with transitions on 1, one obtains (with no
blowup) a nondeterministic finite automaton for the language
of palindromes in the set {0, 1}2l . It is well known that every

NFW for this language requires at least 2l states [37, Theo-
rem 1, Example 2], thus concluding the proof. ��

Given P = (C,U), the proof in [24] of a |U | + 2 cutoff
for 1-indexed LTL\X actually shows the following stronger
result: the set controller- exec(C,U), of controller exe-
cutions of controlled cliques of all sizes, is equal to the set

of controller executions of P
G
, where G is a clique of size

|U |+2.Observe that it is easy tomodify P
G
to obtain,with no

blowup, an NBW accepting its set of controller executions.
Thus, we get that controller- exec(C,U) is recognizable
by an NBW of size |C | × |U |Ω(|U |). Since (by Theorem 16)
this cutoff is tight, there is no hope of obtaining a smaller
NBW using this technique.

In the followingwe prove that, surprisingly, disjunctively-
guarded systems in homogeneous parameterized topologies
can be model checked using a smaller NBW, of size roughly
O(NC

2 × 2NU), where NC is the product of the sizes of
controller process templates and NU is the sum of the sizes
of all the user process templates. This result is given in two
steps, first showing that this property holds for controlled
clique parameterized topologies, and next generalizing it to
the case of homogeneous parameterized topologies.

Theorem 17 Let G be the 2-ary controlled clique param-
eterized topology. For every disjunctively-guarded system
template (C,U) there is an NBW K (C,U) of size O(|C |2 ×
2|U |) recognizing controller- exec(C,U). The same is
true for user- exec(C,U).

Before we prove the theorem we note that it is suffi-
cient to prove the theorem for controller- exec(C,U).
Indeed, reduce the case of user- exec(C,U) by forming a
newcontrollerC ′ that simulatesC andU using a product con-
struction. Furthermore, an automaton for user- exec(C,U)

can be obtained with a linear blowup from an automaton for
controller- exec(C ′,U) by projecting on the user com-
ponent ofC ′ anddestuttering. Thus, in the followingwe focus
on controller- exec(C,U).

We now give the intuition of the proof. Given C,U we
build a transition system T with states of the form (c, Y) ∈
SC × 2SU . The idea is that T simulates C , and records in
Y all the user states that could have been reached in a finite
number of steps in systems of arbitrary size. We identify
certain states (c,Y) of T as good, i.e., either, in C there is a
self loop from c to cwith a guard in Y , or inU there is a cycle
with guards from Y ∪ {c}. We define a run of T as good if it
is not eventually constant or from some point on it only sees
good states. The idea is that a run that is ultimately constant,
say with state (c,Y), is called good if the controller stays in
c forever. We prove that α ∈ controller- exec(C,U) if
and only if α is the destuttering of a good run of T .

We now give the proof.

123

204 B. Aminof et al.

Proof of Theorem 17 Fix C = (SC , RC , {ιC }, ΦC) andU =
(SU , RU , {ιU }, ΦU). For non-empty Y ⊆ SU and c ∈ SC
define

next (c,Y) := {s ∈ SU | ∃y ∈ Y, ∃γ ∈ Y ∪ {c, τ }, y γ−→ s},

and define Reach(c,Y) inductively:

– Reach1(c,Y) := Y ,
– Reachn+1(c,Y) := Reachn(c,Y) ∪

next (c, Reachn(c,Y)), and
– Reach(c,Y) := ⋃

i≥1 Reachi (c,Y).

Observe that Reachi (c,Y) is non-decreasing in i , and con-
tained in SU . Thus for every Y, c there exists k ≤ |SU | such
that Reach(c,Y) = Reachk(c,Y).

Lemma 4 Fix non-empty Y ⊆ SU and c ∈ SC . For all L ∈
N, and every configuration (c, ū) for which every y ∈ Y
appears in ū at least L|SU | times, there is a finite path of a
DG system starting with configuration (c, ū) such that the
first co-ordinate of every configuration in the path is c, and
the path ends with some configuration (c, v̄) such that every
y′ ∈ Reach(c,Y) appears in v̄ at least L times.

Proof of Lemma Fix Y, c, L and ū so that every y ∈ Y
appears in ū at least L|SU | times. Say Reach(c,Y)\Y =
{s1, . . . , sK } and order this set according to the earliest stage
in which an element appears in this set in the construction
of Reach(c,Y), say s1 < s2 < . . . < sK (in case that more
than one element appears in a given stage, break ties arbi-
trarily). Build a state-labeled path (c, ū0)(c, ū1) . . . starting
with ū0:=ū such that, for each si in turn, moves L many pro-
cesses from a state in Y into state si . Note that this can be
done because: (i) for each si there exists a state y in Y and
a sequence of enabled moves from y to si (indeed, in this
construction, once a guard is enabled it is never disabled),
and (ii) there are enough processes in y (indeed, each si uses
L processes from y, and there are at most |SU | − 1 many
si to take care of, thus we are safe if initially there are at
least L(|SU | − 1) processes in state y). Also note that at the
end of this process, for every y ∈ Reach(c,Y) there are at
least L processes in state y (indeed, if y ∈ Y then at least
L processes in Y did not move, and if y ∈ Reach(c,Y)\Y
then the construction moved at least L processes into state
y). This completes the proof of the Lemma. ��

Define a transition system T = (ST , RT , IT ,ΣT) whose
labels are the states of the controller, as follows:

– ST :=(SC × 2SU) ∪ {ι} where ι is a new symbol,
– IT = {ι},
– ΣT = SC ,
– RT = RLoop ∪ RProg ∪ RInit,

where

– RLoop consists of transitions (c,Y)
c−→ (c,Y) where

(c,Y) ∈ ST ;

– RProg consists of transitions (c,Y)
c′−→ (c′,Y ′) for which

Y ′ = Reach(c′,Y) and there exists γ ∈ Y ∪{τ } such that
(c, γ, c′) ∈ RC ;

– RInit = {ι ιC−→ Reach(ιC , {ιU })}.

Definition 1 A state (c,Y) of T is called good iff it satisfies
the following property: if there is no γ ∈ Y ∪ {τ } such that
(c, γ, c) ∈ RC , then there exists a cycle in U , starting and
ending in an element of Y , and each transition of it is guarded
by an element of Y ∪ {c, τ }.

An infinite word w is eventually constant if there exists
i ∈ N such that wi = w j for all j ≥ i . In this case, we can
call wi the constant symbol in w. A run s0a0s1a1 . . . of T is
good if the state-labeled run s0s1 . . . satisfies the following
property: if it is eventually constant then its constant symbol
(which is a state of T) is good.

Definition 2 Define LT ⊆ (SC)ω to be the following lan-
guage:

LT = {ξ ∈ (SC)ω|ξ is the sequence of labels of some
good run of T

}
.

Note that LT is ω-regular and can be recognized by an
NBWW of sizeO(|ST |) that simulates T and stores in its sec-
ond component whether or not the last simulated transition
changed the state of T ; a run is accepting if either there are
infinitely many changes or some good state is seen infinitely
often. Formally, define theNBWW = (ΣW , QW , IW ,ΔI

W ∪
Δ0

W ∪ Δ1
W , FW):

– ΣW = ΣT ,
– QW = ST × {0, 1},
– IW = {(ι, 0)},
– ΔI

W consists of transitions (ι, 0)
ιC−→ (s, i) if and only if

(ι, ιC , s) ∈ RT , where i ∈ {0, 1},
– Δ0

W consists of transitions (s, i)
c−→ (s, 0) if and only if

(s, c, s) ∈ RT , s = (c,Y), i ∈ {0, 1}.
– Δ1

W consists of transitions (s, i)
c−→ (t, 1) if and only if

(s, c, t) ∈ RT , s �= t, t = (c,Y), i ∈ {0, 1},
– FW = {(s, 0) : s is good} ∪ {(s, 1) : s ∈ ST }.

Thus, by Lemma 1, (LT)δ is recognized by an NBW
K (C,U) whose size is linear in |ST | × |ΣT |, i.e., O(|C |2 ×
2|U |).

To complete the proof of the theorem we show that
controller- exec(C,U) = (LT)δ .

123

Parameterized model checking of rendezvous systems 205

Notation For a tuple ū = (u1, . . . , u j) write set (ū) for the
set {u1, . . . , u j }.

Claim A controller- exec(C,U) ⊆ (LT)δ .

Proof of Claim A Fix w = c0c1 . . . from language
controller- exec(C,U). Let π be a state-labeled run in
some DG system, say with N user processes, that generates
w, i.e.,w = projv(π)where v is the vertex of the controller.
Partition π :=ρ0ρ1ρ2 . . . into segments so that if (c, ū) is in
ρi then c = ci (pick any partition if there is more than one,
which happens if there are successive configurations of π

with the same controller components). Define sets Yi as fol-
lows: Y0:=Reach(c0, {ιU }) and Yi+1:=Reach(ci+1,Yi). It is

enough to show that α:=ι
c0−→ (c0,Y0)

c1−→ (c1,Y1) . . . is a
good run of T since its sequence of actions is exactly w.

Note. If (c, ū) occurs in ρi and s ∈ set (ū) then s ∈ Yi .
This can easily be proved by induction on i (use the fact
that y ∈ Reach(c, Y) if there exists M ∈ N and a finite
path in a DG system with M user processes starting with a
configuration (c, ū) ∈ SC × Y M with two properties: (i) the
first co-ordinate of every configuration in the path is c, and
ii) the path ends in a configuration (c, v̄) such that v j = y
for some j ≤ M).

By the Note, the transition (in C) from the end of ρi to the
beginning of ρi+1 is guarded, if at all, by a state in Yi . Thus,
by the definition of RT ,α is a run of T .We nowprove thatα is
good. To this end, suppose that the state-labelled run induced
by α, i.e., ι(c0,Y0)(c1,Y1) . . ., is eventually constant, say
with constant symbol (c,Y), and that there is no γ ∈ Y ∪{τ }
such that (c, γ, c) ∈ RC (otherwise there is nothing to do).
Thus, there exists m ∈ N such that for all i ≥ m, πi ∈ {c} ×
2SU , and each transition from πi to πi+1 is due to some user
process taking a transition. Since there are only finitely many
processes (i.e., N), some user process, say the K th, must
make be responsible for infinitelymany transitions.However,
since the process template U is finite, the K th user process
must eventually trace a cycle inU . By the Note, the cycle can
be chosen to start and end at some element of Y , and every
guard on the cycle is in Y ∪{c, τ }. Thus, (c,Y) is good. This
completes the proof Claim A. ��

Claim B (LT)δ ⊆ controller- exec(C,U).

Proof of Claim B Fixw ∈ (LT)δ , sayw = c0c1 In order
to prove the claim, we will build a run π in a systemwith one
control process and 2NN+1 user processes, where N :=|U |,
so that w is the destuttering of the projection of π onto C .

Let α be any run in T such that w is the destuttering of

the actions in α, say α = ι
d0−→ (d0,Y0)

d1−→ (d1,Y1)
Note that there exists m ∈ N0 such that Ym = Y j for all
j ≥ m (this is because the sequence {Yn}n≥0 is monotone
and contained in the finite set SU).

Intuitively, in order to build π so that controller traces
a path whose destuttering is w, we will ensure that the π

reaches a configuration in which at least two processes are in
every state of Ym : we need at least one process in every state
of Ym to enable all the guards that may be used in the future;
but wemay also need an additional process in a state y in case
we need to make one process perform a cycle starting and
endingwith y (this case occurs ifw is eventually constant, say
with constant symbol (c,Y), and there is no self-loop in RC

of the form (c, γ, c) for γ ∈ Y ∪ {τ }). In order to reach such
a configuration we will repeatedly apply Lemma 4, starting
with L = 2, for (at most) N steps. In particular, we may
require 2NN user processes to start with.

We first need some definitions. Define X ⊂ N0 to be the
set of indices i ∈ N0 such that either i = 0 or |Yi | �= |Yi−1|.
Since Y0 is non-empty, |X | ≤ N . List the elements of X as
x0 = 0 < x1 < x2 < · · · < x|X | ≤ m. For i ∈ N write
β(i) for the largest integer j ≤ |X | such that x j ≤ i . For
i ∈ [0, N + 1], define Γi :=2NN−i . Note that NΓi+1 = Γi ,
and ΓN = 2, and Γ0 = 2NN .

We now describe how to build π by iterating over the
transitions of α. After step i ≤ m (i.e., after considering the
transition with target (di ,Yi)) we will have built a path that
ends in a state whose first co-ordinate is di , say (di , v̄), with
the following invariant: every y ∈ Yi appears in v̄ at least
Γβ(i) times.

We begin with the transition ι → (d0,Y0). Apply
Lemma 4with L:=Γ0 and initial configuration (ιC , ū)where
set (ū) = {ιU } and |ū| = LN , to get a path starting
with (ιC , ū) and ending with a configuration (ιC , v̄) where
set (v̄) = Reach(ιC , {ιU }) and each element in this set
appears in v̄ at leastΓ0 times (thusmaintaining the invariant).

Suppose we have processed the transition with target
(di−1,Yi−1) and, thus, the path built so far, say π ′, ends
with (di−1, v̄) and satisfies the invariant, i.e., every y ∈ Yi−1

appears in v̄ at least Γβ(i−1) times. Consider the transition

(di−1,Yi−1)
di−→ (di ,Yi) in π . There are two cases.

1. Case i ∈ X . Since, in this case, Yi �= Yi−1, the transition
must be in RProg, i.e., there is some γ ∈ {τ }∪Yi−1 such
that (di−1, γ, di) ∈ RC . By the invariant, Yi−1 ⊆ set (v̄).
Conclude that (di−1, v̄) → (di , v̄) is a transition of the
DG system. Thus, first extend π ′ by the state (di , v̄).
Second, since i ∈ X we have that i = xk for some k,
and thus β(i) = k; also, xk−1 ≤ i − 1 < xk , and thus
β(i − 1) = k − 1. Conclude that Γβ(i−1) = NΓβ(i).
By the invariant we can apply Lemma 4 with L:=Γβ(i)

and configuration (di , v̄). This results in a path p that
starts with (di , v̄) and endswith configuration of the form
(di+1, w̄) where every state in Yi+1 = Reach(di+1, Yi)
appears in w̄ at least Γβ(i) times. Now extend π ′ by p.
Note that the invariant is maintained.

123

206 B. Aminof et al.

2. Case i /∈ X . Thus, in this case, Y :=Yi = Yi−1. There are
two subcases.

– Subcase di−1 �= di . In this subcase, the transition
must be in RProg. As in the first half of the case
i ∈ X , the DG systems has a transition (di−1, v̄) →
(di , v̄). Extendπ ′ by the state (di , v̄) and note that the
invariant is maintained since no user process moved.

– Subcase d:=di−1 = di . This subcase can be ignored,
i.e., do not extend π ′. Again, the invariant is main-
tained since no user process moved.

At this point we have constructed a finite path π ′ that
mimics the first m steps of α. Recall that Ym = Y j for all
j ≥ m. To finish, we identify two cases. If α is not even-
tually constant, then repeatedly apply the reasoning in case
2 above. On the other hand, if α is eventually constant, say
with constant symbol (dn,Yn) (for some n ≥ m), then extend
π ′ to mimic the transitions between m and n (as in Case 2
above), and then proceed as follows. Since (dn,Yn) is good
there are two subcases. If there is a self-loop (dn, γ, dn) in
RC for some γ ∈ {τ } ∪ Yn , then extend π ′ by the infinite
path (dn,Yn)ω. Otherwise, by the definition of good, there
is a cycle in U starting and ending in some y ∈ Yn such
that each transition is guarded by an element of Yn ∪{dn, τ };
thus we can extend π ′ by transitions in which a process at yn
repeatedly makes this cycle (note that this is possible since
up till now we guaranteed that there are at least 2 processes
in every state of Yn). This completes the proof Claim B. ��

Tosummarise,wehave shown thatcontroller- exec(C,

U) = (LT)δ and that there is an NBW of size O(|SC |2 ×
2|SU |) recognizing (LT)δ . ��

Now we can generalize the previous result, showing that
model checking disjunctively-guarded systems in homoge-
neous parameterized topologies can be done with an NBW
that is exponential in the size of the input models.

Theorem 18 Let G be the r-ary homogeneous parame-
terized topology. Let Ctr = Bsng and Usr = Bind ∪
Bclq . For every disjunctively-guarded system template P =
(P1, . . . , Pn), for each i ∈ Ctr (resp. i ∈ Usr) there is an
NBW K (P) of size O(c2 × 2u) recognizing i- execG(P),
where c = Πi∈Ctr|Pi | and u = 1 + Σi∈Usr|Pi |.
Proof By Lemma 3, we can reduce P to two templates: C is
the product of the controllers, and U is the union of the user
process. Next, we can apply Theorem 17 to produce an NBW
K (C,U) of size O(|C |2 × 2|U |) recognizing the executions
of C (and similarly, an NBW for the executions of U). In
case i ∈ Ctr, form an NBW from K (C,U) by projecting
onto the i-th component of the state, and thus isolate only
the executions of the i-th controller of the original system. In
case i ∈ Usr, form an NBW from K (C,U) by intersecting
with an automatonwhose language is all runs throughprocess

Pi . In both cases, the produced NBW is linear in the size of
K (C,U), concluding the proof. ��

4.3 Complexity of PMCP

The following theorem states the complexity of PMCP for
homogeneous parameterized topologies. It derives the com-
plexity upper bound from the automata theoretic approach
and constructing the NBW in Theorem 17 “on the fly”.

Theorem 19 Let G be an r-ary homogeneous parameter-
ized topology (controlled or controllerless). Let F be the
set of 1-index LTL\X formulas, and let P be the set of
disjunctively-guarded r-ary system templates. The complex-
ity of PMCPG(P,F) is Pspace-complete.

Proof We begin with the lower bound. Pspace hardness fol-
lows from the fact that LTL\X model checking of a Kripke
structures is Pspace-hard [50] and the observation that this
problem is a special case of PMCP. Indeed, given a Kripke
structure, one can think of it as a process template all ofwhose
transitions are silent (i.e., there is no communication). Since
there is no communication, the topology plays no role, and
the execution traces of all the processes of the same type
(be it user or controller) running at any node are exactly the
same. Hence, in all cases, the PMCP degenerates to model
checking of Kripke structures.

We now address the upper bound. First, observe that
the controllerless case can be immediately reduced to the
controlled case simply by having a controller that runs the
same process template as the other processes (i.e., by having
C = U). Second, by Lemma 3, it is enough to consider the
case of a 2-ary controlled clique parameterized topology.

Given process templates C,U , by Theorem 17 there is an
NBW K (C,U), whose language is
controller- exec(C,U) or user- exec(C,U), as we
wish. Given a 1-index LTL\X specification formula ψ , we
can decide, by Corollary 1, the PMCP for ψ by checking for
the non-emptiness of the product of A¬φ′ and K ′(C,U):φ′ is
the maximal LTL\X subformula ofψ such that every atom of
the form (a, x) has been replaced by the atom a; K ′(C,U) is
the same NBW as K (C,U) except that every transition label
c ∈ SC is replaced by ΦC (c) ∈ 2AP. Furthermore, by [53],
this non-emptiness problem can be solved in Pspace as long
as storing a state of K (C,U), as well as checking mem-
bership in the transition relation of K (C,U), can be done
in polynomial space. Since it is not hard to see that this is
indeed the case, the required upper bound follows. ��

The next theorem states the program complexity of PMCP
for clique parameterized topologies. For controllerless sys-
tems we inherit the Ptime program complexity from the
NBW used to recognize the executions of a process in
homogeneous topologieswith pairwise rendezvous (see The-
orem 7). With a controller, the co-NP upper bound results

123

Parameterized model checking of rendezvous systems 207

from a fine analysis of the construction in the proof of The-
orem 17, and the co-NPhardness by coding of propositional
unsatisfiability: the user processes store an assignment, and
the controller verifies it is not satisfying.

Theorem 20 FixF to be the set of 1-index LTL\X formulas.
If P is the set of disjunctively-guarded 1-ary system tem-
plates, and G is the 1-ary clique parameterized topology,
then the program complexity of PMCPG(P,F) is in Ptime.
If P is the set of disjunctively-guarded 2-ary system tem-
plates, and G is the 2-ary controlled clique parameterized
topology, then the program complexity of PMCPG(P,F) is
co-NP-complete.

Proof Without a controller, membership in P follows from
[36, Section 4]. With a controller, membership in co-NPcan
be derived using a more careful analysis of the complexity of
the PMCP performed in the proof of Theorem 19, as follows.

In that proof it has been shown that decidingwhether∀G ∈
G, P

G |� ψ can be done by checking for the non-emptiness
of the product NBW A = A¬φ′ × K ′(C,U), for a suitable
formula φ′ (fromwhich the NBW A¬φ′ is derived) and NBW
K ′(C,U). We recall from that proof that φ′ is the maximal
LTL\X subformula of the 1-indexed LTL\X original formula
ψ , whose atoms with form (a, x) are replaced by atom a.
The NBW K ′(C,U), instead, is derived from K (C,U) (see
Theorem 17) where transition label c ∈ SC are replaced by
ΦC (c) ∈ 2AP.

Checking for the non-emptiness of an NBW amounts to
finding a lasso in it. I.e., to finding a state s, and two simple
paths: one from the initial state to s, and the other from s
back to itself. Observe that a lasso in the product automaton
A induces lassos x, y in A¬φ′ and K ′(C,U), respectively.
Hence, checking that A is not empty can be done by guessing
the lassos x, y and checking that their product is indeed a
lasso in A.10 Looking at the proof of Theorem 17, one can
see that (except for one state) all the states of the LTS T are
of the form (c,Y), where c is some state of C , and Y is a
subset of the states of U . Furthermore, there is a transition
between two such states (c,Y), (c′,Y ′) only if Y ⊆ Y ′. It
follows that the longest simple path of T is of length at most
|C | × |U |. Thus, since K ′(C,U) is formed by taking the
product of T with an automaton of size O(|C |),11 the length
of the longest simple path, and thus also of the longest lasso,
of K ′(C,U) is of length O(|C |2 × |U |). Overall, since we
also have that querying the transition relation of K ′(C,U) is
cheap, we conclude that one can guess any lasso in K ′(C,U)

in time polynomial in |C | × |U |.
10 Note that not all such products are legal paths in A, since A contains
a transition from (p, q) to (p′, q ′) only if A¬φ′ has a transition from p
to p′ while reading the atomic propositions that are true in q.
11 To see this, note that K ′(C,U) is the destuttering of an automaton
with O(|T |) many states and input alphabet of size |C |, and apply
Lemma 1.

p1

x�
1

x⊥
1

p2

x�
2

x⊥
2

p3 . . . pn

x�
n

x⊥
n

c1

c2. . .cmdone

x
1

x1

x
2

x2

x
n

xn

c
1
1
,c

1
2
,c

1
3

c21, c22, c23cm1, cm2, cm3

Fig. 7 Process C in the proofs of Theorems 16 and 20

x1 x1
. . . xn xn

x�
1 x⊥

1 x�
n x⊥

n

Fig. 8 Process U in the proofs of Theorems 16 and 20

Recall that when analyzing program complexity, we con-
sider the formula ψ to be constant. Thus, we get that one
can, in nondeterministic polynomial time, guess any pair of
lassos x, y in A¬φ′ and K ′(C,U). It is not hard to see that
given x, y, checking that their product is indeed a lasso in A
can be done in time polynomial in the size of these lassos.
It follows that one can guess and verify in nondeterministic
polynomial time that the automaton A is not empty, and thus,

that it is not the case that ∀G ∈ G, P
G |� ψ , which gives the

desired membership of PMCP in co-NP.
For the lower bound, we reduce the unsatisfiability prob-

lem of a 3-SAT formula to the PMCP. Given a 3-SAT formula∧m
i=1(ci1 ∨ ci2 ∨ ci3) over the Boolean variables x1, . . . , xn ,

we build the two process templates C,U given in Figs. 7
and 8, and consider computations in which the controller C
reaches the state done. Note that, for every 1 ≤ i ≤ n, the
way to the state done goes either through x�

i or through x⊥
i ,

and that one can transition out of these states only if at least
one user process U enables the corresponding guard (xi or
xi). Also note that (†): the guards on the transitions of U
ensure that if the controller entered x�

i (resp. x⊥
i), then no

user process can be (anywhere along the computation) in
state xi (resp. xi).

It follows that if the controller reaches state c1 then there
were at least n user processes, and that the user processes
store an assignment to each variable xi , 1 ≤ i ≤ n, as fol-
lows: xi is true if there is some user process in state xi , and
it is false if there is some user process in state xi (note that,
by †, these two options are mutually exclusive). Observe that

123

208 B. Aminof et al.

a bc d a bc d
initGre

p1 p2

Fig. 9 Running example: the topology Gre and the graph LTS Gre|ḡ
for ḡ = (b, d). The 2-topology Gre with T1 = {a} and T2 = {b, c, d}
is depicted to the left. The graph LTS Gre|ḡ is depicted to the right.

Gre|ḡ has atomic propositions AP = {p1, p2}, initial state initGre = a,
and state-labeling function Λ(a) = Λ(c) = ∅, Λ(b) = {p1} and
Λ(d) = {p2}. All of the transitions of Gre|ḡ are labelled tok

((tok, 1), ◦, ◦, ◦) (◦, (tok, 1), ◦, ◦)(◦, ◦, (tok, 1), ◦) (◦, ◦, ◦, (tok, 1))

(◦, ◦, (tok, 2), ◦) (◦, ◦, ◦, (tok, 2))((tok, 2), ◦, ◦, ◦) (◦, (tok, 2), ◦, ◦)
(CSc) CSd(CSa) CSb

Fig. 10 Running example: the token-passing system P
Gre and the pro-

jection LTS P
Gre |ḡ. This figure depicts the token-passing system with

topology Gre and process templates P = (Ptok, Pntok). We represent
the configurations of (Ptok, Pntok)Gre as 4-vectors (sa, sb, sc, sd) con-
taining the states of the processes at a, b, c, and d respectively. As
shorthand we write ◦ for the most common state (ntok, 1). We omit
unreachable configurations, such as those in which no process has the
token or two processes have the token. The dashed transitions are inter-

nal transitions. The solid transitions are synchronous transitions (i.e.,
transitions where the token passes from one process to another). The
configuration ((tok, 1), ◦, ◦, ◦) is the initial configuration. The labeling
functionΛ assigns∅ to any configuration containing (tok, 1).Otherwise
it assigns a singleton set {CSX } for the corresponding X ∈ {a, b, c, d}.
The projection LTS P

Gre |ḡ for ḡ = (b, d) is obtained from this figure
by removing the Λ labellings CSa and CSc

the controller can reach the state done if and only if this
assignment satisfies the 3-SAT formula. Indeed, for every
1 ≤ j ≤ m, the guard on the outgoing transition from state
c j ensures that this transition can be taken if and only if the
stored assignment satisfies clause c j . It follows that the 3-
SAT formula is unsatisfiable if and only if the PMCP for the
1-ary clique topology with process templates (C,U), and the
fixed formula ψ = G¬done, has a positive answer. ��

Combining Theorem 20 and Lemma 3 we get the follow-
ing corollary, extending the complexity analysis to homoge-
neous parameterized topologies:

Corollary 2 Let G be an r-ary homogeneous parameterized
topology, let F be the set of 1-index LTL\X formulas, and
let P be the set of disjunctively-guarded r-ary system tem-
plates. If G is controllerless then the program complexity of
PMCPG(P,F) is in Ptime, and otherwise (i.e., if G is con-
trolled) it is in co-NP.

5 Token passing systems

In this sectionwe show thatPMCPG(P, i-CTL∗\X) is decid-
able, where P is the set of all process templates, and G is
either (1)MSO-definable and of bounded clique-width or (2)
iteratively constructible. We encode a characterization of the
CTL∗

d\X-indistinguishability equivalence relation from [6]
in MSO and utilize the composition property of CTL∗

d\X
proved there. We prove the existence of decidable cutoffs for
the PMCP problem in this setting and show a lower bound on
the cutoffs of iteratively-constructible parameterized topolo-
gies for indexed LTL\X.

The section is organized as follows. Section 5.1 introduces
the necessary background with regards toCTL∗

d\X on token-
passing systems. Section 5.2 gives preliminaries regarding
topologies of bounded clique-width and theMonadic Second
Order Logic of topologies. Section 5.3 proves the decidabil-
ity of the PMCP problem and the existence of computable
cutoffs. Section 5.4 discusses sizes of the cutoffs.

In this section we will have a running example which we
will revisited several times in Running Examples 1, 2, 3, 4,
and 5, and Figs. 9 and 10.

Running Example 1 Let Gre = (Vre, Ere, T1, T2) be the
2-topology depicted in Fig. 9.

We define P1 = Ptok to be the process template with:

– state set S = {(ntok, 1), (tok, 1), (tok, 2)},
– atomic propositions set APpr = {CS},
– state labeling Φ((ntok, 1)) = Φ((tok, 1)) = ∅ and

Φ((tok, 2)) = {CS},
– synchronization alphabet Σsync = {tok},
– transition relation

R = {((ntok, 1), tok?, (tok, 1)), ((tok, 1), tok!, (ntok, 1)),
((tok, 1), τ, (tok, 2)), ((tok, 2), τ, (tok, 1))},

and
– initial state ιtok = (tok, 1).

The process template P2 = Pntok is obtained from Ptok
by setting the initial state to ιntok = (ntok, 1). Let P =
(Ptok, Pntok). The token-passing system P

Gre is depicted in
Fig. 10.

123

Parameterized model checking of rendezvous systems 209

5.1 Preliminaries I: CTL∗
d\X and token-passing systems

5.1.1 Two abstractions of a token-passing system

We now define for a given TPS P
G
two abstractions used in

the above-mentioned characterization [6]. The first abstrac-
tion simulates P

G
, keeping track only of the local states of

processes indexed by ḡ. We call it the projection of P
G
onto

ḡ. The second abstraction only simulates the movement of
the token in G, restricted to ḡ. We call it the graph LTS of G
and ḡ.

Notation. For topologies G and G ′, let ḡ denote a tuple
(g1, . . . , gk) of vertices of G, and ḡ′ a k-tuple of distinct
vertices of G ′. Write v ∈ ḡ if v = gi for some i .

The projection P
G |ḡ

Informally, the projection of P
G
onto a tuple of process

indices ḡ is the LTS P
G
and a new labeling that removes all

indexed atoms p j for j /∈ ḡ.
More precisely, fix a system template P , a topology G,

and a k-tuple ḡ over VG . Say P
G = (Q,Δ, Q0,Λ). Define

the projection of P
G

onto ḡ, written P
G |ḡ as the LTS

(Q,Δ, Q0, L) where for all q ∈ Q the labeling L(q) is
defined as L(q):=Λ(q) ∩ {pgi | p ∈ APpr, i ∈ [k]}.
The graph LTS G|ḡ

Informally,G|ḡ is an LTS where the states are the vertices
of the r -topology G, and the transitions are the edges of G.
The graph LTS simulates the passing of the token between
the vertices of G, beginning with the token at the unique
vertex initG ∈ V belonging to T1. The vertices g1, . . . , gk are
assigned the atomic propositions p1, . . . , pk , respectively.

The precise definition of the graph LTS is as follows. Let
G = (V, E, T1, . . . , Tr) be an r -topology such that |T1| = 1,
and let ḡ = (g1, . . . , gk) be a k-tuple ofG vertices. The graph
LTS G|ḡ is the LTS (V,Δ, V0,Λ,AP,Σ) in which:

– the set of states is V ,
– the alphabet Σ of transition labels is {tok},
– the set of atomic propositions AP is {p1, . . . , pk},
– the transition relation Δ is

{(u, tok, v) | (u, v) ∈ E}

– the set of initial states V0 is T1 = {initG}, and
– the state-labeling function Λ of v ∈ V is Λ(v) = {pi |

v = gi }.

5.1.2 CTL∗
d\X-equivalence and CTL∗

d\X-character

Recall that CTL∗
d is the fragment of CTL∗ with at most d

path quantifiers. For two LTSs LTS1 and LTS2, we write that
LTS1 and LTS2 are CTL∗

d\X-equivalent if they agree on all

CTL∗
d\X formulas: for every CTL∗

d\X formula φ it holds
that LTS1 |� φ iff LTS2 |� φ. We denote that LTS1 and LTS2
are CTL∗

d\X-equivalent by LTS1 ≡CTL∗
d\X LTS2. Note that

the definition of CTL∗
d\X-equivalence applies in particular

to our two abstractions, the projection LTS of P
G
onto ḡ and

the graph LTS of G and ḡ.
The composition property

The composition theorem says that the CTL∗
d\X-

equivalence of projections P
G |ḡ and P

H |h̄ can be reduced
to the CTL∗

d\X-equivalence of their graph LTSs G|ḡ and
H |h̄. The composition property says that if two graph LTSs
are indistinguishable, then so are their corresponding projec-
tions.

Theorem 21 (The composition Theorem [6]) For every
k, d ∈ N, system template P ∈ P , topologies G, H, and
k-tuples ḡ and h̄ of vertices of G and H respectively:

G|ḡ ≡CTL∗
d\X H |h̄ implies P

G |ḡ ≡CTL∗
d\X P

H |h̄

The≡CTL∗
d\X-equivalence class of a graphLTS is uniquely

determined by a (k+ 1)-vector which is called theCTL∗
d\X-

character. This vector consists of pairs of labellings Λ and
markings Ξ k

d .
Fix k, d ∈ N, topology G = (V, E, T), and k-tuple ḡ

over V . LetG|ḡ = (V,Δ, V0,Λ) be the graph LTS ofG and
ḡ. We will recursively define below a marking function Ξ k

d
that associates with each vertex v ∈ V a (k+1)-dimensional
vectorΞ k

d (v)whose i th coordinateΞ k
d (v)[i] is a set of strings

over the alphabet

{Ξ k
d−1(u) : u ∈ V }.

The CTL∗
d\X-character of G|ḡ is the (k + 1)-tuple:

(〈
Λ(initG),Ξ k

d (initG)
〉
,
〈
Λ(g1),Ξ

k
d (g1)

〉
, . . . ,

〈
Λ(gk),Ξ

k
d (gk)

〉)
.

The crucial properties of the CTL∗
d\X-character are:

– TheCTL∗
d\X-character determineswhetherG|ḡ |� ϕ for

every formula ϕ ∈ CTL∗
d\X.

– The number ofCTL∗
d\X-characters for any fixed d and k

is finite and computable.Wediscuss the setΥ k
d containing

all CTL∗
d\X-characters for k and d below.

The marking Ξ k
d

For every vertex v ∈ V , let v� be the set of maximal
paths in G starting in v that have no intermediate vertices in
ḡ, i.e.:

1. an infinite path π = v1, v2, . . . is in v� iff v1 = v and
vi /∈ ḡ for all i > 1;

123

210 B. Aminof et al.

2. a finite path π = v1, v2, . . . , vs is in v� iff v1 = v,
s > 1, vs ∈ ḡ and vi /∈ ḡ for all 1 < i < s.

We write v�0 for the set of infinite paths in v�. For every
j ∈ [k], we write v� j for the set of v� paths which end in
g j .

Running Example 2 We write L(Reg) for the language of
the regular expression Reg. For Gre|ḡ with ḡ = (g1, g2),
g1 = b, and g2 = d, we have:

a�0 = {(ac)ω} a�1 = L((ac)�ab) a�2 = ∅
b�0 = {b(ac)ω} b�1 = L(b(ac)�ab) b�2 = {bd}
c�0 = {c(ac)ω} c�1 = L(c(ac)�ab) c�2 = ∅
d�0 = ∅ d�1 = {db} d�2 = ∅

For a (finite or infinite) path π = v1, v2, . . . we denote by
Ξ k

d (π) the concatenation of the d markings of the vertices of
π , i.e., Ξ k

d (π) = Ξ k
d (v1)Ξ

k
d (v2) We define the marking

Ξ k
d of a vertex inductively (on d) as follows:

– Ξ k
0 (v) = Λ(v), for every v ∈ V ;

– For d > 0, Ξ k
d (v) is the (k + 1)-vector

(Ξ k
d (v)[0], . . . , Ξ k

d (v)[k])

where

Ξ k
d (v)[0] =

⋃

π∈v�0

{destutter(Ξ k
d−1(π))}

Ξ k
d (v)[i] =

⋃

π=(π0,vs)∈v�i

π0=(v1,v2,...,vs−1)

{destutter(Ξ k
d−1(π0))}

for every i ∈ [k]. The union in Ξ k
d (v)[i] ranges over

paths π = (v1, . . . , vs).

That is, for d = 0 the marking Ξ k
0 (v) is the label Λ(v). For

d > 0 the marking Ξ k
d is a vector of sets of strings, where

the i th coordinate of the vector contains the set of strings
obtained by de-stuttering the Ξ k

d−1 markings of the vertices
of paths in v�, excluding the last vertex of those paths which
are finite. For every 0 ≤ i ≤ k and d > 0, the marking
Ξ k

d (v)[i] is a set of strings over the alphabet {Ξ k
d−1(u) : u ∈

V }, and all strings in Ξ k
d (v)[i] start with the letter Ξ k

d−1(v).
Note that for an infinite path π , destutter(Ξ k

d−1(π)) is a
finite string by Lemma 5 below.

We have:

Theorem 22 ([6]) For every k, d ∈ N, topologies G,G ′,
and k-tuples ḡ, ḡ′: If G|ḡ and G ′|ḡ′ have the sameCTL∗

d\X-
character, then G|ḡ ≡CTL∗

d\X G ′|ḡ′.

Running Example 3 For every v ∈ {a, b, c, d}, Ξ k
0 (v) is a

member of the power set 2{p1,p2} of {p1, p2}, and Ξ k
1 (v) is a

set of strings over the alphabetΣ1 = 2{p1,p2}. For readability
of the values of Ξ k

1 (v), we underline the letters of Σ1 (e.g.,
we write {p1} rather than {p1}).

Ξ2
0 (a) = ∅ Ξ2

1 (b)[0] = {{p1}∅}
Ξ2

0 (b) = {p1} Ξ2
1 (b)[1] = {{p1}∅}

Ξ2
0 (c) = ∅ Ξ2

1 (b)[2] = {{p1}}
Ξ2

0 (d) = {p2}
Ξ2

1 (a)[0] = {∅} Ξ2
1 (c)[0] = {∅} Ξ2

1 (d)[0] = ∅
Ξ2

1 (a)[1] = {∅} Ξ2
1 (c)[1] = {∅} Ξ2

1 (d)[1] = {{p2}}
Ξ2

1 (a)[2] = ∅ Ξ2
1 (c)[2] = ∅ Ξ2

1 (d)[2] = ∅

The CTL∗
1\X-character of Gre|ḡ is the 3-tuple:

(〈
Λ(a),Ξ2

1 (a)
〉
,
〈
Λ(b),Ξ2

1 (b)
〉
,
〈
Λ(d),Ξ2

1 (d)
〉) =(〈∅,

({∅}, {∅},∅)〉
,
〈
{p1},

(
{{p1}∅}, {{p1}∅}, {{p1}}

)〉
,〈

{p2},
(
∅, {{p2}},∅

)〉)

The set Υ k
d and the set of characters Chardk

The marking Ξ k
d (v) belong to a finite poset Υ k

d which
does not depend on v or G. We state the properties of Υ k

d
that needed in this paper in Lemma 5. We do not define Υ k

d
explicitly, since the definition is quite involved. We denote

Chardk = (2{p1,...,pk } × Υ k
d)k+1

and we have:

Lemma 5 ([6])

1. Υ k
0 = 2{p1,...,pk }.

2. For every k, d ∈ N, d > 0, there is a partial order �k
d

such that (Υ k
d ,�k

d) is a finite poset.
3. For every path π in G, destutter(Ξ k

d (π)) is a strictly
decreasing chain in the poset (Υ k

d−1,�k
d−1).

4. For every k, d ∈ N, d > 0, each member of Υ k
d is a set

of (k + 1)-vectors of sets of strictly decreasing chains in
(Υ k

d−1,�k
d−1).

5. The CTL∗
d\X-character of every graph LTS G|ḡ with

|ḡ| = k belongs to Chardk .

5.2 Preliminaries II: Monadic Second Order Logic and
clique-width

5.2.1 Monadic Second Order Logic

We assume the reader is familiar with First Order Logic,
see, e.g., [23]. Monadic Second Order Logic (or MSO) is
a powerful logic for graphs and graph-like structures. It is
the extension of First Order Logic with set quantification.
MSO can define classic graph-theoretic concepts such as

123

Parameterized model checking of rendezvous systems 211

planarity, connectivity, c-regularity and c-colorability. An
excellent introduction toMSO is Courcelle and Engelfriet’s
book [17], but here we introduce some of the core notions of
MSO.

Let η be a vocabulary consisting of unary relation symbols
Ri , a binary relation symbol E and constant symbols ci .

Syntax
We define the logic MSO(η) inductively. We have two

types of variables: first order variables, xi (i ∈ N) and unary
second order variables Ui (i ∈ N). Atomic formulas are of
the form ti = t j , E(ti , t j), Ri (t j),Ui (t j)where ti , t j are first
order variables or constant symbols. The logical formulas of
MSO are built inductively by using the Boolean connectives
∨, ∧, ¬ and →, and the quantifiers ∀xi , ∃xi , ∀Ui , ∃Ui .

A variable xi ,Ui is free if it is not in the scope of an appro-
priate quantifier. The quantifier rank qr(ϕ) of ϕ ∈ MSO is
the maximum number of nested quantifiers.

Semantics
LetM be a structure with universe M such that the inter-

pretation of a symbol R inM is RM. Letm be a mapping of
the free variables to their values: m(xi) ranges over M and
m(Ui) ranges over subsets of M . We extend m to ci by set-
ting m(ci) = cMi . For the atomic formulas ϕ1 = (ti = t j),
ϕ2 = E(ti , t j), ϕ3 = Ti (t j), M,m |� ϕ j , j = 1, 2, 3, is
defined as in First Order Logic. M,m |� Ui (t j) is defined
as m(t j) ∈ m(Ui). The semantics of the Boolean connec-
tives ∨, ∧, ¬ and →, and the quantifiers ∃xi is defined as in
First Order Logic. We define M,m |� ∃Uiϕ if there exists
X ⊆ M such that M,mX |� ϕ, where mX is obtained from
m by setting m(Ui) = X .

Given two η-structuresM1 andM, we sayM1 andM2

areMSOq-equivalent, and writeM1 ≡MSO
q M2, ifM1 and

M2 agree on allMSO sentences of quantifier rank at most q.
An (r, w)-topology G is a finite structure over the vocab-

ulary 〈E, T1, . . . , Tr ,C1, . . . ,Cw〉 in which the Ti and Ci

are unary, and E is binary. An r -topology G is a finite
structure over the vocabulary 〈E, T1, . . . , Tr 〉. The definition
ofMSOq -equivalence therefore applies to (r, w)-topologies
and r -topologies. Note that using the same notation E , Ti and
Ci for the symbols appearing in the vocabulary and formulas
and for their interpretations in structures ((r, w)-topologies)
is an abuse of notation. However, it should be clear from the
context whether wemeans the symbols or the interpretations.

5.2.2 Clique-width

Clique-width is a graph parameter which generalizes the
more familiar tree-width. The class of graphs of clique-width
at most w is defined inductively.

An (r, w)-topology is an expansion (V, E, T1, . . . , Tr ,
C1, . . . ,Cw) of (V, E, T1, . . . , Tr) by a partition (C1, . . . ,

Cw) of V . For every u ∈ V , if u ∈ Ci then we say u has

color i . We define the w-terms inductively. ε is a w-term. If
x, y are w-terms, then addi,t (x), recoli, j (x), edgei, j (x) and
x � y are w-terms for i, j ∈ [w], t ∈ [r]. Every w-term x
has an associated (r, w)-topology [[x]]:

– [[ε]] has V = E = ∅ and empty labeling.
– [[addi,t (x)]] is formed by adding a new vertex of color i

and type t to [[x]].
– [[recoli, j (x)]] is formed by recoloring every vertex with
color i of [[x]] by j .

– [[edgei, j (x)]] is formed from [[x]] by adding an edge
from every vertex of color i to every vertex of color j .

– [[x � y]] is the disjoint union of x and y and the union of
the labeling.

An r -topology G has clique-width at most w if there is a
w-termρ such thatG is isomorphic to [[ρ(ε)]] (forgetting the
coloring C1, . . . ,Cw). Every topology of size n has clique-
width at most n. A class of topologies G has bounded clique-
width if there exists w such that every graph in G has clique-
width at most w.

Running Example 4 The topology Gre has clique-width at
most 3. For (i, t) ∈ {(1, 1), (3, 2)}, let
ρi,t = edge2,i (edgei,2(addi,t (add2,2(ε)))
ρca = ρ1,1
ρbd = ρ3,2
ρcabd = edge1,3(edge3,1(ρca � ρbd)).

ρca creates two vertices uc and ua such that ua has color 1
and type 1 and uc has color 2 and type 2, and adds the edges
(ua, ub) and (ub, ua). ρbd creates two vertices ub and ud
such that ub has color 3, ud has color 2, and both vertices
have type 2, and adds the edges (ud , ub) and (ub, ud). ρcabd
adds the edges (ua, ub) and (ub, ua). [[ρabcd]] is isomorphic
to Gre when forgetting the colors.

Example 1 (Cliques) Let Kn be the 1-topology G =
(V, E, T1) such that V = T1 = [n] and

E = {(i, j) | i, j ∈ [n], i �= j}.

Let ρclq
0 = ε, and

ρ
clq
n = recol1,2(edge1,2(edge2,1(add1,1(ρ

clq
n−1)))).

We have that [[ρclq
n]] is isomorphic to Kn when ignoring the

coloring C1,C2. Hence, the cliques all have clique-width at
most 2. Note that all the elements of [[ρclq

n]] have color 2.
Example 2 (Unidirectional lines) Let Ln be the 1-topology
G = (V, E, T1) such that V = T1 = [n] and

E = {(i, i + 1) | 1 ≤ i ≤ n − 1}.

123

212 B. Aminof et al.

Let θ0 = ε, and

θn = recol1,2(recol2,3(edge1,2(add1,1(θn−1)))).

Wehave that [[θn]] is isomorphic to Ln when ignoring the col-
oring. Hence, the unidirectional lines all have clique-width
at most 3. Note that all the elements of [[θn]] have color 3,
except for n which has color 2.

We assume the reader is familiar with tree-width, other-
wise see [17] for an introduction to tree-width. The following
theorem presents some properties of clique-width (see [17,
Propositions 2.106 and 2.114]):

Theorem 23 1. All undirected cycles with least four ver-
tices have clique-width 4 and tree-width 2.

2. All cliques with at least two vertices have clique-width
2. On the other hand, the class of cliques has unbounded
tree-width.

3. The class of undirected grids has unbounded tree-width
and unbounded clique-width.

4. If a class of topologies has bounded tree-width then it
has bounded clique-width.

5.2.3 Monadic Second Order Logic and clique-width

A parameterized topology G isMSO-definable if there exists
an MSO-formula Φ such that G ∈ G iff G |� Φ. For
instance, the set of bipartite graphs is defined as:

∃U.∀x, y. (E(x, y) → (U (x) ↔ ¬U (y)))

Theorem 24 (Courcelle’s Theorem, see [17]) Let w ≥ 1.

1. TheMSO theory of r-topologies of clique-width at most
w is decidable. I.e., on input ϕ ∈ MSO, the problem
“is there an r-topology of clique-width at most w which
satisfies ϕ” is decidable.

2. For every q, the number of equivalence classes in ≡MSO
q

is finite.
3. There is a computable function f : N2 → N such that,

for every ψ , ψ is satisfiable by an r-topology of clique-
width at most w iff it is satisfiable by such a structure of
size at most f (w, qr(ψ)). Moreover, f (w, qr(ψ)) can
be taken to be a tower of exponents in w + qr(ψ) of
height O(w + qr(ψ)).

Remark 1 (Tree-width) Tree-width is a well-known graph
parameter similar in spirit to clique-width [18,19]. Every
parameterized topology of bounded tree-width also has
bounded clique-width, but the converse is not true. If we
restrict ourselves to parameterized topologies of bounded
tree-width, we may extend MSO by allowing quantification
on sets of edges while keeping the decidability.

Definition 3 (MSO smoothness, [45]) A unary operation �
on (r, w)-topologies is calledMSO-smooth, if for all q ∈ N

whenever G ≡MSO
q H , �(G) ≡MSO

q �(H).

Theorem 25 ([18]) For any fixed i, t, j ∈ N, the operations
addi,t , recoli, j and edgei, j areMSO-smooth.

Indeed, any operationwhich can be defined as a quantifier-
free transduction is MSO-smooth (see [45]). Smoothness is
also defined for binary operations (e.g., the disjoint union �
isMSO-smooth) but we do not use this generality here.

5.2.4 Iteratively constructible parameterized topologies

We now introduce a user-friendly and expressive formalism
that can be used to generate natural parameterized topolo-
gies. A parameterized topology is iteratively constructible
if it can be built from an initial labeled graph by means of
repeating a fixed succession of elementary operations involv-
ing addition of vertices and edges, deletion of edges, and
relabeling. More precisely, an r -ary parameterized topology
G is iteratively-constructible if there arew-terms ρ(x), σ (x)
with one variable x and no use of disjoint union, and a w-
graph H0 such that (i) G ∈ G iff G = σ(ρn(H0)) for some
n ∈ N, where ρ0(H) = H , (ii) exactly one vertex of H0

has type 1, and (iii) no vertex of type 1 is added in ρ or σ .
For terms ρ(·) and ρ′(·) we write ρ::ρ′ instead of ρ(ρ′(·)).
Intuitively, ρ “builds up” the topology, and σ puts on the
“finishing touch” (see examples below). The unique vertex
of type 1 acts as the initial token position in TPSs. By defini-
tion, any parameterized topology has bounded clique-width.

Example 3 (Cliques and rings) The set of cliques (irreflex-
ive) is iteratively constructible: let H0 consist of a single
vertex v of color 1 and type 1, let ρ(x) be edge1,1::add1,2(x),
and σ(x) be the identity.

The set of uni-directional rings is iteratively constructible:
let H0 consist of two vertices, one of color 1 and type 1 and
one of color 2 and type 2 with an edge from 1 to 2. Let ρ(x)
be recol4,2::recol2,3::edge2,4::add4,2 and σ(x) = edge2,1.

5.2.5 Homogeneous parameterized topologies revisited

All homogeneous parameterized topologies have bounded
clique-width and are definable in MSO.

Proposition 2 Let H be a directed graph with vertex set
VH = [r] and edge set EH and let Bsng, Bclq , Bind be a
partition of [r]. Let G be the homogeneous parameterized
topology defined by H and Bsng, Bclq , Bind . Then:

1. G has clique-width at most r + |Bsng|.
2. G isMSO-definable.

123

Parameterized model checking of rendezvous systems 213

Proof First, lets assume for simplicity thatwe have 2r colors.
For every function size : [r] → N such that size(i) = 1 if
i ∈ Bsng , there is a unique topology Gsize in G such that
|Ti | = size(i) for all i . Conversely, for every topology G in
G there is size such that G = Gsize.

For every i ∈ [r], let ν
[i]
0 = ε. For all i ∈ Bind ∪ Bsng

and n ∈ N, let ν
[i]
n = addi,i (ν

[i]
n−1). For all i ∈ Bclq and

n ∈ N, let ν
[i]
n = recoli,r+i (edgei,r+i (addi,i (ν

[i]
n−1))). Let

ν[i] = ν
[i]
size(i).

Observe that (1) [[ν[i]]] is a singleton if i ∈ Bsng , (2)
[[ν[i]]] is an edgeless graph with size(i) vertices if i ∈ Bind ,
and (3) [[ν[i]]] is a clique with size(i) vertices if i ∈ Bclq

(see also Example 1).
Let θ0 = ⊔

i∈[r] ν[i]. The topology [[θ0]] is the disjoint
union of of singletons, independent sets (i.e., edgeless sets),
and cliques, whose numbers and sizes are determined by
Bsng, Bclq , Bind and size. We denote θ size0 = θ0 when we
would like to make size explicit in the notation. It remains
to add the edges between the vertices in different Ti ’s. Let
EH = {e1, . . . , em}. For every en = (i, j) ∈ EH , let θn =
edgei, j (θn−1). We have that [[θm]] is isomorphic to Gsize.

Finally we note that a color r + i > r was only used if
i ∈ Bclq . Hence, only r + |Bsng| colors are really used, and
Gsize has clique-width at most r + |Bsng|.

Nowwe turn toMSO-definability.Weneed a fewauxiliary
sentences:

indi = ∀x, y. ((Ti (x) ∧ Ti (y)) → (¬E(x, y))
)

clqi = ∀x, y. ((Ti (x) ∧ Ti (y)) → ((i �= j) ↔ E(x, y))
)

sngi = (∃x . Ti (x)
) ∧ (∀x, y. ((Ti (x) ∧ Ti (y)) → (x = y))

)

A topology G satisfies indi iff Ti induces an edgeless graph,
G satisfies clqi iff Ti induces a clique, and G satisfies sngi
iff Ti is a singleton. For every i ∈ [r], let φi = indi , φi =
clqi , and φi = sngi if, respectively, i ∈ Bind , i ∈ Bclq , or
i ∈ Bsng . For every i, j ∈ [r], i �= j , let

ψ(i, j) = ∀x, y. ((Ti (x) ∧ Tj (y)) → MaybeEdgei, j (x, y)
)

where MaybeEdgei, j (x, y) = E(x, y) if (i, j) ∈ EH , and
otherwise MaybeEdgei, j (x, y) = ¬E(x, y). Hence G satis-
fies the following sentence φH iff there is size such that G is
isomorphic to Gsize:

φH =
∧

i∈[r]
φi ∧

∧

i, j∈[r],i �= j

ψ(i, j).

5.3 Decidability of PMCP

5.3.1 MSO-definable topologies of bounded clique-width

The purpose of this subsection is to prove the following the-
orem.

Theorem 26 Let P be the set of token-passing system
templates. Let G be a parameterized topology that is MSO-
definable and contains only topologies of clique-width at
most w ∈ N. Then

1. The problem PMCPG(P, i-CTL∗\X) is decidable;
2. There is an algorithm that given k and d produces a cutoff

F(G, k, d) for PMCPG(P, k-CTL∗
d\X).

We give an outline of the proof before diving into the
details:

(I) Wegive an alternative definition of themarking function
Ξ with simple (i.e., cycle-free) paths rather than any
paths.

(II) We show that the k-CTL∗
d\X-character of the graph LTS

G|ḡ isMSO-definable. That is, for every member C of
Charkd , we construct an MSO-formula chrC such that
G|ḡ has k-CTL∗

d\X-character C if and only if G, ḡ,
and initG satisfy chrC. To do so, we use the alternative
definition of Ξ with simple paths.

(III) We show how to compute a mapping repkd,w assigning

to every k-CTL∗
d\X-character C ∈ Charkd a representa-

tive H |h̄. The representative H |h̄ is a graph LTS such
that H has clique-width at most w. To do so, we use
the MSO-definability of k-CTL∗

d\X-characters and the
decidability of MSO on topologies of bounded clique-
width.

(IV) We show how to reduce the problem of whether
a token-passing system with topology G satisfies a
k-CTL∗

d\X-sentence to the problem of whether G satis-
fies anMSO-sentence. To do so,we use the composition
theorem, Theorem 21, as well as the mapping of
k-CTL∗

d\X-characters to representatives, and theMSO-
definability of k-CTL∗

d\X-characters.
(V) Finally, using the reduction from the previous item and

the MSO-definability of G, we express the PMCP as a
satisfiability problem of a certain MSO-sentence. We
use that G has bounded clique-width and that deciding
MSO-satisfiability over bounded clique-width is decid-
able. The cutoff is then obtained from the bound on
the size of the minimal satisfying model of an MSO-
sentence.

(I) Defining markings using simple paths
Let G|ḡ = (V,Δ, V0,Λ) be a graph LTS for an r -

topology G = (V, E, T̄). First, we can move to finite paths
instead of infinite paths:

Lemma 6 Let π = (v1, v2, . . .) be an infinite path. Let j ∈
N be such that v j = vi for infinitely many i ∈ N. Let π0 =
(v1, v2, . . . , v j) be the path obtained from π by cutting the
path π at v j . For every d, k ∈ N, Ξ k

d (π) = Ξ k
d (π0).

123

214 B. Aminof et al.

Proof For every i such that v j = vi , Ξ k
d (v j) = Ξ k

d (vi).
By Lemma 5, destutter(Ξ k

d (π)) is strictly decreasing in
the poset (Υ k

d−1,�k
d−1). This implies that Ξ k

d (π) is non-
increasing, and, using that there are infinitely many i such
that v j = vi , for every � > j , Ξ k

d (v j) = Ξ k
d (v�). Hence,

destutter(Ξ k
d (v j , v j+1, . . .)) = destutter(Ξ k

d (v j)). ��

Second,we canmove to simple finite paths instead of finite
paths (by repeated application of the following lemma):

Lemma 7 Let π = (v1, v2, . . .) be a (finite or infinite) path
with a cycle, i.e., there are i < j such that vi = v j .
Let π1 be the path obtained from π by removing the sub-
path (vi+1, . . . , v j) from π . For every d, k ∈ N, Ξ k

d (π) =
Ξ k

d (π1).

Proof Since vi = v j we have that Ξ k
d (v j) = Ξ k

d (vi). By
Lemma 5, destutter(Ξ k

d (π)) is strictly decreasing in the
poset (Υ k

d−1,�k
d−1), implying thatΞ k

d (π) is non-increasing.
Hence, for every i ≤ � ≤ j , Ξ k

d (v�) = Ξ k
d (v j), implying

that: destutter(Ξ k
d (vi , . . . , v j)) = destutter(Ξ k

d (vi)). ��

For every j ∈ {0, . . . , k}, and every vertex v ∈ V , let v� j

be the set of simple finite paths π in G which start at v, have
no vertices in ḡ, and whose last vertex u has an edge to g j if
j > 0, or to some vertex in π if j = 0. Lemmas 6 and 7, we
have:

Lemma 8 Let k, d ∈ N with d > 0. Let G|ḡ be a graph
LTS. For every j ∈ {0, . . . , k}, we have:

Ξ k
d (v)[j] =

⋃

π∈v� j

{destutter(Ξ k
d−1(π))} (1)

Running Example 5 For Gre|ḡ with ḡ = (g1, g2), g1 = b,
and g2 = d, we have:

a�0 = {ac} a�1 = {a} a�2 = ∅
b�0 = {bac} b�1 = {ba} b�2 = {b}
c�0 = {ca} c�1 = {ca} c�2 = ∅
d�0 = ∅ d�1 = {d} d�2 = ∅

The reader can verify that applying Equation (1) of Lemma 8
gives the same values ofΞ k

d (v)[j] as those computed in Run-
ning Example 3.

(II) k-CTL∗
d\X-character isMSO-definable

Proposition 3 (The marking Ξ k
d of a graph LTS is MSO-

definable) Let d, k ∈ N and a ∈ Υ k
d . There is an MSO-

formula marka with k+1 free first-order variables such that,
for every r-topology G = (V, E, T̄) and v, g1 . . . , gk ∈ V ,
G |� marka(v, ḡ) iff Ξ k

d (v) = a, where Ξ k
d is the marking

of G|ḡ.

Proof We will prove this proposition by induction on d.
Let d = 0. By Lemma 5, Υ k

0 consists of subsets of
{p1, . . . , pk}. The desired marka(x, w1, . . . , wk) is:

marka(x) =
∧

i : pi∈a
(x = wi) ∧

∧

i : pi /∈a
¬(x = wi)

since: G |� marka(v, ḡ) iff {i | v = gi } = {i | pi ∈ a} iff
Λ(v) = a iff Ξ k

0 (v) = Λ(v).
Let d > 0 and a ∈ Υ k

d . For every b ∈ Υ k
d−1, let markb

be theMSO-formula guaranteed by the induction hypothesis
for b.

Let chainskd−1 denote the set of strictly decreasing chains
of elements in (Υ k

d−1,�k
d−1). By Lemma 5, a = (A0, . . . ,

Ak), where each Ai ⊆ chainskd−1.
We will use the definition of Ξ k

d in Lemma 8 to define
marka. The formula marka(x, w1, . . . , wk) is the conjunc-
tion

∧k
i=0 mark-coordi , where mark-coordi will be defined

below to guarantee that the i th coordinate Ai of the vector a
follows the definition of Ξ k

d [i] in Lemma 8.
By the definition of Ξ k

d [j] in Lemma 8, Ξ k
d consists of

the set of chainskd−1 elements ch for which there exists a
path π in v� j such that destutter(Ξ k

d (π)) = ch. For every
ch ∈ chainskd−1, wewill define below θch to express that there
exists a path π in v� j such that destutter(Ξ k

d (π)) = ch.
Using the θch, we can define mark-coord j as follows:

mark-coord j =
∧

ch∈A j

θch ∧
∧

ch∈chainskd−1\A j

¬θch

To define θch, observe that for a path π = v1, . . . , vr and
a chain ch = ch1, . . . , chs in chainskd−1, the following are
equivalent:

(i) destutter(Ξ k
d (π)) = ch.

(ii) There are 1 = f0 ≤ f1 < . . . < fs = r such that
Ξ k

d (v j) = chi for all fi−1 ≤ j ≤ fi .

Hence, for a chain ch = ch1, . . . , chs in chainskd−1, the
following are equivalent:

(i) There is π in v� j such that destutter(Ξ k
d (π)) = ch.

(ii) There are simple finite paths π1, . . . , πs which are con-
secutive (i.e., the last vertex of πi is adjacent to the
first vertex of πi+1 for all i) such that if v ∈ πi then
Ξ k

d−1(v) = chi . Let the last vertex of πs be u. If j > 0
then u has an edge to u′ = g j . If j = 0 then u has an
edge to some u′ in one of π1 . . . , πs .

For every b ∈ Υ k
d−1, reachb(y, y′) below expresses that there

is a path z1, . . . , zt , t ∈ N, starting from z1 = y and ending

123

Parameterized model checking of rendezvous systems 215

at zt = y′ such that Ξ k
d−1(zi) = b for all i :

reachb(y, y′) = ∃Z .∀z. (Z(z) → markb(z)) ∧
reach(Z , y, y′)

reach(Z , y, y′) = ∀Y.
(
(subset(Y, Z) ∧ Y (y) ∧ ¬Y (y′))

→ (∃z1. ∃z2.Y (z1)∧
¬Y (z2) ∧ E(z1, z2))

)

subset(Y, Z) = ∀y. (Y (y) → Z(y))

where reach(Z , y, y′) expresses that there is a path between y
and y′ in the subgraph induced by Z similarly to the classical
definition of connectivity in MSO e.g., in [44, Proposition
7.14].

Finally, θch is given by

∃y1. ∃y′
1 . . . ∃ys . ∃y′

s .(
last j ∧ ∧s

i=1 reachchi (yi , y
′
i) ∧ ∧s−1

i=1 E(y′
i , yi+1)

)

where last j expresses that the last vertex y′
s of πs has an edge

to g j if j > 0, or to some vertex of π1 . . . , πs if j = 0:

last0(ȳ, ȳ′) =
∨

p∈{y1,y′
1,...,ys ,y

′
s }
E(y′

s, p)

last j (y′
s, w j) = E(y′

s, w j)

for j ∈ [k]. ��

Proposition 4 (The CTL∗
d\X-character of a graph LTS is

MSO-definable) Let d, k ∈ N and C ∈ Chardk . There is an
MSO-formula chrC with k free first-order variables such
that, for every r-topology G = (V, E, T̄) with T1 = {ini t}
and g1 . . . , gk ∈ V , G |� chrC(ini t, ḡ) iff the CTL∗

d\X-
character of G|ḡ is C.

Proof Let init be the unique vertex in T1. Let C =
(ainit, binit, a1, b1, . . . , ak, bk). By the definitionofCTL∗

d\X-
character, the graphLTSG|ḡ has characterC iff for every v of
init, g1, . . . , gk , Ξ k

0 (v) = av and Ξ k
d (v) = bv . We use here

that Ξ k
0 (v) = Λ(v). Using the formulas of the form marka

guaranteed in Proposition 3, G|ḡ has CTL∗
d\X-character C

iff G |� chrC, where chrC(w̄) is

∃x . (T1(x) ∧ markainit (x, w̄) ∧ markbinit (x, w̄))

∧
k∧

i=1

markai (wi , w̄) ∧ markbi (wi , w̄)

and w̄ = (w1, . . . , wk) is a tuple of first-order variables.
Observe that we quantify over x to obtain the vertex ini t
which starts with the token; ini t is the unique vertex belong-
ing to T1. ��

(III) The representative mapping

Lemma 9 (Computable representatives) Assume k, d, w ∈
N. There is a computable function rep = repkd,w which maps

every C ∈ Charkd either to a graph LTS H |h̄ or to ⊥. If
rep(C) = H |h̄, then H has clique-width at most w and the
CTL∗

d\X-character of H |h̄ is C. If rep(C) = ⊥, then there is
no H |h̄ such that H has clique-width as most w and whose
CTL∗

d\X-character is C.
Proof LetC ∈ Charkd . ByProposition 4, there does not exist a
graphLTSG|ḡwhoseCTL∗

d\X-character isC iff the sentence

unfeasibleC = ¬∃w1 . . . ∃wk . chrC(w1, . . . , wk)

belongs to the MSO theory of topologies of clique-width at
most w. By Theorem 24, the MSO theory of topologies of
clique-width at most w is decidable. If unfeasibleC is valid
for topologies of clique-width at most k, then rep(C) = ⊥.
Otherwise, we search for H |h̄ whose character is C by iter-
atively checking all graphs H = [[t]] and k-tuples of their
elements h̄, where in the i th stage of the iteration, t iter-
ates over all w-terms t of size at most i . When we find H |h̄
whose CTL∗

d\X-character is C, as is guaranteed to occur, we
set rep(C) to H |h̄ and end the search. ��
(IV) Reduction from k-CTL∗

d\X on token-passing systems
toMSO on topologies

Consider a k-CTL∗
d\X-formula ψ for which we want to

verify that, for every G ∈ G, P
G |� ψ . We show in

Lemma 10 that there is an MSO-sentence αψ such that

αψ is satisfied by G ∈ G iff the system P
G

satisfies ψ .
The formula ψ is of the form Q1x1 . . . Qkxk . ϕ(x̄), where
ϕ is a CTL∗

d\X-formula. We construct αψ to have the form
αψ = Q1x1 . . . Qkxk .βψ , where βψ is an MSO-formula.
To build βψ we use the composition property of k-CTL∗

d\X
from Theorem 21. Coupled with Theorem 22, the composi-

tion property says that the token-passing systems P
G |ḡ and

P
H |h̄ have the same CTL∗

d\X-character if their graph LTSs
have the same CTL∗

d\X-character.
Lemma 10 For every formula

ψ = Q1x1 . . . Qkxk . ϕ(x̄) ∈ k-CTL∗
d\X,

there exists a computable αψ ∈ MSO such that for every G
with clique-width at most w,

P
G |� ψ if and only if G |� αψ.

Proof Let G ∈ G be a topology and P ∈ P be a system
template.

P
G |� Q1x1 . . . Qkxk .ϕ

123

216 B. Aminof et al.

⇐⇒ Q1g1 ∈ VG . . . Qkgk ∈ VG : PG |� ϕ[px j �→pg j]
⇐⇒ Q1g1 ∈ VG . . . Qkgk ∈ VG : PG |ḡ |�ϕ[px j �→pg j]
⇐⇒ Q1g1∈VG . . . Qkgk∈VG : for all C ∈ Chardk and
repkd,w(C) = H |h̄, if the CTL∗

d\X-character of G|ḡ
is C, then P

H |h̄ |� ϕ[px j �→ pg j]
⇐⇒ G |� αψ , where αψ is

Q1x1 . . . Qkxk
∨

C∈Charkd :repkd,w(C)=H |h̄
and P

H |h̄|�ϕ[px j �→pg j]

chrC.

The disjunction in the last formula is over all elementsC of
Charkd which are the CTL∗

d\X-characters of some H |h̄ such

that P
H |h̄ |� ϕ[px j �→ pg j]. Here we denote by ϕ[px j �→

pg j] the formula that results from replacing every atom in
ϕ of the form px j by the atom pg j , for p ∈ APpr and 1 ≤
j ≤ k. The first equivalence is by the definition of semantics
of indexed temporal logic; the second is by the definition of
PG |ḡ; the third is by Theorem 21 and by the definition of
repkd,w in Lemma 9; the fourth is by Proposition 4.

The formula αψ is computable because repkd,w is com-
putable (Lemma 9), chrC is computable, for each C in
Charkd (Proposition 4), andmodel checkingwhether PH |h̄ |�
ψ[px j �→ pg j] is computable. ��

(V) Decidability of PMCP

Proof (Theorem 26) Let Φ be the MSO formula defin-

ing G. By Lemma 10, there is G ∈ G such that P
G �|�

ψ if and only if there is G ∈ G such that G |� Φ ∧ ¬αψ .
By Theorem 24, there is G ∈ G such that G |� Φ ∧ ¬αψ iff
there exists such G of size at most f (w, |ϕ|), so f (w, |ϕ|)
is a cutoff for the problem. ��

Remark 2 (Fairness) The conference version of this paper [3]
assumed that token-passing systems satisfy a fairness con-
dition, namely that the token visits every process infinitely
often. In contrast, the presentation in this paper does not
require this fairness condition to hold. Elimination of the fair-
ness condition is the reason that we replaced the treatment of
≡CTL∗

d\X equivalence classes using contractions based on [2]
in [3] with a treatment using CTL∗

d\X-characters and mark-
ings based on [6] in the current paper.

Combining Theorem 26 with Proposition 1 we get:

Corollary 3 Let G be a parameterized topology that is
MSO-definable and contains only topologies of clique-width
at most w ∈ N. Let F be the set of 1-index LTL\X formu-
las, and let P be an r-ary system template. Then the set of
executions 1- execG(P) is ω-regular.

Using Theorem 26 and Proposition 2 we have:

Corollary 4 Let P be the set of token-passing system tem-
plates. Let G be a homogeneous parameterized topology.
Then

1. The problem PMCPG(P, i-CTL∗\X) is decidable;
2. There is an algorithm that given k and d produces a cutoff

F(G, k, d) for PMCPG(P, k-CTL∗
d\X).

5.3.2 Iteratively-constructible parameterized topologies

The decidability of the PMCP problem for iteratively-
constructible parameterized topologies can be reduced to
decidability of MSO in the presence of an auxiliary order
relation (see for instance the discussion of the iteratively
constructible class EQCLIQUE of graphs consisting of two
cliques of equal size in [33, Example 1(ix)]). However,
another approach to the decidability of the PMCP problem of
iteratively-constructible parameterized topologies via MSO
will be easier.

Theorem 27 Let P be the set of token-passing system tem-
plates. For every iteratively-constructible G,
1. PMCPG(P, i-CTL∗\X) is decidable;
2. There is an algorithm that given k and d produces a cutoff

for k-CTL∗
d\X.

Proof Let ψ ∈ i-CTL∗\X. Let σ(x) and ρ(x) be w-terms
and Gn = [[σ(ρn(ε))]]. Since there are finitely many
equivalence classes of ≡MSO

q , there are n1 < n2 ∈ N

such that [[ρn1(ε)]] ≡MSO
q [[ρn2(ε)]]. By Theorem 25,

applying the same sequence of clique-width operations on
≡MSO

q -equivalent topologies leads again to≡MSO
q -equivalent

topologies, i.e., [[σ(ρn1+e(ε))]] ≡MSO
q [[σ(ρn2+e(ε))]] for

every e ∈ N. Therefore, for every ϕ ∈ MSO, Gn |� ϕ for
every n iff Gn |� ϕ for every n < n2. Let αψ ∈ MSO be the
formula guaranteed by Lemma 10 such that for everyG ∈ G,
P
G |� ψ if and only if G |� αψ and αψ is computable. We

get that for every G ∈ G, PG |� ψ iff Gn |� αψ for every
n < n2. ��
5.4 Cutoffs

The algorithms obtained from the proofs of Theorem 26 and
Theorem 27 give non-elementary upper bounds on the cut-
offs due to the number of equivalence classes in ≡MSO

q .
It is well-known that the latter also has a non-elementary
lower bound (this is true already for first order logic, see [35,
Lemma 10.21]). Therefore, in order to find low cutoffs, one
must look at formalisms which are inherently simpler than
MSO such as iteratively-constructible parameterized topolo-
gies. We believe that a more direct proof of decidability of
PMCP for iteratively-constructible parameterized topologies

123

Parameterized model checking of rendezvous systems 217

G1 G6

startstart

Fig. 11 The figure depictsG1 andG6 for k in the range 3(pr1+ pr2)+
1 = 16 ≤ k < 3(pr1 + pr2 + pr3) + 1 = 31 (where pr1 = 2, pr2 =
3, pr3 = 5). For such k, we have t = 2, k′ = pr1 + pr2 = 5. The
white vertices of Gn are {1} × [pr1] × {0, . . . , n}. The black vertices

of Gn are {2} × [pr2] × {0, . . . , n}. The clique-width of Gn is at most
3k′ + 1 = 16. The black vertices of G6 induce three disjoint cycles and
G6 �|� ϕ = ¬α, whilst the black vertices of G1 induce one cycle. We
have Gn |� ϕ = ¬α for all n <

∏
i≤t pri = 2 · 3 = 6

will give rise to elementary cutoffs close to the following
lower bound:

Theorem 28 There exists a 2-ary system template P, and,
for every k ∈ N, an iteratively constructible parame-
terized 2-topology G of clique-width at most k and a
k-indexed LTL\X formula12 ϕ such that the smallest cutoff
for PMCPG({P}, {ϕ}) is 2Ω(

√
k).

Proof The templates P Let W be a process template whose
state set consists of one state s, and whose transitions are
(s, tok!, s) and (s, tok?, s). The state-labeling of s is {p}.
Let P = (W,W). For any topology G = (V, E, T1, T2)

with |T1| = 1, P
G
behaves similarly to the graph LTS: the

tokenmoves freely between the processes on along the edges
of G.

We now describe the parameterized topology G = {Gn |
n > 0}. See also Fig. 11. Let pri : i ∈ N be the sequence of
prime numbers arranged according to size. Let t, k′ ∈ N be
the maximal integers such that
k ≥ 3k′ + 1

k′ :=
∑

i≤t

pri

Let R = {(i, j) | j ∈ [pri]}. For every n ∈ N, let Rn =
{(i, j, n) | (i, j) ∈ R}. Let H0 be a star Sk′ with k′ leaves
whose center is denoted start. Let Hn+1 be obtained from
Hn by adding the vertices of Rn+1 and, for every (i, j) ∈ R,
adding an edge between (i, j, n) and (i, j +1, n+1), where
j + 1 is taken modulo pri . Let G0 = H0 and let Gn be
obtained from Hn by adding, for every (i, j) ∈ R, an edge
between (i, j, 1) and (i, j, n). Note that G0 is not in G.

There is a (3k′ + 1)-expression ρ(x) such that Hn =
ρn−1(H1). The colors of the vertices of Hn are as follows:

12 ϕ is also a CTL\X formula.

– the k′ neighbors of start have distinct colors from 2k′ +
1, . . . , 3k′;

– the vertices in Rn have distinct colors from 1, . . . , k′.
– all other vertices (including start) have color 3k′ + 1;

The (3k′ + 1)-expression ρ(x) adds k′ new vertices with
distinct colors from k′ + 1, . . . , 2k′, connects them appro-
priately with the vertices of Rn colored 1, . . . , k′, recolors
all vertices with colors 1, . . . , k′ to color 3k′ + 1, and recol-
ors every vertex of color c = k′ + 1, . . . , 2k′ to c − k′.
The (3k′ + 1)-expression σ(x) adds an edge between the
vertices colored c and c + 2k′ for every c in 1, . . . , k′. We
have Gn = σ(ρn−1(H1)). We get that G is an iteratively
constructible 2-topology with width 3k′ + 1 ≤ k.

The crucial property of G is as follows. Let n ∈ N. The
set

Xi = {(i, j, �) | j ∈ [pri], � ∈ [n]}

induces a single undirected cycle inGn iff pri does not divide
n, for all i ; Xi induces pri undirected cycles in Gn iff pri
divides n. Hence, for every 1 < n ≤ ∏

i≤t pri , Gn contains
less than k′ cycles iff n �= ∏

i≤t pri . Let α = ∃x1 . . . xk′+2β

where

β = AG

(∧

1≤a �=b≤k′+1

(¬pxa ∨ ¬pxb)∧
∧

2≤a �=b≤k′+1

(¬pxaUpx1) ∨ (¬pxbUpx1)

)

So, α says there exists g1, . . . , gk′+1 such that (1)
g1, . . . , gk′+1 are all distinct vertices, which in particular
implies that n ≥ 2, and (2) all paths between ga and gb, a �=
b, pass through g1. Hence, P

Gn �|� α for any n <
∏

i≤t pri .

123

218 B. Aminof et al.

On the other hand, P
Gn |� α for n = ∏

i≤t pri with g1 at
start, and g2, . . . , gk′+1 on pairwise distinct cycles. Hence∏

i≤t pri is the smallest cutoff for PMCPG({P}, {¬α}).
From well-known properties of primes, t = Θ(

√
k′),

prt+1 = θ(t log t) and
∏

i≤t pri = Θ(et) (see e.g., [39]). By
the maximality of t and k′, k− (3k′ +1) < 3prt+1, implying
that k = Θ(k′). Hence, and

∏
i≤t pi = 2Θ(

√
k). ��

Since the parameterized topology in Theorem 28 isMSO-
definable and has bounded clique-width, we have:

Theorem 29 There exists a 2-ary system template P, and,
for every k ∈ N, an MSO-definable 2-topology G of clique-
width at most k and a k-indexed LTL\X formula ϕ such that
the smallest cutoff for PMCPG({P}, {ϕ}) is 2Ω(

√
k).

6 Discussion and related work

The applicability of the reduction of the PMCP to finitely
many classical model checking problems as a technique for
solving the PMCP depends on the communication primitive,
the specification language, and the set of topologies of the
system. The wide-ranging nature of our work along these
axes gives us some insights whichmay be pertinent to system
models different from our own:

Decidability but no cutoffs. Theorems 4 and 10 show
that, for certain sets of specifications formula, cutoffs do not
exist yet the PMCP problem is decidable.

Cutoffs may not be optimal. Theorem 15 and Theo-
rem 17 imply that even in cases that cutoffs exist and are
computable, they may not yield optimal algorithms for solv-
ing the PMCP.

Formalisms for topologies are useful. Many results in
Sects. 3 and 5 show that decidability and complexity of
PMCP can be extended from concrete examples of sets of
topologies such as rings and cliques to infinite classes of
topologies given as user-friendly yet powerful formalisms.
The formalisms we study may be useful for other sys-
tem models; for instance, in the context of model-checking
multi-agent systems in unknown parameterized environ-
ments [4,5,47].

In the context of cutoffs, it is worth noting that we con-
sidered cutoffs with respect to sets of formulas and process
templates. As Theorem 4 shows, there is a parameterized
topology G, and a pairwise-rendezvous system template P ,
for which no cutoff exists for the set of 1-indexed LTL\X
formulas. Note, however, that if the set of formulas F being
considered is finite, then a cutoff always exists. Indeed, given
G, P, ϕ ∈ F , let Gϕ be a smallest topology G for which

P
G �|� ϕ, and if none exists, then let Gϕ be a smallest

topology in G. Then maxϕ∈F |VGϕ | is a (minimal) cutoff for
PMCPG({P},F) in case F is finite.

Let us underline that the cutoffs we compute are linear in
the number of states in the case of disjunctively-guarded sys-
tems, and exponential in the case of token-passing systems.
We have shown that such cutoffs are already useful for estab-
lishing the decidability of the parameterized model checking
problem. On the other hand, some experimental results on
PMCP from real-world case studies (e.g., [25,42] or [38, Sec.
6.2]) suggest that templates in such systems usually have tens
or hundreds of states, suggesting that small cutoffs are desir-
able if one is to use them to solve the PMCP in practice.
Interestingly, case studies have found that sometimes very
small cutoffs do exist. For instance, [42] provide experimen-
tal results for checking reachability properties on Boolean
programs and Petri nets. Note that both Boolean programs
and Petri nets can be modeled by pairwise-rendezvous sys-
tems in controlled-clique topologies. Moreover, since there
are only finitely many reachability properties, cutoffs are
guaranteed to exist. They provide a dynamic approach to
detecting cutoffs, i.e., they do a reachability analysis on sys-
tems with an increasing number of processes, until a certain
stopping criterion is reached, producing a cutoff. To the best
of our knowledge, it is an open research question whether a
notion of dynamic cutoff exists for doing PMCP of pairwise-
rendezvous systems against indexed LTL\X specifications in
practice.

As previously discussed, this work draws on and gener-
alizes the work in [36] on pairwise rendezvous on cliques,
the work in [24] on disjunctive guards on cliques, and the
work in [2,16,28] on token-passing systems. There are very
few published complexity lower-bounds for PMCP (notable
exceptions are [30,48]), and to the best of our knowledge,
our lower bounds on the sizes of cutoffs are the first proven
non-trivial lower bounds for these types of systems.

In Tables 1, 3 and 4 we summarized the answers given to
the aforementioned problems earlier for controlled topolo-
gies. In Table 2 we collect answers to the complexity
problems for the case of controllerless topologies. Such
answers and questions, collected together, give an idea of the
several combinations of process templates, synchronization
mechanisms, process topologies and specification language
that have been considered in this and previous works. We
hope that analyzing such combinations as a “problem space”
as well as the differences among the provided answers, will
be helpful to further understanding the role played by every
item in such space. Finally, question marks appearing in the
tables represent combinations that have not been explored
in the research area of parameterized model checking of
rendezvous-systems and we hope they might represent good
starting points for further research.

In this context, it is worth noting that all the upper-bounds
presented in this paper concerning 1-indexed LTL\X can be
easily extended to the existential or universal fragments of
k-indexed LTL\X (for k ∈ N), i.e., to the case of many

123

Parameterized model checking of rendezvous systems 219

Table 1 Complexity of PMCP for different controlled topologies

PR DG TPS

Ring

1-LTL\X Undecidable (Theorem 13) Undecidable (Theorem 13) Pspace-complete [16,28]a

1-CTL∗\X Undecidable (Theorem 13) Undecidable (Theorem 13) Pspace-complete [28]b

Homogeneous

1-LTL\X ExPACE-completec (Theorem 10) Pspace-complete (Theorem 19) Decidable (Corollary 4)

1-CTL∗\X Undecidable (Theorem 2) Undecidable (Theorem 12) Decidable (Corollary 4)

MSO-definable and bounded clique-width

1-LTL\X Undecidable [28,52] Undecidable (Theorem 13) Decidable (Theorem 26)

1-CTL∗\X Undecidable ([28,52], Theorem 2) Undecidable (Theorem 12) Decidable (Theorem 26)

a The cited papers show that a cutoff exists and is independent from the input; Sistla and Clarke [50] showed that model checking LTL\X is already
Pspace-complete
b Same as for 1-LTL\X
c The hardness result holds for controlled clique parameterized topologies

Table 2 Complexity of PMCP of 1-indexed formula for different controllerless topologies (the TPS column is missing, since our definition of TPS
requires a controlled topology)

PR DG

Ring

LTL\X ? ?

CTL∗
2\X ? ?

Homogeneous (complexity/program complexity)

LTL\X Pspace-complete/Ptime (Theorem 11) Pspace-complete/Ptime (Theorem 19, Corollary 2)

CTL∗
2\X Undecidable (Theorem 2) Undecidable (Theorem 12)

MSO and bounded clique-width

LTL\X ? ?

CTL∗
2\X Undecidable (Theorem 2) Undecidable (Theorem 12)

Table 3 Regularity for the set
of executions on homogeneous
topologies. Sizes of NBW are
given where appropriate

PR DGa TPS

Controlled

controller non ω-regular (Theorem 8) O(C2 · 2U) (Theorem 18) ω-regular (Corollary 3)

user non ω-regular (Theorem 8) O(C2 · 2U) (Theorem 18) ω-regular (Corollary 3)

Controllerless

user O(|U |) (Theorem 7) O(2U) (Theorem 18) –b

a Here C is the product of sizes of controller templates, U is the sum of sizes of user templates
b Our definition of TPS requires the presence of a controller, thus this combination does not represent a
meaningful question

process quantifiers of the same type (all existential or all
universal). Furthermore, this is also the case if one allows
enhanced versions of these quantifiers that specify that the
processes quantified are different, and/or are neighbours (or
not) in the topology (see [2] for a definition of these enhanced
quantifiers). This allows one, for example, to expressmutual-
exclusion: ∀i �= j. G(¬(critical, i) ∨ ¬(critical, j)). For
the case of full k-indexed LTL\X where alternation of uni-
versal and existential quantifiers is allowed, many of the

corresponding upper bounds are still unknown, and repre-
sent another direction for future work.

We now briefly describe what needs to be done to
get this extension. All the upper bounds concerning 1-
indexed LTL\X were stated with respect to homogeneous
parameterized topologies.13 Lemma 3 shows that, for 1-

13 With the exception of Theorem 1. However, the construction in this
Theorem can be easily extended without requiring any new ideas.

123

220 B. Aminof et al.

Table 4 Cutoffs for PMCP on different logics and controlled and controllerless parameterized topologies

PR DG TPSa

Ring

1-LTL\X Does not exist (Theorem 13) Does not exist (Theorem 13) 2 or 3 [16,28]

1-CTL∗\X Does not exist (Theorem 13) Does not exist (Theorem 13) 2 or 3 [28]

Homogeneous

1-LTL\X Does not exist (Theorem 5) 2 + nc + Σi |Ui | (Theorem 14)b 2 [2]

1-CTL∗\X Does not exist (Theorem 5, Theorem 2) Does not exist (Theorem 12) 2 [2]

MSO and bounded clique-width

k-LTL\X Does not exist (Theorem 5) ? F(G, k, 1) (Theorem 26) 2Ω(
√
k) (Theorem 29)

k-CTL∗\X Does not exist (Theorem 2) Does not exist (Theorem 12) F(G, k, d) (Theorem 26) 2Ω(
√
k) (Theorem 29)

a In this column we answer the question whether there are cutoffs which are computable given parameterized topology G. F(G, k, d) is some
computable function of G, k, and d defined in the respective theorems, where d is the number of nested path quantifiers
b Here nc denotes the number of controller templates, |Ui | denotes the size of the i-th user template

indexed LTL\X, such systems can be simulated by cliques.
However, looking at the proof of the lemma, it is not
hard to see that this simulation actually works irrespec-
tive of the specification logic. Indeed, in the controller-
less case we actually get that the set of runs of the
cliques is exactly equal to the set of runs of the homo-
geneous topologies; and in the controlled case this is also
true except for a slight technical mismatch between the
structure of global configurations in these two types of
systems—due to the fact that the single controller of a
controlled clique simulates (using a product process tem-
plate) all the controllers specified by the homogeneous
parameterised topology skeleton. However, this technical
mismatch is syntactic in nature, and is easily overcome
by mapping each coordinate in the state of the unique
clique controller to the corresponding controller vertex in
the homogeneous topology. Also note that runs of a given
topology G in the homogeneous parameterized topology
are simulated by runs of a clique topology G ′ of the
same size or smaller; conversely, all runs of a simulat-
ing clique topology G ′ correspond to runs of topologies
in the parameterized homogeneous topology that are larger
by at most a constant factor (namely, the number of
controllers in the skeleton of the homogeneous topology
minus 1).

Armed with the above observations, extending our upper-
bounds from1-indexedLTL\X to the universal and existential
fragments of k-indexed LTL\X now requires the following.
First, we can easily extend the construction in the proof of
Lemma 3 to have the controller of the clique simulate not
only the controllers of the homogeneous topology, but also
any other k nodes of k different types. Combining this with
the observation made in Lemma 2 that, due to symmetry,
in a homogeneous system the executions of all processes
of a given type are exactly the same, we reach the follow-
ing conclusion: we can replace reasoning about properties of

the set of all runs of a homogeneous parameterised system
projected onto processes of k different types with reason-
ing about the 1-executions of the unique controller of a
parameterized clique topology, projected onto the relevant k
simulated nodes of interest. Moreover, this reduction incurs
only a constant blowup (assuming k and the communica-
tion alphabet are fixed). Observe that in case we started with
a homogeneous parameterized topology with no controllers
(and k types of interest), we do not have to simulate it with a
controlled clique-topology. Instead, we can simulate it with
a clique topology with two types: one type that is the disjoint
union of all the process templates (as in the basic construc-
tion in Lemma 3), and one which is the product of the k
process templates of interest (similar to the controller case—
but not designated as a controller, i.e., allowing one to have
many nodes of this product type). Thus, in all cases we can
reduce questions about universal and existential k-indexed
LTL\X formulas with respect to a homogeneous parameter-
ized topology to a question about a 1-indexed LTL\X formula
with respect to a clique topology of the same type (controlled
or uncontrolled), with a constant blowup.

As a final remark, observe that when the given existential
k-indexed LTL\X formula does not specify that two quanti-
fied vertices x, y should be different, we can replace it with
the disjunction (conjunction for a universal formula) of two
formulas: one specifying that x �= y, and one with one quan-
tifier less and replacing every occurrence of y with x . For a
fixed k, performing this for every possible pair of variables,
incurs a constant blowup.

Acknowledgements Open access funding provided by Austrian Sci-
ence Fund (FWF).

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Parameterized model checking of rendezvous systems 221

to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Abdulla, P.A., Atig, M.F., Rezine, O.: Verification of directed
acyclic ad hoc networks. In: Beyer, D., Boreale, M. (eds) Formal
Techniques for Distributed Systems: Joint IFIP WG 6.1 Interna-
tional Conference, FMOODS/FORTE 2013, Held as Part of the
8th International Federated Conference on Distributed Computing
Techniques, DisCoTec 2013, Florence, Italy, 3-5 June 2013, Pro-
ceedings, pp. 193–208, Springer,Berlin,Heidelberg (2013). doi:10.
1007/978-3-642-38592-6_14

2. Aminof, B., Jacobs, S., Khalimov, A., Rubin, S.: Parameter-
ized model checking of token-passing systems. In: McMillan,
K.L., Rival, X. (eds.) Verification, Model Checking, and Abstract
Interpretation—15th International Conference, VMCAI 2014, San
Diego, CA,USA, January 19–21, 2014, Proceedings, Volume 8318
of Lecture Notes in Computer Science, pp. 262–281. Springer
(2014)

3. Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameter-
ized model checking of rendezvous systems. In: Baldan, P., Gorla,
D. (eds.) CONCUR 2014—Concurrency Theory—25th Interna-
tional Conference, CONCUR 2014, Rome, Italy, September 2–5,
2014. Proceedings, Volume 8704 of Lecture Notes in Computer
Science, pp. 109–124. Springer (2014)

4. Aminof, B., Murano, A., Rubin, S., Zuleger, F.: Verification of
asynchronous mobile-robots in partially-known environments. In:
PRIMA 2015: Principles and Practice of Multi-agent Systems—
18th International Conference, Bertinoro, Italy, October 26–30,
2015, Proceedings, pp. 185–200 (2015)

5. Aminof, B.,Murano, A., Rubin, S., Zuleger, F.: Automatic verifica-
tion ofmulti-agent systems in parameterised grid-environments. In:
Proceedings of the 2016 International Conference on Autonomous
Agents & Multiagent Systems, Singapore, May 9–13, 2016, pp.
1190–1199 (2016)

6. Aminof, B., Rubin, S.: Model checking parameterised multi-token
systems via the composition method. In: Olivetti, N., Tiwari, A.
(eds.) Automated Reasoning—8th International Joint Conference,
IJCAR 2016, Coimbra, Portugal, June 27–July 2, 2016, Proceed-
ings, Volume 9706 of Lecture Notes in Computer Science, pp.
499–515. Springer (2016)

7. Aminof, B., Rubin, S., Zuleger, F.: On the expressive power of
communication primitives in parameterised systems. In: Davis,M.,
Fehnker, A., McIver, A., Voronkov, A. (eds.) Logic for Program-
ming, Artificial Intelligence, and Reasoning—20th International
Conference, LPAR-20 2015, Suva, Fiji, November 24–28, 2015,
Proceedings, Volume 9450 of Lecture Notes in Computer Science,
pp. 313–328. Springer (2015)

8. Aminof, B., Rubin, S., Zuleger, F., Spegni, F.: Liveness of
parameterized timed networks. In: Halldórsson, M.M., Iwama,
K., Kobayashi, N., Speckmann, B. (eds.) Automata, Languages,
and Programming—42nd International Colloquium, ICALP 2015,
Kyoto, Japan, July 6–10, 2015, Proceedings, Part II, Volume 9135
of Lecture Notes in Computer Science, pp. 375–387. Springer
(2015)

9. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The compu-
tational power of population protocols. Distrib. Comput. 20(4),
279–304 (2007)

10. Außerlechner, S., Jacobs, S., Khalimov, A.: Tight cutoffs for
guarded protocols with fairness. In: Jobstmann, B., Leino, K.R.M.
(eds.) Verification, Model Checking, and Abstract Interpretation—
17th International Conference, VMCAI 2016, St. Petersburg, FL,

USA, January 17–19, 2016. Proceedings, Volume 9583 of Lecture
Notes in Computer Science, pp. 476–494. Springer (2016)

11. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press,
Cambridge (2008)

12. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J.,
McGarvey, C., Ondrusek, B., Rajamani, S.K., Ustuner, A.: Thor-
ough static analysis of device drivers. In: Berbers, Y., Zwaenepoel,
W. (eds.) Proceedings of the 2006 EuroSys Conference, Leuven,
Belgium, April 18–21, 2006, pp. 73–85. ACM (2006)

13. Bloem, R., Jacobs, S., Khalimov, A.: Parameterized synthesis case
study: AMBA AHB. In: Proceedings 3rd Workshop on Synthesis,
SYNT 2014, Volume 157 of EPTCS (2014)

14. Bloem, R., Jacobs, S., Khalimov, A., Konnov, I., Rubin, S., Veith,
H., Widder, J.: Decidability of parameterized verification. Synth
Lect. Distrib. Comput. Theory 6(1), 1–170 (2015)

15. Browne, M.C., Clarke, E.M., Grumberg, O.: Reasoning about net-
works with many identical finite state processes. Inf. Comput. 81,
13–31 (1989)

16. Clarke, E.M., Talupur, M., Touili, T., Veith, H.: Verification by
network decomposition. In: Gardner, P., Yoshida, N. (eds.) CON-
CUR 2004—Concurrency Theory, 15th International Conference,
London, UK, August 31–September 3, 2004, Proceedings, Volume
3170 of LectureNotes in Computer Science, pp. 276–291. Springer
(2004)

17. Courcelle, B., Engelfriet, J.: Graph Structure andMonadic Second-
Order Logic—A Language-Theoretic Approach, Volume 138 of
Encyclopedia of Mathematics and its Applications. Cambridge
University Press, Cambridge (2012)

18. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable
optimization problems on graphs of bounded clique-width. Theory
Comput. Syst. 33(2), 125–150 (2000)

19. Courcelle, B., Olariu, S.: Upper bounds to the clique width of
graphs. Discrete Appl. Math. 101(1), 77–114 (2000)

20. Delzanno, G., Raskin, J.-F., Van Begin, L.: Towards the automated
verification of multithreaded java programs. In: Proceedings of the
8th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS ’02. Springer (2002)

21. Delzanno, G., Sangnier, A., Traverso, R.: Parameterized verifica-
tion of broadcast networks of register automata. In: Proceedings of
the 7th InternationalWorkshop on Reachability Problems (RP’13),
Volume 8169 of Lecture Notes in Computer Science. Springer
(2013)

22. Delzanno, G., Traverso, R.: Decidability and complexity results for
verification of asynchronous broadcast networks. In: Dediu, A-H.,
Martín-Vide, C., Truthe, B. (eds.) Language and Automata Theory
and Applications: 7th International Conference, LATA 2013, Bil-
bao, Spain, 2-5 April 2013, Proceedings, pp. 239–249, Springer,
Berlin, Heidelberg (2013). doi:10.1007/978-3-642-37064-9_22

23. Ebbinghaus, H.-D., Flum, J.: FiniteModel Theory. Springer, Berlin
(2005)

24. Emerson, E.A., Kahlon, V.: Reducing model checking of the many
to the few. In: CADE. Springer (2000)

25. Emerson, E.A., Kahlon, V.: Exact and efficient verification of
parameterized cache coherence protocols. In: Geist, D., Tronci,
E. (eds.) Correct Hardware Design and Verification Methods,
12th IFIP WG 10.5 Advanced Research Working Conference,
CHARME 2003, L’Aquila, Italy, October 21–24, 2003, Proceed-
ings, Volume 2860 of Lecture Notes in Computer Science, pp.
247–262. Springer (2003)

26. Emerson, E. A., Kahlon, V.: Parameterizedmodel checking of ring-
based message passing systems. In: Marcinkowski, J., Tarlecki, A.
(eds.) Computer Science Logic, 18th InternationalWorkshop, CSL
2004, 13th Annual Conference of the EACSL, Karpacz, Poland,
September 20–24, 2004, Proceedings, Volume 3210 of Lecture
Notes in Computer Science, pp. 325–339. Springer (2004)

123

http://dx.doi.org/10.1007/978-3-642-38592-6_14
http://dx.doi.org/10.1007/978-3-642-38592-6_14
http://dx.doi.org/10.1007/978-3-642-37064-9_22

222 B. Aminof et al.

27. Emerson, E.A., Namjoshi, K.S.: On model checking for non-
deterministic infinite-state systems. In: Thirteenth Annual IEEE
Symposium on Logic in Computer Science, Indianapolis, Indiana,
USA, June 21–24, 1998, pp. 70–80. IEEEComputer Society (1998)

28. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. Int. J.
Found. Comput. Sci. 14(4), 527–549 (2003)

29. Esparza, J.: Decidability and complexity of petri net problems—
an introduction. In: Reisig, W., Rozenberg, G. (eds.) Lectures on
Petri Nets I: Basic Models: Advances in Petri Nets, pp. 374–428,
Springer, Berlin, Heidelberg. doi:10.1007/3-540-65306-6_20

30. Esparza, J.: Keeping a crowd safe: on the complexity of parame-
terized verification (invited talk). In: Mayr, E.W., Portier, N. (eds.)
31st International Symposium onTheoretical Aspects of Computer
Science (STACS 2014), STACS 2014, March 5–8, 2014, Lyon,
France,Volume 25 of LIPIcs, pp. 1–10. SchlossDagstuhl - Leibniz-
Zentrum fuer Informatik (2014)

31. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast
protocols. In: 14th Annual IEEE Symposium on Logic in Com-
puter Science, Trento, Italy, July 2–5, 1999, pp. 352–359. IEEE
Computer Society (1999)

32. Esparza, J., Ganty, P., Leroux, J., Majumdar, R.: Verification of
population protocols. In: 26th International Conference on Con-
currency Theory, CONCUR 2015, Volume 42 of LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2015)

33. Fischer, E., Makowsky, J.A.: The Specker-Blatter theorem revis-
ited. In: Computing and Combinatorics, 9th Annual International
Conference, COCOON 2003, Proceedings (2003)

34. Fischer, E., Makowsky, J.A.: Linear recurrence relations for graph
polynomials. In: In: Avron, A., Dershowitz, N., Rabinovich, A.
(eds.) Pillars of Computer Science: Essays Dedicated to Boris
(Boaz) Trakhtenbrot on the Occasion of His 85th Birthday,
pp. 266–279, Springer, Berlin, Heidelberg (2008). doi:10.1007/
978-3-540-78127-1_15

35. Flum, J., Grohe, M.: Parameterized Complexity Theory (Texts
in Theoretical Computer Science. An EATCS Series). Springer,
Berlin (2006)

36. German, S.M., Sistla, A.P.: Reasoning about systems with many
processes. J. ACM 39(3), 675–735 (1992)

37. Glaister, I., Shallit, J.: A lower bound technique for the size of
nondeterministic finite automata. Inf. Process. Lett. 59(2), 75–77
(1996)

38. Gmeiner, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Tuto-
rial on parameterized model checking of fault-tolerant distributed
algorithms. In: FormalMethods for Executable SoftwareModels—
14th International School on Formal Methods for the Design of
Computer, Communication, and Software Systems, SFM 2014,
Bertinoro, Italy, June 16–20, 2014, Advanced Lectures, pp. 122–
171 (2014)

39. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics:
A Foundation for Computer Science, 2nd edn. Addison-Wesley,
Reading (1994)

40. Jacobs, S., Bloem, R.: Parameterized synthesis. Log. Methods
Comput. Sci. 10(1), 362–376 (2014)

41. John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Counter
attack on byzantine generals: parameterized model checking of
fault-tolerant distributed algorithms. CoRR, abs/1210.3846 (2012)

42. Kaiser, A., Kroening, D., Wahl, T.: Dynamic cutoff detection in
parameterized concurrent programs. In: Touili, T., Cook, B., Jack-
son, P.B. (eds.) Computer Aided Verification, 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15–19, 2010. Pro-
ceedings, Volume 6174 of Lecture Notes in Computer Science, pp.
645–659. Springer (2010)

43. Khalimov, A., Jacobs, S., Bloem, R.: PARTY parameterized syn-
thesis of token rings. In: Computer Aided Verification—25th
International Conference, CAV 2013, Proceedings, Volume 8044
of Lecture Notes in Computer Science. Springer (2013)

44. Libkin, L.: Elements of Finite Model Theory. In: Brauer, W.,
Rozenburg, G., Salomaa, A. (eds.) Texts in Theoretical Computer
Science. An EATCS Series. Springer Berlin, Heidelberg (2004)

45. Makowsky, J.A.: Algorithmic uses of the Feferman–Vaught theo-
rem. Ann. Pure Appl. Log. 126, 159–213 (2004)

46. Minsky, M.L.: Computation: Finite and Infinite Machines.
Prentice-Hall, Inc., Englewood Cliffs (1967)

47. Rubin, S.: Parameterised verification of autonomousmobile-agents
in static but unknown environments. In: Proceedings of the 2015
International Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2015, pp. 199–208 (2015)

48. Schmitz, S., Schnoebelen, P.: The power of well-structured sys-
tems. In: D’Argenio, P.R.,Melgratti, H.C. (eds.) CONCUR2013—
Concurrency Theory—24th International Conference, CONCUR
2013, Buenos Aires, Argentina, August 27-30, 2013. Proceedings,
Volume 8052 of Lecture Notes in Computer Science, pp. 5–24.
Springer (2013)

49. Shamir, S., Kupferman, O., Shamir, E.: Branching-depth hierar-
chies. Electron. Notes Theor. Comput. Sci. 39(1), 65–78 (2003)

50. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear
temporal logics. J. ACM (JACM) 32(3), 733–749 (1985)

51. Spalazzi, L., Spegni, F.: Parameterized model-checking of timed
systems with conjunctive guards. In: Verified Software: Theories,
Tools and Experiments—6th International Conference, VSTTE
2014, Volume 8471 of Lecture Notes in Computer Science.
Springer (2014)

52. Suzuki, I.: Proving properties of a ring of finite-state machines. Inf.
Process. Lett. 28(4), 213–214 (1988)

53. Vardi, M., Wolper, P.: Automata-theoretic techniques for modal
logics of programs. J. Comput. Syst. Sci. 32(2), 183–221 (1986)

123

http://dx.doi.org/10.1007/3-540-65306-6_20
http://dx.doi.org/10.1007/978-3-540-78127-1_15
http://dx.doi.org/10.1007/978-3-540-78127-1_15

	Parameterized model checking of rendezvous systems
	Abstract
	1 Introduction
	2 Definitions and preliminaries
	2.1 Process template, topology, pairwise rendezvous system
	2.2 Disjunctively-guarded systems and token passing systems
	2.3 Parameterized topologies
	2.4 Indexed temporal logic
	2.5 The parameterized model checking problem
	2.6 Process executions
	2.7 Cutoffs and decidability
	2.8 Two prominent kinds of pairwise rendezvous systems

	3 Pairwise rendezvous systems
	3.1 Cutoffs
	3.2 Equivalence to finite-state systems
	3.3 Complexity of PMCP

	4 Disjunctive guards
	4.1 Cutoffs
	4.2 Equivalence to finite-state systems
	4.3 Complexity of PMCP

	5 Token passing systems
	5.1 Preliminaries I: CTLastd\X and token-passing systems
	5.1.1 Two abstractions of a token-passing system
	5.1.2 CTLastd\X-equivalence and CTLastd\X-character

	5.2 Preliminaries II: Monadic Second Order Logic and clique-width
	5.2.1 Monadic Second Order Logic
	5.2.2 Clique-width
	5.2.3 Monadic Second Order Logic and clique-width
	5.2.4 Iteratively constructible parameterized topologies
	5.2.5 Homogeneous parameterized topologies revisited

	5.3 Decidability of PMCP
	5.3.1 MSO-definable topologies of bounded clique-width
	5.3.2 Iteratively-constructible parameterized topologies

	5.4 Cutoffs

	6 Discussion and related work
	Acknowledgements
	References

