
CTL* with Graded Path Modalities?

Benjamin Aminofa,1, Aniello Muranob,2, Sasha Rubinb,3

aTechnische Universität Wien, Austria
bUniversità degli Studi di Napoli “Federico II”, Italy

Abstract

Graded path modalities count the number of paths satisfying a property, and
generalize the existential (E) and universal (A) path modalities of CTL∗. The
resulting logic is denoted GCTL∗, and is a powerful logic since (as we show) it is
equivalent, over trees, to monadic path logic. We establish the complexity of the
satisfiability problem of GCTL∗, i.e., 2ExpTime-Complete, the complexity
of the model checking problem of GCTL∗, i.e., PSpace-Complete, and the
complexity of the realizability/synthesis problem of GCTL∗, i.e., 2ExpTime-
Complete. The lower bounds already hold for CTL∗, and so we supply the
upper bounds. The significance of this work is that GCTL∗ is much more
expressive than CTL∗ as it adds to it a form of quantitative reasoning, and this
is done at no extra cost in computational complexity.

Keywords: Path Quantifiers, Graded Temporal Logic, Satisfiability, Automata
Theoretic Approach to Verification

BA: (Remove all comments.)

1. Introduction

Quantitative Verification and Graded Modalities. Temporal logics
are the cornerstone of the field of formal verification. In recent years, much
attention has been given to extending these by quantitative measures of function
and robustness, e.g., [32]. Unfortunately, these extensions often require one to
reason about weighted automata for which much is undecidable [21, 2, 3]. One

?A preliminary version of this work appeared in [6].
Email addresses: benj@forsyte.at (Benjamin Aminof), murano@unina.it (Aniello

Murano), rubin@unina.it (Sasha Rubin)
1Benjamin Aminof was supported by the Austrian National Research Network S11403-N23

(RiSE) of the Austrian Science Fund (FWF) and by the Vienna Science and Technology Fund
(WWTF) through grant ICT12-059.

2Aniello Murano is partially supported by the FP7 EU project 600958-SHERPA.
3Sasha Rubin was supported by a Marie Curie fellow of the Istituto Nazionale di Alta

Matematica.

Preprint submitted to Elsevier April 13, 2018

way to extend classical temporal logics at a lower cost is by counting quantifiers,
known as graded modalities.

Graded world modalities were introduced in formal verification as a useful
extension of the standard existential and universal quantifiers in branching-time
modal logics [15, 30, 34, 45]. These modalities allow one to express properties
such as “there exist at least n successors” satisfying a formula or “all but n suc-
cessors” satisfy a formula. A prominent example is the extension of µ-calculus
called Gµ-calculus [34, 15]. Despite its high expressive power, the µ-calculus
(which extends modal logic by least and greatest fixpoint operators) is a low-
level logic, making it “unfriendly” for users, who usually find it very hard to
understand (let alone to write) formulas involving even modest nesting of fixed
points. In contrast, CTL and CTL∗ are much more intuitive and user-friendly.

An extension of CTL with graded path modalities called GCTL was de-
fined in [13, 14]. Thus one can express, in words, “there exist at least n paths”
satisfying a formula.4 Although there are several positive results about GCTL
this logic suffers from similar limitations as CTL, i.e., it cannot nest successive
temporal operators and so cannot express fairness constraints. This limits the
usefulness of GCTL and so justifies studying GCTL∗ in which one can natu-
rally express complex properties of systems. Although the syntax and semantics
of GCTL∗ were defined and justified in [14], only a rudimentary study of it was
made. In particular, the complexity of the satisfiability and model checking
problem for this logic has never been established. Instead, research has focused
on the much simpler GCTL fragment.

Our results. We establish the exact complexity of the satisfiability, model
checking, and realizability/synthesis problems for GCTL∗ to be 2ExpTime-
Complete, PSpace-Complete, and 2ExpTime-Complete respectively. Thus,
in all cases, the problems for GCTL∗ are not harder than for CTL∗. Along
the way, we prove that GCTL∗ has the bounded-degree tree-model property,
i.e., a satisfiable formula is satisfied in a tree whose branching degree is at most
exponential in the size of the formula, and we show that GCTL∗ is expressively
equivalent, over trees, to monadic path logic.

The importance of our results. We obtain that GCTL∗ has the following
desirable combination of attributes:
a) GCTL∗ can naturally express properties of paths as well as count them. For
example, the formula E≥2G(request→ (requestU granted)) says: “there are at
least two ways to schedule the computation such that every request is eventually
granted”. This cannot be expressed in CTL∗ nor in GCTL.

The naive semantics for E≥nψ counts two paths as different if they di-
verge. While at first glance this may seem natural, on closer examination
it is undesirable and less informative. For example, consider a faulty pro-
gram in which requests are sometimes not granted, and consider the formula
E≥2[F(request ∧ ¬Fgranted)]. This formula is true under the naive counting

4By writing “there exist at least n paths satisfying Xψ” one can also express graded world
modalities, see Remark 3.

2

even if the only fault occurs on a common prefix of two different paths. In
contrast, in GCTL∗ (unlike the naive counting) the formula requires at least
two incomparable sequences of operations each causing this faulty behaviour. In
other words, in GCTL∗ the formula indicates whether the faulty behaviour is
the result of multiple underlying problems, and is not confused by multiple paths
that are extensions of a single faulty prefix. Furthermore, the naive counting
very quickly leads to unnatural interpretations, as convincingly argued in [14].

This ability to easily count paths fits various application domains. For exam-
ple, in databases there is a close relationship between model-checking CTL* and
XML navigation (see [7, 11]). The logic GCTL∗ allows one to express quantita-
tive requirements such as “the client has at least 5 items in last-month orders”.
More generally, graded operators are common in description logics, which are
prominently used for formal reasoning in AI (e.g., knowledge querying, planning
with redundancies).
b) GCTL∗ is expressive. Not only does GCTL∗ extend CTL∗ (and thus, in
particular, it can reason about fairness), we prove that it is expressively equiva-
lent, over trees, to Monadic Path Logic (MPL) which is Monadic Second-Order
Logic (MSOL) interpreted over trees but with set quantification restricted to
branches.
c) GCTL∗ has relatively low complexity of satisfiability. Unfortunately, the
complexity of satisfiability of MPL is non-elementary (this is already true for
FOL). In contrast, we prove that the complexity of satisfiability of GCTL∗ is
2ExpTime, and thus is no harder than for CTL∗.

Technical Contributions. The upper bounds are obtained by exploiting
an automata-theoretic approach for branching-time logics, combined with game
theoretic reasoning at a crucial point. The automata-theoretic approach is suit-
able because GCTL∗ turns out to have the tree-model property. It is very
hard to see how other techniques for deciding questions in logic (e.g. effective
quantifier elimination, tableaux, composition) can be used to achieve optimal
complexity results for GCTL∗. We relate GCTL∗ to a new model of automata,
i.e., Graded Hesitant Tree Automata (GHTA). These automata work on finitely-
branching trees (not just k-ary trees) and their transition relations can count
up to a given number (usual alternating automata only count up to 1).

Related Work. Counting modalities were first introduced by Fine [30] un-
der the name graded world modalities. A systematic treatment of the complexity
of various graded modal logics followed [45, 46, 20, 26, 37]. Number restrictions
naturally occur in description logics [42, 33, 44, 17, 11, 18, 9, 8, 12]. The ex-
tension of µ-calculus by graded world modalities was investigated in [34, 15].
Although some of these articles introduce automata that can count, including
[5, 39, 10, 25, 40, 38, 1], our GHTA are more complicated since they have to
deal with graded path modalities and not just graded world modalities. The
extension of CTL∗ by the ability to say “there exist at least n successors sat-
isfying ψ”, called counting-CTL∗, was defined in [41], and its connection with
Monadic Path Logic was studied using the composition method. It is unclear
if that method, although elegant, can yield the complexity bounds we achieve
(even for counting-CTL∗). As shown in [14], Gµ-calculus cannot succinctly

3

reason about paths, or even grandchildren of a given node (the same is true for
counting-CTL).

The first work to deal with graded path modalities introduced the extension
of CTL∗ by these modalities, i.e., GCTL∗ [13]. However, only the fragment
GCTL was studied since, as the authors note, their techniques do not work for
GCTL∗. Graded path modalities over CTL were also studied in [27, 28, 29].
There, the semantics of a formula of the form E≥gψ is defined by counting if there
are at least g different paths that serve as ‘evidence’ for ψ. The authors introduce
two notions for capturing when paths should be counted as different: the first
is a syntactic one that considers two paths to be different iff one is not a prefix
of the other; and the second (introduced to alleviate some of the deficiencies of
the first) modifies the first by requiring the paths to be edge-disjoint when the
formula is of the form E≥gG or of the form E≥gU. Unfortunately, their definition
of a path being an evidence to a path formula ψ makes crucial use of the fact
that CTL path formulas are of a very limited form (since nesting of temporal
operators is not allowed). Hence, it is unclear if and how one can extend it to
formulas in CTL∗.

2. The temporal logic GCTL∗

Let N denote the positive integers, and [d] = {1, 2, . . . , d} for d ∈ N.
Transition Systems. An LTS (Labeled Transition System/Kripke struc-

ture) is a tuple S = 〈Σ, S, E, λ〉, where Σ is a set of labels, S is a countable set
of states, E ⊆ S × S is the transition relation, and λ : S → Σ is the labeling
function. Typically, Σ = 2AP where AP is a finite set of atomic propositions.
The degree of a state s is the cardinality of the set {t ∈ S : (s, t) ∈ E} of its
successors. We assume that E is total, i.e., that every state has a successor.

Paths. A path in S is a finite or infinite sequence π0π1 · · · ∈ (S∗) ∪ (Sω)
such that (πi, πi+1) ∈ E for all i < |π| (|π| is the length of π). Note that we
count positions in a sequence starting with 0. Given a path π in an LTS, and
some 0 ≤ i < |π|, then write π≥i for the suffix of π starting at position i, namely
the path πiπi+1 · · · ∈ (S∗) ∪ (Sω). The set of (finite and infinite) paths in S
is written pth(S), and the set of (finite and infinite) paths in S that start in a
given state q ∈ S is written pth(S, q).

Minimal paths. Let � be the prefix ordering on sequences. If π � π′ we say
that π′ is an extension of π. For a set of paths X, denote by min(X) the minimal
elements of X according to �. For instance, if X = {s1s2s3, s1s2s3s4, s1s7} then
min(X) = {s1s2s3, s1s7}.

Trees. A Σ-labeled tree T is a pair 〈T, V 〉 where T ⊆ N∗ is a �-downward
closed set of strings over N, and V : T → Σ is a labeling. We implicitly view
a tree T = 〈T, V 〉 as the LTS 〈Σ, T, E, V 〉 where (t, s) ∈ E iff s is a son of t.
If every node of a tree T has a finite degree then T is finitely branching. If
every node has at most degree k ∈ N, then T is boundedly branching or has
branching degree k. We denote by ε the empty string (which is also the root
of every tree). Given a tree T , for t ∈ T , we write sons(t) ⊂ T for the set
{s ∈ T : t ≺ s ∧ ¬∃z.t ≺ z ≺ s}.

4

Given an LTS S = 〈Σ, S, E, λ〉, with S = [d] for some d ∈ N, define the
unwinding of S to be the tree T = 〈T, V 〉 where T = {ε} ∪ {π ∈ pth(S, x) |
(1, x) ∈ E ∧ |π| ∈ N} represents all paths in S starting in state 1; and V
assigns to each element in T the label λ assigns to the last node on it, i.e.,
V (π) = λ(π|π|−1) for π ∈ T \ {ε}, and V (ε) = λ(1). Such an unwinding is called
a regular tree.

2.1. Syntax and Semantics of GCTL∗

GCTL∗ extends CTL∗ by graded path quantifiers of the form E≥g. We
follow the definition of GCTL∗ from [14], but give a slightly simpler syntax.
We assume that the reader is familiar with the logics CTL∗, LTL, and CTL
(see [48, 35]).

The semantics of GCTL∗ is defined for an LTS S. Intuitively, the GCTL∗

formula E≥gψ, for GCTL∗ path formula ψ, can be read as “there exist at least g
(minimal ψ-conservative) paths”. Minimality was defined above, so we now in-
formally describe what it means for a path to be ψ-conservative (the formal defi-
nition appears in the semantics, below). An infinite path of S is ψ-conservative if
it satisfies ψ, and a finite path of S is ψ-conservative if all its (finite and infinite)
extensions in S satisfy ψ. Note that this notion uses a semantics of GCTL∗ over
finite paths, and thus the semantics of GCTL∗ needs to be defined for finite
paths (as well as infinite paths). As in [14], we use the weak-version of seman-
tics of temporal operators for finite paths (defined in [22]). Intuitively, temporal
operators are interpreted pessimistically (with respect to possible extensions of
the path), e.g., (S, π) |= Xψ iff |π| ≥ 2 and (S, π≥1) |= ψ.

Syntax of GCTL∗. Fix a set of atoms AP. The GCTL∗ state (ϕ) and
path (ψ) formulas are built inductively from AP using the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | E≥gψ

and
ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ | ψRψ.

In the first part, p varies over AP and g varies over N (and thus, technically,
there are infinitely many rules in this grammar). As usual, X,U and R are called
temporal operators and E≥g (for g ∈ N) are called path modalities (also called
path quantifiers). We write Fϕ instead of trueUϕ, and Gϕ instead of falseRϕ.
The class of GCTL∗ formulas is the set of state formulas generated by the
above grammar.

The degree of the quantifier E≥g is the number g. The degree deg(ϕ), of a
state formula ϕ, is the maximum of the degrees of the quantifiers appearing in
ϕ. The length |ϕ|, of a formula ϕ, is defined inductively on the structure of ϕ
as usual, and using |E≥gψ| equal to g + 1 + |ψ| (i.e., g is coded in unary).

We now describe two syntactic fragments. The class of Graded CTL formu-
las (GCTL) is obtained by requiring each temporal operator to be immediately
preceded by a path quantifier. The class of linear temporal logic (LTL) formulas
consists of the path formulas in which no path quantifier appears.

5

Semantics of GCTL∗. Given an LTS S and a state s ∈ S, the definition
of (S, s) |= ϕ is by induction on the structure of ϕ, exactly as for CTL∗, with
the only change concerning the new path quantifier E≥g.

Fix an LTS S. If ϕ is a GCTL∗ state formula and s ∈ S, then define
(S, s) |= ϕ inductively:

• (S, s) |= p, for p ∈ AP, iff p ∈ λ(s).

• (S, s) |= ¬ϕ iff (S, s) 6|= ϕ.

• (S, s) |= E≥gψ, for ψ a GCTL∗ path formula, iff the cardinality of the set
min(Con(S, s, ψ)) is at least g, where Con(S, s, ψ) is defined by

{π ∈ pth(S, s) | ∀π′ ∈ pth(S, s) : π � π′ implies (S, π′) |= ψ}

and min(X) is the set of minimal elements of X according to the prefix
ordering � on paths. The paths in Con(S, s, ψ) are called ψ-conservative
(in S starting at s), and paths in min(Con(S, s, ψ)) are called minimal
ψ-conservative.

If ψ is a GCTL∗ path formula and π = π0π1 · · · ∈ pth(S) is a finite or infinite
path in S, then define (S, π) |= ψ inductively:

• (S, π) |= ϕ, for ϕ a state formula, iff (S, π0) |= ϕ.

• (S, π) |= ¬ψ iff (S, π) 6|= ψ.

• (S, π) |= ψ1 ∨ ψ2 iff (S, π) |= ψ1 or (S, π) |= ψ2.

• (S, π) |= Xψ iff |π| ≥ 2 and (S, π≥1) |= ψ.

• (S, π) |= ψ1Uψ2 iff there exists i with 0 ≤ i < |π| such that (S, π≥i) |= ψ2,
and for all j with 0 ≤ j < i, (S, π≥j) |= ψ1.

• (S, π) |= ψ1Rψ2 iff i) for all i with 0 ≤ i < |π|, either (S, π≥i) |= ψ2 or
there exists j with 0 ≤ j < i such that (S, π≥j) |= ψ1; and moreover ii) if
π is finite then there is some j < |π| such that (S, π≥j) |= ψ1.

If ψ is an LTL formula, we may write π |= ψ instead of (S, π) |= ψ. This
is justifiable since the truth of ψ depends only on the path π independently of
the rest of S. Two state formulas φ, φ′ are equivalent if for all S and s ∈ S, we
have (S, s) |= φ iff (S, s) |= φ′. Two path formulas ψ,ψ′ are equivalent if for all
S and π ∈ pth(S), we have that (S, π) |= ψ if and only if (S, π) |= ψ′. An LTS
S with a designated state q ∈ S is a model of a GCTL∗ formula ϕ, sometimes
denoted S |= ϕ, if (S, q) |= ϕ. For a labeled tree T, the designated node is by
default the root, and thus, T |= ϕ means that (T, ε) |= ϕ (recall that ε refers to
the root of T). A GCTL∗ formula ϕ is satisfiable iff it has a model.

Example 1. We unpack the meaning of the GCTL∗ formula E≥gFrequest. Let
ψ be the path formula Frequest and let π be a path. Then, π is ψ-conservative

6

iff π satisfies ψ, i.e., at some point on π the atom request holds, and it is not
ψ-conservative iff at no point on it does request hold. Thus, π is minimal ψ-
conservative iff π is finite and request occurs at the last point of π, and only
there. Note that no infinite path is minimal ψ-conservative. Thus, E≥gFrequest
says that there are at least g many distinct finite paths in which request occurs
at the end of each of these paths, and only there.

Example 2. We unpack the meaning of the GCTL∗ formula E≥gGFrequest.
Let ψ be the path formula GFrequest and let π be a path. Then, π is ψ-
conservative iff π is infinite and satisfies ψ (recall that no finite path satisfies a
formula of the form Gϕ). Thus, π is minimal ψ-conservative iff it is infinite and
it satisfies ψ, and E≥gGFrequest says that there are at least g many different
infinite paths in which request occurs infinitely often.

Example 3. We unpack the meaning of the GCTL∗ formula from the intro-
duction: E≥2F(request∧¬Fgranted). Let ψ denote the path formula F(request∧
¬Fgranted). First, a finite or infinite path π satisfies ψ if at some point t the
atom request holds, and at no later point on π does the atom granted hold. A
finite π is ψ-conservative if and only if it satisfies ψ and the atom granted does
not hold in any node of the subtree rooted at the end of π; and an infinite path
is ψ-conservative if and only if it satisfies ψ. Thus, E≥2ψ holds if and only if
there exist two possibly finite paths, say π1 and π2, neither one a prefix of the
other, both satisfying ψ (i.e., πi has a request that is never granted on πi), and
such that if πi is finite then that path has a request that is not granted in any
possible extension of πi.

Remark 1. The additional operators present in the syntax of GCTL∗ in [14],
namely ∧, X̃, R̃, Ũ and A<g are dual to the operators ∨,X,R,U and E≥g. There
are more dual operators in GCTL∗ than in CTL∗, e.g., X is not a dual of
itself. The reason is that one also has to consider finite paths. Thus, the tilded
operators are defined like the un-tilded operators on infinite paths, but with
‘optimistic semantics’ (as opposed to the pessimistic semantics of the un-tilded
operators) on finite paths; e.g., (S, π) |= X̃ψ :if |π| = 1 or (S, π≥1) |= ψ.

Remark 2. The GCTL∗ formula E≥1ψ means that there exists a ψ-conservative
path, i.e., either there exists an infinite path satisfying ψ, or there exists a finite
path π satisfying ψ such that every (finite and infinite) extension of π satisfies ψ.
Thus, if S is total then S |= E≥1ψ if and only if S has an infinite path satisfying
ψ. Hence, for total LTSs, the classic logic CTL∗ coincides with the fragment of
GCTL∗ in which the degree g of all quantifiers E≥g is 1.

Remark 3. GCTL∗ can easily express graded world modalities (i.e., it can
easily count state formulas over successors). Indeed, for a state formula ϕ,
the GCTL∗ formula E≥gXϕ expresses that there exist at least g immediate
successors of the current node satisfying ϕ. To see that this is the correct
semantics of this formula observe that: i) a path of length 1 does not satisfy
the path formula Xϕ, and thus is not Xϕ-conservative; ii) if (S, π) |= Xϕ, then

7

ϕ holds on the second state of π (recall that ϕ is a state formula), and thus
every extension π′, of the prefix of π of length 2, satisfies Xϕ, and thus π is
minimal Xϕ-conservative iff |π| = 2. Recall that (S, s) |= E≥gXϕ iff there are at
least g minimal Xϕ-conservative paths, which by the facts above must all be of
length 2. I.e, (S, s) |= E≥gXϕ iff there are at least g immediate successors of s
satisfying ϕ. The extension of CTL∗ by the state formulas E≥gXϕ, sometimes
written Dgϕ, is called counting-CTL∗ [41].

2.2. Important Properties of GCTL∗

In this section we state and prove some important or useful properties of the
logic just defined.

2.2.1. Treating path formulas as LTL formulas

We show how to treat GCTL∗ path formulas as LTL formulas over new
atoms. We do this just as is done for CTL∗ [35]. Roughly, one can think of a
GCTL∗ path formula ψ over atoms AP as an LTL formula Ψ over atoms which
themselves are GCTL∗ state formulas.

Here are the details. A formula ϕ is a state sub-formula of ψ if i) ϕ is
a state formula, and ii) ϕ is a sub-formula of ψ. A formula ϕ is a maxi-
mal state sub-formula of ψ if ϕ is a state sub-formula of ψ, and ϕ is not a
proper sub-formula of any other state sub-formula of ψ. Let max(ψ) be the set
{ϕ | ϕ is a maximal state sub-formula of ψ}, and let max(ψ) be the set of all
maximal state sub-formulas of ψ and their negations, i.e.,

⋃
ϕ∈max(ψ){ϕ,¬ϕ}.

Every GCTL∗ path formula ψ can be viewed as the formula Ψ whose atoms
are elements of max(ψ). Note that Ψ is an LTL formula. For example, for ψ =
((Xp) U (E≥2Xq)) ∨ p, the state sub-formulas are {p, q,E≥2Xq}, and max(ψ) =
{p,E≥2Xq}, and thus Ψ is the LTL formula (Xp U E≥2Xq) ∨ p over the atoms

{p,E≥2Xq} (here we underline sub-formulas that are treated as atoms).

Given an LTS S =
〈
2AP, S, E, λ

〉
and a GCTL∗ path formula ψ, we define

the relabeling of the LTS S by the values of the formulas in max(ψ) as Sψ =
〈max(ψ), S, E, L〉 where L(s) is the union of λ(s) and the set of ϕ ∈ max(ψ)
such that (S, s) |= ϕ.

Lemma 1. For every GCTL∗ path formula ψ over AP there is an LTL for-
mula Ψ over max(ψ) such that for all S and all paths π in S: (S, π) |= ψ iff
(Sψ, π) |= Ψ.

The proof of this Lemma is in Appendix A.

2.2.2. Invariance under bisimulation and unwinding

It is not hard to see that GCTL∗ is not invariant under bisimulation (cf.
[14]), and that it is invariant under unwinding (cf. [14]).

Lemma 2. [14]

1. GCTL∗ is not invariant under bisimulation.

8

2. GCTL∗ is invariant under unwinding.

Proof. The proof for the bisimulation is straightforward: Consider the formula
E≥2Xp. It is false in a tree whose root has exactly one successor x satisfying p,
but true in the bisimilar tree obtained by adding to the root another subtree
which is identical to the one rooted at x.

The proof for the unwinding is standard (cf. [14]): to treat E≥g instead of E
use the standard ≺-preserving bijection between paths in an LTS and paths in
its unwinding, and note that the semantics of E≥g involve reasoning about ≺.
See Appendix B for details. 2

2.2.3. Expressive Power

The next theorem shows that GCTL∗ is a powerful logic. Indeed, it is
equivalent, over trees, to Monadic Path Logic (MPL) which is MSO with quan-
tification restricted to branches. Note that MPL is only defined over trees,
while GCTL∗ (like CTL∗) is defined over arbitrary LTS. This is the reason we
compare their expressiveness over trees.

We briefly summarise the syntax and semantics of MPL [41]. For a tree
T write branches(T), the branches of T, for those finite or infinite paths of T,
starting from the root, that are maximal (i.e., have no proper extensions in T).
The syntax of MPL has logical symbols for the Boolean operations, first-order
variables x, y, · · · , path variables X,Y, · · · , quantification over these variables,
and non-logical symbols =, ≺, ε and Lp for atoms p ∈ AP. The semantics are
defined for labeled trees T = 〈T, V 〉 where V : T → 2AP. The interpretation of
variables x are over elements of T , of variables X are over branches of T , of =
is the usual equality of variables, of ≺ is as the ancestor relation of T , of x ∈ X
is that node x is on the branch X, and the interpretation of Lp is as the set
of nodes t of T such that p ∈ V (t). An MPL formula without free variables is
called a sentence.

Theorem 1. GCTL∗ is equivalent, over trees, to Monadic Path Logic (MPL).
That is, for every GCTL∗ formula ϕ there is an MPL sentence ϕ̂ such that for
all trees T, T |= ϕ iff T |= ϕ̂; and vice versa.

Remark 4. Before supplying the proof, observe that since GCTL∗ is invari-
ant under unwinding, and since MPL has the finitely-branching tree model
property5, Theorem 1 implies that GCTL∗ also has the finitely-branching tree
model property, i.e., if a GCTL∗ formula ϕ is satisfiable then it is satisfiable in
a finitely-branching tree. Note that the finitely-branching tree model property
of GCTL∗ does not follow solely from the fact that GCTL∗ is closed under un-
winding because we allow countable LTSs, and thus possibly infinitely-branching
trees as models. Also note that we have not (yet) deduced that there is a bound
on the number of children of every node. This will be done, with more work, in
Theorem 5.

5We thank Igor Walukiewicz for pointing out to us that the fact that MPL has the finitely-
branching tree model property, although folklore, immediately follows from a result in [49].

9

Proof. Recall from Remark 3 that the logic counting-CTL∗ is defined by
adding to CTL∗ the state formulas Dnφ (where φ is a state formula and n ∈ N)
which are interpreted as saying that at least n children of the current node sat-
isfy φ. By Remark 3, GCTL∗ is at least as expressive (over LTS, and thus over
trees) as counting-CTL∗. But the main result in [41] is that counting-CTL∗ is
at least as expressive over trees as MPL. To finish, we sketch the relatively easy
fact that MPL is at least as expressive over trees as GCTL∗.

We show: (†) for every GCTL∗ state formula φ there exists an MPL formula

φ̂(x) such that for all trees T, and all t ∈ T: (T, t) |= φ if and only if T |= φ̂(t).
In this proof we freely switch between viewing T as a tree and as an LTS.

We start with some notation and three facts. We begin with some notation. For
π ∈ pth(T) and a node a on π write π[a,∞) ∈ pth(T, a) for the tail of π starting
at a. Also, for a, b ∈ T with a � b, write π[a,b] ∈ pth(T, a) for the subpath of π
starting at a and ending at b.

Fact 1. For every LTL formula Ψ over atoms AP there is an MPL formula
Ψ′(x,X) (whose atomic relations are of the form Lp for p ∈ AP) such that for all
trees T, and all a ∈ T and all paths π ∈ branches(T) with a ∈ π: T |= Ψ′(a, π)
if and only if (T, π[a,∞)) |= Ψ.

Fact 2. For every LTL formula Ψ over atoms AP there is an MPL formula
Ψ′′(x, y) (whose atomic relations are of the form Lp for p ∈ AP) such that for all
trees T, and all a, b ∈ T with a � b: T |= Ψ′′(a, b) if and only if (T, π[a,b]) |= Ψ.

Fact 3. For every LTL formula Ψ over atoms AP there is an MPL formula
minconΨ(x,X) (whose atomic relations are of the form Lp for p ∈ AP) such
that for all trees T, and all a ∈ T and all branches π ∈ T with a ∈ π: T |=
minconΨ(a, π) if and only if the tail of π starting at a is minimal Ψ-conservative
in (T, a). Similarly, there is a formula minconΨ(x, y) such that for all trees T
and all a, b ∈ T with a � b: T |= minconΨ(a, b) if and only if the path between
a and b is minimal Ψ-conservative in (T, a).

We prove Facts 2 and 3 (the proof of Fact 1 is similar).
Proof of Fact 2: Construct Ψ′′(x, y) by induction on the formula Ψ. If Ψ

is an atom, say p ∈ AP, then Ψ′′(x, y) is defined as Lp(x). If Ψ = ¬Ψ1 then
Ψ′′(x, y) is defined as ¬Ψ′′1(x, y). Similarly for the case that Ψ is a disjunction.
If Ψ = Ψ1UΨ2 then Ψ′′(x, y) is defined as ∃z.x � z � y∧ [Ψ′′2(x, z)∧∀v.x � v ≺
z → Ψ′1(x, v)]. The cases X and R are similar to U. This completes the proof of
Fact 2.

Proof of Fact 3: We show how to define the ingredients of the required
formulas. We will use Ψ′ from Fact 1, and Ψ′′ from Fact 2.

• Let end(X, z) denote the formula z ∈ X ∧ ∀y ∈ X.y � z stating that z is
the last node of the branch X.

• Let finite(X) denote the formula ∃z.end(X, z) stating that branch X is
finite.

• We use the shorthand end(X) for the unique value end(X, z) if it exists.

10

• Let fin minconψ(X,x) denote the formula

finite(X)∧ (∀y.end(X) � y → Ψ′′(x, y))

∧ (∀Y.end(X) ∈ Y → Ψ′(x, Y))

∧ (∀z.x � z ≺ end(X)→ ¬Ψ′′(x, z))

stating that the path X starting at x is finite and minimal Ψ-conservative.

• Let inf minconψ(X,x) denote the formula

¬finite(X) ∧Ψ′(x,X) ∧ (∀z.x � z ∈ X → ¬Ψ′′(x, z))

stating that the pathX starting at x is infinite and minimal Ψ-conservative.

• Finally, let minconΨ(x,X) denote the formula

fin minconψ(X,x) ∨ inf minconψ(X,x)

stating that the path X starting at x is minimal Ψ-conservative (irrespec-
tive of X being finite or infinite).

Similarly, the formula minconΨ(x,w) is defined as in fin minconψ(X,x)
but replacing end(X) by w.

This completes the proof of Fact 3.
We now show how to inductively define the formula φ̂(x) in (†):

• If φ is an atom, say p, then φ̂(x) is defined as the unary predicate Lp(x).

• If φ is of the form ¬φ′, then φ̂ is defined as ¬φ̂; and similarly for ∨ and ∧.

• If φ is of the form E≥gψ, then let Ψ be the LTL formula corresponding
to ψ from Lemma 1 over atoms max(ψ). For each atom θ ∈ max(ψ),

let θ̂(x) be the corresponding MPL formula (which exists by induction)
whose atoms are of the form Lθ for θ ∈ max(ψ).

The formula φ̂(x) is defined as:∨
h∈[0,g]

∃X1, · · · , Xh.
∧

1≤i<i≤h

Xi 6= Xj ∧ ∃x1, · · · , xg−h.[∧
i∈[1,h]

minconΨ(x,Xi)[Lθ(z)/θ̂(z)]

∧
∧

i∈[1,g−h]

minconΨ(x, xi)[Lθ(z)/θ̂(z)
]

where minconΨ(x,Xi)[Lθ(z)/θ̂(z)] is the MPL formula minconΨ(x,Xi) in
which every occurrence of a subformula of the form Lθ(z) (for θ ∈ max(ψ)

and z a variable) is replaced by the formula θ̂(z).

11

This completes the proof. 2

By the proof of Theorem 1 we also have the following:

Corollary 1. GCTL∗ is equivalent, over trees, to counting-CTL∗. That is,
for every GCTL∗ formula ϕ there is a counting-CTL∗formula ϕ̂ such that for
all trees T, T |= ϕ iff T |= ϕ̂; and vice versa.

3. Graded Hesitant Tree Automata

In this section we define a new kind of automaton called Graded Hesitant
Tree Automata (GHTA). In the next section we will show how to compile
GCTL∗ formulas into GHTA.

We make use of the classical non-deterministic finite word automata (NFW)
and non-deterministic Büchi word automata (NBW) (see [48]), alternating par-
ity tree automata (APTA) (see [23]), and alternating hesitant tree automata
(AHTA) (see [35]). We write 〈Σ, Q, q0, δ, G〉 for NBWs and 〈Σ, Q, q0, δ, F 〉 for
NFWs where Σ is the input alphabet, Q is the set of states, q0 is the initial
state, δ ⊆ Q × Σ × Q is the transition relation, G ⊆ Q is the set of accepting
states and F ⊆ Q the set of final states. For a set X, let B+(X) be the set of
positive Boolean formulas over X, including the constants true and false. A
set Y ⊆ X satisfies a formula θ ∈ B+(X), written Y |= θ, if assigning true to
elements in Y and false to elements in X \Y makes θ true. Graded hesitant tree
automata (GHTA) generalise AHTA6: a) they can work on finitely-branching
trees (not just k-ary branching trees), and b) their transition relation allows the
automaton to send multiple copies into the successors of the current node in a
much more flexible way. We formally define AHTA and GHTA below.

3.1. Definition of AHTA

An Alternating Hesitant Tree Automaton (AHTA) is a tuple

A = 〈Σ, D,Q, q0, δ, 〈G,B〉, 〈part, type,�〉〉

where Σ is a non-empty finite set of input letters; D ⊂ N is a finite non-empty
set of directions, Q is the non-empty finite set of states, q0 ∈ Q is the initial
state; the pair 〈G,B〉 ∈ 2Q × 2Q is the acceptance condition7 (we sometimes

6Strictly speaking, GHTA generalise the symmetric variant of AHTA. That is, for every
language accepted by an AHTA and that is closed under the operation of permuting siblings,
there is a GHTA that accepts the same language.

7The combination of a Büchi and a co-Büchi condition that hesitant automata use can
be thought of as a special case of the parity condition with 3 colors. Thus, we could have
defined Graded Parity Tree Automata instead (using the parity condition, our automata
strictly generalise the ones in [34, 13]). However, we do not need the full power of the parity
condition, and in order to achieve optimal complexity for model checking of GCTL∗ we need
to be able to decide membership of our automata in a space efficient way, which cannot be
done with the parity acceptance condition.

12

call the states in G good states and the states in B bad states); δ : Q × Σ →
B+(D × Q) is the alternating transition function; part ⊂ 2Q is a partition of
Q, type : part→ {trans, exist, univ} is a function assigning the label transient,
existential or universal to each element of the partition, and �⊂ 2Q × 2Q is a
partial order on part. Moreover, the transition function δ is required to satisfy
the following hesitancy condition: for every Q ∈ part, every q ∈ Q, and every
σ ∈ Σ: (i) for every Q′ ∈ part and q′ ∈ Q′, if q′ occurs in δ(q, σ) then Q′ � Q;
(ii) if type(Q) = trans then no state of Q occurs in the formula δ(q, σ); (iii) if
type(Q) = exist (resp., type(Q) = univ) then there is at most one element of
Q in each disjunct of the DNF (resp., conjunct of CNF) of δ(q, σ). Intuitively,
the hesitancy condition guarantees that paths in the run of the automaton
eventually get trapped in a single existential or universal element of part.

An input tree (for AHTA) is a Σ-labeled tree T = 〈T, V 〉 with T ⊆ D∗. Since
D is finite, such trees have fixed finite branching degree. A run (or run tree) of
an alternating tree automaton A on input tree T = 〈T, V 〉 is a (T ×Q)-labeled
tree 〈Tr, r〉, such that (a) r(ε) = (ε, q0) and (b) for all y ∈ Tr, with r(y) = (x, q),
there exists a minimal set S ⊆ D ×Q, such that S |= δ(q, V (x)), and for every
(d, q′) ∈ S, it is the case that x · d is a son of x, and there exists a son y′ of y,
such that r(y′) = (x · d, q′).

Note that if δ(q, V (x)) = true then S = ∅ and the node y has no children;
and if there is no S as required (for example if x does not have the required
sons) then there is no run-tree with r(y) = (x, q). Observe that disjunctions in
the transition relation are resolved into different run trees, while conjunctions
give rise to different sons of a node in a run tree. If v is a node of the run tree,
and r(v) = (u, q), call u the location associated with v, denoted loc(v), and call
q the state associated with v, denoted state(v).

We now discuss the acceptance condition. Fix a run tree 〈Tr, r〉 and an
infinite path π in it. Say that the path visits a state q at time i if state(πi) = q.
The hesitancy condition (i) guarantees that the path π eventually gets trapped
and visits only states in some element of the partition, i.e., there exists Q ∈
part such that from a certain time i on, state(πj) ∈ Q for all j ≥ i. The
hesitancy condition (ii) ensures that this set is either existential or universal,
i.e., type(Q) ∈ {exist, univ}. Thus, we say that the path π gets trapped in an
existential set if type(Q) = exist, and otherwise we say that it gets trapped in a
universal set. We can now define what it means for a path in a run tree to be
accepting. A path that gets trapped in an existential set is accepting iff it visits
some state of G infinitely often, and a path that gets trapped in a universal set
is accepting iff it visits every state of B finitely often. A run 〈Tr, r〉 of an AHTA
is accepting iff all its infinite paths are accepting. An automaton A accepts an
input tree 〈T, V 〉 iff there is an accepting run of A on 〈T, V 〉. The language of
A, denoted L(A), is the set of Σ-labeled D-trees accepted by A. We say that A
is nonempty iff L(A) 6= ∅.

The membership problem of AHTA is the following decision problem: given
an AHTA A with direction set D, and a finite LTS S in which the degree of
each node is at most |D|, decide whether or not A accepts S. The depth of the
AHTA is the size of the longest �-chain over part. The size ||δ|| of the transition

13

function is the sum of the lengths of the formulas it contains. The size ||A|| of
the AHTA is |D|+ |Q|+ ||δ||. The partition, partial order and type function are
not counted in the size of the automaton. The following is implicit in [35]:

Theorem 2. The membership problem for AHTA can be solved in O(∂ log2(|S|·
||A||)) space where ∂ is the depth of A and S is the state set of S.

3.2. Definition of GHTA

We now define Graded Hesitant Tree Automata (GHTA). These run on
finitely-branching trees (not just trees of a fixed finite degree), and the transi-
tion function is graded, i.e., instead of a Boolean combination of direction-state
pairs, it specifies a Boolean combination of distribution operations. There are
two distribution operations: 3(q1,..., qk) and its dual 2(q1,..., qk). Intuitively,
3(q1,..., qk) specifies that the automaton picks k different sons s1,..., sk of the
current node and, for each i ≤ k, sends a copy of itself in state qi to son si. Note
that the states q1,..., qk are not necessarily all different. Dually, 2(q1,..., qk) says
that for every k different sons s1,..., sk of the current node, the automaton picks
one of these sons si to which it sends a copy of itself in state qi.

A GHTA A is a tuple 〈Σ, Q, q0, δ, 〈G,B〉, 〈part, type,�〉〉 where all elements
but δ are defined as for AHTA, and δ : Q × Σ → B+(3Q ∪ 2Q) is a tran-
sition function that maps a state and an input letter to a positive Boolean
combination of elements in 3Q = {3(q1,..., qk) | (q1,..., qk) ∈ Qk, k ∈ N} and
2Q = {2(q1,..., qk) |(q1,..., qk) ∈ Qk, k ∈ N}.

We show how to define the run of a GHTA A on a Σ-labeled finitely-branching
tree T = 〈T, V 〉 by (locally) unfolding every 3Q and 2Q in δ(q, V (t)) into a
formula in B+([d]×Q) where d is the branching-degree of node t. For k, d ∈ N,
let S(k, d) be the set of all ordered different k elements in [d], i.e., (s1,..., sk) ∈
S(k, d) iff for every i ∈ [k] we have that si ∈ [d], and that if i 6= j then
si 6= sj . Observe that if k > d then S(k, d) = ∅. For every d ∈ N, define the
function expandd : B+(3Q ∪ 2Q) → B+([d] × Q) that maps formula φ to the
formula formed from φ by replacing every occurrence of a sub-formula of the
form 3(q1,..., qk) by the formula∨

(s1,...,sk)∈S(k,d)

∧
i≤k

(si, qi),

and every occurrence of a sub-formula of the form 2(q1,..., qk) by the formula∧
(s1,...,sk)∈S(k,d)

∨
i≤k

(si, qi).

Observe that if k > d then 3(q1,..., qk) becomes the constant formula false,
and 2(q1,..., qk) becomes the constant formula true. The run of a GHTA A is
defined as for an alternating tree automaton, except that one uses expandn(δ(q, V (x)))
instead of δ(q, V (x)) for nodes x of T of degree n. Finally, the hesitancy con-
dition defined above for AHTA is required to apply to the expanded transition

14

function, i.e., for every Q ∈ part, every q ∈ Q, every n ∈ N, and every σ ∈ Σ: (i)
for every Q′ ∈ part and q′ ∈ Q′, if q′ occurs in expandn(δ(q, σ)) then Q′ � Q; (ii)
if type(Q) = trans then no state of Q occurs in the formula expandn(δ(q, σ));
(iii) if type(Q) = exist (resp., type(Q) = univ) then there is at most one element
of Q in each disjunct of the DNF (resp., conjunct of CNF) of expandn(δ(q, σ)).
Acceptance is as for AHTA.

Lemma 3. The emptiness problem for a GHTA A, over trees of branching de-
gree at most d, is decidable in time 2O(d·|Q|3), where Q is the state set of A.
Furthermore, if A is not empty then one can obtain (in the same time complex-
ity) a regular tree accepted by A.

Proof. Given a GHTA A with state set Q, convert it into an AHTA A′ ac-
cepting the same language, with the same states, by using the function expandd
defined above to transform its transition relation into a non-graded one. This
is possible since we assumed a bound d on the branching degree of the input
trees, and thus the transformation expandd can be used in advance. This con-
struction takes time that is 2O(|Q| log d). Recall that AHTA are a special case
of alternating parity tree automata (APTA) with 3 priorities. Now apply the
fact that the emptiness problem (as well as obtaining a regular tree witnessing
non-emptiness) for APTA with p priorities over d-ary trees can be solved in time
2O(d·|Q|p) [23]. 2

Lemma 4. The membership problem for GHTA A for regular trees is decidable
in O(∂ log2(|δ||Q||S|)) space, i.e., linear in the depth of A, quadratic in the size
of S, polylogarithmic in the size of the transition function of A and the number
of states of A.

Proof. Let A have state set Q, transition function δ, and depth ∂. Recall that
the translation used in Lemma 3 that transforms a GHTA A into an equiv-
alent AHTA A′ (on trees of degree at most d) works by replacing δ(q, σ) by
expandd(δ(q, σ)). Note that expanding the 3Qs and 2Qs only blows up the size
of the transition relation by a multiplicative factor of |Q|d, and leaves the state
space unchanged. Conclude that A′ is the same as A except that its transition
function δ′ is such that ||δ′|| ≤ ||δ|| · |Q|d. Then ||A′|| = d+ |Q|+ |δ||Q|d.

By Theorem 2, and letting d be the maximum degree in S, so d ≤ |S|, the
membership problem of the AHTA A′ on the unwinding of the LTS S can be
solved in space O(∂ log2(|S| · ||A′||)) which is linear in ∂, quadratic in |S|, and
polylogarithmic in |δ| and |Q|. 2

4. From GCTL∗ to Graded Hesitant Automata

Elegant and optimal algorithms for solving the satisfiability and model-
checking problems of CTL∗ were given using the automata-theoretic approach
for branching-time temporal logics [35]. Using this approach, one reduces sat-
isfiability to the non-emptiness problem of a suitable tree automaton accepting

15

all tree-models of a given temporal logic formula. We follow the same approach
here, by reducing the satisfiability problem of GCTL∗ to the non-emptiness
problem of GHTA. By Remark 4, a GCTL∗ formula is satisfiable (in some, pos-
sibly infinite, labeled transition system) iff it has a finitely branching (though
possibly unboundedly branching) tree model, which exactly falls within the abil-
ities of GHTA. Our main technical result states that every GCTL∗ formula can
be compiled into an exponentially larger GHTA:

Theorem 3. Given a GCTL∗ formula ϑ, one can build a GHTA Aϑ that ac-
cepts exactly the finitely-branching tree-models of ϑ. Moreover, Aϑ has 2O(|ϑ|·deg(ϑ))

states, depth O(|ϑ|), and transition function of size 2O(|ϑ|·deg(ϑ)).

This section, devoted to the proof of this Theorem, is structured as follows.
In Section 4.1 we give an important characterization of the semantics of the
graded path modality E≥gψ that allows us to achieve an optimal construction.
We also give an intuition of the construction as well as some supporting lemmas
that build NBWs and NFWs for LTL formulas. In Section 4.2 we formally
give the construction of GHTA Aϑ for a GCTL∗ formula ϑ. In Section 4.3 we
analyse the size of the resulting automata. In Section 4.4 we give the proof that
the construction is correct.

4.1. Characterization of the graded path modality and intuition of the construc-
tion

An important observation that allows us to achieve an optimal construc-
tion is the following. Suppose that the formula E≥gψ holds at some node w
of a tree. Then, by definition, there are at least g different paths ρ′1,..., ρ′g ∈
min(Con(S, w, ψ)). Look at any g infinite extensions ρ1,..., ρg of these paths in
the tree, and note that by the definition of ψ-conservativeness all these exten-
sions must satisfy ψ. Also observe that for every i 6= j, the fact that ρ′i, ρ′j are
different and minimal implies that the longest common prefix ρ′ij of ρi and ρj is
not ψ-conservative. As it turns out, the other direction is also true, i.e., if there
are g infinite paths ρ1,..., ρg satisfying ψ, such that for every i 6= j the common
prefix ρ′ij is not ψ-conservative, then there are g prefixes ρ′1,..., ρ′g of ρ1,..., ρg

respectively, such that ρ′1,..., ρ′g ∈ min(Con(S, w, ψ)). Note that this allows us
to reason about the cardinality of the set min(Con(S, w, ψ)), by considering only
the infinite paths ρ1,..., ρg and their common prefixes, without actually looking
at the minimal ψ-conservative paths ρ′1,..., ρ′g. In reality, we do not even have
to directly consider the common prefixes ρ′ij . Indeed, since the property of
being ψ-conservative is upward closed (with respect to the prefix ordering �
of paths), showing that ρ′ij is not ψ-conservative can be done by finding any
extension of ρ′ij that is not ψ-conservative. The following proposition formally
captures this.

Proposition 1. Given a GCTL∗ path formula ψ and a 2AP-labeled tree T =
(T, V), then T |= E≥gψ iff there are g distinct nodes y1,..., yg ∈ T (called break-
points) such that for every 1 ≤ i, j ≤ g we have: (i) if i 6= j then yi is not

16

a descendant of yj; (ii) the path from the root to the father xi of yi is not ψ-
conservative; (iii) there is an infinite path ρi in T, starting at the root and going
through yi, such that ρi |= ψ.

Proof. Assume first that T |= E≥gψ, and let ρ′1, . . . , ρ′g be g different paths in
the set min(Con(S, ε, ψ)). For 1 ≤ i ≤ g, let yi be an arbitrarily chosen point on
the path ρ′i satisfying, for every j 6= i, that yi is not on the path ρ′j . Observe
that such a point exists since, by minimality, ρ′i 6� ρ′j for every j 6= i. We
thus have that property (i) in the statement of the lemma holds. Property (ii)
holds by the minimality of ρ′i. Indeed, the path from the root to the father of
yi is a proper prefix of ρ′i, and is thus not in Con(S, ε, ψ). By the definition of
ψ-conservativeness, we have that every path ρi in T such that ρ′i � ρi satisfies
ψ. Recall that we assume that trees are total, i.e., that they contain no leaves,
and thus property (iii) holds by simply taking ρi to be any infinite extension of
ρ′i.

For the other direction, let y1 . . . , yg ∈ T , be breakpoints satisfying proper-
ties (i), (ii), (iii), and consider the paths ρ1, . . . , ρg through these breakpoints
guaranteed by property (iii). For every 1 ≤ i ≤ g, let ρ′i be the shortest prefix
of ρi such that ρ′i is ψ-conservative, and note that ρ′i ∈ min(Con(S, ε, ψ)). The
path ρ′i is well defined since ρi is infinite and satisfies ψ and thus, by definition,
it is ψ-conservative. In order to prove that T |= E≥gψ, it remains to show that
for every i 6= j we have that ρ′i 6= ρ′j . To see that, observe that for every
1 ≤ i ≤ g, property (ii) together with the fact that the property of being ψ-
conservative is upward closed (with respect to the prefix ordering � of paths),
imply that the path from the root to the father of yi is a proper prefix of ρ′i

and thus, ρ′i goes through yi. By property (i), if i 6= j then there is no path
that goes through both yi and yj . Combining the last two facts we get that if
i 6= j then ρ′i 6= ρ′j , which completes the proof. 2

We are in a position to describe our construction of a GHTA accepting
all finitely-branching tree-models of a given GCTL∗ formula. We begin with
an intuition and some supporting lemmas. The full construction is given in
Section 4.2.

Naturally, the main difficulty lies in handling the graded modalities. The
basic intuition behind the way our construction handles formulas of the form
ϕ = E≥gψ is the following. Given an input tree, the automaton Aϕ for this
formula has to find at least g minimal ψ-conservative paths. At its core, Aϕ
runs g pairs of copies of itself in parallel. The reason these copies are not
run independently is to ensure that the two members of each pair are kept
coordinated, and that different pairs do not end up making the same guesses
(and thus overcounting the number of minimal ψ-conservative paths). The
task of each of the g pairs is to detect some minimal ψ-conservative path that
contributes 1 to the count towards g. This is done indirectly by using the
characterization given by Proposition 1. Since this proposition requires checking
if certain paths satisfy ψ, the automaton Aϕ will access certain classic NBWs.
The following Theorem, whose proof is reported in Appendix C, states the

17

existence of these. The first part is classic, see [47, 19], and the second is a
simple adaptation.

Theorem 4. 1. Given an LTL formula ζ, there is an NBW Aζ (resp. NFW
Bζ), of size 2O(|ζ|), accepting exactly all infinite (resp. finite) words that
satisfy ζ.

2. Given an LTL formula ζ, there is an NBW Aζ (of size 2O(|ψ|)) such that
Aζ accepts a word w iff w |= ζ, or u |= ζ for a prefix u of w.
Moreover, Aζ has an accepting sink >, such that if r0, r1,... is an accepting
run of Aζ on w, and i ≥ 0 satisfies ri 6= >, then a (finite or infinite) prefix
u of w, of length |u| > i, satisfies ζ, and vice-versa (i.e., if a prefix u of w
satisfies ζ, then there is an accepting run on w with ri 6= > for all i < |u|).

We can now finish the intuitive description of the construction of the au-
tomaton Aϕ associated with a formula ϕ = E≥gψ. Let Ψ be the LTL formula
resulting from applying Lemma 1 to ψ. In essence, Aϕ guesses the g descen-
dants y1, . . . , yg of the root of the input tree as given in Proposition 1. For every
1 ≤ i ≤ g, the automaton uses one copy of A¬Ψ to verify that the path π, from
the root to the father of yi, is not ψ-conservative (by guessing some finite or
infinite extension π 4 π′ of it such that π′ |= ¬Ψ), and one copy of AΨ to guess
an infinite path π′′ from the root through yi such that π′′ |= Ψ (and is thus
ψ-conservative).

4.2. The construction of GHTA Aϑ for a GCTL∗ formula ϑ.

We induct on the structure of ϑ. Given a state sub-formula φ of ϑ (possibly
including ϑ), for every formula θ ∈ max(φ), let Aθ = 〈Σ, Qθ, qθ0 , δθ, 〈Gθ, Bθ〉,
〈partθ, typeθ,�θ〉〉 be a GHTA accepting the finitely-branching tree-models of θ.

We build the GHTA Aφ accepting all finitely-branching tree-models of φ
by suitably composing the automata of its maximal sub-formulas and their
negations. Note that when composing these automata, we assume w.l.o.g. that
the states of any occurrence of a constituent automaton of a sub-formula are
disjoint from the states of any other occurrence of a constituent automaton (of
the same or of a different sub-formula), as well as from any newly introduced
states.8 Formally:

1. If φ = p ∈ AP , then Aφ = 〈Σ, {q}, q, δ, 〈∅, ∅〉, 〈part, type,�〉〉 where δ(q, σ) =
true if p ∈ σ and false otherwise.

2. If φ = ϕ0∨ϕ1 then Aφ is obtained by nondeterministically invoking either
Aϕ0

or Aϕ1
.

Thus, Aφ = 〈Σ,
⋃
i=0,1Q

ϕi ∪ {q0}, q0, δ, 〈
⋃
i=0,1G

ϕi ,
⋃
i=0,1B

ϕi〉, β〉, where
β = 〈part, type,�〉, and for every i ∈ {0, 1}, every σ ∈ Σ, and every

8For example, when building an automaton for φ = ϕ0 ∨ ϕ1, in the degenerate case that
ϕ0 = ϕ1 then Aϕ1 is taken to be a copy of Aϕ0 with its states renamed to be disjoint from
those of Aϕ0 . Also, the new state q0 may be renamed to avoid a collision with any of the
other states.

18

q ∈ Qϕi we have that: δ(q, σ) = δϕi(q, σ), and δ(q0, σ) = δϕ0(qϕ0

0 , σ) ∨
δϕ1(qϕ1

0 , σ).
3. If φ = ¬ϕ, then Aφ is obtained by dualizing the automaton Aϕ. Formally,

the dual of a GHTA A is the GHTA obtained by dualizing the transition
function of A (i.e., switch ∨ and ∧, switch > and ⊥, and switch 2 and
3), replacing the acceptance condition 〈G,B〉 with 〈B,G〉 (and toggling
types).

Finally we deal with the case that φ = E≥gψ.
In this case Aφ = 〈Σ, Q, q0, δ, 〈G,B〉, 〈part, type,�〉〉 and its structure is de-

tailed below. Observe that ψ is a path formula and, by Lemma 1, reasoning
about ψ can be reduced to reasoning about the LTL formula Ψ whose atoms are
elements of max(ψ). Let Σ′ = 2max(ψ). By Theorem 4 Part 1, there is an NBW
AΨ = 〈Σ′, Q+, q+

0 , δ
+, G+〉 accepting all infinite words in Σ′ω satisfying Ψ. By

Theorem 4 Part 2, there is an NBW A¬Ψ = 〈Σ′, Q¬, q¬0 , δ¬, G¬〉 accepting all
infinite words in Σ′ω that either satisfy ¬Ψ or have a prefix that does. Note
that the states of these automata are denoted Q+ and Q¬.
The set of states. Q = Q1∪Q2, whereQ1 = (Q+∪{⊥})g×(Q¬∪{⊥})g\{⊥}2g,
and Q2 =

⋃
θ∈max(ψ)

Qθ. The Q1 states are used to run g copies of A¬Ψ and

g copies of AΨ in parallel. Every state in Q1 is a vector of 2g coordinates
where coordinates 1,..., g (called Ψ coordinates) contain states of AΨ, and coor-
dinates g + 1,..., 2g (called ¬Ψ coordinates) contain states of A¬Ψ. In addition,
each coordinate may contain the special symbol ⊥ indicating that it is disabled,
as opposed to active. We disallow the vector {⊥}2g with all coordinates dis-
abled. States in Q2 are all those from the automata Aθ for every maximal
state subformula of ψ, or its negation. These are used to run Aθ whenever
Aφ guesses that θ holds at a node. Also, for every 1 ≤ i ≤ g, we denote by
Qisingle = {(q1,..., q2g) ∈ Q1 | qi 6= ⊥, and for all j ≤ g, if j 6= i then qj = ⊥}
the set of all states in Q1 in which the only active Ψ coordinate is i.
The initial state. q0 = (q1,..., q2g) where for every 1 ≤ i ≤ g we have that
qi = q+

0 and for every g + 1 ≤ i ≤ 2g we have that qi = q¬0 .
The acceptance condition. B = ∪

θ∈max(ψ)
Bθ andG = G′∪G′′∪(∪

θ∈max(ψ)
Gθ),

where G′ = {(q1,..., q2g) ∈ Qisingle | qi ∈ G+} is the set of all states in
Q1 in which the only active Ψ coordinate contains a good state, and G′′ =
{(q1, . . . , q2g) ∈ Q1 | ∀i.1 ≤ i ≤ g → qi = ⊥, and ∃j.g + 1 ≤ j ≤ 2g ∧ qj ∈ G¬}
is the set of all states in Q1 in which all the Ψ coordinates are inactive, and
some ¬Ψ coordinate contains a good state.
The transition function. δ is defined, for every σ ∈ Σ, as follows:

• For every q ∈ Q2, let θ ∈ max(ψ) be such that q ∈ Qθ, and define
δ(q, σ) = δθ(q, σ). I.e., for states in Q2, follow the rules of their respective
automata.

• For every q ∈ Q1, we define δ(q, σ) :=
∨
σ′∈Σ′(J ∧ K ∧ L) where J =∨

X∈Legal(q,σ′) 3(X), K =
∧
θ∈σ′ δθ(qθ0 , σ), L =

∧
θ 6∈σ′ δ¬θ(q¬θ0 , σ), where

Legal(q, σ′) is the set of all legal distributions of (q, σ′), and is defined
later.

19

Informally, the disjunction
∨
σ′∈Σ′ corresponds to all possible guesses of the

set of maximal subformulas of ψ that currently hold. Once a guess σ′ is made,
the copies of A¬Ψ and AΨ simulated by the states appearing in Legal(q, σ′)
proceed as if the input node was labeled by the letter σ′. The conjunction
(∧θ∈σ′δθ(qθ0 , σ))∧(∧θ 6∈σ′δ¬θ(q¬θ0 , σ)) ensures that a guess is correct by launching
a copy of Aθ for every subformula θ ∈ σ′ that was guessed to hold, and a copy
of A¬θ for every subformula θ guessed not to hold.

We define legal distribution. Intuitively, a legal distribution of (q, σ′) is a
sequence q1,..., qm of different states from Q1 that “distribute” among them,
without duplication, the coordinates active in q, while making sure that for every
1 ≤ i ≤ g coordinate i (which simulates a copy of AΨ) does not get separated
from the coordinate i+ g (which simulates its partner copy of A¬Ψ) for as long
as i is not the only active Ψ coordinate. As expected, every active coordinate j,
in any of the states q1,..., qm, follows from qj by using the transitions available
in the automaton it simulates: AΨ if j ≤ g, or A¬Ψ if j > g.

More formally, given a letter σ′ ∈ Σ′, and a state q = (q1,...q2g) ∈ Q1 in
which the active coordinates are {i1,..., ik}, we say that a sequence X = q1,..., qm

(for some m ≥ 1) of distinct states in Q1 is a legal distribution of (q, σ′) if the
following conditions hold: (i) the coordinates active in the states q1,..., qm are
exactly i1,..., ik, i.e., {i1,..., ik} = ∪{i ∈ {1,..., 2g} | ∃1 ≤ l ≤ m s.t. qli 6= ⊥}.
(ii) if a coordinate ij is active in some q′ ∈ X then it is not active in any other
q′′ ∈ X; (iii) if 1 ≤ ij < il ≤ g are two active Ψ coordinates in some q′ ∈ X,
then q′ij+g, q

′
il+g

∈ Q¬ \ {>}, i.e., the coordinates ij + g, il + g are also active

in q′ and do not contain the accepting sink of A¬Ψ; (iv) if ij is active in some
q′ ∈ X then (qij , σ

′, q′ij) ∈ δ
+ if ij ≤ g, and (qij , σ

′, q′ij) ∈ δ
¬ if ij > g. I.e.,

active Ψ coordinates evolve according to the transitions of AΨ, and active ¬Ψ
coordinates according to the those of A¬Ψ.

Remark 5. We make two observations. First, the 2g copies of A¬Ψ and AΨ

can not simply be launched from the root of the tree using a conjunction in
the transition relation. The reason is that if this is done then there is no way
to enforce property (i) of Proposition 1. Second, a cursory look may suggest
that different copies of A¬Ψ and AΨ that are active in the current vector may
be merged. Unfortunately, this cannot be done since A¬Ψ and AΨ are nonde-
terministic, and thus, different copies of these automata must be able to make
independent guesses in the present in order to accept different paths in the
future.

4.2.1. Definition of the Hesitancy Structure 〈part, type,�〉 of Aϑ
We remind the reader that the hesitancy structure is used to decide member-

ship in a space-efficient way, which is needed for our result that model-checking
of GCTL∗ is in PSpace.

We now define the hesitancy structure.

1. If φ = p ∈ AP , then part = {{q}}, type({q}) = trans, and � is the empty
relation.

20

2. If φ = ϕ0 ∨ ϕ1 then part = {{q0}} ∪ partφ1 ∪ partφ2 ; type({q0}) = trans,
and for i ∈ {1, 2}, and every Q ∈ partφi , we have type(Q) = typeφi(Q);
and � is the union of the relations �φ1 ,�φ2 as well as the inequalities
Q � {q0} for every Q ∈ part. In words, we maintain the partitioning
(with the associated types and order) of the states of Qϕ0 and Qϕ1 , and
add a transient set {q0} that it larger then all other sets.

3. If φ = ¬ϕ, then Aφ is obtained by dualizing the automaton Aϕ, and thus
part and � are as in Aϕ, and the types are reversed, i.e., every existential
set in Aϕ becomes universal in Aφ, and vice versa.

4. if φ = E≥gψ then the hesitancy structure is as follows. Given a set of co-
ordinates I ⊆ {1,..., 2g}, let QI ⊆ Q1 be the set of all vectors whose active
coordinates are exactly I. We set type(QI) = exist, and set the partition-
ing part of Q be the union of ∪I⊆{1,...,2g}{QI} and ∪

θ∈max(ψ)
(partθ). For

every I ⊆ {1,..., 2g}, we have QJ ≺ QI for every J ⊂ I, and Q � QI

for every Q ∈ ∪
θ∈max(ψ)

(partθ). Observe that if a transition δ(q, σ) from

some state q ∈ QI , on some letter σ, refers to another state q′ ∈ QI then
q was not split (since q′ has the same active coordinates as q), i.e., the 3

in which q′ occurs is of the form 3(q′). Hence, by the definition of δ(q, σ),
there is no other q′′ ∈ QI that is conjuncted with q′ in expandd(δ(q, σ))
for any d, and thus δ(q, σ) respects the hesitancy constraint.

4.3. Depth and Size Analysis

We now analyse the depth, number of states, and size of the transition
function of the constructed GHTA Aϑ.

Proposition 2. The automaton Aϑ is a GHTA, its depth is O(|ϑ|), it has
2O(|ϑ|·deg(ϑ)) many states, and the size of its transition function is 2O(|ϑ|·deg(ϑ)).

Proof. The depth is clearly O(|ϑ|).
We analyse the number of states, by cases. As usual, the cases ϑ = p,

ϑ = ϕ0 ∨ ϕ1, and ϑ = ¬ϕ follow easily from the definitions and the induction
hypothesis. For the case ϑ = E≥gψ, the states of the automaton are the union
of Q1 and Q2.

The set Q2 uses states from each automaton Aθ for every θ ∈ max(φ), and
thus |Q2| is Σ

θ∈max(ψ)
|Aθ|. But by induction |Aθ| is 2O(|θ|·deg(θ)), and so |Q2| is

at most O(|ψ|) · 2O(|ψ|·deg(ψ)) = 2O(|ψ|·deg(ψ)).
The set Q1 uses a vector of g copies of AΨ and g copies of A¬Ψ. Thus

|Q1| is |AΨ|g · |A¬Ψ|g. Since |AΨ| and |A¬Ψ| are 2O(|ψ|), we get that |Q1| is
2O(|ψ|·g) = 2O(|ϑ|·deg(ϑ))

Thus, the number of states of Aϑ is |Q1|+ |Q2| which is 2O(|ϑ|·deg(ϑ)).
We treat the size of the transition function similarly. For the case φ =

E≥gψ we add the lengths of the transitions leaving Q1, and the lengths of the
transitions leaving Q2.

Say q ∈ Q2 and σ ∈ Σ, and let θ ∈ max(ψ) be such that q ∈ Qθ. Then the
length of formula δ(q, σ) is, by induction, at most 2O(|θ|·deg(θ)). Thus the length
of the transitions leaving Q2 is at most |Q2| · 2O(|ψ|·deg(ψ)) = 2O(|ϑ|·deg(ϑ)).

21

Say q ∈ Q1 and σ ∈ Σ. By induction, for θ ∈ max(ψ), the number of
transitions in Aθ is 2O(|θ|·deg(θ)). Then the transition δ(q, σ), defined as,∨

σ′∈2max(ψ)

[
(∨X∈Legal(q,σ′)3(X))

∧
(∧θ∈σ′δθ(qθ0 , σ))

∧
(∧θ 6∈σ′δ¬θ(q¬θ0 , σ))

]
has length at most

2O(|ψ|) ·

(
∑

X∈Legal(q,σ′)

|3(X)|) + (Σ
θ∈max(ψ)

2O(|ϑ|·deg(ϑ)))

 .
Now Legal(q, σ′) is the number of legal distributions of q, which is at most

the number of ways each of the 2g states can evolve times the number of ways
to partition the components of q into k pieces (for some k ≤ 2g). This is at
most (2O(|ψ|))2g · 2g · (2g)2g which is at most 2O(|ψ|·deg(|ψ|)).

Also, by writing X as a 2g-tuple of states of Q1 in which each co-ordinate
is also given a number (between 1 and k) indicating which element of the par-
tition it is in, we get that |3(X)| is at most |Q1|2g + k2g ≤ |Q1|2g + (2g)2 =
2O(|ϑ|·deg(|ϑ|) +O(deg(|ϑ|)2) = 2O(|ϑ|·deg(|ϑ|).

Thus the length is at most

2O(|ψ|) ·
[
2O(|ψ|·deg(|ψ|)) · 2O(|ϑ|·deg(|ϑ|) +O(|ψ|) · 2O(|ϑ|·deg(ϑ)))

]
which is 2O(|ϑ|·deg(ϑ)). 2

4.4. Proof of Correctness

Before proving the correctness of the (entire) construction, we need some
notation and a lemma. Let Aφ be the automaton constructed for a formula of
the form φ = E≥gψ, and let 〈Tr, r〉 be a run of Aφ on an input tree T = 〈T, V 〉.
Given a node v ∈ Tr, and its label r(v) = (u, q), we say that i is active (disabled)
in v iff state(v) ∈ Q1 and state(v)i 6= ⊥ (state(v)i = ⊥).

Lemma 5. Let Aφ be the automaton constructed for φ = E≥gψ, and let 〈Tr, r〉
be a run of Aφ on a tree T = 〈T, V 〉. For every 1 ≤ i ≤ 2g, the set of nodes
of Tr in which i is active forms an infinite path πi from the root. Furthermore,
if 〈Tr, r〉 is an accepting run, then for 1 ≤ i ≤ g, there is an ik > 1 such that
state(πiik−1)i+g ∈ Q¬ \ {>}, and for every l ≥ ik the only active Ψ coordinate
in state(πil) is i.

Proof. We first prove that the set of nodes I of Tr in which i is active is an
infinite path from the root. The proof is by induction on the depth γ of the
nodes in I. The induction hypothesis is that there is exactly one node of depth
γ in I, and that for γ ≥ 1 it is a son of a node in I. For the base case γ = 0,
the root ε of Tr satisfies state(ε) = q0, and note that all coordinates, and in
particular the i’th coordinate, are active in the initial state q0.

22

For γ > 1, assume that the induction hypothesis holds. First, note that,
by the definition of δ (and in particular property (i) of a legal distribution), it
must be that there is at least one node of depth γ in I. Assume by way of
contradiction that there are two such nodes y 6= y′ ∈ I of depth γ. Observe
that the transition function δ is such that once a coordinate is disabled it can
never become active again. Hence, the parents x of y and x′ of y′ both have the
i’th coordinate active. Thus, by the induction hypothesis, x = x′, and y and y′

are siblings. Let r(x) = (sx, qx), r(y) = (sy, qy), r(y′) = (sy
′
, qy

′
), and let d be

the number of children of sx. Note that the definition of a run tree implies that
the formula expandd(δ(q

x, V (sx)) contains a conjunction having both (d, qy)
and (d′, qy

′
), where d, d′ are the directions in the input tree assigned to sy, sy

′

respectively. In other words, the copy of Aφ in state qx, that reads the input node
sx, launches (at least) two copies in parallel : one in state qy to the son sy, and
one in state qy

′
to the son sy

′
. Observe that all transitions from states in Q1, and

thus in particular from qx, are of the form ∨σ′∈Σ′((∨X∈Legal(q,σ′)3(X))∧Ωσ′),
where Ωσ′ is a boolean formula that involves only states in Q2. But this is a
contradiction since this implies that for some 3(X) in this transition we have
that qy, qy

′ ∈ X, which is impossible by property (ii) of a legal distribution.
We now prove that if Tr is accepting, then for 1 ≤ i ≤ g an index ik as

stated by the lemma exists. Since πi is an infinite path in Tr, and all states in
Q1 belong to existential sets (i.e. sets with type = exist), the fact that Tr is an
accepting run implies that for infinitely many l′s we have that state(πil) ∈ G.
Note that all states in G have only one active Ψ coordinate, and that once a
coordinate becomes disabled it is never enabled again. Thus, there is a minimal
index ik such that for every l ≥ ik the only active Ψ coordinate in state(πil)
is i. The fact that state(πiik−1)i+g ∈ Q¬ \ {>} follows immediately from the
minimality of ik and property (iii) in the definition of a legal distribution. 2

Proof (of correctness of construction for Theorem 3). The proof is
by induction on the structure of ϑ and shows that, at each stage of the construc-
tion, for every sub-formula φ of ϑ, the automaton Aφ satisfies the statement of
the theorem. The depth, number of states, and size of the transition function
are already computed in Proposition 2.

We begin by showing that if 〈Tr, r〉 is an accepting run of Aφ on a tree
T = 〈T, V 〉, then T |= ϕ. The cases φ = p, φ = ϕ0 ∨ ϕ1, and φ = ¬ϕ follow
easily from the definitions and the induction hypothesis. Consider now the case
φ = E≥gψ, and for every 1 ≤ i ≤ g, let πi, and ik be as given by Lemma 5;
furthermore, let r(πiik) = (yi, q

i), and take y1, . . . , yg to be the breakpoints in
the statement of Proposition 1. We claim that the conditions of Proposition 1
are satisfied, and thus, it’s conclusion also holds, i.e., that T |= ϕ as required.

First, consider condition (i) of Proposition 1: given i 6= j, we have to show
that yi is not a descendant of yj . Observe that since i is the only active Ψ

coordinate in πiik , and j is the only active Ψ coordinate in πjjk , then πiik 6= πjjk .
Let x ∈ Tr be a node of maximal depth γ, in which both coordinates i and j are
active (note that x is well defined since both coordinates are active at the root),
and let r(x) = (sx, qx). By Lemma 5, x must be a common ancestor of both πiik

23

and πjjk , and πiγ+1, π
j
γ+1 are thus sons of x. Let r(πiγ+1) = (s′, q′), r(πjγ+1) =

(s′′, q′′), and note that by the maximality of γ, in q′ coordinate i is active and j
is not, and vice versa for q′′. Hence, q′ 6= q′′. In other words, the copy of Aφ in
state qx, that reads the input node sx, launches (at least) two different copies
in parallel: one in state q′ to s′, and the other in state q′′ to s′′. Recall that
the transition δ(qx, V (sx)) is of the form ∨σ′∈Σ′((∨X∈Legal(q,σ′)3(X)) ∧ Ωσ′),
where Ωσ′ is a boolean formula that involves only states in Q2 (and thus not q′

and q′′). By the definition of a run, 〈Tr, r〉 makes use of a single disjunct of any
disjunction, and thus in this case, of one 3(X). It follows that both q′ and q′′

appear in X, and thus, by the semantics of 3, it must be that q′ and q′′ were
sent to two different sons of sx, i.e., that s′ 6= s′′. Recall that ik ≥ γ + 1, and
jk ≥ γ + 1, and thus yi is either equal to s′ or is a descendant of it. Similarly,
yj is either equal to s′′ or is a descendant of it. We conclude that yi is not a
descendant of yj as needed.

We now address condition (ii) of Proposition 1. Given 1 ≤ i ≤ g, let m =
i+ g, and take the path πm guaranteed by Lemma 5. Consider the path ρm =
loc(πm0) · loc(πm1) · · · in T , of the nodes associated with πm. For every l ≥ 0, let
σ′l ∈ Σ′ be the set of maximal state subformulas of φ that hold in ρml . Applying

the induction hypothesis to all θ ∈ max(φ), we can conclude that the only way
Tr can be accepting is if for every 0 ≤ l it resolves the outermost disjunction in
δ(state(πml), V (ρml)) by taking the disjunct

(∨X∈Legal(state(πml),σ′
l)
3(X)) ∧ (∧θ∈σ′

l
δθ(qθ0 , σ)) ∧ (∧θ 6∈σ′

l
δ¬θ(q¬θ0 , σ)).

It is thus not hard to see that since Tr is an accepting run of Aφ on T, then

r′ = state(πm0)m, state(π
m
1)m, . . .

is an accepting run of A¬Ψ on the word w = σ′0 ·σ′1 · · · ∈ Σ′ω. Note that Lemma 5
implies that πiik−1 = πmik−1, and it also states that state(πiik−1)i+g 6= >. Hence,
by Theorem 4 Part 2, some (finite or infinite) prefix u = σ′0 ·σ′1 · · · of w of length
at least ik satisfies ¬Ψ. By Lemma 1, it follows that the prefix % of ρm, of the
same length as u, satisfies ¬ψ. Observe that the length of % implies that the
path ρm0 · · · ρmik−1, from the root of T to the father of yi, is a prefix (possibly not
a proper prefix) of %, and is thus not ψ-conservative, as required by condition
(ii).

Addressing condition (iii) of Proposition 1 follows in the footsteps of the
reasoning used for condition (ii). Given 1 ≤ i ≤ g and the path πi, the associated
path ρi = loc(πi0) · (πi1) · · · in T induces the infinite word w′′ = σ′′0 · σ′′1 · · ·
who’s letters are the sets of maximal state subformulas of ψ that hold along
the path ρi. By the induction hypothesis, and since Tr is accepting, the run
state(πi0)i, state(π

i
1)i, . . . is an accepting run of AΨ on the word w′′, and thus

by Lemma 1, the path ρi satisfies ψ. Since yi lies on ρi, condition (iii) of
Proposition 1 is met, and we can conclude that T |= ϕ.

For the other direction, let T = 〈T, V 〉 be such that T |= ϕ. We have to
show that Aφ has an accepting run 〈Tr, r〉 on T. As before, the cases φ = p,
φ = ϕ0 ∨ ϕ1, and φ = ¬ϕ follow easily from the definitions and the induction

24

hypothesis. For the case φ = E≥gψ, by Proposition 1, there are g breakpoints
y1, . . . , yg ∈ T , and rooted infinite paths ρ1, . . . , ρg, such that for every 1 ≤ i ≤ g
we have that yi = ρiik for some ik ≥ 1, and ρi |= ψ; furthermore, the prefix
ρi0, . . . , ρ

i
ik−1 is not ψ-conservative, and thus, it can be extended to an infinite

path ρi+g such that some (finite or infinite) prefix of ρi+g of length in ≥ ik
satisfies ¬ψ. For every node x ∈ T , let σ′(x) ⊆ max(φ) be the set of all maximal
state subformulas of ψ that hold in x. By Lemma 1, for every 1 ≤ i ≤ g, the
infinite word wi = σ′(ρi0) ·σ′(ρi1) · · · satisfies Ψ, and the (finite or infinite) word
wi+g = σ′(ρi+g0) · · ·σ′(ρi+gin−1) satisfies ¬Ψ. By Theorem 4 Part 1 there is an

accepting run ri of AΨ on wi; and by Theorem 4 Part 2 there is an accepting
run ri+g of A¬Ψ on wi+g for which ri+gj 6= > for all j < in.

We build an accepting run 〈Tr, r〉 of Aφ on T, by induction on the depth γ of
the node x ∈ T . At the root ε of T , the automaton is in the initial state q0, and
note that q0 ∈ Q1. For the induction step, a copy of Aφ in some state q ∈ Q1,
that is at a node x ∈ T of depth γ ≥ 0 whose labelling V (x) = σ, proceeds as
follows. Recall that δ(q, σ) is

∨
σ′∈Σ′(J ∧K ∧ L) where

J =
∨

X∈Legal(q,σ′)

3(X) K =
∧
θ∈σ′

δθ(qθ0 , σ) L =
∧
θ 6∈σ′

δ¬θ(q¬θ0 , σ)

First, the automaton resolves ∨σ′∈Σ′ by choosing σ′ = σ′(x). By the induc-
tion hypothesis (of the theorem), we know that for every θ ∈ σ′ (alternatively
θ 6∈ σ′) the automaton Aθ (alternatively A¬θ) has an accepting run on the
subtree of T rooted at x; thus, by following these accepting runs, Aφ can sat-
isfy the conjunction (∧θ∈σ′δθ(qθ0 , σ)) ∧ (∧θ 6∈σ′δ¬θ(q¬θ0 , σ)). It remains to show
how the automaton handles ∨X∈Legal(q,σ′)3(X). For every node t ∈ T , let
live(t) = {1 ≤ i ≤ g | t ∈ ρi} be the set of all i’s for which the path ρi goes
through t. Let s1, . . . , sm be the sons of x for which these live() sets are not
empty. Let Y = q1, . . . , qm be a sequence of states where for every 1 ≤ h ≤ m,
and every 1 ≤ i ≤ 2g, we have that qhi = rik+1 if i ∈ live(sh), and qhi = ⊥ other-

wise. In words, the i’th coordinate of qh follows the run ri if ρi goes through the
h’th son of x, and is disabled if ρi does not go through this son. We claim that
Y is a legal distribution of (q, σ′). Indeed, it is not hard to see that q1, . . . , qm

are all different, and that properties (i), (ii) and (iv) of a legal distribution are
satisfied. As for property (iii), recall that by Proposition 1, if j, l ∈ {1, . . . , g}
and j 6= l, then yj is not a descendant of yl (and vice-versa). Thus, if both j and
l are active in qh (i.e., both ρj and ρl go through sh), it must be that yj and yl
are both descendants of sh, and thus k+ 1 < jk and k+ 1 < lk. Recall that for
every 1 ≤ i ≤ g, the paths ρi and ρi+g coincide at least up to (and including)
the father of yi. Hence, coordinates j + g, and l + g must also be active in qh.
Also, recall that for every 1 ≤ i ≤ g we have that ri+gm 6= > for all m < in,

and that in ≥ ik. Thus, in particular, rj+gk+1 = qhj+g 6= > and rl+gk+1 = qhl+g 6= >,
and property (iii) holds, and Y is a legal distribution of (q, σ′). Hence, the
automaton can handle ∨X∈Legal(q,σ′)3(X) by taking 3(Y), and resolving 3(Y)

by sending, for every 1 ≤ h ≤ m, a copy in state qh to the son sh of x.
We now argue that the run 〈Tr, r〉 described above is accepting. Let π be

25

a path in the run tree, and consider the case that for some j we have that
state(πj) ∈ Q2. Take j to be minimal with this property, and observe that it

must be that state(πj) ∈ Qθ for some θ ∈ max(φ). By our construction of
〈Tr, r〉, the subtree rooted at πj is an accepting run of Aθ on the subtree of T
rooted at loc(πj), and thus π is an accepting path. Consider now paths for which
all states associated with the nodes of the path are in Q1. By Lemma 5, there are
exactly 2g such paths π1, . . . , π2g, and it is easy to see that by our construction
of the run, for every 1 ≤ i ≤ 2g, we have that state(πi1)i, state(π

i
2)i, . . . is exactly

the run ri, and that for every j ≥ in the only active Ψ coordinate in state(πij)

is i. Hence, by the definition of the acceptance condition of Aφ, the path πi is
accepting. This completes the proof of the correctness of the construction. 2

5. Complexity of Decision Problems for GCTL∗

In this section we establish the complexity of satisfiability, model-checking
and realizability/synthesis of GCTL∗. We begin by proving that GCTL∗ has
the bounded-degree (in fact, exponential-degree) tree-model property. Recall
that Remark 4 only established the finitely-branching tree-model property.

Theorem 5. A satisfiable GCTL∗ formula ϑ has a tree model of branching
degree at most 2O(|ϑ|·deg(ϑ)).

Proof. Suppose ϑ is satisfiable. By Theorem 1, ϑ has a finitely-branching tree
model. Observe, by Theorem 3, that |Q| = 2O(|ϑ|·deg(ϑ)), where Q is the state
set of the automaton Aϑ defined in that proof. Hence, it is enough to prove that
every tree model of ϑ has a subtree of branching degree |Q|2 that also models
ϑ.

To prove this claim, we use the membership game GT,Aϑ of the input tree
T and the automaton Aϑ. The game is played by two players, automaton and
pathfinder. Player automaton moves by resolving disjunctions in the transition
relation of Aϑ, and is trying to show that T is accepted by Aϑ. Player pathfinder
moves by resolving conjunctions, and is trying to show that T is not accepted
by Aϑ. The game uses auxiliary tree structured arenas to resolve each transition
of the automaton. This is a simple case of a hierarchical parity game [4]. As
usual, player automaton has a winning strategy if and only if T |= Aϑ. By
memoryless determinacy of parity games on infinite arenas, player automaton
has a winning strategy if and only if he has a memoryless winning strategy.
For a fixed memoryless strategy str, one can prove, by looking at the transition
function of Aϑ, that every play consistent with str, and every node t of the
input tree T, only visits at most |Q|2 sons of t, thus inducing a subtree which
is the required boundedly-branching tree model.

Here are the details. Recall that the automaton Aϑ is built by recursion on
state subformulas (and their negations) of ϑ. In a stage where a subformula φ is
considered, an automaton is built which consists of some new states as well as
the states of automata built from subformulas of φ and their negations. Let φq
denote the stage at which state q enters the construction for the first time. Note

26

that every state of Q enters the construction at some time, but some created
states are not part of Q (for example, no state of the automaton Ap finds its
way to the automaton for (¬p)∨ q, because the latter uses states from the dual
automaton A¬p).
Definition of GT,Aϑ (for tree T = 〈T, V 〉 and formula ϑ). The arena consists
of the main nodes Q×T , two sink nodes >,⊥, as well as auxiliary nodes which
are used to play the auxiliary games aux(q, t) for (q, t) ∈ Q× T . Play proceeds
from a main node (q, t) to the auxiliary arena aux(q, t) (formally defined below)
played on the parse tree of the formula defined by δ(q, V (t)). The auxiliary
arena aux(q, t) is a finite tree, and when a play π exits this arena it results in a
node exitπ(q, t) which is either a main node from (Q× sons(t)) ∪ (Q× {t}) or
a sink node. A play π that visits (q, t), proceeds, via some auxiliary nodes and
main nodes of the form Q×{t}, to a node nextπ(q, t) ∈ (Q×sons(t))∪{⊥,>}.

The definition of the game aux(q, t) depends on the form of φq and the
definition of the transition δ(q, V (t)).

• If φq = p for p ∈ AP, then the game aux(q, t) immediately results in sink
node > if p ∈ V (t) and in sink node ⊥ otherwise.

• If φq = ϕ0 ∨ ϕ1, then in the game aux(q, t) automaton chooses to exit
either to main node (qϕ0

0 , t) or to main node (qϕ1

0 , t).

• If φq = ¬ϕ, then the game aux(q, t) immediately results in main node
(q′, t) where q′ is the initial state of the dual automaton for Aϕ.

• If φq = E≥gψ, then the game aux(q, t) proceeds as follows: first player
automaton picks σ′ ∈ Σ′, and then pathfinder has three choices. Either
she i) picks θ ∈ σ′ and exits at main node (qθ0 , t), or ii) she picks θ 6∈ σ′
and exits at main node (q¬θ0 , t), or iii) she transfers play to automaton, in
which case automaton picks a legal distribution, say X = (q1, · · · , qm) ∈
Legal(q, σ′), and automaton also picks m-many different sons of t, say
(s1, · · · , sm), and then pathfinder picks some i ≤ m, and exits at main
node (qi, si). To understand this game, recall from the construction of Aφ
that the transition relation for this case is defined as∨
σ′∈2max(ψ)

[
(∨X∈Legal(q,σ′)3(X))

∧
(∧θ∈σ′δθ(qθ0 , σ))

∧
(∧θ 6∈σ′δ¬θ(q¬θ0 , σ))

]
.

The hesitant acceptance condition of Aϑ can be easily translated into a
parity condition with priorities {0, 1, 2} (also, let sink node > have priority
2, and sink node ⊥ have priority 1). We say that player automaton wins a
play if the largest priority occurring infinitely often is even. This completes the
description of the membership game GT,Aϑ . We now continue with the proof.
Since ϑ is satisfiable, it is satisfiable by some finitely-branching tree T. Thus,
fix a memoryless winning strategy str for player automaton in the game GT,Aϑ .

Lemma (†). For every main node (q, t) of GT,Aϑ , there exists a set Y (q, t) ⊆
Q× sons(t) such that i) |Y (q, t)| ≤ |Q|, and ii) every play π consistent with str

27

that exits the arena aux(q, t) with exitπ(q, t) ∈ Q × sons(t) actually satisfies
that exitπ(q, t) ∈ Y (q, t).

We prove Lemma (†) by induction on φ: for every state q such that φq = φ,
for every t ∈ T , there exists a set Y φ(q, t) ⊆ Qφ × sons(t) of size at most |Qφ|
such that every play π consistent with str that exits the auxiliary arena aux(q, t)
in a node of the form Qφ × sons(t) actually exits it in a node from Y φ(q, t).

To see why this gives the lemma, take (q, t) ∈ Q × T , and consider the
induction at stage φq. Then every play π that exits the arena aux(q, t) with
exitπ(q, t) ∈ Q × sons(t) actually satisfies that exitπ(q, t) ∈ Y φq (q, t). But
Y φq (q, t) ⊆ Q× sons(t) and |Y φq (q, t)| ≤ |Qφq | ≤ |Q|.

For the proof, suppose every proper subformula of φ satisfies the inductive
hypothesis. There are four cases:

• φ = p for some p ∈ AP. Define Y φ(q, t) := ∅, and note that the exit node
of aux(q, t) is a sink node.

• φ = ϕ1∨ϕ2. Define Y φ(q, t) := ∅, and note that the exit node of aux(q, t)
is a main node of the form Q× {t}.

• φ = ¬ϕ. Define Y φ(q, t) := ∅, and note that the exit node of aux(q, t) is
a main node of the form Q× {t}.

• φ = E≥gψ. The only way to exit aux(q, t) in a main node of the form
Q × sons(t) is via option iii) in the definition of aux(q, t) above; i.e.,
automaton picks σ′, and then pathfinder transfers play to automaton, who
then, according to str, picks a legal distribution, say X = (q1, · · · , qm),
and corresponding sons of t, say (s1, · · · , sm), and then pathfinder picks
an exit of the form (qi, si). Define Y φ(q, t) := {(q1, s1), · · · , (qm, sm)}.
Since m ≤ |Qφ| (the components of the legal distribution X are distinct
elements of Qφ), we have that |Y φ(q, t)| ≤ |Qφ|.

This completes the proof of the Lemma.
We finish the proof of the theorem. Every play consistent with str only

visits, besides the main nodes Q × {root} (here root is the root vertex of tree
T), main nodes from ∪t∈TX(t) where X(t) := ∪q∈QY (q, t) (for t ∈ T). Note
that for all t ∈ T , |X(t)| ≤ |Q|2. Define the subtree T′ of T where the domain T ′

consists of root and the elements in the set {t ∈ T : ∃q ∈ Q.(t, q) ∈ X(t)}. Note
that every node in T′ has degree at most |Q|2. The membership game GT′,Aϑ

is a subgame of GT,Aϑ , and player automaton’s strategy str is well defined on
this subgame, and is winning. Thus T′ |= ϑ. 2

Theorem 6. The satisfiability problem for GCTL∗ over LTSs is 2ExpTime-
Complete. The model checking problem for GCTL∗ for finite LTSs is PSpace-
Complete.

Proof. The lower bounds already hold for CTL∗.
The time upper-bounds for satisfiability follow from Theorems 3, 5 and

Lemma 3.

28

For the space upper-bound for model checking proceed as follows. Given
a GCTL∗ formula ϑ, use Theorem 3 and construct the GHTA Aϑ, which has
2O(|ϑ|·deg(ϑ)) states, and transition function of size 2O(|ϑ|·deg(ϑ)), and which has
depth O(|ϑ|). Then by Lemma 4, the membership problem for Aϑ and LTS S
can be solved in space linear in |ϑ|, quadratic in |S|, and polylogarithmic in
2O(|ϑ|·deg(ϑ)). To finish note that deg(ϑ) ≤ |ϑ|. 2

The automaton constructed in Theorem 3 can serve not only as the basis
for solving the satisfiability and model-checking problems of GCTL∗ as we do
in Theorem 6 above, but also for solving other problems for GCTL∗ for which
the automata-theoretic approach was successfully applied to CTL∗. Essentially,
this usually requires no new ideas, and amounts to using the approach taken for
CTL∗ and modifying it by plugging in an automaton that can handle GCTL∗

based on the GHTA from Theorem 3. We briefly demonstrate this for (perfect
information) realizability and synthesis of GCTL∗, showing that the realizabil-
ity problem for GCTL∗ is 2ExpTime-Complete, and that one can synthesise
a strategy (if one exists) in 2ExpTime. In these problems, sometimes called
Church’s synthesis, we are given disjoint sets of input variables I and output
variables O, and a specification formula ϕ over atoms I ∪ O. The realizabil-
ity problem is to decide if there is a program f : (2I)∗ → 2O such that the
computation tree of f satisfies ϕ. The synthesis problem is to return a finite
representation of such a program. For more details see [43, 36].

Our automata-theoretic technique allows us to solve these problems for
GCTL∗ specification formulas in a similar way that the automata-theoretic
approach solves this problem for simpler CTL∗ specifications [36]. That is,
given a GCTL∗ formula ϕ, build a GHTA B that accepts exactly the com-
putation trees satisfying ϕ (i.e., the 2I -branching 2I∪O-labeled trees satisfying
ϕ) by taking the product of a GHTA that accepts the finitely-branching 2I∪O-
labeled trees satisfying ϕ (obtained by Theorem 3) and a GHTA that accepts
all 2I -branching 2I∪O-labeled trees. The latter automaton can be easily built
as follows: at every node of the tree, check using a 3-operator that there are at
least |2I | children each labeled by a different element of 2I , and check using a 2-
operator that there are at most |2I | children (alternatively, using a conjunction
of 2-operators, check that there are no two children labeled with the same ele-
ment of 2I). Finally, use Lemma 3 to test if the GHTA B is non-empty and, if so,
obtain a regular computation tree witnessing its non-emptiness. Since the size of
the automaton B is exponential in the size of ϕ we get that GCTL∗-realizability
is 2ExpTime-Complete (for the lower bound, recall that the problem is al-
ready 2ExpTime-Hard for CTL∗ formulas [36]) and GCTL∗-synthesis can be
done in 2ExpTime.

6. Discussion

We have shown that GCTL∗ is an expressive logic: it has the tree-model
property and is equivalent, over trees, to MPL; and it can express fairness and

29

counting over paths. Moreover, we have shown that the satisfiability, model-
checking and realizability/synthesis problems for GCTL∗ have the same com-
plexity as that of CTL∗.

Our technique suggests a flexible new way to deal with graded path modal-
ities. For instance, our technique immediately recovers the main results about
GCTL from [13], i.e., the complexity of satisfiability is ExpTime-Complete
and the complexity of model checking is in PTime. Indeed, consider the con-
struction in Theorem 3 of Aϑ when ϑ it taken from the fragment GCTL of
GCTL∗, and in particular where it comes to a subformula φ of the form
φ = E≥gψ. Since ψ is either of the form pUq or Xp, the number of new states
added at this stage is a constant. Thus, the number of states of Aϑ is linear
in the size of ϑ. Also, our results immediately apply to counting-CTL∗(by Re-
mark 3) and show that the complexity of satisfiability is 2ExpTime-Complete
and the complexity of model checking is PSpace-Complete.9

When investigating the complexity of a logic with a form of counting quan-
tifiers, one must decide how the numbers in these quantifiers contribute to the
length of a formula, i.e., to the input of a decision procedure. In this paper
we assume that these numbers are coded in unary, rather than binary. There
are a few reasons for this. First, the unary coding naturally appears in descrip-
tion and predicate logics [16]. As pointed out in [34], this reflects the way in
which many decision procedures for these logics work: they explicitly generate
n individuals for ∃≥n. Second, although the complexity of the binary case is
sometimes the same as that of the unary case, the constructions are significantly
more complicated, and are thus much harder to implement [15, 14]. At any rate,
as the binary case is useful in some circumstances we plan to investigate this in
the future.

Comparison with (some) other approaches. Although showing that
satisfiability of GCTL∗ is decidable is not hard (for example, by reducing to
MSOL), identifying the exact complexity is much harder. Indeed, there is
no known satisfiability-preserving translation of GCTL∗ to another logic that
would yield the optimal 2ExpTime upper bound. We discuss two such candi-
date translations. First, in this article we show a translation from GCTL∗ to
MPL. Unfortunately, the complexity of satisfiability of MPL is non-elementary.
Second, there is no reason to be optimistic that a translation from GCTL∗ to
Gµ-calculus (whose satisfiability is ExpTime-Complete) would yield the opti-
mal complexity since a) already the usual translation from CTL∗ to µ-calculus
does not yield optimal complexity [24], and b) the translation given in [14] from
GCTL to Gµ-calculus does not yield optimal complexity. Moreover, the usual
translation from CTL∗ to µ-calculus uses automata, and thus automata for
GCTL∗ (from which we get our results directly) have to be developed anyway.

Future work. First, recall that logics extended with graded world modali-

9It was conjectured in [14] that a) GCTL∗ has the same expressive power as counting-
CTL∗, and b) GCTL∗ is exponentially more succinct than counting-CTL∗. The proof of
Theorem 1 confirms a), while b) is still open.

30

ties have been further enriched with backward-modalities and with nominals [15].
A similar direction can be taken for graded path modalities, and GCTL∗ in par-
ticular. Second, recall that the graded µ-calculus was used to solve questions
(such as satisfiability) for the description logic µALCQ [15]. Similarly, our tech-
niques for GCTL∗ might be useful for solving questions in ALCQ combined
with temporal logic, such as for the graded extension of CTL∗ALC [31]. Third,
graded strategy modalities that generalize the graded path modalities in this
work are studied in [37], and in particular the complexity of model checking a
graded extension of ATL is established as being PTime-complete. We believe
our techniques can be extended to deal with a graded extension of ATL∗.

References

[1] Graded modalities in strategy logic. Information and Computation, IN
PRESS:–, 2018.

[2] S. Almagor, U. Boker, and O. Kupferman. What’s decidable about
weighted automata? In ATVA, pages 482–491, 2011.

[3] B. Aminof, O. Kupferman, and R. Lampert. Rigorous approximated de-
terminization of weighted automata. In Symposium on Logic in Computer
Science, pages 345–354, 2011.

[4] B. Aminof, O. Kupferman, and A. Murano. Improved model checking of
hierarchical systems. Information and Computation, 210:68–86, 2012.

[5] Benjamin Aminof, Vadim Malvone, Aniello Murano, and Sasha Rubin.
Graded strategy logic: Reasoning about uniqueness of nash equilibria. In
Catholijn M. Jonker, Stacy Marsella, John Thangarajah, and Karl Tuyls,
editors, Proceedings of the 2016 International Conference on Autonomous
Agents & Multiagent Systems, Singapore, May 9-13, 2016, pages 698–706.
ACM, 2016.

[6] Benjamin Aminof, Aniello Murano, and Sasha Rubin. On CTL* with
graded path modalities. In Martin Davis, Ansgar Fehnker, Annabelle
McIver, and Andrei Voronkov, editors, Logic for Programming, Artifi-
cial Intelligence, and Reasoning - 20th International Conference, LPAR-
20 2015, Suva, Fiji, November 24-28, 2015, Proceedings, volume 9450 of
Lecture Notes in Computer Science, pages 281–296. Springer, 2015.

[7] M. Arenas, P. Barceló, and L. Libkin. Combining Temporal Logics for
Querying XML Documents. In ICDT, LNCS 4353, pages 359–373, 2007.

[8] Franz Baader, Stefan Borgwardt, and Marcel Lippmann. Temporal con-
junctive queries in expressive description logics with transitive roles. In
Bernhard Pfahringer and Jochen Renz, editors, AI 2015: Advances in Ar-
tificial Intelligence - 28th Australasian Joint Conference, Canberra, ACT,
Australia, November 30 - December 4, 2015, Proceedings, volume 9457 of
Lecture Notes in Computer Science, pages 21–33. Springer, 2015.

31

[9] Pablo Barceló, Leonid Libkin, and Juan L. Reutter. Querying regular graph
patterns. J. ACM, 61(1):8:1–8:54, 2014.

[10] Everardo Bárcenas, Edgard Beńıtez-Guerrero, and Jesús Lavalle. On the
model checking of the graded µ-calculus on trees. In Grigori Sidorov and
Sof́ıa N. Galicia-Haro, editors, Advances in Artificial Intelligence and Soft
Computing - 14th Mexican International Conference on Artificial Intelli-
gence, MICAI 2015, Cuernavaca, Morelos, Mexico, October 25-31, 2015,
Proceedings, Part I, volume 9413 of Lecture Notes in Computer Science,
pages 178–189. Springer, 2015.

[11] Everardo Bárcenas and Jesús Lavalle. Global numerical constraints on
trees. Logical Methods in Computer Science, 10(2), 2014.

[12] Everardo Bárcenas, Guillermo Molero, Gabriela Sánchez, Edgard Beńıtez-
Guerrero, and Carmen Mezura-Godoy. Reasoning on expressive descrip-
tion logics with arithmetic constraints. In 2016 International Conference
on Electronics, Communications and Computers, CONIELECOMP 2016,
Cholula, Mexico, February 24-26, 2016, pages 180–185. IEEE, 2016.

[13] A. Bianco, F. Mogavero, and A. Murano. Graded computation tree logic.
In Symposium on Logic in Computer Science, pages 342–351. IEEE, 2009.

[14] A. Bianco, F. Mogavero, and A. Murano. Graded computation tree logic.
ACM Transactions on Computational Logic, 13(3), 2012.

[15] P.A. Bonatti, C. Lutz, A. Murano, and M.Y. Vardi. The complexity of
enriched mu-calculi. Logical Methods in Computer Science, 4(3):, 2008.

[16] D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning in expressive
description logics with fixpoints based on automata on infinite trees. In
International Joint Conference on Artificial Intelligence, pages 84–89, 1999.

[17] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y.
Vardi. Node selection query languages for trees. In Maria Fox and David
Poole, editors, Proceedings of the Twenty-Fourth AAAI Conference on Ar-
tificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, July 11-15, 2010.
AAAI Press, 2010.

[18] Diego Calvanese, Thomas Eiter, and Magdalena Ortiz. Answering regular
path queries in expressive description logics via alternating tree-automata.
Inf. Comput., 237:12–55, 2014.

[19] Giuseppe De Giacomo and Moshe Y. Vardi. Linear temporal logic and lin-
ear dynamic logic on finite traces. In Francesca Rossi, editor, IJCAI 2013,
Proceedings of the 23rd International Joint Conference on Artificial Intel-
ligence, Beijing, China, August 3-9, 2013, pages 854–860. IJCAI/AAAI,
2013.

32

[20] M. de Rijke. A note on graded modal logic. Studia Logica, 64(2):271–283,
2000.

[21] M. Droste, W. Kuich, and H. Vogler. Handbook of Weighted Automata.
Springer, 2009.

[22] C. Eisner, D.Fisman, J. Havlicek, Y. Lustig, A. McIsaac, and D. V. Camp-
enhout. Reasoning with temporal logic on truncated paths. In Computer
Aided Verification, LNCS 2725, pages 27–39, 2003.

[23] E.A. Emerson and C.S. Jutla. The complexity of tree automata and logics
of programs. SIAM Journal of Computing, 29(1):132–158, 1999.

[24] E.A. Emerson and A.P. Sistla. Deciding branching time logic. In Sympo-
sium on Theory of Computing, pages 14–24, 1984.

[25] Cristina Feier and Thomas Eiter. Reasoning with forest logic programs us-
ing fully enriched automata. In Francesco Calimeri, Giovambattista Ianni,
and Miroslaw Truszczynski, editors, Logic Programming and Nonmonotonic
Reasoning - 13th International Conference, LPNMR 2015, Lexington, KY,
USA, September 27-30, 2015. Proceedings, volume 9345 of Lecture Notes
in Computer Science, pages 346–353. Springer, 2015.

[26] A. Ferrante, A. Murano, and M. Parente. Enriched mu-calculi module
checking. Logical Methods in Computer Science, 4(3):, 2008.

[27] A. Ferrante, M. Napoli, and M. Parente. Model Checking for Graded CTL.
Fundamenta Informaticae, 96(3):323–339, 2009.

[28] Alessandro Ferrante, Margherita Napoli, and Mimmo Parente. CTL model-
checking with graded quantifiers. In Automated Technology for Verification
and Analysis, 6th International Symposium, ATVA 2008, Seoul, Korea,
October 20-23, 2008. Proceedings, pages 18–32, 2008.

[29] Alessandro Ferrante, Margherita Napoli, and Mimmo Parente. Graded-
CTL: Satisfiability and symbolic model checking. In Formal Methods and
Software Engineering, 11th International Conference on Formal Engineer-
ing Methods, ICFEM 2009, Rio de Janeiro, Brazil, December 9-12, 2009.
Proceedings, pages 306–325, 2009.

[30] K. Fine. In So Many Possible Worlds. Notre Dame Journal of Formal
Logic, 13:516–520, 1972.

[31] V. Gutiérrez-Basulto, J.C. Jung, and C. Lutz. Complexity of branching
temporal description logics. In European Conference on Artificial Intelli-
gence, pages 390–395, 2012.

[32] T.A. Henzinger. Quantitative reactive modeling and verification. Comput.
Sci., 28(4):331–344, November 2013.

33

[33] Ian Horrocks and Ulrike Sattler. Decidability of SHIQ with complex role
inclusion axioms. Artif. Intell., 160(1-2):79–104, 2004.

[34] O. Kupferman, U. Sattler, and M.Y. Vardi. The Complexity of the Graded
µ-Calculus. In Conference on Automated Deduction, LNCS 2392, pages
423–437. Springer, 2002.

[35] O. Kupferman, M.Y. Vardi, and P. Wolper. An Automata Theoretic
Approach to Branching-Time Model Checking. Journal of the ACM,
47(2):312–360, 2000.

[36] Orna Kupferman and Moshe Y. Vardi. Church’s problem revisited. Bulletin
of Symbolic Logic, 5(2):245–263, 1999.

[37] Vadim Malvone, Fabio Mogavero, Aniello Murano, and Loredana Sor-
rentino. On the counting of strategies. In Fabio Grandi, Martin Lange,
and Alessio Lomuscio, editors, 22nd International Symposium on Temporal
Representation and Reasoning, TIME 2015, Kassel, Germany, September
23-25, 2015, pages 170–179. IEEE Computer Society, 2015.

[38] Vadim Malvone, Fabio Mogavero, Aniello Murano, and Loredana Sor-
rentino. Reasoning about graded strategy quantifiers. Inf. Comput.,
259(Part):390–411, 2018.

[39] Vadim Malvone, Aniello Murano, and Loredana Sorrentino. Games with
additional winning strategies. In Davide Ancona, Marco Maratea, and
Viviana Mascardi, editors, Proceedings of the 30th Italian Conference on
Computational Logic, Genova, Italy, July 1-3, 2015., volume 1459 of CEUR
Workshop Proceedings, pages 175–180. CEUR-WS.org, 2015.

[40] Vadim Malvone, Aniello Murano, and Loredana Sorrentino. Additional
winning strategies in reachability games. Fundam. Inform., 159(1-2):175–
195, 2018.

[41] F. Moller and A. Rabinovich. Counting on CTL*: On the expressive power
of monadic path logic. Information and Computation, 184(1):147–159,
2003.

[42] Magdalena Ortiz and Mantas Simkus. Reasoning and query answering
in description logics. In Thomas Eiter and Thomas Krennwallner, edi-
tors, Reasoning Web. Semantic Technologies for Advanced Query Answer-
ing - 8th International Summer School 2012, Vienna, Austria, September
3-8, 2012. Proceedings, volume 7487 of Lecture Notes in Computer Science,
pages 1–53. Springer, 2012.

[43] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In
Conference Record of the Sixteenth Annual ACM Symposium on Principles
of Programming Languages, Austin, Texas, USA, January 11-13, 1989,
pages 179–190. ACM Press, 1989.

34

[44] Lutz Schröder and Dirk Pattinson. How many toes do I have? parthood
and number restrictions in description logics. In Gerhard Brewka and
Jérôme Lang, editors, Principles of Knowledge Representation and Rea-
soning: Proceedings of the Eleventh International Conference, KR 2008,
Sydney, Australia, September 16-19, 2008, pages 307–317. AAAI Press,
2008.

[45] S. Tobies. PSPACE Reasoning for Graded Modal Logics. Journal of Logic
and Computation, 11(1):85–106, 2001.

[46] W. van der Hoek and JJ.Ch. Meyer. Graded modalities in epistemic logic.
In Symposium on Logical Foundations of Computer Science, pages 503–514,
1992.

[47] M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In
Banff Higher Order Workshop, pages 238–266, 1995.

[48] M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Infor-
mation and Computation, 115(1):1–37, 1994.

[49] I. Walukiewicz. Monadic second-order logic on tree-like structures. Theor.
Comput. Sci., 275(1-2):311–346, 2002.

35

Appendix A. Proof of Lemma 1.

Proof. Let Ψ be the LTL formula over atoms max(ψ) corresponding to ψ, as
defined above. However for the duration of this inductive proof, instead of Ψ,
write ψ̂. Proceed by induction on ψ (for all S, π).

The base case is that ψ is a state formula. Then ψ̂ ∈ max(ψ). Thus (S, π) |=
ψ iff (S, π0) |= ψ iff ψ̂ (an atom) is in L(q) iff (Sψ, π0) |= ψ̂ iff (Sψ, π) |= ψ̂.

So suppose now that ψ is a path formula that is not a state formula. We
have the following cases.

1. Suppose ψ = ¬γ. Then max(ψ) = max(γ), and so ψ̂ = ¬γ̂, and so

(S, π) |= ψ iff (S, π) 6|= γ

iff (Sγ , π) 6|= γ̂

iff (S¬γ , π) 6|= γ̂

iff (S¬γ , π) |= ¬γ̂

iff (S¬γ , π) |= ψ̂.

2. Suppose ψ = Xγ. Then, max(ψ) = max(γ), and so ψ̂ = Xγ̂, and so

(S, π) |= ψ iff (S, π≥1) |= γ and |π| > 1

iff (Sγ , π≥1) |= γ̂ and |π| > 1

iff (SXγ , π) |= γ̂ and |π| > 1

iff (SXγ , π) |= Xγ̂

iff (SXγ , π) |= ψ̂.

3. Suppose ψ = γUζ. Then, max(ψ) = max(γ) ∪max(ζ), and so ψ̂ = γ̂Uζ̂.
Then: (S, π) |= ψ, if and only if, ∃i.0 ≤ i < |π|.(S, π≥i) |= ζ and ∀j.0 ≤
j < i, (S, π≥j) |= γ, if and only if, ∃i.0 ≤ i < |π|.(Sζ , π≥i) |= ζ̂ and

∀j.0 ≤ j < i, (Sγ , π≥j) |= γ̂, if and only if, ∃i.0 ≤ i < |π|.(Sψ, π≥i) |= ζ̂

and ∀j.0 ≤ j < i, (Sψ, π≥j) |= γ̂, which is equivalent to (Sψ, π) |= γ̂Uζ̂,

which is equivalent to (Sψ, π) |= ψ̂.

The other cases, ∨ and R, are similar to the U case. 2

Appendix B. Proof of Part 2 of Lemma 2.

Proof. Notation. We use ‘·’ for concatenation of paths in St, and we use
adjacency or ‘.’ for concatenation of paths in S.

The statement we want to prove is this: for all GCTL∗ formulas φ (these
are state formulas), and all LTSs S, and all t ∈ S, (S, t) |= φ if and only if
(St, t) |= φ.

We first define a natural bijection f between pth(S, t) and pth(St, t). Define
f(t) := t, and f(π0 . . . πnr) := f(π0 . . . πn) · π0 . . . πnr, and f(π0π1 . . .) := π0 ·
π0π1 · π0π1π2 ·

36

Note that f is �-preserving, i.e., π � π′ iff f(π) � f(π′).
The inductive hypothesis for a GCTL∗ formula α says that for all LTSs S,

t ∈ S, and π ∈ pth(S, t):

• if α is a state formula then (S, t) |= α iff (St, t) |= α,

• if α is a path formula then (S, π) |= α iff (St, f(π)) |= α.

Suppose the inductive hypothesis holds for all proper subformulas of α. Fix
S, t, π. There are two main cases.

Suppose α is a state formula. There are three cases.

1. Suppose α is of the form p for p ∈ AP. In this case we must prove that
(S, t) |= p iff (St, t) |= p, which is immediate from the definition of λ′.

2. The case that α = ¬ϕ1 or α = ϕ1 ∨ ϕ2 for state formulas ϕi is imme-
diate from the semantics of these Boolean operations and the inductive
hypothesis.

3. Suppose α is of the form E≥gψ for path formula ψ.
For the first direction, suppose (S, t) |= α, i.e., there are at least g many
minimal ψ-conservative paths in pth(S, t). In other words, there exists
distinct π1, · · · , πg ∈ pth(S, t) such that for every i, we have

(a) Every extension π′ ∈ pth(S, t) of πi satisfies (S, π′) |= ψ.
(b) Every prefix τ of πi has an extension ρ ∈ pth(S, t) that satisfies

(S, ρ) 6|= ψ.

Thus: f(π1), · · · , f(πg) ∈ pth(St, t) are distinct, and for every i we have:
(a) Every extension π′ ∈ pth(St, t) of f(πi) satisfies (St, π′) |= ψ. To see

this note that π′ = f(π) for some π ∈ pth(S, t), and so f(πi) � f(π),
and so πi � π, and so by 3a. (S, π) |= ψ, and so by induction
(St, f(π)) |= ψ.

(b) Every prefix τ ′ of f(πi) has an extension ρ′ ∈ pth(St, t) that satisfies
(St, ρ′) 6|= ψ (use similar reasoning to the previous case).

Thus (St, t) |= E≥gψ, and this completes the first direction. The other
direction, i.e., that (St, t) |= E≥gψ implies (S, t) |= E≥gψ is done by simply
reversing the argument for the first direction.

Suppose α is a path formula, say ψ. Let Ψ be the LTL formula from
Lemma 1. Then

(S, π) |= ψ iff (Sψ, π) |= Ψ

iff ((Sψ)t, f(π)) |= Ψ

iff ((St)ψ, f(π)) |= Ψ

iff (St, f(π)) |= ψ.

The first and fourth equivalences follow from Lemma 1, the second and third
equivalences follows from inductive hypothesis applied to the maximal state
sub-formulas of ψ and the fact that π ∈ Sψ and f(π) ∈ (Sψ)t and f(π) ∈ (St)ψ
induce the same infinite sequence of labels (and thus the paths agree on the
LTL formula Ψ). 2

37

Appendix C. Proof of Theorem 4.

Proof. The existence of Aζ is shown in [47, Corollary 23]. The existence of Bζ
is proved by a simple adaptation of the construction in [47, Theorem 22] (given
below, or see [19] for the translation of Linear Dynamic Logic on finite traces to
alternating finite automata). This yields an alternating finite word automaton
B′ζ (of linear size) accepting all finite paths that satisfy ζ. This automaton is
then converted B′ζ to an equivalent NFW Bζ (using [47, Proposition 16]), of

size 2O(ζ).
The alternating finite automaton B′ζ = 〈Σ, Q, q0, δ, F 〉 is constructed as fol-

lows: the input alphabet is Σ = 2AP where AP is the set of atoms used by ζ;
the set of states Q is the set of all sub-formulas of ζ and their negations (as
usual ¬¬ϕ is identified with ϕ), as well as the special state eow (indicating a
guess that we reached the end of the input word); the initial state q0 is ζ; and
the set of accepting states F = {eow}. For a state ϕ, and a set of atoms a, the
transition function δ(ϕ, a) is given by:

1. if ϕ = eow, then δ(ϕ, a) = false;

2. if ϕ = p for p ∈ AP , then δ(ϕ, a) = true if p ∈ a, and δ(ϕ, a) = false
otherwise;

3. if ϕ = ¬p for p ∈ AP , then δ(ϕ, a) = false if p ∈ a, and δ(ϕ, a) = true
otherwise;

4. If ϕ = ϕ1†ϕ2, for † ∈ {∨,∧}, then δ(ϕ, a) = δ(ϕ1, a)†δ(ϕ2, a);

5. If ϕ = ¬(ϕ1†ϕ2), for † ∈ {∨,∧}, then δ(ϕ, a) = δ(¬ϕ1, a)‡δ(¬ϕ2, a), where
‡ is the dual of †, i.e., ‡ = ∨ if † = ∧, and ‡ = ∧ if † = ∨;

6. if ϕ = Xθ, then δ(ϕ, a) = θ;

7. if ϕ = ¬Xθ, then δ(ϕ, a) = eow ∨ ¬θ;
8. if ϕ = ϕ1Uϕ2, then δ(ϕ, a) = δ(ϕ2, a) ∨ (δ(ϕ1, a) ∧ δ(X(ϕ1Uϕ2), a));

9. if ϕ = ¬(ϕ1Uϕ2), then δ(ϕ, a) = δ(¬ϕ2, a)∧(δ(¬ϕ1, a)∨δ(¬X(ϕ1Uϕ2), a)).

10. if ϕ = ϕ1Rϕ2, then δ(ϕ, a) = (δ(ϕ1, a)∧δ(ϕ2, a))∨(δ(ϕ2, a)∧δ(X(ϕ1Rϕ2), a));

11. if ϕ = ¬(ϕ1Rϕ2), then δ(ϕ, a) = δ(¬ϕ2, a)∨(δ(¬ϕ1, a)∧δ(¬X(ϕ1Rϕ2), a)).

By defining the transition relation rules for the cases of X,U,R and their
negations using one-step unfolding, the adaptation of the construction in [47,
Theorem 22] to the finite words semantics addressed here is confined to the
definition of the set of accepting states, and the transitions from eow and ¬X.
In order to accept ¬Xθ, the automaton can either guess that the input word has
ended and go to the accepting state eow, or (by going to the state ¬θ) guess that
the input has not ended and that the remaining suffix of the input word does
not satisfy θ. Having δ(eow, a) = false ensures that if the automaton guessed
that the input has ended, then any further input would result in a rejecting run.
This completes the proof of the first part.

For the second part, consider the NBW and the NFW from Part 1, i.e.,
the NBW Aζ = 〈Σ, Q, q0, δ, G〉 and the NFW Bζ = 〈Σ, Q′, q′0, δ′, F 〉. Assume
w.l.o.g. that Q,Q′ are disjoint (and do not contain >, q̃0) and construct from
them a single NBW Aζ = 〈Σ, Q ∪Q′ ∪ {>, q̃0}, q̃0, δ

′′, G ∪ {>}〉, where δ′′ is the

38

union of δ and δ′ as well as the transitions (q̃0, σ, q) for every σ and q such
that (q0, σ, q) ∈ δ or (q′0, σ, q) ∈ δ′; (>, σ,>) for every letter σ ∈ Σ, and the
transitions (q, σ,>) for every (q, σ, q′) ∈ δ′ for which q′ ∈ F . I.e., by taking
the union of Aζ and Bζ , adding a new accepting sink state >, and matching
any transition that goes to a final state of Bζ with a transition that goes to the
accepting sink >. It is not hard to see that this construction yields the desired
automaton. 2

39

	Introduction
	The temporal logic GCTL
	Syntax and Semantics of GCTL
	Important Properties of GCTL
	Treating path formulas as LTL formulas
	Invariance under bisimulation and unwinding
	Expressive Power

	Graded Hesitant Tree Automata
	Definition of AHTA
	Definition of GHTA

	From GCTL to Graded Hesitant Automata
	Characterization of the graded path modality and intuition of the construction
	The construction of GHTA A for a GCTL formula .
	Definition of the Hesitancy Structure "426830A part, type, "526930B of A

	Depth and Size Analysis
	Proof of Correctness

	Complexity of Decision Problems for GCTL
	Discussion
	Proof of Lemma 1.
	Proof of Part 2 of Lemma 2.
	Proof of Theorem 4.

