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Abstract—The Internet of Things (IoT) will seamlessly inte-
grate a large number of densely deployed heterogeneous devices
and will enable new location-aware services. However, fine-
grained localization of IoT devices is challenging as their com-
putation and communication resources are typically limited and
different devices may have different qualities of internal clocks
and different mobility patterns. To address these challenges, we
propose a cooperative, scalable, and time-recursive algorithm for
network localization and synchronization (NLS). Our algorithm
is based on time measurements and supports heterogeneous
devices with limited computation and communication resources,
time-varying clock and location parameters, arbitrary state-
evolution models, and time-varying network connectivity. These
attributes make the proposed algorithm attractive for IoT-related
applications. The algorithm is furthermore able to incorporate
measurements from additional sensors for positioning, navigation
and timing (PNT) such as receivers for global navigation satellite
systems (GNSSs). Based on a factor graph representation of
the underlying spatiotemporal Bayesian sequential estimation
problem, the algorithm uses belief propagation (BP) for an
efficient marginalization of the joint posterior distribution. To
account for the nonlinear measurement model and nonlinear
state-evolution models while keeping the communication and
computation requirements low, we develop an efficient second-
order implementation of the BP rules by means of the recently
introduced sigma point belief propagation (SPBP) technique.
Simulation results demonstrate the high synchronization and
localization accuracy as well as the low computational complexity
of the proposed algorithm. In particular, in sufficiently dense
networks, the proposed algorithm outperforms the state-of-the-
art BP-based algorithm for NLS in terms of both estimation
accuracy and computational complexity.

Index Terms—Internet of Things, network synchronization,
network localization, belief propagation, message passing, factor
graph, distributed estimation, cooperative localization, coopera-
tive synchronization.
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I. INTRODUCTION

LOCATION AWARENESS plays a critical role for various
applications and services in the context of the Internet

of Things (IoT), including pedestrian navigation, intelligent
transportation, smart home, medical services, and target track-
ing [1]–[6]. In wireless networks where a global navigation
satellite system (GNSS) is unavailable, location information
can be obtained by using the device-to-device communication
capabilities of the IoT to extract inter-node measurements,
such as range measurements and angle-of-arrival measure-
ments [7]–[11]. However, a localization technique with de-
sirable scalability and accuracy for the IoT that can deal with
the large number, heterogeneous nature, and limited hardware
capabilities of the devices in the network is still lacking.

Time-based cooperative localization is a powerful method
for obtaining reliable location information [11]–[19]. Here,
nodes in the network transmit wireless signals to other nodes
and infer inter-node range information from transmit and
receive time measurements. The performance of time-based
cooperative localization is impacted by the hardware capabili-
ties of the involved devices. In particular, offsets and skews of
the clocks of the IoT devices introduce errors into the range
measurements, and thus the localization performance will be
degraded if these synchronization issues are not properly
addressed [7].

To mitigate the effects of imperfect clocks, the concept
of network localization and synchronization (NLS) has been
developed recently [19]–[31]. In NLS, the clock parameters are
integrated with the location parameters into a state vector, and
the values of all parameters are estimated jointly. This joint
estimation is performed using either a centralized [20]–[25] or
a distributed [19], [28]–[31] mode of processing. However, for
IoT applications only a distributed processing mode is suitable,
as collecting and processing the measurements of all devices
at a central processing unit (fusion center) is prohibitive due
to the large number of devices in the network [4], [5]. An
attractive approach to distributed estimation in a Bayesian
setting is based on the belief propagation (BP) algorithm [32],
[33]. This algorithm is able to efficiently compute probability
density functions (PDFs) of the individual state components
conditioned on all the measurements in a distributed manner,
and in a way such that the relevant location and clock
information becomes locally available at each device. A major
advantage of the BP algorithm, which is important in the IoT
context, is its scalability with respect to the network size [12],
[18].

Existing distributed NLS algorithms are limited in different
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aspects. Most of the existing work considers networks with
static nodes [28]–[30]. However, in many IoT scenarios the
nodes are mobile, and thus their location estimates need to
be updated frequently for good localization accuracy [34],
[35]. Moreover, some algorithms are based on simplified
clock models that do not consider time-variation of the clock
parameters [28]–[30]. These simplified models often are not
suitable for the low-cost clocks used in IoT devices, and thus
the performance of the resulting algorithms can be degraded
significantly. A more practical dynamic system model was
considered in [19]; however, the method presented in [19]
may be too complex for IoT applications involving low-cost
devices.

In this paper, we study NLS in the context of the IoT. We
adopt a realistic model with mobile nodes and time-varying
clock offsets and skews, which significantly extends the model
of [19]. Differently from most existing work, the proposed
method can operate with arbitrary time-evolution models and
clock models, and is thus suitable for heterogeneous devices.
To account for the computational and communication limita-
tions of IoT devices, we use the low-complexity sigma point
belief propagation (SPBP) technique [36] to develop a dis-
tributed BP algorithm that tracks second-order descriptions of
the posterior distributions of the location and clock parameters
in a computationally efficient manner.

The main contributions of the paper are as follows:
• We construct a factor graph based on the state-evolution

and measurement models, and design a sigma point BP
algorithm for tracking the time-varying location and clock
parameters of heterogeneous devices.

• We evaluate the performance of the designed algorithm
through simulation. Our results show that accurate syn-
chronization and localization are achieved with a reduced
computational complexity compared to the state-of-the-
art method presented in [19].

The remaining sections are organized as follows. Section II
introduces the system model. Section III presents a BP tech-
nique for NLS. Section IV reviews the sigma point method
[37], [38]. Section V presents the proposed SPBP algorithm
for NLS. Section VI reports numerical results, and Section VII
concludes the paper.

Notation: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors and
matrices are denoted by bold lowercase and uppercase letters,
respectively. For example, a random variable and its realization
are denoted by x and x, respectively, and a random vector and
its realization by x and x, respectively. Furthermore, ‖x‖ and
xT denote the Euclidean norm and the transpose of vector
x, respectively; ∝ indicates equality up to a normalization
factor; f(x) denotes the probability density function (PDF) of
random vector x (this is a short notation for fx(x)); f(x|y)
denotes the conditional PDF of random vector x conditioned
on random vector y; x ∼ f(x) indicates that x is distributed
according to PDF f(x); E{x} denotes the expectation of x;
N (µ,Σ) represents the Gaussian distribution with mean µ
and covariance matrix Σ; |S| denotes the cardinality of set
S; In denotes the n × n identity matrix; diag{·} denotes
the diagonal matrix whose diagonal elements are the listed

scalars, and bdiag{·} denotes the block diagonal matrix whose
diagonal blocks are the listed matrices.

II. SYSTEM MODEL

In this section, we describe the device network, the dynamic
model of device locations and clocks, and the measurement
model. In our measurement model, time measurements are
obtained by means of an asymmetric time-stamped communi-
cation technique, which is described in [21] and also used in
[19]. However, differently from [19], we consider more general
state-evolution models that may be different across the devices
and nonlinear in both the location and clock parameters. In ad-
dition, our measurement model accommodates measurements
from additional sensors for positioning, navigation and timing
(PNT) such as GNSS receivers.

A. Network, Clock Model, State-Space Model

We consider a decentralized, time-varying network of I po-
tentially mobile and asynchronous devices i∈ I = {1, . . . , I}.
We assume that the reference (true) time t is slotted in intervals
of length T , indexed by n ∈ {0, 1, . . .}; the nth time step
interval is given by nT ≤ t < (n+1)T . However, the devices
are not able to autonomously determine the beginning of a
new time interval. The following parameters and attributes are
assumed to be static during time step n, but are allowed to
change across n. The edge set C(n) of the network is defined by
the fact that two devices i, j∈I, i 6=j are able to communicate
at time step n if (i, j)∈ C(n) (and, by symmetry, (j, i)∈ C(n)).
The neighborhood T (n)

i ⊆ I\{i} of device i∈I is the set of all
devices j∈I\{i} that communicate with device i at time step
n, i.e., T (n)

i ,
{
j ∈ I \{i}

∣∣(i, j) ∈ C(n)
}

. A probabilistic
location and clock reference is introduced to the network
through statistical prior knowledge of the devices about their
location and clock parameters. In particular, a spatial master
device has accurate prior information of its own location, and
a temporal master device has accurate prior information of the
time.

Each device i ∈ I has an internal clock modeled as

ci
(
t;ω

(n)
i

)
= α

(n)
i t+ β

(n)
i , (1)

where α(n)
i and β(n)

i are, respectively, the clock skew and clock
phase at time step n. These two parameters constitute the
clock state ω(n)

i ,
[
α

(n)
i β

(n)
i

]T
. Furthermore, each device

i has a location-related state x
(n)
i ,

[
x

(n)
1,i x

(n)
2,i ẋ

(n)
1,i ẋ

(n)
2,i

]T
that

consists of the location p
(n)
i ,

[
x

(n)
1,i x

(n)
2,i

]T
and the velocity[

ẋ
(n)
1,i ẋ

(n)
2,i

]T
. The state of device i at time step n is thus given

by θ(n)
i ,

[
x

(n)T
i ω

(n)T
i

]T
.

We assume a possibly nonlinear state-evolution model with
additive noise for both the location-related state and the clock
state. The temporal evolution of the location-related state of
device i is modeled as

x
(n)
i = g1,i

(
x

(n−1)
i

)
+ u

(n)
1,i , n=1, 2, . . . , (2)

where g1,i : R4→ R4 is an arbitrary function modeling the
motion of IoT device i and u

(n)
1,i ∈R4 is independent across n
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and i and zero-mean Gaussian, i.e., u(n)
1,i ∼ N (0,Σu1,i

). The
temporal evolution of the clock state of device i is given by

ω
(n)
i = g2,i

(
ω

(n−1)
i

)
+ u

(n)
2,i , n=1, 2, . . . , (3)

where g2,i : R2→ R2 is an arbitrary function modeling the
clock evolution and u

(n)
2,i ∈ R2 is independent across n and

i and zero-mean Gaussian, i.e., u(n)
2,i ∼ N (0,Σu2,i). We can

combine (2) and (3) into the overall state-evolution model

θ
(n)
i = gi

(
θ

(n−1)
i

)
+ u

(n)
i , n=1, 2, . . . , (4)

where gi
(
θ

(n−1)
i

)
,

[
gT

1,i

(
x

(n−1)
i

)
gT

2,i

(
ω

(n−1)
i

)]T
and

u
(n)
i ,

[
u

(n)T
1,i u

(n)T
2,i

]T
. We note that u(n)

i ∼ N (0,Σui
) with

Σui
, bdiag{Σu1,i

,Σu2,i
}. The joint state-evolution model

in (4) defines the joint state-transition PDF f
(
θ

(n)
i

∣∣θ(n−1)
i

)
.

We assume that device i knows the initial prior PDF of its
state at time n=0, f

(
θ

(0)
i

)
.

B. Measurement Model and Local Likelihood Functions

Following [19], in each time step interval [nT, (n + 1)T ],
there is a measurement phase in which the devices acquire
the measurements needed for tracking their states θ(n)

i . Each
measurement phase consists of an initialization phase in which
the temporal masters communicate to the other devices the
beginning of the measurement phase, and a packet exchange
phase during which time measurements are obtained by means
of the asymmetric time-stamped communication technique
described in [21]. We note that the asymmetric time-stamped
communication technique can be realized with inexpensive and
low-power ultra-wideband impulse radios [39], [40], which
have recently been integrated into a single chip [41] and are
expected to play a key role in location-aware IoT devices.
In addition to these “pairwise” measurements (involving pairs
of devices), certain devices may also perform measurements
individually, as we will discuss in Section II-B4.

We assume that the duration of the measurement phase
is short compared to the time step duration T , so that the
clock parameters remain approximately constant during the
measurement phase.

1) Initialization Phase: Because of their imprecise clocks,
the devices are typically unable to accurately determine when
a new time step and, hence, a packet exchange starts. This
information is provided by the temporal master devices via
the following simple communication protocol:
• After time T has passed since the last measurement

phase, the temporal masters initialize a new time step by
broadcasting a “start packet exchange” message to their
neighbors in the network.

• When a device receives the first “start packet exchange”
message from one of its neighbors, it starts a packet
exchange with that neighbor and itself broadcasts a “start
packet exchange” message to its neighbors.

2) Packet Exchange Phase: The packet exchange between
a communicating device pair (i, j)∈ C(n) proceeds as follows
[21]. Device i transmits Kij ≥ 1 packets to device j, and
device j transmits Kji≥1 packets to device i. At time n, the

t
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)

Fig. 1. Local clock functions ci
(
t;ω

(n)
i

)
and cj

(
t;ω

(n)
j

)
, local time

measurements (time stamps), and corresponding packet transmissions for
devices i and j.

kth “i→ j” packet (where k ∈ {1, . . . ,Kij}) leaves device i
at time s(n,k)

ij and arrives at device j at measured time r
(n,k)
ij >

s
(n,k)
ij . The times s(n,k)

ij and r
(n,k)
ij are related as

r
(n,k)
ij = s

(n,k)
ij + δ

(n,k)
ij , with δ(n,k)

ij =
d

(n)
ij

c
+ v

(n,k)
ij ,

where δ(n,k)
ij is the transmission delay expressed in true time,

d
(n)
ij , ‖p(n)

i −p
(n)
j ‖ is the distance between devices i and j, c

is the speed of light, and v
(n,k)
ij ∼f(v

(n,k)
ij ) =N (0, σ2

vij ) with
σ2
vji= σ2

vij is measurement noise that is modeled as Gaussian,
independent across i, j, k, and n, and independent of all states
θ

(n′)
i′ for all i′ and n′.

The times s(n,k)
ij and r

(n,k)
ij are recorded in local time (cf.

(1)) at device i and j, respectively, which results in the time
stamps

ci
(
s

(n,k)
ij

)
= α

(n)
i s

(n,k)
ij + β

(n)
i (5)

and

cj
(
r
(n,k)
ij

)
= α

(n)
j r

(n,k)
ij + β

(n)
j

= α
(n)
j

(
s

(n,k)
ij +

d
(n)
ij

c
+ v

(n,k)
ij

)
+ β

(n)
j

= ψ
(n,k)
i→j

(
θ

(n)
i , θ

(n)
j

)
+ v

(n,k)
ij α

(n)
j , (6)

with

ψ
(n,k)
i→j

(
θ

(n)
i , θ

(n)
j

)
,

ci
(
s

(n,k)
ij

)
−β(n)

i

α
(n)
i

α
(n)
j + β

(n)
j +

d
(n)
ij

c
α

(n)
j .

(7)
A similar discussion applies to the transmission of the kth
packet from device j to device i (where k ∈ {1, . . . ,Kji});
expressions of the resulting time stamps, cj

(
s

(n,k)
ji

)
and

ci
(
r
(n,k)
ji

)
, are obtained by exchanging i and j in (5)–(7). Fig. 1

visualizes the clock functions ci
(
t;ω

(n)
i

)
and cj

(
t;ω

(n)
j

)
and

the time stamps. Communication is performed such that all
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the time stamps are available at both devices i and j. The
aggregated measurement of devices i and j is thus given by
y

(n)
ij ,

[
y

(n)T
i→j y

(n)T
j→i

]T
, with y

(n)
i→j ,

[
cj
(
r
(n,1)
ij

)
cj
(
r
(n,2)
ij

)
· · · cj

(
r
(n,Kij)
ij

)]T
and y

(n)
j→i ,

[
ci
(
r
(n,1)
ji

)
ci
(
r
(n,2)
ji

)
· · ·

ci
(
r
(n,Kji)
ji

)]T
. Similarly, the aggregated measurement noise

of devices i and j is given by v
(n)
ij ,

[
v

(n)T
i→j v

(n)T
j→i

]T
, with

v
(n)
i→j ,

[
v
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ij v
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ij · · · v(n,Kij)

ij

]T
and v

(n)
j→i ,

[
v

(n,1)
ji v

(n,2)
ji

· · · v(n,Kji)
ji

]T
. Let us denote by λ(n)

i ,
[
x

(n)
1,i x

(n)
2,i α

(n)
i β

(n)
i

]T

the “measurement-affecting” part of the state θ(n)
i , i.e., the part

of θ(n)
i that is involved in the measurement model according

to (5)–(7). For future reference, we formally introduce the
aggregated measurement model

y
(n)
ij = φ

(
λ

(n)
i , λ

(n)
j , v

(n)
ij

)
, (8)

which can be directly obtained from (6), (7), and the definition
of y(n)

ij . Note that v(n)
ij is a zero-mean Gaussian random vector

with covariance matrix Cvij = σ2
vijIKij+Kji

.

3) Pairwise Likelihood Functions: Because of (6) and the
statistical properties of the v

(n,k)
ij , the “pairwise” local likeli-

hood function of devices i and j is obtained as

f
(
y

(n)
ij

∣∣θ(n)
i ,θ

(n)
j

)
= f

(
y

(n)
i→j
∣∣θ(n)
i ,θ
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j

)
f
(
y

(n)
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i ,θ

(n)
j

)
=

(
Kij∏
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f
(
cj
(
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(n,k)
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j

)) Kji∏
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j

)
= M
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ij exp
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−
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−
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Here, f
(
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i ,θ
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)
and f

(
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(
r

(n,k)
ji

)∣∣θ(n)
i ,θ

(n)
j

)
are

the single-packet likelihood functions corresponding to, re-
spectively, (6) and the analogous expression with i, j inter-
changed, and furthermore

M
(n)
ij ,

(
2πα

(n)2
j σ2

vij

)−Kij/2(
2πα

(n)2
i σ2

vji

)−Kji/2
,
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(n)
i ,θ
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j ) · · · ψ(n,Kij)

i→j (θ
(n)
i ,θ

(n)
j )
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ψ
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[
ψ
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j→i (θ

(n)
j ,θ

(n)
i ) · · · ψ(n,Kji)

j→i (θ
(n)
j ,θ

(n)
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.

We note that f
(
y

(n)
ij

∣∣θ(n)
i ,θ

(n)
j

)
= f

(
y

(n)
ij

∣∣λ(n)
i ,λ

(n)
j

)
.

4) Self-Measurements and Individual Likelihood Functions:
In addition to the above-described pairwise measurements
involving other devices, some devices may also incorporate
measurements from additional sensors for PNT such as GNSS
receivers. These measurements will be briefly termed “self-
measurements” in what follows. Let S(n)⊆ I denote the set
of devices obtaining self-measurements, and let y

(n)
i ∈ Rmi

denote the self-measurement of device i∈ S(n) at time n. For
example, if y

(n)
i comprises measurements of the global time

and of the two-dimensional (2-D) location of device i, then
mi=3. We model y(n)

i according to

y
(n)
i = hi

(
θ

(n)
i

)
+ v

(n)
i , (9)

where hi(·) is a vector function with output dimension mi

and v
(n)
i ∈ Rmi is zero-mean Gaussian measurement noise

with covariance matrix Cvi , i.e., v(n)
i ∼ N (0,Cvi), which is

independent across i and n and independent of all states θ(n′)
i′

and of all measurement noise vectors v
(n′)
i′j for all i′, j, and

n′. From (9), the “individual” likelihood function of device
i∈ S(n) is obtained as

f
(
y

(n)
i

∣∣θ(n)
i

)
= Mi exp

(
−1

2

(
y

(n)
i −hi

(
θ

(n)
i

))T

×C−1
vi

(
y

(n)
i −hi

(
θ

(n)
i

)))
,

with Mi ,
(
(2π)mi det(Cvi)

)−1/2
.

III. SYNCHRONIZATION AND LOCALIZATION USING BP
At each time step n, each device i estimates its current

state θ(n)
i from all past and present observed measurements,

y(1:n) ,
[
y

(n′)
ij

]
(i,j)∈C(n′),n′∈{1,...,n}. In particular, the mini-

mum mean-square error (MMSE) estimate [42] of θ(n)
i is given

by the mean of the marginal posterior PDF f
(
θ

(n)
i

∣∣y(1:n)
)
,

i.e.,

θ̂
(n)
i,MMSE ,

∫
θ

(n)
i f

(
θ

(n)
i

∣∣y(1:n)
)

dθ
(n)
i , i ∈ I . (10)

Here, f
(
θ

(n)
i

∣∣y(1:n)
)

can be obtained from the joint posterior
PDF f(θ(0:n)|y(1:n)), where θ(0:n) ,

[
θ

(n′)
i

]
i∈I,n′∈{0,1,...,n}.

This is done via the marginalization operation

f
(
θ

(n)
i

∣∣y(1:n)
)

=

∫
f(θ(0:n)|y(1:n)) d∼θ(n)

i , (11)

where ∼θ(n)
i denotes the vector stacking all θ(n′)

i′ except θ(n)
i .

However, a straightforward implementation of this marginal-
ization operation is computationally infeasible due to the
typically high dimensionality of ∼θ(n)

i . This problem can be
addressed by using the BP algorithm, which takes advantage
of the temporal and spatial independence structure of the
joint posterior PDF f(θ(0:n)|y(1:n))—to be explored next—
and avoids explicit integration.

A. Factorization and Factor Graph

Under commonly used assumptions [12], [28], the joint
posterior PDF can be factored as

f(θ(0:n)|y(1:n))

∝
( ∏
i′∈I

f
(
θ

(0)
i′

)) n∏
n′=1

( ∏
j′∈S(n′)

f
(
y

(n′)
j′

∣∣θ(n′)
j′

))
×
∏
i∈I

f
(
θ

(n′)
i

∣∣θ(n′−1)
i

) ∏
j∈T (n′)

i

j>i

f
(
y

(n′)
ij

∣∣θ(n′)
j ,θ

(n′)
i

)
. (12)

A graphical representation of this factorization is provided by
the factor graph shown in Fig. 2. Each factor function in (12)
is represented by a square factor node, and each variable in
(12) by a circular variable node. A variable node is connected
to a factor node by an edge if the respective variable is an
argument of the respective factor function. The factor graph
is the basis for applying the BP algorithm, as explained next.
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n− 1

f ′1 θ1

f12

to j∈T1\{2}

f ′2 θ2

f25

f2

to j∈T2\{5}

n

f ′1 θ1

f12

to j∈T1\{2}

f ′2 θ2

f25

f2
ζf2

(θ2)

ζf ′2
(θ2) ηf ′2

(θ2)

ηf25
(θ2) ζf25

(θ2)

to j∈T2\{5}

...

f ′4 θ4

f4I

to j∈T4\{I}

...

f ′4 θ4

f4I

to j∈T4\{I}

Fig. 2. Factor graph representing the factorization (12) for a network of
devices i ∈ {1, 2, . . . , I}, where (1, 2), (2, 5), and (4, I) belong to both
C(n) and C(n−1) and 2 belongs to both S(n−1) and S(n). The time steps
n−1 and n are shown; time indices are omitted for simplicity. Each dotted box
corresponds to a device i; calculations within the box are performed locally by
that device. Connections between dotted boxes imply communication between
devices. The following short notations are used: f ′i , f

(
θ

(n)

i

∣∣θ(n−1)

i

)
, fij ,

f
(
y

(n)

ij

∣∣θ(n)

i ,θ
(n)

j

)
, and fi , f

(
y

(n)

i

∣∣θ(n)

i

)
.

B. Belief Propagation

Because a straightforward computation of the marginaliza-
tion integral in (11) is infeasible, we resort to approximate
inference by means of BP [32], [33] performed on the factor
graph in Fig. 2. BP provides approximations of the marginal
posterior PDFs, b

(
θ

(n)
i

)
≈ f

(
θ

(n)
i

∣∣y(1:n)
)
, which are referred

to as beliefs. These beliefs are calculated in a distributed and
sequential (i.e., time-recursive) manner, such that at each time
n, b

(
θ

(n)
i

)
becomes available at device i. An approximation

of the MMSE estimate θ̂(n)
i,MMSE in (10) is then obtained by

calculating (10) with f
(
θ

(n)
i

∣∣y(1:n)
)

replaced by b
(
θ

(n)
i

)
.

In our implementation of BP, we apply the following three-
step message passing schedule: (i) In the temporal cooperation
step, at each device i, a message for state prediction is passed
forward in time (from time step n−1 to time step n). (ii) In
the self-update step, at each time step n and at each device
i ∈ S(n), the message for state prediction is multiplied by a

“self-update message.” (iii) In the spatial cooperation step, at
each time step n, messages are updated across the devices
i. After these three message passing steps, the beliefs are
computed. In accordance with the time-recursive nature of
our algorithm, no messages are passed backward in time.
Hereafter, we drop the time index n for simplicity, and we use
the following short notation (cf. Fig. 2): f ′i , f

(
θ(n)

i

∣∣θ(n−1)

i

)
,

fij , f
(
y(n)

ij

∣∣θ(n)

i ,θ
(n)

j

)
, and fi , f

(
y(n)

i

∣∣θ(n)

i

)
. Furthermore,

θ−i denotes the variable (state) θi at the preceding time n−1,
and ηf ′i (θ

−
i ) the message passed from variable node θ−i at

time step n − 1 to factor node f ′i at time n. Finally, ζf ′i (θi)
denotes the message passed from factor node f ′i to variable
node θi; ζfi(θi) the message passed from factor node fi to
variable node θi; ζfij (θi) the message passed from factor node
fij to variable node θi; ηfij (θi) the message passed from
variable node θi to factor node fij ; and ηf ′i (θi) the message
passed from variable node θi to factor node f ′i (all at time n).

The following message calculation and message passing
rules are obtained by applying BP [32], [33] to the factor
graph in Fig. 2, using the three-step message passing schedule
described above and performing in the spatial cooperation
step only a single message passing iteration. In the temporal
cooperation step, at each device i, the message ηf ′i (θ

−
i ) is set

equal to the belief calculated at the previous time n−1, i.e.,

ηf ′i (θ
−
i ) = b(θ−i ) ,

and the message ζf ′i (θi) is calculated as

ζf ′i (θi) =

∫
f(θi|θ−i )ηf ′i (θ

−
i )dθ−i =

∫
f(θi|θ−i )b(θ−i )dθ−i .

(13)
Indeed, due to the specific message schedule used (i.e., no
messages are passed backward in time), the message from vari-
able node θ−i at time n−1 to factor node f ′i at time n, ηf ′i (θ

−
i ),

is directly given by the preceding belief b(θ−i ). Thus, b(θ−i ) is
used in the temporal update step (13). Furthermore, for devices
i∈S, the messages ζfi(θi) are set equal to f(yi|θi). It will
be convenient to formally define messages ζfi(θi) also for
devices i /∈ S , namely, as the trivial message ζfi(θi) = 1.

In the self-update step, at each device i, the message
ηfij (θi) is calculated as

ηfij (θi) = ζf ′i (θi)ζfi(θi) , (14)

and then broadcast to the neighbors j ∈ Ti. (Note that for
devices i /∈ S , (14) reduces to ηfij (θi) = ζf ′i (θi).) In the
spatial cooperation step, at each device i, the message ζfij (θi)
is calculated as

ζfij (θi) =

∫
f(yij |θi,θj)ηfji(θj)dθj , (15)

for each neighbor j ∈ Ti. Finally, the belief at device i is
obtained as

b(θi) ∝ ζf ′i (θi)ζfi(θi)
∏
j∈Ti

ζfij (θi)

= ηfij (θi)
∏
j∈Ti

ζfij (θi) . (16)

We note that the messages ζf ′i (θi) in (13) and the belief
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b(θi) in (16) are PDFs, i.e., they integrate to one. Furthermore,
the message ζfij (θi) in (15) can also be expressed as

ζfij (θi) =

∫
f(yij |λi,λj) η̃fji(λj)dλj , (17)

where

η̃fji(λj) ,
∫∫

ηfji(θj)dẋ1,j dẋ2,j . (18)

An exact evaluation of the expressions (13)–(17) is com-
putationally infeasible in general. For a static NLS scenario,
an approximate particle implementation was presented in [28].
A similar implementation could be developed for the present
dynamic scenario but would be too complex for most low-cost
IoT devices. In Section V, we will propose an approximate im-
plementation based on the sigma point BP technique recently
introduced in [36]. This implementation has a significantly
lower complexity than a particle implementation, and is thus
better suited to IoT applications.

IV. REVIEW OF SIGMA POINT BASED ESTIMATION

We first review the basic principles of sigma points (SPs)
[37], [38]. Consider the nonlinear measurement model

y = γ(x,n) ,

where x ∈ RLx is a random vector with known mean µx ,
E{x} and covariance matrix Cx , E{(x−µx)(x−µx)T}; the
noise n ∈RLn is statistically independent of x and has mean
µn= 0 and a known covariance matrix Cn; and γ(· , ·) is a
known, generally nonlinear function. We wish to estimate x
from an observed realization of y. In the Bayesian framework,
we need to calculate the posterior PDF

f(x|y) ∝ f(y|x)f(x) , (19)

where f(y|x) is the likelihood function and f(x) is the prior
PDF. A direct exact calculation of (19) would be possible if x
and n were Gaussian random vectors and γ(x,n) = Γx+n
with some known matrix Γ. In that case, f(x|y) is Gaussian,
i.e., f(x|y) = N (µx|y,Cx|y), and the posterior mean µx|y
and posterior covariance matrix Cx|y are given by [43]

µx|y = µx +K(y−µy) , (20)

Cx|y = Cx −KCyKT, (21)

where µy = Γµx, Cy = ΓCxΓ
T +Cn, and

K = CxyC
−1
y , (22)

with Cxy = CxΓ
T. We note that µx|y is also the MMSE

estimate of x, and Cx|y characterizes the uncertainty of the
estimate.

In the general case of a nonlinear function γ(· , ·) and non-
Gaussian x and n considered here, the expressions (20) and
(21) cannot be applied directly, but they can be used to develop
an approximation based on so-called SPs [37], [38]. More
specifically, let us define the “noise-augmented” state vector
x∗ , [xT nT]T with dimension L , Lx + Ln. Following
[37], [38], we deterministically choose SPs

{
x

(l)
∗
}2L

l=0
with

x
(l)
∗ ,

[
x(l)T n(l)T

]T
and corresponding weights

{
w(l)

}2L

l=0

such that the resulting weighted sample mean and weighted
sample covariance matrix are exactly equal to µx∗= [µT

x µ
T
n]T

and Cx∗= bdiag
{
Cx, Cn

}
, respectively, i.e.,

µ̃x∗ ,
2L∑
l=0

w(l)x
(l)
∗ = µx∗ ,

C̃x∗ ,
2L∑
l=0

w(l)
(
x

(l)
∗ − µ̃x∗

)(
x

(l)
∗ − µ̃x∗

)T
= Cx∗ .

According to [37], [38], these SPs and weights can be calcu-
lated as

x
(l)
∗ =


µx∗ , l= 0

µx∗+
√
L+κ

(
C

1/2
x∗

)
l
, l= 1, . . . , L

µx∗−
√
L+κ

(
C

1/2
x∗

)
l−L , l=L+1, . . . , 2L,

(23)

w(l) =


κ

L+κ
, l= 0

1

2(L+κ)
, l= 1, . . . , 2L,

(24)

where
(
C

1/2
x∗

)
l

denotes the lth column of the matrix square
root of Cx∗ and κ is a tuning parameter that determines the
spread of the SPs around µx∗ .

Let y(l) , γ(x(l),n(l)), l = 0, 1, . . . , 2L denote the SPs
x

(l)
∗ = [x(l)T n(l)T]T transformed by γ(· , ·). An approximate

representation of the second-order statistics of the two random
vectors x and y = γ(x,n) is then provided by the set{

(x(l),y(l), w(l))
}2L

l=0
. In particular, µy , Cy , and Cxy ,

E{(x−µx)(y−µy)T} are approximated by, respectively,

µ̃y ,
2L∑
l=0

w(l)y(l), (25)

C̃y ,
2L∑
l=0

w(l)(y(l)− µ̃y)(y(l)− µ̃y)T, (26)

C̃xy ,
2L∑
l=0

w(l)(x(l)− µ̃x)(y(l)− µ̃y)T. (27)

These approximations have been shown in [37], [38] to be
at least as accurate as those resulting from a linearization
of γ(· , ·). Furthermore, the number of SPs, 2L + 1, grows
only linearly with the dimension of x∗ (which is L). Thus, the
number of SPs is typically much smaller than the number of
random samples required for a particle-based approximation
of the second-order statistics of x and y.

To obtain an approximate second-order description of the
posterior PDF f(x|y) in (19), we now use (20)–(22) with µy ,
Cy , and Cxy replaced by the SP approximations µ̃y , C̃y , and
C̃xy in (25)–(27). This yields the following approximations of
µx|y and Cx|y:

µ̃x|y = µx + K̃(y− µ̃y) , (28)

C̃x|y = Cx − K̃C̃yK̃T, (29)

with K̃ = C̃xyC̃
−1
y . To summarize, we have obtained the
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µ
b(θ

−
i )

,C
b(θ

−
i )

(from preceding time step n−1)

Temporal Cooperation:
• Compute SPs and weights

{(
θ
−(l)
i , w

−(l)
i

)}12

l=0
from µ

b(θ−
i )

and C
b(θ−

i )
according to (23), (24).

• Compute transformed SPs z
(l)
i = gi

(
θ
−(l)
i

)
, l=0, . . . , 12.

• Compute weighted sample mean µzi and weighted sample covariance matrix Czi according to (25), (26).
• Compute µ′

θi
and C′

θi
according to (30).

Measurement Acquisition, Self-Update, and Information Exchange:
• Obtain time-stamped measurements yij for each neighbor device j∈Ti as described in Section II-B2.
• For i∈S :

− Obtain self-measurements yi as described in Section II-B4.
− Compute SPs and weights

{(
θ
(l)
i , w

(l)
i

)}12

l=0
from µ′

θi
and C′

θi
according to (23), (24).

− Compute transformed SPs q
(l)
i =hi

(
θ
(l)
i

)
, l=0, . . . , 12.

− Compute weighted sample mean µqi and weighted sample covariance matrices Cqi and Cθiqi according to (25)–(27).
− Compute µyi , Cyi , and Cθiyi according to (31).
− Compute µθi and Cθi according to (28), (29).

• Extract µi from µθi (first 4 elements) and Ci from Cθi (upper-left 4×4 submatrix).
• Broadcast µi and Ci to all neighbors j∈Ti and receive µj and Cj from all neighbors j∈Ti .

Spatial Cooperation and Belief Calculation:
• Form µθ̄i∗ and Cθ̄i∗ according to (37), (38).
• Compute SPs and weights

{(
θ̄
(l)
i , v̄

(l)
i , w̄

(l)
i

)}2L̄i

l=0
from µθ̄i∗ and Cθ̄i∗ according to (23), (24).

• Compute transformed SPs ȳ
(l)
i = φ̄i

(
θ̄
(l)
i , v̄

(l)
i

)
, l=0, . . . , 2L̄i.

• Compute weighted sample mean µȳi and weighted sample covariance matrices Cȳi and Cθ̄iȳi
according to (25)–(27).

• Compute µb(θ̄i)
and Cb(θ̄i)

according to (28), (29).
• Extract µb(θi) from µb(θ̄i)

(first 6 elements) and Cb(θi) from Cb(θ̄i)
(upper-left 6×6 submatrix).

State estimate θ̂i=µb(θi) µb(θi),Cb(θi) (for processing at next time step n+1)

Fig. 3. Flowchart of the proposed distributed SPBP algorithm (operations performed at device i).

following approximate SP implementation of (19), resulting
in an approximate second-order description of the posterior
PDF f(x|y):

Step 1: SPs and weights
{(
x(l),n(l), w(l)

)}2L

l=0
are calcu-

lated from µx∗ and Cx∗ according to (23) and (24).

Step 2: The transformed SPs y(l) = γ
(
x(l),n(l)

)
, l =

0, 1, . . . , 2L are calculated.

Step 3: Approximations of the posterior mean µx|y
and posterior covariance Cx|y are calculated from{

(x(l),y(l), w(l))
}2L

l=0
by evaluating µ̃y , C̃y , and C̃xy

in (25)–(27) and, in turn, µ̃x|y in (28) and C̃x|y in (29).

Note that the SP method obtains only a second-order
description of the posterior PDF f(x|y). This implies a lim-
itation of the class of posterior PDFs that can be represented
with good accuracy.

V. THE SPBP ALGORITHM FOR NLS

We will now present the proposed SPBP algorithm for NLS.
This algorithm is a low-complexity “second-order” implemen-
tation of the BP method described in Section III-B, and is
based on an extension of the SPBP technique introduced in
[36] to nonadditive measurement noise. A flowchart of the
presented method is shown in Fig. 3.

A. Temporal Cooperation Step

In the temporal cooperation step of the BP method described
in Section III-B, each device i calculates the message ζf ′i (θi)
from the preceding belief b(θ−i ) according to (13). Using
the SP method, we can obtain an approximate second-order
description of ζf ′i (θi) (i.e., mean µ′θi and covariance matrix
C ′θi ) from an approximate second-order description of b(θ−i )
(i.e., mean µb(θ−i ) and covariance matrix Cb(θ−i ), which were
calculated at time step n−1). This is done by the following
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steps, the first three of which are analogous1 to Steps 1–3 in
Section IV:

Step 1A: SPs and weights
{(
θ
−(l)
i , w

−(l)
i

)}12

l=0
correspond-

ing to b(θ−i ) are calculated from µb(θ−i ) and Cb(θ−i ) according
to (23) and (24) with obvious substitutions. (Note that the
dimension of θi is L = 6, and thus the number of sigma
points is 2L+ 1 = 13.)

Step 2A: The transformed SPs z(l)
i = gi

(
θ
−(l)
i

)
, l = 0,

1, . . . , 12 are calculated. Here, gi(·) is the state-evolution
function from (4).

Step 3A: From
{(
z

(l)
i , w

−(l)
i

)}12

l=0
, the weighted sample

mean µzi and weighted sample covariance matrix Czi are
calculated as in (25) and (26), respectively.

Step 4A: The approximate mean µ′θi and covariance matrix
C ′θi corresponding to ζf ′i (θi) are obtained as

µ′θi = µzi , C ′θi = Czi +Σui
. (30)

(We note that these expressions are based on the relation θi =
zi + ui, which is obtained from the state-evolution model (4)
using the relation zi= gi(θ

−
i ).)

In the special case where the state-evolution function is
linear, i.e., where (4) simplifies to θi =Giθ

−
i + ui with some

matrix Gi , Steps 1A–4A are replaced by the direct relations

µ′θi = Giµb(θ−i ) , C ′θi = GiCb(θ−i )G
T
i +Σui .

No SPs are needed in that case.

B. Self-Update Step

In the self-update step of the BP method described in
Section III-B, each device i calculates the message ηfij (θi)
that is broadcast to all neighbors j ∈ Ti from the mes-
sages ζf ′i (θi) and ζfi(θi) via (14). If i /∈ S , then because
(14) reduces to ηfij (θi) = ζf ′i (θi), an approximate second-
order description (µθi ,Cθi) of ηfij (θi) is directly given
by the approximate second-order description (µ′θi ,C

′
θi

) of
ζf ′i (θi) calculated in (30), i.e., µθi = µ′θi and Cθi = C ′θi .

If i∈S , then (µθi ,Cθi) can be obtained from (µ′θi ,C
′
θi

)
using the SP method. First, we recall that ζfi(θi) = f(yi|θi),
and thus the calculation of ηfij (θi) = ζf ′i (θi)ζfi(θi) =
ζf ′i (θi)f(yi|θi) (see (14)) is equivalent to the Bayesian update
step in (19). Thus, µθi and Cθi are now calculated by the
following steps, the first three of which are analogous to Steps
1–3 in Section IV:

Step 1B: SPs and weights
{(
θ

(l)
i , w

(l)
i

)}12

l=0
corresponding

to ζf ′i (θi) are calculated from µ′θi and C ′θi according to (23)
and (24).

Step 2B: The transformed SPs q(l)
i = hi

(
θ

(l)
i

)
, l = 0, . . . ,

12 are calculated. Here, hi(·) is the measurement function
from (9).

Step 3B: From
{(
θ

(l)
i , q

(l)
i , w

(l)
i

)}12

l=0
, the weighted sam-

ple mean µqi , weighted sample covariance matrix Cqi , and

1Note, however, that contrary to Steps 1–3 in Section IV, we do not need
to augment the statistics of the state vector, µ′θi and C′θi , by the statistics of
the noise vector, µui= 0 and Σui , since noise in the state-evolution model
(4) is modeled as additive Gaussian and can thus be incorporated by adding
the noise covariance matrix Σui to the transformed covariance matrix (see
(4)).

weighted sample cross-covariance matrix Cθiqi are calculated
as in (25), (26), and (27), respectively.

Step 4B: An approximate mean µyi , covariance matrixCyi ,
and cross-covariance matrix Cθiyi

are obtained as

µyi
= µqi , Cyi

= Cqi +Cvi , Cθiyi
= Cθiqi . (31)

(These expressions are based on the relation yi = qi + vi,
which is obtained from the self-measurement model (9) using
the relation qi=hi(θi).)

Step 5B: The desired approximate second-order description
(µθi ,Cθi) of ηfij (θi) is calculated as in (20)–(22) with µx|y ,
Cx|y , µx, Cx, µy , Cy , and Cxy replaced by µθi , Cθi , µ

′
θi

,
C ′θi , µyi

, Cyi
, and Cθiyi

, respectively.
If the self-measurement model is linear, i.e., if (9) takes the

form yi =Hiθi+ vi with some matrix Hi , then no SPs are
needed because (µθi ,Cθi) can be directly obtained as

µθi = Hiµ
′
θi , Cθi = HiC

′
θiH

T
i +Cvi .

C. Dimension-Augmented Reformulation of the Belief

The remaining steps in the BP method of Section III-B are
the spatial cooperation operation (15) and the belief calculation
(16). These steps are performed jointly. For a presentation
of this joint calculation, we first introduce a “dimension-
augmented” reformulation of the belief b(θi) in (16). Let the
neighbor nodes j ∈ Ti of node i be denoted by j1, j2, . . . , j|Ti|,
i.e., Ti={j1, j2, . . . , j|Ti|}, and define the stacked (dimension-
augmented) vectors

θ̄i ,
[
θ

T
i λ

T
j1 λ

T
j2 · · · λ

T
j|Ti|

]T
,

ȳi ,
[
yT
ij1 yT

ij2 · · · y
T
ij|Ti|

]T
.

Note that θ̄i comprises the state of device i, i.e., θi , and the
measurement-affecting parts of the states of all the neighbors
of device i, i.e., λj for j ∈ Ti . The dimension of θ̄i is L̄i =
6 + 4|Ti|. Furthermore, ȳi comprises all the measurements
involving θi . Now, using (17) in (16), one obtains

b(θi) ∝ ηfij (θi)
∏
j∈Ti

∫
f(yij |λi,λj) η̃fji(λj)dλj

=

∫
· · ·
∫
ηfij (θi)

∏
j∈Ti

f(yij |λi,λj) η̃fji(λj)dλj .

This can be rewritten in terms of the dimension-augmented
vector θ̄i as

b(θi) =

∫
b(θ̄i)dθ̄∼i , (32)

where b(θ̄i) is defined, up to a normalization factor, as

b(θ̄i) ∝ f(ȳi|θ̄i)f(θ̄i) , (33)
with

f(θ̄i) , ηfij (θi)
∏
j∈Ti

η̃fji(λj) , (34)

f(ȳi|θ̄i) ,
∏
j∈Ti

f(yij |λi,λj) , (35)

and dθ̄∼i ,
∏
j∈Ti dλj .
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The “dimension-augmented” reformulation of b(θi) in (33)
is seen to be formally analogous to (19), and the factors on the
right-hand side of (33), f(ȳi|θ̄i) and f(θ̄i), can be given the
following interpretations. The expression (34) of f(θ̄i) has the
form of a prior PDF. Furthermore, according to (35), f(ȳi|θ̄i)
is the likelihood function related to the “stacked pairwise
observation model”

ȳi = φ̄i(θ̄i, v̄i) , (36)

where φ̄i(θ̄i, v̄i) ,
[
φ(λi, λj , vij)

]
j∈Ti (cf. (8)) and v̄i ,

[vij ]j∈Ti . We note that v̄i is a zero-mean Gaussian random
vector of dimension Lv̄i =

∑
j∈Ti(Kij +Kji); its covariance

matrix is Cv̄i = bdiag
{
Cvij1 ,Cvij2 , . . . ,Cvij|Ti|

}
.

D. Spatial Cooperation Step and Belief Calculation

We will now describe how the dimension-augmented re-
formulation of the belief b(θi) introduced above can be used
for an SP-based joint second-order implementation of spatial
cooperation (15) and belief calculation (16). Indeed, because
of the formal analogy of (33), i.e., b(θ̄i) ∝ f(ȳi|θ̄i)f(θ̄i),
to (19), i.e., f(x|y) ∝ f(y|x)f(x), we can obtain a second-
order description of b(θi)—i.e., mean µb(θi) and covariance
matrix Cb(θi)—by means of SPs in a similar manner as we
obtained a second-order description of f(x|y) in Section
IV. To this end, we define the noise-augmented dimension-
augmented state vector θ̄i∗ , [θ̄

T
i v̄

T
i ]

T with PDF (cf. (34))

f(θ̄i∗) = f(θ̄i)f(v̄i) = ηfij (θi)

( ∏
j∈Ti

η̃fji(λj)

)
f(v̄i) .

(Note that f(θ̄i∗) = f(θ̄i)f(v̄i) because, according to Section
II-B, θ̄i and v̄i are independent.) The PDF f(θ̄i∗) is the
basis for performing spatial cooperation and belief calculation
jointly. The second-order description of f(θ̄i∗) is provided by
the stacked mean vector and corresponding covariance matrix
defined as

µθ̄i∗ ,
[
µT
θi µ

T
j1 µ

T
j2 · · · µ

T
j|Ti|

0T
Lv̄i

]T
, (37)

Cθ̄i∗ , bdiag
{
Cθi ,Cj1 ,Cj2 , . . . ,Cj|Ti| ,Cv̄i

}
. (38)

Here, µθi and Cθi are the mean and covariance matrix of
ηfij (θi), which were calculated in the self-update step (see
Step 5B); furthermore, the 4-dimensional vectors µj and the
4×4 matrices Cj denote the means and covariance matrices
of the messages η̃fji(λj), j ∈ Ti. (Note that by (14) and
(18), η̃fji(λj) =

∫∫
ζf ′j (θj)ζfj (θj)dẋ1,j dẋ2,j , which shows

that η̃fji(λj) does not depend on i.) In accordance with the
marginalization (18), µj comprises the first 4 elements of the
6-dimensional vector µθj , and similarly, Cj equals the upper-
left 4×4 submatrix of the 6×6 matrix Cθj . Thus, µj and
Cj can be directly extracted from, respectively, µθj and Cθj ,
which were calculated by device j in the self-update step.
After the self-update step, device i broadcasts its own µi and
Ci to all neighbors j∈Ti and receives their µj and Cj ; thus,
µj and Cj for j ∈Ti are available at device i. We note that
µθ̄i∗ and Cθ̄i∗ have dimension L̄i = 6 + 4|Ti| + Lv̄i and
L̄i×L̄i, respectively.

The following steps are now performed for joint spatial
cooperation and belief calculation (note that the first three
steps are analogous to Steps 1–3 in Section IV):

Step 1C: SPs and weights
{(
θ̄

(l)
i , v̄

(l)
i , w̄

(l)
i

)}2L̄i

l=0
correspond-

ing to f(θ̄i∗) = f(θ̄i)f(v̄i) are calculated from µθ̄i∗ and Cθ̄i∗
according to (23) and (24).

Step 2C: The transformed SPs ȳ(l)
i = φ̄i

(
θ̄

(l)
i , v̄

(l)
i

)
, l =

0, 1, . . . , 2L̄i (cf. (36)) are calculated.
Step 3C: From

{(
θ̄

(l)
i , ȳ

(l)
i , w̄

(l)
i

)}2L̄i

l=0
, the weighted sample

means and covariances µȳi , Cȳi , and Cθ̄iȳi
are calculated

as in (25)–(27). Subsequently, an approximate second-order
description of b(θ̄i) in (33), constituted by mean µb(θ̄i) and
covariance matrix Cb(θ̄i), is calculated as in (20) and (21) with
µx|y , Cx|y , µx, Cx, µy , Cy , and Cxy replaced by µb(θ̄i),
Cb(θ̄i), µθ̄i∗ , Cθ̄i∗ , µȳi

, Cȳi
, and Cθ̄iȳi

, respectively.
Step 4C: From µb(θ̄i) and Cb(θ̄i), the parts µb(θi) and

Cb(θi) related to θi are extracted; note that this corresponds to
the marginalization (32). More specifically, µb(θi) is given by
the first 6 elements of µb(θ̄i), and Cb(θi) is given by the upper-
left 6×6 submatrix of Cb(θ̄i) (cf. the stacked structure of µθ̄i∗
in (37) and the block structure of Cθ̄i∗ in (38)). The mean
µb(θi) and covariance matrix Cb(θi) constitute the desired
second-order description of the belief b(θi); furthermore,
µb(θi) provides an approximation of the MMSE estimate of
θi , and Cb(θi) provides an approximate characterization of the
uncertainty of the estimate.

We note that according to (23), Step 1C requires the
computation of the square root of the L̄i × L̄i matrix Cθ̄i∗ .
Because of (38), this matrix square root is given by

C
1/2

θ̄i∗
= bdiag

{
C

1/2
θi
,C

1/2
j1
,C

1/2
j2

, . . . ,C
1/2
j|Ti|

,C
1/2
v̄i

}
.

Hence, the computation of C
1/2

θ̄i∗
reduces to computing

the smaller matrix square roots C1/2
θi
,C

1/2
j1
,C

1/2
j2
, . . . ,C

1/2
j|Ti|

,

C
1/2
v̄i . Here, in particular, Cv̄i is a diagonal matrix, and thus

C
1/2
v̄i is the diagonal matrix whose diagonal elements are the

square roots of the diagonal elements of Cv̄i . The remain-
ing matrix square roots C1/2

θi
,C

1/2
j1
,C

1/2
j2
, . . . ,C

1/2
j|Ti|

can be
computed efficiently by means of the Cholesky decomposition
[44], whose complexity is cubic in the matrix dimension.

E. Computation and Communication Requirements

The computational complexity of the proposed SPBP al-
gorithm for NLS is dominated by the calculation of the
covariance matrices Cȳi

and Cθ̄iȳi
in Step 3C, which is

analogous to the calculation of expressions (26) and (27). As
a consequence, the complexity of the SPBP algorithm at one
device i is cubic in

∣∣Ti∣∣ since the lengths of the vectors θ̄i
and ȳi as well as the number of SPs grow linearly with

∣∣Ti∣∣.
Furthermore, the computational complexity is linear in the
number of SPs (which is 2L̄i+1, where L̄i = 6 + 4|Ti|+Lv̄i
with Lv̄i =

∑
j∈Ti(Kij +Kji)). We note that the complexity

of the hybrid particle-based/parametric BP method for NLS
presented in [19] is linear in

∣∣Ti∣∣ and linear in the number
of particles. However, the number of particles is much larger
than the number of SPs in the SPBP algorithm. The results of
our numerical study reported in Section VI demonstrate that
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Fig. 4. Network topology (a) at time step n=0 and (b) at time step n=120. Blue bullets indicate the initial locations of mobile devices with unknown clock
parameters and unknown locations, red circles indicate static devices with unknown clock parameters and known locations, red crossed circles indicate static
devices with known clock parameters and known locations, grey dashed lines represent measurement/communication links, and blue solid lines represent a
realization of the trajectories of the mobile devices. Note that in (a), the single blue bullet at the center of the scene represents the (identical) initial locations
of four mobile devices.

in the scenario considered, the SPBP algorithm is significantly
less complex than the method presented in [19].

The communication requirements of the SPBP algorithm
are as follows. As a prerequisite for performing Step 1C,
device i receives µj and Cj from each neighbor j ∈ Ti (this
is needed to calculate µθ̄i∗ and Cθ̄i∗ , see (37) and (38)),
and it broadcasts µi and Ci to all neighbors j ∈ Ti . Thus,
device i broadcasts a 4-dimensional mean vector and a 4×4
covariance matrix, which amounts to a total of 14 real values.
These communication requirements are similar to those of the
method in [19].

VI. NUMERICAL EVALUATION

In this section, we compare the performance and computa-
tional complexity of the proposed SPBP algorithm for NLS
with those of the BP method presented in [19].

A. Simulation Setting

We simulated a network consisting of |I| = 12 devices.
Devices 1–4 are static, i.e., x

(n)
i = x

(0)
i for i = 1, 2, 3, 4

and all n ≥ 0; these devices serve as spatial master devices.
Devices 5–12 are mobile devices that follow the constant
velocity motion model [45, Section 6.3.2]. That is, their state-
evolution function in (2) is given by g1,i(x) = G1x and the
covariance matrix of the driving process u

(n)
1,i in (2) is given

by Σu1,i
= σ2

1G2G
T
2 , where

G1 =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

, G2 =


T 2/2 0

0 T 2/2
T 0
0 T

,

and σ1 = 0.3 m/s2. The duration of one time step is T = 0.2 s.
Devices 1 and 2 serve as temporal master devices with
clock skew equal to 1 and clock phase equal to 0s, i.e.,
ω

(n)
i = [1 0s ]T for i = 1, 2 and all n ≥ 0. The clock states

of devices 3–12 evolve according to (3) with g2,i(ω) =ω and
Σu2,i= diag

{
Tσ2

2 , Tσ
2
3

}
, where σ2 =10 ppm ·s−1/2 and σ3 =

10−6 s1/2. There are no self-measurements, i.e., S(n) = ∅ for
all n.

We present the results of 500 simulation runs, each compris-
ing 120 time steps. In each simulation run, new realizations
of the sequences of clock parameters of devices 3–12 and of
the trajectories of devices 5–12 are generated according to the
state-evolution models described above. The initial location
p

(0)
i of each device is the same for each simulation run,

whereas the initial clock states ω(0)
i for i ≥ 3 are generated

independently from a Gaussian distribution with mean vector
[1 0s ]T and covariance matrix diag{(150 ppm)2, (1s)2}.

Each device exchanges Kij =Kji = 10 packets with each
of its neighbor devices and obtains time measurements as
described in Section II-B. The neighbors of device i at time
n are all the devices j 6= i within a radius of 37.5m, i.e.,∥∥p(n)

j − p
(n)
i

∥∥ ≤ 37.5m. We consider three different values
of the standard deviation of the measurement noise, namely,
σvi,j = σv ∈ {1ns, 5ns, 10ns}. Fig. 4 shows the network topol-
ogy (i.e., the 12 devices and the measurement/communication
links connecting them) at the initial time step n = 0 and at
the final time step n = 120, as well as a realization of the
trajectories of the mobile devices.

In the simulated algorithms, the SP parameter κ is set
to 0. The initial prior distributions f(θ

(0)
i ) (cf. (12)) are

assumed to be Gaussian for all devices i that do not serve
as master devices. More specifically, for devices 5–12, x(0)

i ∼
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Fig. 5. Simulated ARMSEs of the proposed SPBP algorithm and the HBP algorithm versus times step n for three different measurement noise standard
deviations σv : (a) location, (b) velocity, (c) clock skew, and (d) clock phase.

N
(
μ

(0)
x,i ,Σ

(0)
x,i

)
with μ(0)

x,i=x
(0)
i + εi and Σ(0)

x,i = diag
{

(3m)2,

(3m)2, (1m/s)2, (1m/s)2
}

. Here, x
(0)
i is the true initial

location-related state and εi ∼ N
(
0,Σ

(0)
x,i

)
is drawn inde-

pendently for all i and all simulation runs. Furthermore, for
devices 3–12, ω(0)

i ∼N
(
µ

(0)
ω,i ,Σ

(0)
ω,i

)
with µ(0)

ω,i = [1 0s ]T and
Σ

(0)
ω,i = diag

{
(150 ppm)2, (1s)2

}
.

B. Simulation Results

We simulated the proposed SPBP algorithm for NLS (briefly
referred to as SPBP) and compared its results with those of
the hybrid particle-based/parametric cooperative BP algorithm
presented in [19] (briefly referred to as HBP). Our implemen-
tation of HBP used 1000 particles to represent the belief of
each device and performed two message passing iterations in
each time step. We did not consider any further state-of-the-
art algorithms for NLS because, to the best of our knowledge,
there are no other distributed algorithms that can handle time-
variation of both the location and clock parameters. Our
measure of performance is the average root mean square error

(ARMSE), which is the root mean square error averaged over
500 simulation runs and over all devices.

Fig. 5 shows the ARMSEs of location, velocity, clock skew,
and clock phase versus time n for three different values
of the measurement noise standard deviation, σvi,j = σv ∈
{1ns, 5ns, 10ns}. It can be seen that at almost all times, the
localization and synchronization accuracy of SPBP is better
than that of HBP. This can be partly explained by the fact
that the factor graph underlying HBP is “more loopy” and the
number of particles used by HBP is rather small considering
the dimensionality of the problem. (We note that a larger
number of particles would result in a smaller ARMSE at the
cost of a larger runtime.) In addition, the superior performance
of SPBP relative to HBP in the simulated setting is also
due to the dense network, i.e., the relatively high number of
neighbor devices and, thus, available measurements. In sparse
networks, the messages and beliefs often have complicated,
multimodal shapes, in which case the second-order description
provided by SPs may not be sufficient and a particle-based
representation as used in [19] may be required. Finally, further
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experiments demonstrate that in the absence of informative
prior information at time n = 0, HBP tends to outperform
SPBP during the initial time steps.

Using MATLAB implementations on a single core of an
Intel Xeon E5-2640 v3 CPU, we obtained the following
average runtimes per time step n: 0.91s for SPBP and 1.93s
for HBP. Thus, in the chosen setting, SPBP outperforms HBP
in terms of both estimation accuracy and runtime.

VII. CONCLUSION

Devices for the Internet of Things (IoT) often have limited
computation and communication resources. They are typically
heterogeneous in terms of qualities of internal clocks and
mobility patterns. In this paper, we presented a distributed,
cooperative, time-recursive algorithm for network localization
and synchronization (NLS). The proposed algorithm is suited
to heterogeneous devices with limited hardware capabilities,
time-varying clock and location parameters, arbitrary state-
evolution models, and time-varying network connectivity. Fur-
ther advantages include low computational complexity and low
communication requirements, and the fact that the compu-
tational complexity per device is independent of the size of
the network. The algorithm uses time measurements obtained
through asymmetric time-stamped communication. This mea-
surement technique can be realized with emerging inexpensive
and low-power ultra-wideband impulse radio modules, which
are expected to play a key role in location-aware IoT devices.
Therefore, the proposed algorithm is attractive for the decen-
tralized wireless networks arising in IoT applications such
as logistics, social networking, medical services, search and
rescue operations, and automotive safety.

The main contributions of the paper can be summarized as
follows:
• We formulated the joint synchronization and localization

task as a network-wide spatiotemporal Bayesian estima-
tion problem and represented the statistical structure of
that problem by a factor graph. Based on the factor graph,
we derived a belief propagation (BP) method for efficient
marginalization of the joint posterior distribution of all
parameters. Subsequently, we applied the recently intro-
duced sigma point BP technique to develop an efficient
second-order implementation. This resulted in a low-
complexity, scalable inference algorithm for tracking the
time-varying location and clock parameters of possibly
heterogeneous IoT devices.

• We evaluated the performance of the developed algorithm
through simulation. Our results show that in sufficiently
dense networks, accurate synchronization and localization
are achieved with a low computational complexity. In
particular, the algorithm was observed to outperform
the state-of-the-art BP-based algorithm for NLS with
respect to both estimation accuracy and computational
complexity.

Promising directions for future research include extensions
of the proposed algorithm that are better suited to represent
multimodal messages and beliefs. We conjecture that such
extensions can be obtained by generalizing the sigma point

BP technique [36] to multiple means and covariance matrices
describing the modes, in the spirit of the Gaussian sum
filter [46]. Similar extensions can possibly be based on the
belief condensation filter [47]. We expect that the resulting
extended algorithms will exhibit improved performance for
sparse networks and in cases where no initial prior informa-
tion on the device locations is available. Further promising
research directions are the derivation of fundamental limits of
synchronization and localization accuracy for the considered
statistical model and the evaluation of our algorithm on a
hardware testbed [48].

REFERENCES

[1] S. G. Nagarajan, P. Zhang, and I. Nevat, “Geo-spatial location estimation
for Internet of Things (IoT) networks with one-way time-of-arrival via
stochastic censoring,” IEEE Internet of Things J., vol. 4, no. 1, pp. 205–
214, Feb. 2017.

[2] C. Chen, Y. Chen, Y. Han, H.-Q. Lai, and K. J. R. Liu, “Achieving
centimeter-accuracy indoor localization on WiFi platforms: A fre-
quency hopping approach,” IEEE Internet of Things J., vol. 4, no. 1,
pp. 111–121, Feb. 2017.

[3] J. Cho, J. Yu, S. Oh, J. Ryoo, J. Song, and H. Kim, “Wrong siren! A
location spoofing attack on indoor positioning systems: The Starbucks
case study,” IEEE Commun. Mag., vol. 55, no. 3, pp. 132–137, Mar.
2017.

[4] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[5] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of Things: A survey on enabling technologies,
protocols, and applications,” IEEE Commun. Surveys Tuts., vol. 17, no. 4,
pp. 2347–2376, 2015.

[6] F. Meyer, T. Kropfreiter, J. L. Williams, R. A. Lau, F. Hlawatsch,
P. Braca, and M. Z. Win, “Message passing algorithms for scalable
multitarget tracking,” Proc. IEEE, vol. 106, no. 2, pp. 221–259, Feb.
2018.

[7] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, R. L. Moses, and
N. S. Correal, “Locating the nodes: Cooperative localization in wireless
sensor networks,” IEEE Signal Process. Mag., vol. 22, no. 4, pp. 54–69,
Jul. 2005.

[8] S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V.
Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: A look
at positioning aspects for future sensor networks,” IEEE Signal Process.
Mag., vol. 22, no. 4, pp. 70–84, Jul. 2005.

[9] Z. Liu, W. Dai, and M. Z. Win, “Mercury: An infrastructure-free system
for network localization and navigation,” IEEE Trans. Mobile Comput.,
vol. IEEE Xplore Early Access, 2018.

[10] O. Bello and S. Zeadally, “Intelligent device-to-device communication
in the Internet of Things,” IEEE Syst. J., vol. 10, no. 3, pp. 1172–1182,
Sep. 2016.

[11] M. Z. Win, A. Conti, S. Mazuelas, Y. Shen, W. M. Gifford, D. Dardari,
and M. Chiani, “Network localization and navigation via cooperation,”
IEEE Commun. Mag., vol. 49, no. 5, pp. 56–62, May 2011.

[12] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in
wireless networks,” Proc. IEEE, vol. 97, no. 2, pp. 427–450, Feb. 2009,
special issue on Ultra -Wide Bandwidth (UWB) Technology & Emerging
Applications.

[13] Y. Shen and M. Z. Win, “Fundamental limits of wideband localization –
Part I: A general framework,” IEEE Trans. Inf. Theory, vol. 56, no. 10,
pp. 4956–4980, Oct. 2010.

[14] S. Li, M. Hedley, and I. B. Collings, “New efficient indoor cooperative
localization algorithm with empirical ranging error model,” IEEE J. Sel.
Areas Commun., vol. 33, no. 7, pp. 1407–1417, Jul. 2015.

[15] Y. Shen, H. Wymeersch, and M. Z. Win, “Fundamental limits of
wideband localization – Part II: Cooperative networks,” IEEE Trans.
Inf. Theory, vol. 56, no. 10, pp. 4981–5000, Oct. 2010.

[16] D. Vasisht, S. Kumar, and D. Katabi, “Decimeter-level localization with
a single WiFi access point,” in USENIX NSDI ’16, Santa Clara, CA,
Mar. 2016, pp. 165–178.

[17] Y. Shen, S. Mazuelas, and M. Z. Win, “Network navigation: Theory
and interpretation,” IEEE J. Sel. Areas Commun., vol. 30, no. 9, pp.
1823–1834, Oct. 2012.



Meyer, Etzlinger, Liu, Hlawatsch, and Win: A Scalable Algorithm for Network Localization and Synchronization 13

[18] F. Meyer, O. Hlinka, H. Wymeersch, E. Riegler, and F. Hlawatsch,
“Distributed localization and tracking of mobile networks including
noncooperative objects,” IEEE Trans. Signal Inf. Process. Netw., vol. 2,
no. 1, pp. 57–71, Mar. 2016.

[19] B. Etzlinger, F. Meyer, F. Hlawatsch, A. Springer, and H. Wymeersch,
“Cooperative simultaneous localization and synchronization in mobile
agent networks,” IEEE Trans. Signal Process., vol. 65, no. 14, pp. 3587–
3602, Jul. 2017.

[20] S. Zhu and Z. Ding, “Joint synchronization and localization using TOAs:
A linearization based WLS solution,” IEEE J. Sel. Areas Commun.,
vol. 28, no. 7, pp. 1017–1025, Aug. 2010.

[21] S. P. Chepuri, G. Leus, and A.-J. van der Veen, “Joint localization and
clock synchronization for wireless sensor networks,” in Proc. Asilomar
Conf. Sig., Syst., Comput., Pacific Grove, CA, Nov. 2012, pp. 1432–
1436.

[22] Y. Wang, X. Ma, and G. Leus, “Robust time-based localization for
asynchronous networks,” IEEE Trans. Signal Process., vol. 59, no. 9,
pp. 4397–4410, Sep. 2011.

[23] J. Zheng and Y.-C. Wu, “Joint time synchronization and localization
of an unknown node in wireless sensor networks,” IEEE Trans. Signal
Process., vol. 58, no. 3, pp. 1309–1320, Mar. 2010.

[24] D. Zachariah, A. De Angelis, S. Dwivedi, and P. Händel, “Schedule-
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