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Abstract

The development of statistical methods which are able to deal with high-dimensional data
belongs to the major research activities in statistics. In many fields (e.g. chemometrics,
genomics, metabolomics) it is easy to measure and store data by using advanced modern
techniques. Thus, there are also numerous real-world applications justifying these
developments. One possible way how to deal with such data comes from the log-ratio
point of view. There is whole branch of statistics devoted to log-ratios – Compositional
Data Analysis. Compositional data represent a special type of multivariate data which
describe parts of a whole. In this context only relative information is important. Because
of these special features of compositional data, the application of standard statistical
methods could lead to invalid conclusions.

The primary aim of the thesis is to introduce procedures for analysing high-dimensional
data which originate from different groups. The main focus is set on applications in the
field of metabolomics, where the different data groups consist of observations related
to different diseases. The new methods should not only allow to differentiate between
the groups, but they should also enable feature selection: only those features (variables),
which allow to discriminate between the different groups, should be identified. An
important request for these methods is their robustness against outlying observations,
which is a common situation in real data.

Another interest of the thesis is the investigation of outliers in the data. We focus on
both observational outliers and on so-called cell outliers. The former refers to the situation
when an observation deviates from the majority of a group in possibly all variables, while
in the latter case for a certain observation only the values in some variables (cells) are
deviating. This will contribute to gain a better insight into the data structure.
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Kurzfassung

Die Entwicklung von statistischen Methoden für hochdimensionale Daten gehört heu-
te zu den wichtigen Forschungsaktivitäten in der Statistik. In vielen Disziplinen (z.B.
Chemometrie, Genomik, Metabolomik) ist es einfach geworden, mit fortgeschrittenen
modernen Techniken Daten zu messen und zu speichern. Daher gibt es auch unzählige
Anwendungen in der Praxis, die solche Entwicklungen rechtfertigen. Eine Möglichkeit,
solche Daten handhaben zu können kommt von der Sichtweise von logarithmischen Ver-
hältnissen (log-ratios). Es gibt einen ganzen Bereich in der Statistik, der sich log-ratios
widmet – die Analyse von Kompositionsdaten. Solche Daten sind spezielle multivariate
Daten, die Anteile an einem Ganzen beschreiben. In diesem Zusammenhang ist nur die
relative Information wichtig. Aufgrund der spezifischen Charakteristik von Kompositi-
onsdaten könnte die Anwendung von herkömmlichen statistischen Methoden zu falschen
Schlussfolgerungen führen.

Primäres Ziel der Dissertationsschrift ist es, Verfahren für die Analyse hochdimen-
sionaler Daten, die von verschiedenen Gruppen kommen können, zu entwickeln. Haupt-
augenmerk ist auf Anwendungen aus dem Gebiet der Metabolomik gelegt, wo die un-
terschiedlichen Datengruppen aus Beobachtungen bestehen, die zu unterschiedlichen
Erkrankungen in Bezug stehen. Die neuen Methoden sollten es nicht nur ermöglichen, die
Gruppen unterscheiden zu können, sie sollten auch eine Variablenselektion ermöglichen.
Nur jene Merkmale (Variablen), die eine Unterscheidung der Gruppen ermöglichen, sollten
identifiziert werden. Eine wichtige Anforderung an diese Methoden ist die Robustheit
gegenüber Ausreißern, welche in Echtdaten häufig vorkommen.

Ein weiterer Schwerpunkt dieser Arbeit ist die Untersuchung von Ausreißern in den
Daten. Der Fokus liegt sowohl auf Ausreißern in Form von ganzen Beobachtungen, als
auch auf sogenannten zellweisen Ausreißern. Erstere Art von Ausreißern bezieht sich auf
den Fall, in dem eine Beobachtung von der Mehrheit einer Gruppe möglicherweise in allen
Variablen abweicht. Im letzteren Fall weicht die Beobachtung nur in bestimmten Variablen
ab. Dies trägt dazu bei, einen besseren Einblick in die Datenstruktur zu erhalten.
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CHAPTER 1
Introduction

There are several main tasks in the field of statistics and data science. Firstly, clustering
corresponds with the analysis of data, where the response variable (the so called label)
is not known or at least not used for the analysis. Secondly, regression tries to model
a quantitative response based on a given set of predictors. Thirdly, classification deals
with the same issue as regression with the difference that the response variable acquires
only several discrete values. Fourthly, outlier identification analyzes the data in order to
find observations which, due to various reasons, deviate from the majority .

The thesis focuses on the last two of the four situations mentioned above – classification
and outlier identification and applies these methods mainly to data coming from the
field of Metabolomics. Metabolomics aims at a systematic study of metabolites, their
interactions, changes and responses to different kinds of stimuli – medicament, diets or
drugs. Data coming from metabolomics, as well as from many other fields and applications,
have a large number of variables which might lead to a failure of many classification
and outlier identification methods. Most of the times, the number of analyzed samples
is much smaller than the number of measured variables (n � d). Such a situation is
referred to as flat data. The series of problems connected with an increasing number of
measured variables is well examined and is generally known as course of dimensionality,
see Beyer et al. (1999); Bennett et al. (1999). With increasing number of variables, the
data space gets emptier and emptier and one would need an extensive set of samples
to describe the space sufficiently. It might not be feasible due to costs or other limits.
It is also easy to overfit the statistical model because of randomness effects, which are
added with each additional non-informative variable. Furthermore, the vast majority
of variables might be irrelevant and thus redundant in high-dimensional settings. This
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1. Introduction

creates a new problem of an appropriate identification of important variables – feature
selection. It is called biomarker identification in metabolomics, and it is the third and
the main topic of the thesis.

The goal of this chapter is to demonstrate readers several problems connected to the
analysis of data mainly from metabolomics as well as to provide an overview of existing
methods, their advantages and disadvantages.

1.1 Metabolomics

Metabolomics is a field of biochemistry. Together with genomics, transcriptomics or
proteomics it is a part of the “omics” family. Metabolomics aims at a systematic study
of metabolites, their interactions, changes and responses to different kinds of stimuli. It
analyses a variety of living organisms from humans to bacteria and plants. All types
of biological samples from bifluids, such as urine, blood or plasma, can be used for the
analysis. Metabolomics is associated with metaboloms and metabolites. A metabolite
is defined as a molecular mass organic compound, intermediate or metabolism product
found in an organism (Oliver et al., 1998). Basically, they are small molecules which
are being transformed during metabolism processes. A metabolome is a complete set
of metabolites in the organism. Metabolomics analyzes a metabolome under a given
condition, where the condition simply refers to the state of the organism (e.g. sick
or healthy patient, tea before and after fermentation, etc.). Unlike genes or proteins,
metabolites are directly related to biochemical activity. Hence, they can be more easily
assigned to a certain condition. Therefore, metabolomics is a powerful tool of clinical
diagnostics (Patti et al., 2012). Increasing popularity and importance of metabolomics is
shown in Figure 1.1. The figure plots the growing number of publications found at the
PubMed webpage for the keywords “metabolomics” and “biomarker” between the years
2002 and 2018.

Metabolomics can be divided into the targeted and untargeted approach (Patti et al.,
2012). The choice of the approach strongly depends on the experimental objective and
on available resources. Targeted analysis is an approach where specific metabolites are
measured. It is usually driven by a concrete biochemical question. The number of
metabolites is typically an order of magnitude lower (in hundreds) compared to the
untargeted approach (in thousands). Hence, the interpretation of targeted analysis
data is generally an easier task (Wu et al., 2011; Dudley et al., 2010). It is used
e.g. for pharmacokinetic studies of drug metabolism or generic modification on a certain
enzyme Nicholson et al. (2002). On the other hand, the costs of targeted analysis is

2
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Figure 1.1: PubMed search using keywords “metabolomics” and “biomarkers”, years
2002 to 2018. (Data collected on 14.1.2019 )

higher due to the fact that metabolites need to be adjusted to the machine before the
analysis. It is done by commercially available chemical standards.

The untargeted approach analyzes metabolites which are not known beforehand.
Instead of directly identifying them, chromatograhic peaks are found. Chromatograhic
peaks are potential metabolites. However, these peaks must be firstly identified, which is a
complicated process. For more details see Alonso et al. (2015); Gardlo (2016). Nonetheless,
the advantage of untargeted analysis is that it identifies almost all metabolites. It makes
it an ideal tool to provide an insight into complicated biological processes due to higher
complexity of the data.

1.2 Data in metabolomics

Data from metabolomics have a typical structure with n observations stored in the rows
and d variables in the columns of a data matrix. Thus, the data matrix X consists of
elements xij , where i = 1, . . . , n and j = 1, . . . , d. Thanks to powerful analytical tools
and relatively high costs, the number of variables is usually much higher than the number
of observations. In a typical metabolomic setting, the samples in X are coming from
G = 2 groups. For example, the first group might refer to healthy people, and the second
group contains patients with a certain condition.

The most important information in the dataset is usually contained in its variability.

3



1. Introduction

For that reason it is important to describe and understand different types of variability
in metabolomics. Biological variability describes differences within the subjects. Each
sample is up to some point unique. Thus, if, for example, two samples of tissue are
analyzed, the resulting abundances will slightly differ. Secondly, technical variation is
caused either by analytical errors or errors and differences concerning the machine used
for the analysis itself. In metabolomics, two powerful techniques are used to perform
the analysis: Nuclear Magnetic Resonance (NMR) imaging and different types of Mass
Spectrometry (MS). MS techniques are the most sensitive for the simultaneous analysis
of a large number of compounds. NMR complements mass spectrometry. Its sensitivity is
lower, but it is uniquely capable of elucidating molecular structure (Burgess et al., 2014).
These two tools produce big data in the form of abundances of a compound of a biological
sample. The third type of variation is called induced biological variation. Two samples
in different state (e.g. control versus disease) will differ in some of the measured entities
exactly due to its diverse states. This type of variation is of great interest. Finding,
examining and understanding these differences is one of the main goals of metabolomics.

Many statistical methods are based on the assumption that errors are fluctuating
around zero with certain constant variation. However, this is frequently not the case,
since often increasing abundances correspond to increasing noise. Such a situation is
referred to as heteroskedasticity and it needs to be addressed prior to the statistical
analysis.

Data in metabolomics highly depend on the material (blood, tissue, urine, etc.)
used for measurements. There are some issues connected with the type of the analyzed
material. One of them is the so-called size–effect. It refers to a situation when the
samples cannot be directly compared, because of differences in their volumes. A typical
example is the analysis of urine or blood. Naturally, the urine concentration strongly
depends on the level of water intake and on other physiological factors. Therefore, the
abundances of metabolites in different urine samples differ. An analogous situation
concerning blood samples is referred to as “dry blood spots”. Similarly, one can imagine
that the analyzed amount is crucial. If, for example, two units of a blood sample are
measured, it is expected that the abundance levels will be approximately twice as high
for all metabolites compared to a measurement of one unit. A simulated toy example
based on Filzmoser and Walczak (2014) illustrating the size–effect in the data is shown
in Figure 1.2. Figure 1.2(a) describes a situation where the size–effect is not present
in the data. There are two groups of samples – controls and disease patients. Nine
variables (metabolites) are plotted on the x-axis. The y-axis shows the abundance, which
is furthermore centered by its mean. Variables 2 and 3 obviously discriminate between the
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1.2. Data in metabolomics

two groups, hence they are considered to be biomarkers. The rest of the variables have
no discrimination power and represent noise. However, as demonstrated in Figure 1.2(b),
as soon as the size–effect is present in the data, the differences between the groups can
vanish. Such a situation is not desirable and needs to be dealt with.
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Figure 1.2: Simulated data example: centered abundances of nine variables in a situation
with and without size–effect.

There are several possibilities how to eliminate size–effect, heteroskedasticity and
other data-related issues. In practice, normalization, scaling or transformation methods
are used. For simplicity, they are divided here into (1.) normalization to internal standard
methods, (2.) data–driven methods and (3.) methods based on log-ratios. Typically, the
log-ratio methodology is considered to be part of the data–driven methods, but since it
is a crucial concept throughout the thesis it is treated as a separate group.

“Housekeeping variable” normalization

The first type of methods is also called normalization to a “housekeeping variable”. A
reference variable is chosen due to its stability throughout various samples. All the other
variables are then divided by its reference intensity. Creatinine is a specific metabolite
which appears in all urine samples. It is a chemical waste product, which is filtered by
kidneys and is eliminated in urine. Under normal circumstances, creatinine is directly
proportional to the urine concentration. However, the level of creatinine might be
influenced by external factors, for instance kidney diseases (Garde et al., 2004; Warrack
et al., 2009; Waikar et al., 2010), which might not be known prior to the analysis.
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1. Introduction

Consequently, such a normalization would result in biased conclusions.

Data–driven methods

Data–driven methods are a broad range of normalization, scaling and transformation
approaches. A closer description is provided in Chapter 2. Here, the focus is on the
frequently used Total Sum Normalization (TSN) (Craig et al., 2006; Giraudeau et al.,
2014; Filzmoser and Walczak, 2014) and v (PQN) Dieterle et al. (2006). The TSN
normalizes the data by forcing the sum of all variables of each sample to be constant (e.g.
1 or 100%). Afterwards, the transformed variables represent fractions or percentages of
the whole. It is accomplished by dividing each abundance by the sum of the intensities
of the whole sample. Thus, for each sample xi = (xi1, xi2, . . . , xid), i = 1, . . . , n, TSN is
constructed as

xTSNi =
(
xi1
ti
,
xi2
ti
, . . . ,

xid
ti

)
, where ti =

d∑
j=1

xij . (1.1)

The TSN can be biased and lead to unreliable results (Filzmoser and Walczak, 2014). This
is the case especially in “far–from–closure” situations, where the sum of all intensities of
each sample is generally different. In order to allow one or several measured intensities to
increase in a constant sum scenario, others need to decrease, which might not necessarily
correspond to the reality. Furthermore, the differences are redistributed equally among
all other variables. It leads to creating artificial differences in variables and spoiling the
feature selection analysis. The described problems are demonstrated in Figure 1.3(a). It
follows the simulated toy example from Figure 1.2. The figure shows data after TSN. The
discrimination power of the true biomarker variables 2 and 3 is visible again. However,
the differences were indeed redistributed among all the other variables. Thus, one could
falsely conclude that all variables contribute to discriminate between the groups, even
thought in reality they are just noise variables.

Probabilistic Quotient Normalization (PQN) is a linear normalization method, which
mainly aims to deal with the size–effect. The assumption of PQN is that the size–effect
influences the whole sample and that biological changes between samples in measured
concentrations affect only some parts of the spectra. As a practical consequence of
this, PQN assumes that at most half of the variables are discriminating between the
groups, and thus are biomarkers. If more than a half of the measured concentrations are
biomarkers, PQN cannot be correctly applied.

PQN can be described as follows. Firstly, a reference spectrum is determined. In

6



1.2. Data in metabolomics

practice, this is usually done by computing the median for each variable,

xrefj = median {x1j , . . . , xnj} ,

for j = 1, . . . , d. Secondly, the ratios of all variables with the corresponding reference
spectrum are taken. Furthermore, the median of these values is computed for each sample,
thus

x∗i = median
{
xi1

xref1
, . . . ,

xid

xrefd

}
,

for i = 1, . . . , n. The computed values are the estimation of the size–effect for each
sample. Thus, the division by the estimation of the size–effect normalizes the samples to
the same concentration level

xPQNij = xij
x∗i

for i = 1, . . . , n and j = 1, . . . , d. (1.2)

As demonstrated in Figure 1.3(b), PQN can indeed deal with the size–effect, since the
differences are visible for the biomarker variables 2 and 3. Furthermore, the rest of the
variables could be interpreted as noise variables, with the exception of variable number
4, which still shows some discrimination power. However, as shown in Chapter 2, PQN
does not necessarily give the best performance in real-world metabolomic datasets. This
is probably due to the strict PQN assumption that all measured variables have the same
concentration level for each sample. The assumption arises from the last step of PQN
(Equation (1.2)), where each sample is divided by its estimated level of concentration.
However, in reality, the size–effect is more complicated because of the random noise
which influences the concentration levels of each variable.

Methods based on log-ratios

The third group of normalization methods is based on log-ratios. The idea behind
the log-ratio methodology is that the sum of parts of each sample does not carry any
important information. Rather, relative information stored between the ratios contains
relevant insights. Thus, the sum is only a representation, not an inherent property of
the data. There is a whole part of statistics called Compositional Data analysis (CoDa),
which focuses on data containing relative information, see, for example, Aitchison (1989);
Pawlowsky-Glahn et al. (2015); Filzmoser et al. (2018). Such data are called compositional
data or compositions. Compositions consist of strictly positive values which are part of a
whole (Pawlowsky-Glahn et al., 2015). Percentages, frequencies or concentrations are
a typical example of compositional data. If the compositional structure of data is not

7



1. Introduction

−0.06

−0.03

0.00

0.03

0.06

1 2 3 4 5 6 7 8 9
Variable

C
en

te
re

d 
ab

un
da

nc
e

Control
Disease

(a) TSN normalization

−20

0

20

1 2 3 4 5 6 7 8 9
Variable

C
en

te
re

d 
ab

un
da

nc
e

Control
Disease

(b) PQN normalization

Figure 1.3: Simulated data example: centered abundances with size–effect after TSN and
PQN transformation.

considered and compositions are treated as absolute values, as in a common approach,
classical statistical methods can lead to biased results.

Ratios are scale (and size) invariant. However, due to the asymmetry of their variance,
var (x1/x2) 6= var (x2/x1), they are not easy to work with. This deficiency can be
overcome if instead of ratios log-ratios are used. Then, var (log (x1/x2)) is equal to
var (log (x2/x1)). The log-ratio methodology is the basis of CoDa. The geometry for
compositional data is not the usual Euclidean one, but rather the Aitchison geometry on
the simplex (Aitchison, 1989). Log-ratios take out the problem of a constrained sample
space. Thus, closure of the data is not important. Note that log-ratios of original and of
already normalized data (e.g. by total sum normalization) yield the same result.

Datasets from Metabolomics are not compositional in a sense that they have constant
sum, since an increase of a certain metabolite does not imply a decrease of others.
Nonetheless, the size–effect makes the absolute values irrelevant and the important
information is indeed relative. Thus, metabolomics data can be viewed and treated as
compositions. Furthermore, the size–effect can be removed by working with log-ratios,
since log

(
s·x1
s·x1

)
= log

(
x1
x1

)
, where s represents the size–effect.

There are several popular CoDa transformations in compositional data analysis,
including additive, isometric or centered log-ratio (Filzmoser et al., 2018). The centered
log-ratio transformation is probably the most used CoDa transformation, due to its good
performance and relatively easy interpretability. The clr transformation moves the data
from the simplex to the usual Euclidean geometry (Filzmoser et al., 2018). The ith

8



1.2. Data in metabolomics

observation xi = (xi1, . . . , xid) is transformed to

xclri =
(
xclri1 , . . . , x

clr
id

)
=
(

log
(
xi1
g(xi)

)
, . . . , log

(
xid
g(xi)

))
, (1.3)

where g(xi) = d

√∏d
j=1 xij is the geometric mean of the ith observation, for i = 1, . . . , n.

Thus, clr transformed data have the same dimension d as the original dataset, however,
the components sum up to zero, xclri1 + . . .+ xclrid = 0. This means that clr transformed
data do not have full rank d, which could create problems for methods like discriminant
analysis, where a covariance matrix with full rank is required. Also for some robust
statistical methods this is a prerequisite. On the other hand, the components of clr
transformed data have a straightforward interpretation in terms of a dominance of the
corresponding compositional part on an average behavior (geometric mean) of the values
in the composition. Note that clr transformed data cover log-ratio information of all
different pairs of variables: for example, the first component can be written as

xclri1 = 1
d

(
log

(
xi1
xi2

)
+ . . .+ log

(
xi1
xid

))
.

Nonetheless, as demonstrated in Figure 1.4, the clr transformation might enhance
differences between groups and create artificial biomarkers. At the same time, the
within-group variance is decreased. The reason is that the geometric mean is used as a
denominator in Equation 1.3 for transforming all variables, and the geometric mean is
computed from abundances also from biomarker variables, which creates the differences.
Although with an increasing number of non-biomarker variables in the data, the geometric
mean is less and less affected, it is still influenced.

To solve this problem one can work with pairwise log-ratios. Log-ratios hold the
scale invariance property. Furthermore, the size effect does not play any role if pairwise
log-ratios are considered. The ith sample of the dataset is described by pairwise log-ratios,
organized in a matrix Ri ∈ IRd×d as

Ri = [rjk] =
[
log

(
xij
xik

)]
, (1.4)

where j, k = 1, . . . , d. The diagonal elements are equal to 0 and rjk = −rkj , since
log

(
xij

xik

)
= − log

(
xik
xij

)
. Thus it is sufficient to only consider the upper (or lower)

triangular matrix of Ri. This information can be unfolded into a vector of length
d× (d−1)/2, containing the pairwise log-ratio information of the ithe observation. If this
is done for every observation with index i = 1, . . . , n, a matrix of dimension n×d·(d− 1) /2
is resulting. Although the dimensionality increases substantially compared to the original
data, usually only few biomarker variables are present, and they are reflected in only
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Figure 1.4: Simulated data example: centered abundances with size–effect after CLR
transformation.

few log-ratios. All remaining log-ratios are not affected by the biomarkers. This is
demonstrated in the simulated toy example in Figure 1.5. The x-axis shows all different
pairwise log-ratios and the y-axis corresponds to the centered abundances. The differences
between the two groups are visible only in log-ratios which contain either biomarker
variable 2 or 3.

The disadvantage of methods based on log-ratios is that strictly positive values are
required. After appropriate preprocessing, metabolomic data should not have negative
values, however, zero values might be present in the data. Firstly, one should keep in
mind that there are several reasons why there are zero values in the data. It might be
simply because the measured value is not present at all. This zero type is called essential
zero. However, in omics fields the zeros typically appear as values below detection limit,
so-called rounded zeros, or they arise after a pre-treatment step: if the value is below a
certain threshold, it is suppressed to zero because of the inaccuracy of the measurement
device.

There are several methods available dealing with zero imputation. The easiest method
is to replace all the zeros with 2/3 of the detection limit of the measurement device.
However, if many zeros are present, they are all replaced by the same value, thus lowering
the variability of the data set. There are also several CoDa methods (e.g. Templ et al.
(2016); Martín-Fernández et al. (2012, 2015)) for the imputation of zero values, based
e.g. on the covariance structure of the data. More details about the zero imputation
strategies are given in Section 2.4.2 of the thesis.

The methods based on pairwise log-ratios are a crucial part of the thesis and are
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more deeply described in Chapters 2, 3 and 4.
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Figure 1.5: Simulated data example: centered abundances with size–effect, pairwise
log-ratios were computed.

1.3 Feature selection methods

High-dimensional data often contain a large number or even vast majority of noise
variables. In order to interpret a fitted statistical model correctly, it is often desired to
identify only those variables which carry relevant information. In metabolomics, those
variables are called biomarkers, and their identification is one of the most important
tasks in this field, see, for example Roessner and Dias (2016). Biomarkers do have
a biological reason for discriminating between the groups of e.g. healthy persons and
diseased patients.

Feature selection methods can be categorized into feature subset selection and feature
extraction methods (Hira and Gillies, 2015). Feature subset selection operates by removing
variables which do not contribute or are redundant. Furthermore, they are separated
into filters, wrappers, embedded approaches, see Guyon and Elisseeff (2003); Saeys et al.
(2007). Feature extraction creates new features as a combination of original variables in
order to lower the dimensionality of selected variables.

11



1. Introduction

Feature subset selection

Filters evaluate variables based on internal properties of the data. Classically, some kind
of score is calculated and only high-scoring variables are kept. Then, these features are an
input to the classification method. An advantage of filters is that they are computationally
simple and fast even for very high-dimensional datasets. Moreover, they do not depend
on the classification method. Thus, feature selection is performed only once and then the
selected subset of features can be analyzed by different classifiers. On the other hand,
filters usually ignore interactions among variables. Hence, only univariate relationships
are considered, which could result in worse performance. There are many filter methods
including t-tests (Student, 1908), Information Gain (Yang et al., 2010) or the recently
proposed ETC method (Schroeder, 2018) .

Wrapper methods evaluate subsets of variables based on their predictive performance.
In practice, two things need to be applied. Firstly, a strategy how to search among
all possible subsets of variables, and secondly, a strategy how to asses the prediction
performance. The best subset selection is referred to as “brute-force” approach, since it
computes all possible combinations of d variables. However, this includes the assessment
of 2d possible models which is computationally unbearable, even for a smaller number
of variables. Considering only 30 variables, the number of possible combinations is
230 ≈ 109. Such a problem is referred to as NP-hard (Amaldi and Kann, 1998). Nonethe-
less, other approaches such as backward or forward selection (Kittler, 1986) or generic
algorithms (Holland, 1992) efficiently examine some subsets of variables. Thus, they
could be used also for higher dimensional data. Assuming that prediction methods are
used as a black box, an advantage of wrapper methods is that they are exceptionally
universal and simple to use.

Variable selection of embedded approaches is inherent to the method. Thus, it is
performed as a part of the training of the statistical method. They are more efficient
than wrappers, since they avoid retraining of a predictor for every considered variable
subset. Typically, an objective function of embedded methods consists of two parts –
goodness-of-fit of the model and penalty term. The latter serve as a reduction of the
number of variables used in the model. For example, the least absolute shrinkage and
selection operator (LASSO) sets a penalty term to the problem of minimizing the residual
sum-of-squares as a sum of absolute values of variable coefficients. This is forcing some
of the coefficients to be equal to zero, and consequently they do not participate in the
model, see Tibshirani (1996). Additional embedded approaches such as random forests
have a build-in mechanism how to perform variable selection Guyon and Elisseeff (2003).
The disadvantage of embedded methods is that they are more likely to overfit the number
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1.3. Feature selection methods

of selected variables (Lal et al., 2006).

Feature extraction

Feature extraction creates a new, smaller set of variables, which captures most of the
useful information in the data. It assumes that the data lie on a low-dimensional subspace.
Most methods create so-called latent variables as a linear combination. However, there are
also non-linear feature extraction methods such as self-organizing maps Kohonen (1982).
Feature extraction methods can be unsupervised, such as the well-known PCA (Principal
Component Analysis), or supervised, e.g. PLS (Partial Least Squares) regression.

To demonstrate how feature extraction methods work, the classical multivariate
statistical tool PCA Jolliffe (2011); Wold et al. (1987) is considered. PCA tries to
reduce the dimensionality of the data by creating a smaller number of latent variables
(components) as a linear combination of the original variables. Let us assume a data
matrix X ∈ IRn×d with already centered variables. PCA transforms the matrix X to a
new coordinate system defined by

T = XP + E, (1.5)

where P is an d×k loading matrix, T represents the n×k score matrix and E is an error
matrix with the same dimensionality as T. The jth column of the matrix P is computed
in a way that the variance λj of the jth column of T is maximized. Furthermore,
the different columns of T are supposed to be uncorrelated, which is equivalent to
orthogonality constraints between the columns of P. The number k ≤ min (n, d) is a
pre-selected parameter, which determines the number or components of the new subspace.

A main disadvantage of feature extraction methods such as PCA or PLS is that
new components are challenging to interpret. A set of k coefficients used to obtain new
variables is returned for each original variable. Thus, if biomarker identification is the
goal, feature extraction alone is not suitable. However, it can be – and in real-world
application it often is – used as a classification (resp. regression) method in the first step,
followed by some measure of relevance obtained from the fitted model.

For variable selection, one of the two types is usually applied – the threshold or
a randomized approach. The threshold approach combines the loadings of the fitted
model into one value for each variable based on a certain function. Then, the value
is compared with a predetermined threshold to resolve the importance of the variable.
The Variable Importance in Projection (VIP) (Wold et al., 1993; Favilla et al., 2013)
or the Selectivity Ratio (SR) (Rajalahti et al., 2009a; Kvalheim, 2009) are frequently
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1. Introduction

used threshold methods. They are combining both loadings and explained variance of all
components. For a closer description, see Chapter 2 and 4.

The randomized approach borrows the idea from permutation tests (Fisher, 1935;
Rubin, 1980). It creates new artificial variables. They are constructed in a way that
they do not carry any relevant information about the group structure. This might be
done e.g. by bootstraping samples from the original variables and multiply them with
a low constant as it is done by Uninformative Variable Elimination PLS (UVE-PLS),
see Centner et al. (1996); Zerzucha and Walczak (2012). These artificial variables are
then added to the original ones before fitting a statistical model (e.g. PCA or PLS).
Thus, one can compare the loadings of the original variables with the distribution of the
loadings of artificial ones and determine the threshold dividing biomarkers from noisy
features. More details are described in Chapter 3.

Throughout the thesis, the focus is on feature extraction methods, since multivariate
methods such as PCA or PLS are standard tools in metabolomics (Saccenti et al., 2014).
However, e.g. embedded methods such as random forests were successfully applied in the
field and its popularity is increasing (Chen et al., 2013; Truong et al., 2004).

1.4 Outlier identification methods

The history of anomaly detection, today referred to as outlier identification, goes back
hundreds of years. It is well-known that outliers are present in almost all types of data,
including metabolomics. There are two main reasons why outliers are and should be
taken into account. Firstly, outliers often carry an important piece of information. They
could refer to various reasons, from a different collection of the samples, different settings
of a tool used for the analysis, or a structural defect up to frauds or medical problems.
Secondly, even a small proportion of outliers in the data can distort the estimation of a
statistical model (Huber, 2011; Abeel et al., 2009; Agostinelli et al., 2016). The simplest
idea how to deal with outliers would be to remove them from the analysis. However, in
order to do so, outliers must be identified correctly. This might be a challenging task,
especially in higher dimensions (Filzmoser et al., 2008). Furthermore, if outliers are
removed, the sample size of the dataset decreases which could affect the distribution
of the data by e.g. underestimating the variance (Bellio and Ventura, 2005). A better
strategy is to apply robust procedures, which generally downweight deviating observations
instead of simply rejecting them.
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1.4. Outlier identification methods

PCA as an outlier detection tool

PCA, as described in the previous section, can also be used for outlier identification. There
are, however, several issues connected with this approach. Classically, an eigenvector
decomposition of the covariance matrix is employed in order to estimate the loadings in
Equation (1.5). The sample variance which is being maximized and the sample covariance
matrix are sensitive to outliers. Also Singular Value Decomposition (SVD) as a method
to estimate PCA loadings is least-squares based, and thus sensitive to data outliers. So,
in the presence of outliers, PCA becomes unreliable for identifying those outliers. As
a solution, Croux and Haesbroeck (2000) investigated a robust PCA approach using
the Minimum Covariance Determinant (MCD) (Rousseeuw, 1984) estimator for the
covariance matrix. The involvement of the MCD indeed adds robustness properties
to PCA. However, it cannot be used in situations when d > n, which is standard in
metabolomics.

ROBPCA (ROBust method for Principal Components Analysis) (Hubert et al., 2005)
combines the MCD estimator with the projection pursuit (PP) approach (Li and Chen,
1985; Hubert et al., 2002). The ROBPCA algorithm can be described in three steps. 1.
PP is used for initial dimension reduction with at most n − 1 variables. This ensures
applicability to high-dimensional data. 2. The initial covariance matrix is estimated
and used for selecting the number of components k. In order to find a subspace with
a good fit, the process is iteratively repeated. 3. The samples are projected on this
subspace. Then, the robust location and the scatter matrix of the projected samples
are computed. Finally, the eigenvectors of the scatter matrix which correspond to the
biggest k eigenvalues give the robust principal components.

ROBPCA, apart from finding principal components with the biggest (robust) variance,
has also another purpose – flagging outliers. To do so, it employs two distances measuring
the outlyingness of the observations. The robust Score Distance (SD) and Orthogonal
Distance (OD) for observation i are given by:

SDi =

√√√√√ k∑
j=1

t2ij
λj
, ODi = ||xi −Pti|| , (1.6)

where ti = (ti1, . . . , tik) is the ith score vector, and λj the estimated variance of the jth
component. SD represents the outlyingness as a distance of an observation in the PCA
space relative to its center. It corresponds to the Mahalanobis distance of the observations
in the score space. OD, on the other hand, measures the distance of each observation
orthogonal to the PCA space. In order to classify an observation as non-outlying or
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as outlying, two threshold values are employed. The threshold for SD is defined as the
0.975 quantile of the χ2 distribution with k degrees of freedom,

√
χ2
k,0.975. As a cutoff

for the orthogonal distances, it is suggested to take
(
µ̂+ σ̂2z0.975

)3/2, where z0.975 is the
0.975 quantile of the standard normal distribution. The values µ̂ and σ̂ are estimated
as median and median absolute deviation (MAD) of OD3/2

i , respectively (Hubert et al.,
2005). In the case that SD or OD exceed the cutoff values, the respective observation is
considered as outlying. Furthermore, three types of outliers can be distinguished, outliers
in the score space, in the orthogonal space, or in both spaces.

1.4.1 Cellwise outliers

Commonly, outlier identification has been carried out “rowwise”, assuming that the
observations are arranged in the rows of the data matrix. This means that if some
method identifies an outlier, the complete observation is flagged. Robust statistical
methods like ROBPCA would then typically downweight these observations, see Maronna
et al. (2006). In contrast, “cellwise” outliers refer to a situation where single cells
of the data matrix are deviating. Thus, for each observation, different variables can
be outlying. Especially for high-dimensional data it might happen that most of the
observations will contain at least one cellwise outlier. It would not make much sense
to downweight those observations which contain an outlying cell, since most of the
observations would get downweighted. Cellwise outlier detection is a quite recent topic in
robust statistics (Rousseeuw and Bossche, 2018), as well as is the development of robust
estimators with cellwise outliers (Öllerer et al., 2016).

The identification of cellwise outliers is not an easy task. As an illustrative example,
let us consider the two-dimensional case in Figure 1.6. Most observations follow a linear
trend, but observations 1, 2 and 3 are clearly deviating. If the data would be examined
univariately, one could conclude that observation 1 differs substantially in variable X1,
whereas observation 2 differs in variable X2. However, observation 3 does not differ in
either of the variables. Only when considering the bivariate information, both cells x31

and x32 would have to be selected as outlying. Let us assume there are more than two
variables with relations to variables 1 and 2. It could turn out that cell x31 agrees with
new variables but cell x32 does not. Thus, the latter cell would be classified as outlier.
This shows that the relation between the variables should be considered in cellwise outlier
identification.

In the following section two recent methods – DDC and cell-rPLR for the identification
of cell-wise outliers will be described.
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Figure 1.6: Illustrative example of bivariate outliers. Considering univariately X1 and X2,
point 1 is deviating in X1, point 2 in X2. Point 3 is not deviating in of these variables,
but is outlying in the bivatiate space.

Detecting deviating cells

Detecting deviating cells (DDC) is a recent algorithm by Rousseeuw and Bossche (2018).
The method assumes that the majority of data cells are distributed according to a
multivatiate normal distribution X ∼ N (µ,Σ) with an unknown d-dimensional mean µ

and a positive semi-definite covariance matrix Σ. However, some cells were due to various
reasons altered or simply do not follow this distribution. In reality, it is recommended
to transform all variables which do not follow Gaussian distribution to approximate
Gaussianity (e.g. by Box-Cox power transformation (Box and Cox, 1964)). The DDC
algorithm can be described in seven steps:

Step 1: Standardization. Each variable j of the data matrix X is centered and scaled by
a robust estimation of location (robLoc) and scale (robScale).

zij = xij −mj

sj
, (1.7)

where
mj = robLoci (xij) and sj = robScalei (xij −mj) . (1.8)

For details of the estimators, see Rousseeuw and Bossche (2018).

Step 2: Univariate outlier detection. The entries of the matrix U are defined as

uij =

zij if |zij | ≤ c

NA if |zij | > c,
(1.9)
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where c is a cutoff value selected as
√
χ2

1;p, with p = 0.99 as default.

Step 3: Bivariate relations. For each combination of variables h 6= j, a robust correlation
robCorr is computed,

corjh = robCorri (uij , uih, ) (1.10)

see Rousseeuw and Bossche (2018) for the detailed definition of the correlation
measure. Only so-called connected variables h and j with relations

|corjh| > 0.5 (1.11)

are kept. Furthermore, the slope of a robust regression line without intercept
(robSlopei) bjh = robSlopei (uij |uih) of a regression of variable h on variable j is
computed and will be used in the next steps.

Step 4: Predicted values are computed for each cell in the dataset. For variable j

ẑij = G ({bjhuih;h in Hj}) , (1.12)

where for each variable j, Hj consists of variables satisfying the condition in Equa-
tion(1.11). G is a combination rule applied to these number which omit the NA
values and is set to zero if Hj is empty. It is chosen as a weighed mean with weights
ωjh = |corjh|.

Step 5: Deshrinkage. Since predictions ẑij tend to shrink the scale of the entities, ẑij is
replaced by aj ẑij for all i and j, where

aj = robSlopei
(
zi‘j |ẑi‘j

)
(1.13)

comes from regressing the observed zi‘j on the predicted ẑi‘j .

Step 6: Flagging cellwise outliers. Residuals are computed as

rij = zij − ẑij
robScalei‘

(
zi′j − ẑi′j

) . (1.14)

Then, cells which |rij | > c are marked as anomalous, with c as in Step 2. Also,
the matrix Zimp is computed, which corresponds to the matrix Z, but deviating
cells and NA’s are replaced by the predicted values ẑij . The bigger the absolute
difference between the elements of the matrix Z and Zimp are, the more outlying
are the corresponding cells.
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1.4. Outlier identification methods

Step 7: Destandardize. Lastly, the imputed matrix Zimp is transformed back to an im-
puted matrix Ximp. This is done by undoing the standardization in Equation (1.7).

The main output of the procedure is the matrix Ximp and the list of cellwise outliers.
From this list, also rowwise outliers could be determined, see Rousseeuw and Bossche
(2018).

cell-rPLR

The algorithm cell-rPLR which stands for cellwise outlier diagnostics using robust pairwise
log-ratios is a novel approach which can be used for two goals: biomarker identification
and cellwise outlier detection. The method can be summarized in four steps:

Step 1: Compute all pairwise log-ratios ln
(
x

(g)
ij

x
(g)
ik

)
for i = 1, . . . , n and j, k ∈ {1 . . . , d}

with j > k. The index g refers to the group number, for g = 1, . . . , G.

Step 2: Center and scale them robustly. Either according to the majority group or based
on all observations. This gives values ỹijk, for all i, j, k.

Step 3: Apply a weighting function to ỹijk, which yields weights w∗ijk.

Step 4: Aggregate the weights to obtain the final weights wij , arranged in the weight
matrix W.

The final weights are in the range [−1, 1] and they express the degree of outlyingness
of single cells. Weights around zero represent non-outlying values, and weights closer to
−1 or +1 represent potential outliers. The cell-rPLR algorithm is more introduced in
more detail in Chapter 4.

Mortality dataset

As a non–metabolomic example, the mortality dataset is analyzed by ROBPCA, DDC
and cell-rPLR. The data can be obtained from the R package cellwise (Raymaekers
et al., 2018). It describes the mortality rates of males in France between the years
1860 and 2013, for ages between 0 and 91. Each row of the dataset corresponds to a
certain year and each column to an age. Figure 1.7(a) shows the outlier identification
results of ROBPCA. It identifies the whole observations as outlying. The years of the
first and the second world wars as well as the years of the Prussian war were identified.
Figure 1.7(b) and 1.7(c) is a heatmap of standardized residuals of DDC and of the result
of the cell-rPLR algorithm with the Tukey biweight function, respectively. The red colour
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Figure 1.7: Mortality dataset. Heatmap of outliers for three methods. (a) ROBPCA, (b)
standard residua of DDC and (c) cell-rPLR with Tukey biweight function

corresponds to a “positive outlier”. Positive outliers represent a cell value higher than
expected. On the other hand, blue color is a visualization of a “negative outlier” – a
value lower than expected. Both 1.7(b) and (c) provide more insight into the data than
ROBPCA, since cellwise outliers are flagged. Both methods correctly identified all three
wars, but they are revealing more details. One can see that an increased mortality rate
relates only to the group of people between approximately 18 and 45 years, presumably
soldiers. DDC reveals that child mortality was very high in the past, which is not so
clear from cell-rPLR, where only slightly increased values for newborns aged zero to
one are visible. On the other hand, the cell-rPLR method adds that France had seen
a dramatic decrease of the newborn mortality rate in the last 50 years. The possible

20



1.5. Outline

reason of the difference might be that DDC does not take into notice the compositional
structure of the data. Furthermore, a decrease in newborn mortality is unprecedented,
and thus DDC might have not found any correlated variables. Thus, the prediction for
this period would not be precise.

1.5 Outline

This thesis introduces two novel methods for feature selection and identification of
cellwise outliers. These methods aim to be used mainly, but not necessarily only in the
field of metabolomics. A crucial part of the thesis is the application of the algorithm
to real-world datasets. All developed procedures and graphics were created with the
software environment R (R Core Team, 2018).

Chapter 2 describes some problems and issues connected with the data coming
from omics disciplines which are measured either by Mass Spectrometers or Nuclear
Magnetic Resonance Spectrometers. A proper pre-treatment of the data is crucial in order
to understand the biological information accurately. The impact of several commonly
used normalization, scaling and transformation methods is measured based on two most
common objectives in omics – classification and feature selection. In addition, log-ratio
transformations are considered and compared to the other approaches. Recommendations
for appropriate pre-treatment methods are given. Furthermore, possible explanations for
methods with poorer performance are provided.

J. Walach, P. Filzmoser, and K. Hron. Data normalization and scaling: Conse-
quences for the analysis in omics sciences. In: J. Jaumot, C. Bedia, and R. Tauler (eds.)
Comprehensive Analytical Chemistry. Data Analysis for Omics Sciences: Methods and
Applications. Elsevier, Amsterdam, The Netherlands, pp. 165-196, 2018.

Chapter 3 presents the biomarker identification method rPLR. Thanks to robust
estimation of the variance, rPLR is highly robust against data outliers. Additionally, the
method can be applied in cases of unequal group sizes. A simulation study as well as
a real world dataset were analyzed in order to test the performance of rPLR. Focus is
given on the case when deviating observations or cells are present in equal and unequal
data structure.

J. Walach, P. Filzmoser, K. Hron, B. Walczak, L. Najdekr. Robust biomarker
identification in a two-class problem based on pairwise log-ratios. Chemometrics and
Intelligent Laboratory Systems, 171, pp. 277-285, 2017.
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Chapter 4 introduces the algorithm cell-rPLR for cellwise outlier identification.
Data outliers can carry very valuable information and often are the most informative
for the interpretation. Pairwise log-ratios between the variable values form the elemen-
tal information for the algorithm, and the aggregation of appropriate weights results
in outlyingness information. Cell-rPLR can also be used for biomarker identification,
particularly in presence of cellwise outliers. Real data examples and simulation studies
underline the good performance of this algorithm in comparison to alternative methods.

J. Walach, P. Filzmoser, Š. Kouřil. Cellwise outlier detection and biomarker identi-
fication in metabolomics based on pairwise log-ratios. Submitted for publication, 2018.

Chapter 5 presents functionality of two R packages, based on the rPLR and cell-rPLR
methods described in Chapters 3 and 4.

Unpublished.
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CHAPTER 2
Data normalization and scaling:
consequences for the analysis in

omics sciences

Abstract: Nowadays, the use of different types of measurement devices such
as Mass Spectrometers or Nuclear Magnetic Resonance Spectrometers are
standard in “omics” disciplines. Such a device produces high-dimensional
data, but they cannot immediately undergo a statistical analysis because the
measured samples and features are usually not directly comparable. This
is due to different sample volume, different feature abundance, or different
error variance implying heteroscedasticity. Thus, a proper pre-treatment
of the data is crucial in order to understand the biological information
accurately. The impact of several commonly used normalization, scaling and
transformation methods is reviewed, and the methods are tested based on
the two most important objectives in this context – classification and feature
selection analysis. Recommendations for appropriate pre-treatment methods
are provided, and possible explanations for methods with poorer performance
are given.

Keywords: Pre-treatment methods, Normalization, Scaling, Transformation, Classi-
fication, Feature selection, Omics, Metabolomics
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2. Data normalization and scaling: consequences for the analysis in omics
sciences

2.1 Introduction

Quantitative analyses in the “omics” sciences are important in order to understand the
chemical and biological relationships. Nowadays, Nuclear Magnetic Resonance (NMR)
Spectrometers and different types of Mass Spectrometers (MS) are the main tools to
analyze biological samples due to their superior detection sensitivity (Rainville et al.,
2014). NMR and MS produces a big amount of data in form of abundances of certain
components of the biological sample. To obtain, understand and interpret the important
information from the produced data, it is desirable to apply bioinformatical or statistical
techniques to the data. However, there are several steps before the final data can be used
as an input of a statistical analysis method. Firstly, the biological experiment needs to be
designed. Biological samples of, e.g., blood, plasma, cells or urine are collected, prepared
and analyzed for instance by MS. Afterwards, certain pre-processing (Van Der Werf
et al., 2005; Shurubor et al., 2005) steps are performed to reflect the concentrations or
intensities of ions or m/z values. Such data could be used as an input for the statistical
analysis. However, a further pre-treatment step is crucial to achieve relevant and unbiased
conclusions. The pre-treatment methods make sure that the data are converted in a
way that all the samples and all the variables can directly be compared. Sometimes, the
samples cannot be directly compared due to different volumes. For example, if twice of
the amount of the same sample would be analyzed, one could expect around twice as
high abundances for all variables. On the other hand, the measured features might have
differences in order of magnitude between the measured concentrations. This, however,
does not generally mean that the variables with higher average abundances are more
important than the another ones. Another point important for a pre-treatment method
is to reduce noise and to focus on the important information contained in the data.
Considering two groups in the data (e.g. controls and patients), certain variables might
have increased abundances for one group. This is called induced biological variation. Often,
the goal of the analysis is to find induced variation in order to understand biological
processes in the samples. On the other hand, there are several types of “unwanted
variation”. There are three types of such a variation. Firstly, biological variation describes
within-subject variability, e.g. two samples of the same tissue are analyzed, and this
will lead to abundances that will slightly differ. Technical variation is caused by errors
in a Mass Spectrometer or by analytical errors. Many statistical methods assume that
the errors fluctuate around zero with constant variation. Unfortunately, often with
increasing concentration, the variation of noise also increases. Such a situation is called
heteroscedasticity. The goal of some of the pre-treatment methods is to convert this to
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homogeneity, i.e. to make the error variances comparable.
The pre-treatment methods can be separated into three categories: normalization and

transformation methods, and scaling methods. From a general point of view, normalization
and transformation methods as described in Section 2.2 mainly deal with the differences
between the samples, and the transformation methods suppress heteroscedascity. Scaling
methods, described in Section 2.3, try to make the features comparable. It is also possible
to combine different types of methods in order to achieve even better results.

The main task in the analysis of omics data is to understand biological information
in the data. From a statistical point of view, classification analysis is one of the goals. If
the data are consisting of groups of e.g. controls and patients, the accurate prediction
of new samples is desirable. To understand the processes in the human body or in
other organisms, the interpretation of the model is necessary. In the two-group setting,
the information about important features is one of the main tasks in omics disciplines.
In metabolomics, the problem is called biomarker identification, while in genetics this
is called fold changes problem, where it is examined for a feature, how many times
the average concentration in one group is higher/lower than for the other group. In
statistics, this is often referred to as the feature selection problem. Section 2.4 analyzes
the impact of pre-treatment methods on publicly available real world data sets in terms
of classification and feature selection analysis. As an example of omics disciplines, the
data sets are originating from the metabolomics field. The final Section 2.5 discusses and
summarizes the main findings, and provides some overall recommendations.

2.2 Normalizations and transformations

The goal of normalization methods is to make the data values of the measured samples
comparable among each other for the subsequent statistical analysis. Samples often
cannot be compared directly because of differences in their volumes – the so-called size
effect. Typical examples are metabolomic data derived from MS or NMR. If the analyzed
materials are originating, e.g., from urine samples, the concentrations–which are directly
related to the volumes–might differ by a factor of 10-15 (Warrack et al., 2009; Tsuchiya
et al., 2003). The reasons are manifold: different fluid consumption of the patient,
different drug or toxin intake, different treatment methods, or different physiological
factors. All these conditions might lead to an increase or decrease of the concentrations of
urine. If the difference in concentration levels is not taken into account when analyzing the
data (Webb-Robertson et al., 2005), misleading or even incorrect conclusions might be the
consequence. These mentioned shortcoming are not only problematic for metabolomics

25



2. Data normalization and scaling: consequences for the analysis in omics
sciences

data, but also other omics disciplines suffer from similar issues.
Next to normalization techniques, data transformation is another possibility of data

pre-treatment. There is no clear distinction between normalization and transformation
methods, however, the names correspond with the use in literature. In this section, we
describe two types of transformations: non-linear and log-ratio transformations.

In the following we will assume a data matrix X ∈ Rn×d with n samples in the rows
and d variables in the columns.

2.2.1 Normalization methods

Normalization methods could be separated into two groups: (a) normalization methods
based on specifically measured features (e.g. metabolites), and (b) data-driven methods.
The group (a) consists only of normalization to internal standard. It uses an expert
information about a variable or set of variables which can be used as baseline for
normalization of other variables. Further, data-driven methods normalize the data based
on statistical methods.

• Normalization to internal standard. This method is sometimes called normal-
ization to a “housekeeping” variable. The procedure works as follows: A reference
variable is chosen, and each other variable is divided by its intensity. This kind of
normalization is one of the most frequently used normalization methods in the field
of analytical chemistry. If “housekeeping” variables are present in the data, internal
standard normalization should always be recommended when experimental data are
acquired. A specific example is an analysis of urine samples in metabolomics. Since
each urine sample might have different concentration of water, the intensities of
the samples are also different. Then, for example, the metabolite Creatinine can be
used as a reference, since it is assumed that Creatinine is constant in urine, and thus
its concentration is directly equivalent to the urine concentration (Bolstad et al.,
2003). This assumption holds under normal conditions, however, this assumption
does not always hold (Garde et al., 2004), and in that case one could expect biased
results.

One should keep in mind that the use of internal standard normalization is not
limited only to the case of metabolomic analyses of urine sample, but it should be
rather considered for each experimental data set from analytical chemistry (Sysi-Aho
et al., 2007; Skoog et al., 2017; Katajamaa and Orešič, 2007).

• Total sum normalization (TSN): This method is sometimes also called normaliza-
tion to a constant sum (Craig et al., 2006), constant sum normalization (Giraudeau
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et al., 2014) or total spectral area normalization (Saccenti, 2017), and it is another
commonly used normalization method in the omics sciences (Filzmoser and Walczak,
2014). The goal of TSN is to make the samples comparable by forcing the sum of
each sample to be equal to a constant, most commonly to 1 or to 100 (%). After
TSN, the variables represent fractions or percentages of the whole sample. This is
achieved by dividing each sample by the sum of the values of the sample. Formally,
for the ith sample xi = [xi1, xi2, . . . , xid], for i = 1, . . . , n, TSN is defined as:

xTSNi =
[
xi1
ti
,
xi2
ti
, . . . ,

xid
ti

]
, where ti =

d∑
j=1

xij . (2.1)

Equation (2.1) normalizes each sample to a sum of 1. By multiplying all elements
of xTSNi by a constant c (e.g. c = 100), a total sum of c would be achieved. The
situation when each observation adds to a constant sum is sometimes referred as
“closure” or “closed” data sets (Filzmoser and Walczak, 2014). Despite the frequent
use of TSN, this normalization can lead to incorrect conclusions (Filzmoser and
Walczak, 2014). In order to allow one or several measured intensities to increase
in a constant sum scenario, others will have to decrease, even though this may
not necessarily correspond to the given problem. Spurious correlations may result,
indicating forced relations among the variables. A further disadvantage of TSN
normalization is the fact that the differences are redistributed among all variables
equally, thus it creates artificially increased differences in other variables. Lastly,
the lack of robustness is also an issue, since only one outlying cell in the data matrix
can disturb the normalization of the whole sample.

• Probabilistic quotient normalization (PQN) (Dieterle et al., 2006) is a popular
linear normalization method, which is mainly used to deal with the so-called size-
effect. It is assumed that the size-effect influences the whole sample and that
biological changes between samples in measured concentrations affect only some
parts of the spectra. As a practical consequence of this, PQN assumes that at most
half of the variables show biological changes. This is a limitation of PQN, since
if there are biological changes in more than half of the measured concentrations,
PQN cannot be correctly applied.

The algorithm for PQN is as follows:

1. Calculate/determine a reference spectrum. There are two possibilities in this
step. Firstly, one can determine “the golden spectra” as a reference. However, in
real world situations this is hardly ever known in advance. Secondly, the reference
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spectrum might be computed from the data set itself. Typically, the median or
mean spectrum of the control samples is used, where the median is recommended
due to its robustness properties,

xrefj = median {x1j , . . . , xnj} for j = 1, . . . , d.

2. Compute the ratios of all variables with the corresponding reference spectrum,
and take the median of these values,

x∗i = median
{
xi1

xref1
, . . . ,

xid

xrefd

}
for i = 1, . . . , n.

This estimates the abundance of the size-effect for each observation.
3. Divide all samples by the corresponding median. The division normalizes the
samples to the same concentration level,

xPQNi =
{
xi1
x∗i
, . . . ,

xid
x∗i

}
for i = 1, . . . , n.

• Cyclic Loess normalization (cLOESS), where Loess stands for Locally weighted
scatterplot smoothing (Cleveland and Devlin, 1988). The algorithm for Cyclic
Loess is as follows:
1. Choose two samples xi, xj from the dataset, and log-transform (base 2) the
values component-wise, resulting in yi = log2(xi) and yj = log2(xj).
2. Compute their difference mij = yi − yj and average aij = (yi+yj)

2 .
3. Use mij as response and aij as explanatory variable, and fit with Loess. The
fitted values are m̂ij = (m̂ij

1 , . . . , m̂
ij
d ).

4. Update yi and yj with the fitted values components-wise according to yi ←
yi + m̂ij/2 and yj ← yj − m̂ij/2.
5. Repeat steps 1.-4. for each possible combination of samples.
6. Repeat steps 1.-5. until convergence (until the values stabilize).

Thus, this normalization builds on log-transformed Bland-Altman plots, called
MA-plots (Altman and Bland, 1983), which plot the components of mij against
those of aij . Then, Locally weighed polynomial regression, also called Locally
weighted scatterplot smoothing (Loess) Cleveland and Devlin (1988) is used, which
is able to model non-linear relationships, see Cleveland and Devlin (1988) or Dudoit
et al. (2002), and the log-transformed values are updated. This is done by cycling
through all sample pairs, and repeating the procedure until convergence, where
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usually two iterations are sufficient (Kohl et al., 2012). The idea behind Cyclic
Loess is that if two samples are comparable and well normalized, the difference
between all features of the samples will be around 0. As a first step, the logarithm
is applied on the data which helps to deal with the heteroscedasticity. However,
because of the logarithm, zero measurements need to be replaced, see Section 2.4.2.

• Contrast normalization (Contrast). This method has been described in Ås-
trand (2003). Similar to Cyclic Loess, this method is based on MA-plots (Altman
and Bland, 1983). Firstly, the data matrix is log-transformed to deal with the
heteroscedasticity. Then, the data matrix is multiplied by a specific orthonormal
transformation matrix T (Åstrand, 2003), thus it is moved to the so-called contrast
space. The use of the contrast space extends the idea of MA-plots to the multidi-
mensional case, because the first column of the contrast transformed intensities is
used as a predictor for the rest of the variables. A set of Loess regressions is fitted
similarly as in Cyclic Loess, but in order to achieve robustness, a re-descending
M estimator (Hampel et al., 1981) with the bisquare weight function is used. The
Euclidean distances of the estimated values from Loess regression and the contrast
values are taken as a set of robust weights in each iteration. The robust weights
are independent from the orthonormal transformation. Lastly, the data are back-
transformed to the original input space. The advantage compared to Cyclic Loess
is that Contrast normalization is not that computationally intensive.

• Quantile normalization (Quantile) (Bolstad et al., 2003). The objective is to
force the samples to have the same distribution of the feature intensities. Quantile
normalization can be described in two steps. Firstly, the values are sorted for each
variable separately in ascending order. Secondly, the means of the same quantiles
across all features are computed, i.e., the mean of the lowest values, the mean of
the second lowest values, etc. These mean values are assigned to all variables for
the same corresponding quantiles, i.e., the lowest value of each variable is replaced
by the mean of all lowest values of all variables, etc. After the normalization, all
variables consist of the same values, but the order of these values will in general
be different for different variables. Thus, when comparing the distribution of any
two variables in a QQ (quantile-quantile) plot, all points are arranged on a straight
line, indicating identical distributions.

• Baseline normalization. The basic idea is to choose a baseline spectrum and
adjust the measured samples based on the baseline. Common approaches to choose
a proper baseline are to take the mean or the median spectrum of all samples (or

29



2. Data normalization and scaling: consequences for the analysis in omics
sciences

of the samples of a group – if sub-groups exist and are known), to take the “golden
spectrum”, or a random sample from the data. Then one tries to map the samples
to the baseline. Three mapping methods are common:

– Linear baseline normalization (lBase) (Bolstad et al., 2003) computes a
scaling factor to map each sample to the baseline sample. The scaling factor
is computed separately for each sample as a ratio between the mean intensity
of the baseline and the mean intensity of the spectrum. The values of each
sample are then multiplied by the corresponding scaling factor.

– Non-linear baseline normalization(nlBase) (Li and Wong, 2001). This
method is preferable if non-linear relations between the baseline and the
samples are assumed. The ordered values of a sample are plotted against the
ordered values of the baseline, and a curve (smoothing spline) is fit. This
curve defines the mapping between the sample and the baseline, and is used
to correct the sample values. This can also be combined with feature selection
by comparing the rank of the intensities of the baseline and the rank of the
intensities of the samples. Only similarly ranked intensities are kept for curve
fitting. The feature selection process is iterative and is done separately for
each sample, and thus different features may be selected for different samples.

– Cubic splines normalization (cSplines) (Workman et al., 2002) also as-
sumes a non-linear relation between the baseline and the samples. The idea
is to force all features to have similar distributions. Thus, the method is in
this aspect similar to Quantile normalization. The normalization is performed
by fitting cubic splines between the baseline as a response and each sample
separately as explanatory variable, in a way that a set of evenly distributed
quantiles between the two are fitted by smooth cubic splines. The fit is done
several times while choosing slightly different subsets each time. Then, all
fitted splines are used to fit the parameters of natural cubic splines. Values
which are between two quantiles are adjusted by interpolation based on the
neighboring quantiles.

2.2.2 Non-linear transformations

The main objective of non-linear transformations is generally to deal with heteroscedas-
ticity, to make skewed distributions more symmetric and thus to approach normality of
the data. From a biological point of view, the relations among the variables can also
be multiplicative and not just additive as classically expected. Then, a transformation
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is a necessity to examine the data properly. Most often used transformations are the
logarithmic transformation and the power transformation.

Both transformations mentioned in this section reduce high intensities much more than
small intensities, which can be even amplified. Thus, the data range after a transformation
is reduced. This is a similar principle as with scaling methods. However, since no real
scaling factor is used, transformations are sometimes called “pseudo-scaling” (van den
Berg et al., 2006). The scaling effect of transformations is often not strong enough to
entirely deal with differences in orders of magnitude, so it might be desirable to use some
scaling method after transformation.

• Log-transformation (Log). The logarithm of the data values is computed to
remove heteroscedasticity, see Kvalheim et al. (1994). The log transformation
cannot deal with zero-values, since log (0) = −∞. This also means that values close
to zero will be emphasized (with negative sign), and thus low measured intensities
will be spread on a big range of values. The zero problem can be avoided by
imputing the zero values as described in Section 2.4.2.

• Power transformation (Sqrt) (Bickel and Doksum, 1981). The data values
are powered by some chosen constant, such as 1/2 for the square root. This
transformation does not suffer from zero problems, and it also has the goal of
removing heteroscedasticity. Thus, the power transformation is often used if
zeros are present, because it gives a similar transformation pattern as the log-
transformation. The disadvantage over log-transformations is that it cannot change
multiplicative to additive effects.

2.2.3 Log-ratio transformations

Data consisting only of strictly non-negative values which are part of a whole are called
compositions. The term compositions is used in compositional data analysis (CoDa),
seePawlowsky-Glahn and Buccianti (2011). Compositions are often expressed in the
form of percentages, probabilities, frequencies or – as in omics – concentrations or counts
per unit. Compositions are often “close-to-closure”. This means that the sum over
all compositions (features) is almost equal for all samples. This is, however, not a
requirement for the definition of compositional data. Data which are far-from-closure
can also be viewed as compositional. The main difference from a “traditional” and
compositional point of view on the data is the fact that the latter assumes that the
important information is carried between the ratios of the variables rather than in
the absolute values. To extract the information between the ratios, so-called log-ratio
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transformations were introduced (Aitchison, 1986). Log-ratio transformations make use
of the log-ratios log(xij/xil) for any variable pair with index j and l (here for the ith
observation). The resulting log-ratio approach also argues that the sample space of
compositions is the so-called simplex space, which is a subspace of the classical Euclidean
space (Pawlowsky-Glahn et al., 2015). The goal of log-ratio transformations is to move
the data from this simplex to the usual Euclidean space, such that standard statistical
methods can be used.

There are three important principles which should be fulfilled for a compositional
data analysis: scale invariance, subcompositional coherence, and permutation invariance.
Scale invariance follows the rule that only ratios between the compositions are important.
Transformations which are based on log-ratios will be invariant to scaling with a factor
s, since log

(
s·xij

s·xil

)
= log

(
xij

xil

)
. Note that normalization methods such as TSN or

PQN, applied beforehand, will have no effect on the results if the scale invariance
principle is fulfilled. Subcompositional coherence states that the results should not be in
contradiction if the whole composition is examined or if any subcompositions is used.
Lastly, permutation invariance means that the compositional data analysis must not
dependent on the order of the compositional parts.

In the following we list two log-ratio transformations which are isometric, meaning
that they preserve distances. There are also other well-known log-ratio transforma-
tions, such as the additive log-ratio transformation, which do not have this important
property (Pawlowsky-Glahn et al., 2015).

• Centered log-ratio (clr) transformation (Aitchison, 1986; Pawlowsky-Glahn et al.,
2015): The ith observation xi = [xi1, . . . , xid] is transformed to

xclri = [xclri1 , . . . , xclrid ] =
[
log

(
xi1
g(xi)

)
, . . . , log

(
xid
g(xi)

)]
, (2.2)

where g(xi) = d

√∏d
j=1 xij is the geometric mean of the ith observation, for i =

1, . . . , n. Thus, clr transformed data have the same dimension d as the original
dataset, however, the components sum up to zero, xclri1 + . . .+ xclrid = 0. This means
that clr transformed data do not have full rank d, which could create problems
for methods like discriminant analysis, where a covariance matrix with full rank
is required. Also for some robust statistical methods this is a prerequisite. On
the other hand, the components of clr transformed data have a straightforward
interpretation in terms of a dominance of the corresponding compositional part on
an average behavior (geometric mean) of the values in the composition. Note that
clr transformed data cover log-ratio information of all different pairs of variables:
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for example, the first component can be written as

xclri1 = 1
d

(
log

(
xi1
xi2

)
+ . . .+ log

(
xi1
xid

))
.

• Isometric log-ratio (ilr) transformation (Egozcue et al., 2003): The clr transforma-
tion mapped the compositions from the simplex to a (d−1)-dimensional hyperplane
in the d-dimensional real space. Now, ilr is a class of transformations which builds
an orthonormal basis in this hyperplane and expresses the compositions in this
orthonormal basis. Thus, the ith compositional observation xi = [xi1, . . . , xid] is
transformed to xilri = [xilri1 , . . . , xilri,d−1], with only d− 1 components, and since they
are expressed in an orthonormal basis, they will be called ilr coordinates. There
are infinitely many possibilities to set up such an orthonormal coordinate system,
and one specific choice are pivot coordinates, where the jth component of xilri is
defined as

xilrij =
√

d− j
d− j + 1 · log

 xij
d−j

√∏d
k=j+1 xk

 , for j = 1, . . . , d− 1, (2.3)

see Fišerová and Hron (2011). By construction, only the first component xilri1
includes information of the first variable xi1, but such information is not contained
in any other component. Moreover, one can show that xilri1 =

√
d
d−1x

clr
i1 , i.e. the

first ilr component is proportional to the first clr component, and thus it contains
all relative information (in terms of log-ratios) of the first variable to the remaining
variables in the composition. This makes the interpretation of this first ilr component
very unique, namely as the dominance of the first variable to an average behavior
of the other variables in the composition. Note that for clr it was not possible to
extract all relative information into one clr component, since the geometric mean is
involved in all the variables. If the interpretation is required for another variable,
then this variable needs to be reordered to the first position in the data set, pivot
coordinates need to be computed, and again the first coordinate represents all
relative information about this variable of interest.

The ilr transformation will not be used in the subsequent analyses, because the
methods employed can cope with the zero constraint of the clr transformed data.
For other methods, however, this can be a valuable alternative.

33



2. Data normalization and scaling: consequences for the analysis in omics
sciences

2.3 Scaling

The aim of scaling as a pre-treatment method is to deal with different scale among
different variables. Thus, its goal is to adjust the variance of each variable and to make
all variables similarly important, and to deal for example with heteroscedasticity. Scaling
methods divide each variable by a so-called scaling factor, which is in general not the
same for each variable. A frequent problem with scaling is the possible inflation of small
values, which could imply that also measurement errors are increased. There are two
types of scaling methods: the first type uses size measures, such as mean or median, while
the second type uses the data dispersion (e.g. standard deviation or median absolute
deviation).

Scaling is almost always applied after centering the data. Centering, as well as
scaling, is done for each variable separately. Before centering the data, the concentrations
of each metabolite scatter around the center of the distribution (i.e. mean, median).
Centering levels the central values to the same value of zero. Thus, the abundance
(meaning low or high values) of the original variables is not important anymore and
should not affect further analyses of the data.

In the following, x̄j = 1
n

n∑
i=1

xij denotes the arithmetic mean of the jth variable, and

sj =
√

1
n−1

n∑
i=1

(xij − x̄j)2 stands for the empirical standard deviation of the jth variable,

for j = 1, . . . , d.
Figure 2.1 illustrates the effect of centering and scaling. Here, the arithmetic means

of the variables were used for centering, and the empirical standard deviations for
scaling. For this reason, the medians shown in the boxplots and the interquartile ranges
represented by the lengths of the boxes are not perfectly matching for the different
variables.

• Autoscaling (Auto) or Unite variance scaling (Jackson, 2005) is the simplest
scaling method used in omics disciplines. The aim of the method is to normalize
the variables in a way that each of them has a mean of zero and a variance (thus
also standard deviation) equal to one. This is achieved by subtracting from the
values of each variable the mean and dividing by the standard deviation of that
variable,

xAutoij = xij − x̄j
sj

. (2.4)

After autoscaling, the analysis of the data by many multivariate statistical methods
(e.g. LDA, PCA, PLS, . . . ) will not be based on covariances but on correlations.
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Figure 2.1: Effects of centering and scaling. Boxplots for five variables are shown. Plot
(a) shows raw unprocessed data. The data for each variable scatter around different
central values. The variability is also different. Plot (b) show mean-centered data, and
now the values from all variables scatter around zero. Plot (c) shows centered and scaled
data, resulting in comparable scales of the variables.

Autoscaling takes all features as equally important, since all the features will have
comparable scale. The method as defined here is not robust, and thus it can be
influenced by outliers. However, this could be solved by replacing the arithmetic
mean by a robust counterpart, e.g. the median, and the empirical standard deviation
by a robust scale estimator, such as the median absolute deviation. Another problem
with autoscaling is the fact that measurement errors can be amplified. This is
the case if the estimated standard deviation is small; then it increases all the
abundances for a variable through the division in Eq. (2.4).

• Pareto scaling (Pareto) (Eriksson, 1999; Kubinyi, 1994) is a modification of
autoscaling. After centering the variables, the square root of the standard deviation
is used as a scaling factor,

xParetoij = xij − x̄j√
sj

. (2.5)

The advantage of this approach is that the scaled data remain closer to the original
data because the scaling effect is less intense. The measurement noise is not
amplified as much as in the case of autoscaling. Also large fold changes will not be
as important as before, but very large fold changes will still play a major role in
normalization. Since non-robust estimators for centering and scaling are involved,
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there might be an effect of outliers.

• Range scaling (Range) (Smilde et al., 2005) starts with centering the variables
first. Denote xjmax and xjmin as the maximum and the minimum of all values of the
jth variable, respectively, for j = 1, . . . , d. The range is defined as the difference
xjmax − xjmin , and it is a measure of scale of the jth variable. Since this scale
measure is based on the most extreme data values, it is very sensitive to outliers.
The range scaled data are defined by

xRangeij = xij − x̄j
xjmax − xjmin

, (2.6)

and the aim is to make each variable equally important for the subsequent analysis.
The natural minimum for measuring intensities, e.g. from mass spectra, is zero,
and thus only the maximum value is often of importance. Similar as in autoscaling,
error inflation is also a problem for range scaling.

• Level scaling (Level) (van den Berg et al., 2006) belongs to the first type of
scaling methods since it uses the estimation of location instead of scale (spread) as
a scaling factor,

xLevelij = xij − x̄j
x̄j

. (2.7)

The method transforms the changes in intensities to changes relative to average
intensities by using the arithmetic mean as a scaling factor. After the application
of level scaling, the values are interpreted as proportional changes compared to
the mean intensity. Level scaling is sensitive to outliers, which can be avoided by
using the median instead of the arithmetic mean. The method is usually used if
the focus is on biomarker identification. Again, a possible inflation of errors is a
disadvantage of the method.

• Vast scaling (Vast) (Keun et al., 2003) is a shortcut for variable scaling. It is a
modification of autoscaling which focuses on the stability of the variables. This
method makes use of the coefficient of variation (cv), which is computed for the
jth variable as cvj = sj

x̄j
. Vast scaling is then defined as

xV astij = xij − x̄j
sj

· 1
cvj

. (2.8)

Thus, the data are autoscaled, and then the cv is used as an additional scaling
factor. The cv stabilizes the variables in a way that it highlights higher interest for
features with small relative standard deviation. On the other hand, it decreases
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the importance of features with large relative standard deviation. The method can
be used in unsupervised but also in supervised settings. Thus, group information
of the samples can be incorporated. In a supervised setting, the cv is computed
separately for each group, and its mean is taken as a scaling factor.

• Variance stabilization normalization (VSN) (Huber et al., 2002) is a method
combining normalization methods with a stabilization of the feature variances.
The literature offers several possible versions of the method. Here, the method
of Kohl et al. (2012) will be described. The goal of VSN is to make the variance
constant over the entire data range. Firstly, the between-sample variation is reduced
by linearly mapping all samples to the reference sample (the first sample in the
dataset). Then, the adjustment of the variance of the data is performed. Similar
as in Vast scaling, the coefficient of variation is examined. The method assumes
a relationship between the standard deviation and the mean, i.e., with increasing
mean one could expect an increase of the variance. VSN assumes a quadratic
relation between the ratio of mean and standard deviation. However, since the
lower limit of the measurement is zero, the variance within small values will not
decrease anymore but stays more or less constant. Thus, the coefficient of variation
increases. To deal with this, VSN uses the inverse hyperbolic sine function. The
function asymptotically follows the logarithmic function for large values, which
removes heteroscedasticity. However, for small intensities the linear relationship is
kept, and thus the variance is unchanged.

2.4 Practical aspects of the methods

The main focus in this section is on the ability of the different normalization and scaling
methods to correctly classify data into given subgroups (e.g. healthy people versus
diseased), and to accurately select features. Basically, these are different goals, and a
method with a high accuracy in feature identification must not necessarily be precise for
classification, and vice versa. In the following, the different methods and combinations
thereof will be tested on some data sets.

Many of the previously mentioned methods are implemented in software packages.
Table 2.1 summarizes R (R Core Team, 2018) functions available in existing packages or
in a newly developed package published on Github.
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Method R package::function
TSN KODAMA::normalization, method = ’sum’
PQN KODAMA::normalization, method = ’pqn’
cLOESS +limma::normalizeCyclicLoess
Contrast +affy::normalize, method = ’contrast’
Quantile preprocessCore::normalize.quantiles
lBase *pretreatment::LinearBaseline
nlBase *pretreatment::NonLinearBaseline
cSplines +affy::normalize.qspline
Log base::log
Sqrt base::sqrt
clr robCompositions::cenLR
ilr robCompositions::pivotCoord
Auto base::scale(x, center=TRUE, scale=apply(x,2,sd))
Pareto base::scale(x, center=TRUE, scale=apply(x,2,sqrt(sd)))
Range base::scale(x, center=TRUE, scale=apply(x,2,max)-apply(x,2,min))
Level base::scale(x, center=TRUE, scale=apply(x,2,mean))
Vast base::scale(x, center=TRUE, scale=apply(x,2,var)/(apply(x,2,mean)))
VSN +vsn::vsn2

Table 2.1: Pre-treatment methods and examples of their R functions: The pack-
ages marked with * are available and can be downloaded at https://github.com/
walachja/pretreatment. The packages with symbol + are part of the Bioconductor
project (Gentleman et al., 2004) and they need a special installation.

2.4.1 Data sets

As an example for omics disciplines, the focus is given to data from Metalobomics.
Altogether, three data sets are considered in the study. The first data set MTBLS17 is
used only for classification, the second and third data set MTBLS59 and MCAD is used
for both classification and feature selection.

The data set MTBLS17 (Ressom et al., 2012) is freely available from the Metabo-
Lights repository https://www.ebi.ac.ukasMTBLS17, and it originates from blood
samples of patients with liver cirhosis. Hepatocallullar carcinoma (HCC) is the fifth most
common cancer type and 80% of HCC is developed from liver cirhosis. Only the positive
ion part (ESI-) is considered. There are 184 control patients with liver cirhosis and 78
patients with HCC disease. The samples were analyzed in a non-targeted setting using
ultra performance liquid chromatography coupled with a hybrid quadrupole time-of-flight
mass spectrometry (UPLC-QTOF MS). The pre-processing of the data is described
in Ressom et al. (2012). Due to subsequent resampling, the final dimensionality of the
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data set is 372 samples with 941 features.
The second data set used here is again open-access data, MTBLS59 (Franceschi

et al., 2012; Wehrens et al., 2011) from the MetaboLights repository https://www.

ebi.ac.uk as MTBLS59. In total, twenty apple samples were analyzed by Liquid
chromatography–mass spectrometry (LC-MS) in the study. Ten out of those were
spiked with naturally occurring compounds, so the data are separated into two groups.
An advantage of spiking the compounds into samples is that the features capable to
distinguish the groups are known. In metabolomics such features are referred to as
biomarkers. The data were pre-processed as in Wehrens et al. (2011) where only the
first nine mintes of the chromatography were subtracted. Thus, the final data size is 20
samples and 197 features. The number of true biomarkers is 5, which corresponds to
around 2.5% of all features.

The last data set MCAD (Najdekr et al., 2015) is based on plasma samples collected
from 8 healthy newborn babies with Medium chain acyl-CoA dehydrogenase deficiency
(MCADD OMIM# 201450). It is a disease called fatty acid oxidation disorder (FAODs).
As a control group, plasma of 25 newborns were used. The LC-MS untargeted analy-
sis was performed, and due to feature reduction techniques and subsequent sampling
from the disease group the final data has 50 samples and 279 features. Even though
the true biomarkers are not certainly known, previous analyses of the data suggest 5
features to be most likely the biomarkers. The data can be found in the R package
robCompositions (Templ et al., 2017).

2.4.2 Zero imputation

The essential requirement to work with log or log-ratio transformations is to have data
values which are all strictly positive. Since the measurements in these data sets will not
be negative, this means that zero values need to be avoided and replaced by positive
values. Firstly, one should keep in mind that there are several reasons why there are zero
values in the data. It might be simply because the measured value is not present at all.
This zero type is called essential zero. However, in metabolomics, transcriptomics and
other omics fields the zeros appear as values below detection limit, so-called rounded
zeros. Another possibility, as for example in metabolomics, is that rounded zeros usually
arise as a pre-treatment step: if the value is below a certain threshold it is suppressed to
zero because of the inaccuracy of the measurement device. These values are sometimes
also called below detection values.

There are several methods available to dealing with zero imputation. Some of them
are closely related to methods for missing values imputation, when zeros are viewed as
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missing values. The easiest method is to replace all the zeros with 2/3 of the detection
limit of the measurement device. If the detection limit is unknown, 2/3 of the lowest
value of the variable under consideration can be used instead. However, if many zeros
are present, they are all replaced by the same value, thus lowering the variability of the
data set.

In the compositional data analysis (CoDa) context, there are several methods
(e.g. Templ et al. (2016); Martín-Fernández et al. (2012, 2015)) for the imputation
of zero values, based e.g. on the covariance structure of the data. For example, the
algorithm proposed in Templ et al. (2016) can be described as follows. Firstly, the data
are transformed to a specific ilr transformation (pivot coordinates). Secondly, Tobit
regression (Scott Long, 1997) is applied and the zeros are replaced by the expected values.
Thirdly, the data are transformed back to the original space. Lastly, the whole procedure
is iteratively repeated until the imputed values stabilize. The algorithm can be applied
from the R package robCompositions (Templ et al., 2017) as the function imputeBDLs().

2.4.3 Classification and feature selection

Classification analysis is a frequent task in omics disciplines. Creating a model for the
separation of the samples into groups is important for two reasons. Firstly, for prediction
of the newly incoming observations, and secondly, for the description of the model. Here
the focus is given to the first task – prediction of class membership for a new observation.
Below we only consider two-group classification problems. Another common goal in omics
disciplines is to interpret the model in terms of identifying important features. In the
classification context, the important variables are those which help separating the groups
in the data.

Classification and feature selection method

There are many methods for feature selection – one of the simplest yet frequently applied
methods for a two-group problem is a univariate two-sample t-test for each candidate
variable. Here we will make use of a robust multivariate method for classification, the
Partial robust M discriminant analysis classifier (PRM-DA) (Hoffmann et al., 2016),
followed by a score for feature evaluation. PRM-DA is a robust version of the Partial least-
squares discriminant analysis classifier (PLS-DA) (Wold et al., 2001; Pérez-Enciso and
Tenenhaus, 2003), a frequently used multidimensional classification method. The PRM-
DA, as well as PLS-DA allow to express the possibly high-dimensional data information
in a low-dimensional space where discriminant analysis is carried out. The methods can
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deal with multi-collinearity, i.e. with highly correlated predictor variables, and with
a situation where the number of samples n can be much smaller than the number of
variables d. The PRM-DA method, which is highly robust against data outliers (and
even robust against mis-labeling) consists of two steps.

Firstly, Partial robust M regression (PRM) (Serneels et al., 2005), a robust version of
Partial least-squares (PLS) regression, with binary response variable is computed. In
order to simplify the notation, from now on column vectors are considered. The response
vector y of length n carries the group information coded as −1 and 1 for two groups, say,
A and B. The predictor variables are stored in the n× d matrix X matrix. The objective
of the method is to find directions ah with

ah = argmax
a

cov2 (Xa,y) , (2.9)

for h ∈ {1, . . . ,H} subject to ||ah|| = 1 and aThXTXai = 0 for 1 ≤ i ≤ h. The directions
ah are stored in the columns of the matrix A, and the scores T are defined as T = XA.

“cov” in Equation (2.9) stands for the covariance. While PLS uses the classical sample
covariance estimation, PRM employs a robust covariance estimator by assigning weights
to the observations. The weights correspond to the outlyingness of the observations and
they are iteratively updated during the estimation procedure.

The second step is a linear discriminant analysis (LDA), carried out for the scores T.
The rows of T, denoted by ti, for i = 1, . . . , n, are assigned to that group k ∈ {A,B},
for which the discriminant score δk is the highest, with

δk = tTi Σ̂−1µ̂k −
1
2 µ̂T

k Σ̂−1µ̂k + log (πk) , (2.10)

with the group prior probabilities πk. While for PLS-DA the classical estimates for
µ̂k and Σ̂ are taken, PRM-DA uses the observation weights wi obtained from the first
step (Todorov and Pires, 2007),

Σ̂ = 1
(
∑n
i=1wi)− 2

∑
k∈{A,B}

∑
i∈Ck

wi (ti − µ̂k) (ti − µ̂k)
T , (2.11)

and
µ̂k =

∑
i∈Ck

witi∑
i∈Ck

wi
for k ∈ {A,B} ,

where Ck are the indexes of observations belonging to group k.
The optimal number of components H for PRM-DA is determined by K-fold cross-

validation (CV). For all considered numbers of components and for each fold, the mean
weighed misclassification rate (mwmcr) is computed. The number of components with
the lowest average mwmcr is selected as optimal.
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PRM-DA is implemented in the R package sprm Serneels. and Hoffmann (2016) as
the function prmda and prmdaCV.

For the feature selection problem the Variable Importance in Projection (VIP) (Wold
et al., 1993; Favilla et al., 2013) is employed, which is a commonly used method for the
evaluation of the importance of individual explanatory variables, mainly in the context
of projections to a lower dimensional space. Thus, it can also be used in combination
with PRM-DA. The VIP summarizes the contribution of a variable to the model, and is
defined for the jth variable as

VIPj =

√√√√ d∑H
h=1R

2 (y, th)

H∑
h=1

a2
hjR

2 (y, th), (2.12)

where d is the number of variables, H is the number of PRM components, ahj denotes
the jth component of the loadings vector ah, and R2 (y, th) is the fraction of variance
in y explained by the hth PRM component. A typical rule is that those variables with
index j are selected as important for which VIPj > 1 (Chong and Jun, 2005; Lazraq
et al., 2003). Alternatively, one can select the l variables with the highest VIP scores as
the most important ones.

2.4.4 Application and evaluation

In order to apply and evaluate the different normalization, transformation and scaling
methods, the procedure was done as follows:

1. Zero replacement. All three data sets contain zero values, which means that
several methods (i.e. Contrast, cLOESS, Log and clr) cannot be applied directly. Thus, as
suggested in Section 2.4.2, zeros were replaced by strictly positive values. For simplicity,
and since a detection limit was not available, we replaced the zeros by 2/3 of the smallest
positive value of the corresponding variable.

2. Normalization methods. All 17 normalization, transformation and scaling
methods were applied to the original data sets. Only if a method cannot deal with zeros,
the data set with the replaced zeros is used.

3. Two-step normalization methods. All 17 pre-treatment methods were com-
bined with log-transformation or with autoscaling. The logarithm is often used to deal
with heteroscedasticity. Autoscaling is frequently used in multidimensional methods such
as PCA. Both, log-transformation and autoscaling can be applied either before or after
another pre-treatment method. However, there are several exceptions, since e.g. the
clr transformation produces negative values, the use of the logarithm afterwards is not
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possible (and would also not make sense). In total, 35 two-step normalization methods
are considered. Together with the 17 “one-step” methods and with the raw untreated
data, this gives 53 methods in total.

4. Optimal number of components of PRM-DA. As outlined in Section 2.4.3,
10-fold CV was performed for PRM-DA to estimate the optimal number H of components.
This was done separately for each of the 53 methods.

5. Evaluation. 2/3 of all samples were randomly selected to estimate a PRM-DA
model with the optimal number of components computed in the previous step. The
remaining third of the samples were treated as test data and their group membership is
predicted. The whole procedure is repeated 100 times.

The predicted groups memberships are compared with the true group labels in terms
of the Accuracy, which is the proportion of correctly predicted groups labels in the
corresponding test set. Note that since 100 replications are carried out, and since this is
done for each of the three data sets, in total 300 accuracy values are computed for each
of the 53 pre-treatment methods, which are summarized by their average.

For feature selection, the VIP scores defined in Section 2.4.3 were used. In each
replication, the indices of the variables with the 10 highest VIP values were extracted.
Since the true important feature structure is known for two of the examined data sets
(5 in both cases), the number of true biomarkers among these 10 highest is computed,
leading to 200 numbers, which are averaged separately for each pre-treatment method.

Since both, accuracy in classification and in feature selection may be important, the
results are combined in order to provide a better overview. This is done by ranking the
different pre-treatment method separately according to the resulting classification and
feature selection accuracy, with rank 1 being the winner. The average of the two ranks is
used as an overall evaluation of the methods.

2.4.5 Results

Figures 2.2 and 2.4 summarize all results of the analyses. The rows in the plots refer to
the 17 “one-step” pre-treatment methods and the raw untreated data. If possible, each
method can be extended to a two-step method with the logarithm or with autoscaling,
and both can be applied beforehand or afterwards. For that reason, there are several
different plot symbols: black dots represent the 18 “basic” methods (including untreated
raw data), “L” represents combinations where the logarithm is applied first, ”l” are
combinations where the logarithm is applied afterwards, and similarly “A” and “a” for
combinations with autoscaling. Several of the “two-step” methods cannot be applied
or they are not meaningful to be carried out. For example, since clr already uses the
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logarithm, it is useless and even impossible (due to negative values) to apply the logarithm
after or before this transformation.

Accuracy of class prediction. Figure 2.2(a) shows the effects of the pre-treatment
methods sorted by highest classification accuracy (of the “basic” methods). The four
best performing methods are based on (or at least include) logarithms of the original
values: clr, Cyclic LOESS, VSN and Log. Considering also two-step methods, it can be
seen that the logarithm (as a first or second step) improves the accuracy of prediction.
This suggests that heteroscedasticity or strong skewness is present in the analyzed data
sets which is improved by using the logarithm. The next best four methods are scaling
methods: Level, Range, Auto and Pareto scaling. The performance of these methods
is improved by first log-transforming the data. Although the errors can be increased
by these scaling methods, the variables important for group separation can be in lower
abundances. Note that the performance PRM-DA is dependent on the scale of the
variables, because it looks for highest covariance between predictors and response. Vast
scaling, which uses the coefficient of variation as a scaling factor, is the only scaling
method with severely poorer performance. The coefficient of variation can become very
large for low abundances, which can lead to an inflation of errors. The next seven methods
(PQN, cSplines, TSN, Sqrt, lBase, Quantile, and also Vast) have similar performance as
for the raw data without any pre-treatment. Non-linear baseline normalization (nlBase)
and Contrast normalization achieved the worst performance. This might be based on
a relatively complex estimation procedure, and possibly also on overfitting (smoothing
splines need to be fitted in case of nlBase).

Feature selection results. Figure 2.2(b) shows the results for the feature selection
accuracy, and the methods (rows in the figure) are sorted now according to this accuracy.
The best performing methods are Cubic Splines and Quantile normalization. The methods
are similar, since both try to force all features to have similar distributions. Surprisingly,
using the raw data without pre-treatment also leads to a top performance. This means
that choosing an improper pre-treatment method can severely lower the performance of
feature selection analysis. Almost all two-step methods decrease the performance of the
“basic” methods, with the exception of cLOESS, VSN, and three scaling methods.

The comparison of the methods concerning the correct identification of the 5 biomark-
ers is shown in more detail in Figure 2.3, separately for the two data sets. The gray
scale shows how many times out of the 100 replications the truly important variables (in
the columns) have been identified. White color means that the corresponding variable
was never among the ten variables with highest VIP scores, whereas black color shows
perfect results, correct identification in each replication. In the rows are the “basic”
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Figure 2.2: Sorted results of (a) accuracy and (b) feature selection of different methods:
black dot refers to the result of the “basic” method written on the left side; “A” cor-
responds to first applying autoscaling and afterwards the “basic” method; “a” means
that autoscaling is applied after the “basic” method; similar for “L” and “l” with the
logarithm instead of autoscaling.

pre-treatment methods or their two-step variations if they identified a bigger number of
truly important features. Figure 2.3(a) shows the results for the MCAD and Figure 2.3(b)
for the MTBLS59 data set.

Many methods correctly identified the first two truly important features in the MCAD
data set, and the last three in the MTBLS59 data set. The best performing methods
identified in Figure 2.2(b), cSplines and Quantile normalization, give also a very similar
answer here concerning the biomarker identification. It seems, however, that it is difficult
for the methods to identify correctly all 5 biomarkers in the two data sets.

Figure 2.4 summarizes again the results, but the methods are ordered now according
to the average of the ranks among the methods for the classification and feature selection
task, see plot (a). Plot (b) presents the average proportion of samples that received
weights from PRM-DA which are lower than 0.1, i.e. the proportion of identified “outliers”.

According to Figure 2.4(a), the clr transformation is the best performing method
if we consider only “basic” (one-step) pre-treatment methods, even though the feature
selection results are not very good. Clr is followed closely by VSN. VSN may have
achieved superior results because it combines variance stabilization with normalization
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Figure 2.3: Performance of the different methods (rows) in identifying the true important
features (columns): gray scale represents how often (out of 100 replications) the biomarker
was identified correctly within the 10 top VIP variables (black=always, white=never).
Plot (a) shows the results for MCAD, plot (b) for MTBLS59.

between the samples. Furthermore, there is a group of moderately performing methods
(cSplines, PQN, Log, cLOESS, Quantile, TSN, Level, lBase, Sqrt and Pareto), which have
achieved a similar average rank. The five least performing methods (nlBase, Contrast,
Range, Auto, Vast) have noticeably lower ranks than the other methods. If two-step
methods are considered, then the performance improves in many cases if the logarithm is
applied. On the other hand, the use of autoscaling leads for most methods to a decrease
of the performance. The reason may be that errors (biological, technical or others) of
features with small abundance and thus presumably small variances are increased.

The results in Figure 2.4(b) show a trend that the least ranked methods lead to a
somewhat higher proportion of outliers for PRM-DA. This means that those methods
differs more from multivariate normality which can be one reason for a poorer performance.
To demonstrate this fact more clearly, Figure 2.5 shows PRM-DA score plots of one of the
replications (random training sample) for a poor (Contrast) and well (VSN) performing
method for the biggest data set MTBLS17. After Contrast normalization, the data in
both groups are highly skewed, which leads to many outliers in the PRM estimation
procedure, and consequently to a low classification accuracy. VSN leads to elliptically
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Figure 2.4: Sorted results of (a) average rank and (b) proportion of small weights from
PRM-DA: black dot refers to the result of the “basic” method written on the left side;
“A” corresponds to first applying autoscaling and afterwards the “basic” method; “a”
means that autoscaling is applied after the “basic” method; similar for “L” and “l” with
the logarithm instead of autoscaling.

distributed scores in both groups, which is preferable for the subsequent robust LDA.
The methods behave differently depending on the purpose of the analysis. For example,

clr has superior behavior for the accuracy of the prediction but not very good for feature
selection behavior. This is similar for some two-step methods. For example, applying
autoscaling as a second step after PQN improves prediction accuracy but worsens feature
selection performance. The same applies to cSplines after autoscaling. The cLOESS
in combination with autoscaling behaves in an opposite way, since it improves feature
selection performance but worsens the accuracy of the prediction. Thus, even though it
is a common practice to use two-step methods, one should keep in mind the purpose of
the analysis and choose appropriate combinations of the used methods.

2.5 Discussion and conclusions

The choice of the appropriate pre-treatment method depends on the biological tasks and
questions, on the properties of the data, and of course also on the data themselves. The
selection of a proper pre-treatment method is a crucial step in the analysis, since it can
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Figure 2.5: Score plots from PRM-DA for one specific training set of the MTBLS17 data
set, based on (a) Contrast normalization and (b) VSN.

severely improve, but also deteriorate the results of the analysis.
In this article several normalization, transformation and scaling methods were dis-

cussed. These pre-treatment methods are frequently used in practice, but we admit that
this is not an exhaustive list of methods. Moreover, in specific fields there might be very
specific methods which are adequate for the specific application.

Another limitation is the type of evaluation demonstrated here for three different data
sets. Although the dimensions of the data are quite different, the data sets are generated
via mass spectrometry, and for more general conclusions also other types of data might
have to be considered. Moreover, the type of the analysis with PRM-DA and the VIP
measure is specific, and other forms of evaluations might lead to different conclusions.
We also evaluated and compared the results with the Selectivity Ratio (Rajalahti et al.,
2009a,b) as an alternative to the VIP measure. Overall, these results were similar to
those reported here, but biomarker identification based on the VIP measure turned out
to be more consistent. In order to be a bit more general, some conclusions from analyses
in other papers are briefly summarized.

The study Kohl et al. (2012) focuses on NMR metabolomics data and concludes
that for classification analysis the best pre-treatment methods are Quantile and Cubic
Spline normalization, and VSN. The paper Hochrein et al. (2015) came with the same
conclusion but also adds PQN to the best methods. The work Li et al. (2016) examines
MS data and conclude that Log, VSN and PQN are among the best methods to use for
classification and feature selection. In Gromski et al. (2015), the author combines NMR

48



2.5. Discussion and conclusions

and MS data and focuses only on scaling methods. His findings suggest that Vast scaling
performs best, which is not in line with the findings in our study. The paper Saccenti
(2017) lists the worst performing methods, including Non-linear baseline normalization,
Cyclic Loess and Contrast normalization. However, one should keep in mind that these
studies did not consider all the pre-treatment methods (one-step and two-step) which
have been analyzed here.

For example, the clr transformation was not analyzed in any of these studies. In Filz-
moser and Walczak (2014), clr was compared to PQN on simulated data for the accuracy
in feature identification, and PQN turned out to be clearly preferable. However, also the
source information for the clr transformation, the pairwise log-ratios were employed in
this work, which are very competitive to PQN. Recently, Walach et al. (2017) developed a
method which also makes use of pairwise log-ratios, but more efficiently, and the method
is also robust against data outliers. We applied this method to the data sets in this study,
and it identifies on average 3.96 of the true important features. This is better than the
best pre-treatment method cSplines evaluated here, which had an average of 3.82.

Based on the analyses performed in this study, and taking into account other studies
listed above, several recommendations can be provided. Firstly, it is crucial to apply a
pre-treatment method. Secondly, the pre-treatment method strongly depends on the goal
of the analysis. For classification analysis the methods based on logarithms (clr, Cyclic
Loess and VSN) perform best. Even the use of the logarithm after a basic normalization
method can improve the results. Considering feature selection analysis, Cubic Splines and
Quantile normalization are recommended. In practice, there might still be further criteria
for the selection of pre-treatment methods, such as the simplicity of the method, or the
availability in standard software packages. Moreover, sometimes the data are reported
with zeros, which excludes methods that are based on the logarithm. The logarithm may
also produce negative values, which are not adequate for some purposes. In any case, one
must be aware that if a pre-treatment is employed, the interpretation for the selected
feature may change – because of the pre-treatment employed.
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CHAPTER 3
Robust biomarker identification
in a two-class problem based on

pairwise log-ratios

A new method, robust Pair-wise Log-Ratios (rPLR), is proposed for the
identification of biomarkers, distinguishing between two groups of observations.
The method can cope with the size effect problem, since it is based on log-
ratios between the values of all pairs of variables. rPLR makes use of the
variance of pairwise log-ratios, computed for the single groups and for all data
jointly. When using a robust estimator of variance (or scale), the method is
highly robust against data outliers. The robustness weights are aggregated
and displayed in a diagnostics plot, which allows to reveal outlying cells in
the data matrix.

3.1 Introduction

“Omics” approaches (e.g. genomics, proteomics, metabolomics) are important platforms
for interpreting and understanding complex biological systems. Nowadays, the use of
different types of hyphenated techniques such as e.g., LC-MS, UPLC-MS, are standard
and there is a need for methods being capable of dealing with the data coming from this
field. This paper proposes a robust method based on Pair-wise Log-Ratios (rPLR) for
the identification of the key features, which are able to distinguish between two groups of
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samples (e.g. patients with and without a certain disease) (Monteiro et al., 2013; Lindon
et al., 2003). In this context, this problem is known as biomarker identification. Here,
we will focus on a situation when the so-called size effect is present in the data. The
term size effect refers to measured samples which have different sample concentrations.
The size effect is obviously undesirable, and it occurs if the true signal cannot be directly
observed. Instead, the true signal multiplied by a constant is measured. The constant is
in general different for each sample which is the basic problem with the size effect. A
typical example of the size effect is the analysis of urine samples.

There are several possibilities how to deal with the size effect. A standard procedure
is preprocessing of the data by applying certain normalizations or transformations. A
widely used normalization method is total sum normalization (TSN), where the values
of each sample are divided by their sum. Thus, after TSN, the values of each sample
sum up to one. However, for the purpose of biomarker identification, TSN is problematic
since it can mask the biomarkers (Filzmoser and Walczak, 2014).

An alternative is probabilistic quotient normalization (PQN) (Dieterle et al., 2006).
Let us assume an (n× d) data matrix X, with n samples and d measurements, and with
the matrix elements xij , for i = 1, . . . , n and j = 1, . . . , d. For a sample xi = (xi1, . . . , xid),
PQN estimates the scaling constant si as the median of the ratios of the elements of
xi to “reference” values xref,j for each variable, si = median(xi1/xref,1, . . . , xid/xref,d).
The reference values are the column medians or means of X (Dieterle et al., 2006). The
normalized values of the ith sample are

xPQNi =
(
xi1
si
, . . . ,

xid
si

)
,

for i = 1, . . . , n. PQN assumes that the majority of the variables is not different between
the analyzed groups.

In the paper Filzmoser and Walczak (2014), several normalization and transformation
methods were examined for a subsequent identification of biomarkers. Besides TSN and
PQN, also transformations from compositional data analysis, as well as pairwise log-ratios
were investigated (Pawlowsky-Glahn and Buccianti, 2011). It turned out that PQN
was the most preferable normalization method for size effect removal in the context of
biomarker identification. Good results could also be achieved with the pairwise log-ratio
approach, but since the number of distinct variable pairs is d(d − 1)/2, this method
becomes impracticable in case of high-dimensional data, but also the results cannot be
easily interpreted.

In principle, the size effect problem can be solved by working with ratios rather
than with the original information. This can be easily shown by assuming that the
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3.2. Method rPLR

true signal information is x = (x1, . . . , xd). In presence of a scaling constant we observe
s · x = (s · x1, . . . , s · xd). However, the ratios between any two variables of the true
signal, xj/xk, carries the same information as the corresponding ratios of s · x, since
(s ·xj)/(s ·xk) = xj/xk. Thus, the relevant information is contained in the ratios between
the variables.

As noted in Aitchison and Shen (1980), ratios are not easy to deal with, because their
variances are non-symmetrical, since var(xj/xk) 6= var(xk/xj). This was solved by using
logarithms of ratios, so called log-ratios, which meet the property of symmetry, since
var(ln(xj/xk)) = var(ln(xk/xj)). Log-ratios are used in the field of compositional data
analysis (Pawlowsky-Glahn and Buccianti, 2011).

The main goal of this study is to present a new method for biomarker identification
based on robust Pair-wise Log-Ratios: rPLR (Section 3.2) and to examine its behavior.
The results of rPLR are compared with other normalization methods. Another focus
in this paper is robustness. Robust statistical methods are often used since they can
generally deal with data where outliers are present, see, for example Liang and Kvalheim
(1996); Liang and Fang (1996). Since most real-world measurements – including “omics”
data – contain outliers, robust procedures are preferable. The proposed method is
straightforward to robustify, and thus its robustness properties are examined in simulation
studies in Section 3.3. Section 3.4 presents new ways of outlier diagnostics, which also
lead to interesting findings in a real data example in Section 3.5. The final Section 3.6
provides concluding remarks.

3.2 Method rPLR

Consider an n× d data matrix X, where the observations originate from two groups. Let
X(1) denote the sub-matrix with the n1 observations in the rows from the first group, and
X(2) the corresponding matrix with n2 observations of the second group, and n1 +n2 = n.
The matrix elements of X(l) are denoted by x

(l)
ij , for i = 1, . . . , nl, j = 1, . . . , d, and

l = 1, 2.

3.2.1 Variation matrix

The proposed method builds on the variation matrix T (Aitchison, 1986; Pawlowsky-
Glahn et al., 2015), with the elements tjk defined as:

tjk = var
[
ln
(
x1j
x1k

)
, ln

(
x2j
x2k

)
, . . . , ln

(
xnj
xnk

)]
, (3.1)
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where j, k = 1, . . . , d, and “var” denotes the variance. The elements of the variation
matrix report the variability of the log-ratio of a pair of variables. The smaller the value
of tjk is, the more the log-ratio tends to be a constant. In this case, the corresponding
variables can be considered as being proportional. The variation matrix T is symmetric
(see Section 3.1), and the diagonal elements are zero.

Besides the variation matrix T based on all observations jointly, the individual group
variation matrices are considered as well. Let us denote T(l) as the variation matrix of
group l, for l = 1, 2, with the elements defined as

t
(l)
jk = var

ln

x(l)
1j

x
(l)
1k

 , ln
x(l)

2j

x
(l)
2k

 , . . . , ln
x(l)

nlj

x
(l)
nlk

 , (3.2)

for j, k = 1, . . . , d. Thus, the variation matrices of the individual groups consider only
the observations from their own groups.

3.2.2 Test statistic

For biomarker identification, the following statistic Vj is proposed,

Vj =
d∑

k=1

n1 ·
√
t
(1)
jk + n2 ·

√
t
(2)
jk

(n1 + n2) ·
√
tjk

, for j = 1, . . . , d. (3.3)

If the jth variable is not a biomarker, the jth column (and row) of all three sources
of information T, T(1) and T(2) will have similar structure. For this reason, each term of
the sum in (3.3) will be approximately around one for all non-biomarkers k. On the other
hand, if the jth variable is a biomarker, t(1)

jk and t(2)
jk will be different, and tentatively

much smaller than tjk, for all k. The resulting Vj will then be considerably smaller than
for non-biomarkers. So, the smaller the value of the statistic (3.3) is, the less similar the
groups are with respect to this jth variable.

Note that in Equation (3.3), the elements of the variation matrix are weighted with
the number of samples of both groups. In case of equal sample sizes (balanced setting) it
is easy to see that Vj can be simplified to

Vj =
d∑

k=1

√
t
(1)
jk +

√
t
(2)
jk

2 ·
√
tjk

, for j = 1, . . . , d. (3.4)

Since the distribution of Vj is not known, it is not straightforward to define a cut-off
value which would allow to distinguish between biomarker and non-biomarker.

For “omics” data, however, one could argue that the vast majority of variables is
independent, with a similar distribution. Since d is usually big, the central limit theorem
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would then imply normal distribution, at least for those Vj referring to non-biomarkers
(so, for the vast majority). Although normality cannot be proven formally, our simulation
study shows that the values Vj follow approximately a normal distribution. The square
root in the statistics 3.3 and 3.4 is used in order keep the values of Vj more symmetric,
hence closer to normality.

We consider a normalized version

V ∗j = −Vj − V̄
sV

, for j = 1, . . . , d, (3.5)

with the arithmetic mean

V̄ = 1
d

d∑
k=1

Vk

and the empirical standard deviation

sV =

√√√√ 1
d− 1

d∑
k=1

(Vk − V̄ )2.

Because of the minus sign in (3.5), now big values of V ∗j point are potential biomarkers,
which is easier to grasp in a visual presentation of the outcome. Following the argumen-
tation from above, most values V ∗j will be approximately standard normally distributed,
and we will use the standard normal quantile u0.975 ≈ 1.96 as cut-off for biomarker
identification. In other words, all variables with index j, where j ∈ {1, . . . , d}, are
identified as biomarkers, if their statistic V ∗j > u0.975. Note that the statistic V ∗j is based
on all bivariate information with the jth variable, and also the grouping information is
considered.

Although this approach using approximate normality was very useful in our experi-
ments, one could also employ randomization tests (e.g. Kempthorne (1952); Edgington
and Onghena (2007)) as an alternative. Randomization tests do not assume normality or
any other distribution of the data, but they are computationally much more demanding.

3.2.3 Estimation of the standard deviation

The performance of the rPLR method crucially depends on how the involved variation
matrices are estimated. More clearly, it is important which estimator of variance is used
for “var” in Equations (3.1) and (3.2). In the following we discuss different possibilities
to estimate its square-root, the standard deviation. The standard choice would be the
empirical standard deviation. However, in presence of outliers it is well known that this
classical estimator in not robust and thus can yield heavily biased results (Yohai and
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Zamar, 1988). As a consequence, (some of) the values Vj would be spoiled, and biomarker
identification based on V ∗j would become unreliable.

Fortunately, the proposed method can be easily robustified by employing a robust
estimator of scale. We consider the following two options.

Median absolute deviation

The Median Absolute Deviation (MAD) is probably the most common robust estimator
of standard deviation. For a univariate sample y = (y1, . . . , yn), it is defined as

MAD(y) = 1.48 ·mediani |yi −median(y)| . (3.6)

The MAD is highly robust since it can resist against up to 50% outliers. A disadvantage
of this estimator is the low statistical efficiency of around 37% for normally distributed
data (Rousseeuw and Croux, 1993). The statistical efficiency of an estimator refers to its
precision, and it can be described as the number of observations needed to achieve a given
performance (Lambeth et al., 1983). Since the classical standard deviation obtains the
highest possible efficiency (100%) under normality, one would need 63% more observations
to achieve the same performance with the MAD as with the standard deviation.

τ-estimator of scale

The τ -estimator is a highly robust estimator of scale, but it also attains a high efficiency,
tunable with two constants c1 and c2. This is particularly important when dealing with
only few samples. It uses weights for the observations, defined as

wi = ωc1

(
yi −median(y)

s0

)
for i = 1, . . . , n, (3.7)

with the weight function

ωc1(u) =
(

1−
(
u

c1

)2
)2

I (|u| ≤ c1) and s0 = MAD(y).

Then the τ estimator of scale is defined as

στ =

√√√√s2
0
n

n∑
i=1

ρc2

(
yi − ȳw
s0

)
, (3.8)

where
ȳw =

∑n
i=1wiyi∑n
i=1wi

and ρc2(u) = min(c2
2, u

2).
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In order to combine good robustness properties with high efficiency, the recommended
tuning parameters are c1 = 4.5 and c2 = 3. This leads to around 80% efficiency at normal
distributions, while keeping the breakdown point at 50%, see Yohai and Zamar (1988);
Maronna and Zamar (2002).

3.3 Simulation study

The goal of this section is to investigate the performance of rPLR under different scenarios,
and to compare with other methods. In particular, we are interested in the robustness
behavior, as well as in unbalanced settings, where the groups consist of different numbers
of observations. Unbalanced data appear frequently in practice, since usually only a low
number of patients suffering from a certain disease is available, while the control group
may consist of much more persons. On the other hand, in some cases the situation can
be exactly reverse, especially in the case when the procedure of extracting samples is
invasive. Then there will be relatively many samples from patients and only few controls.
For the proposed methods, however, it is irrelevant which group forms the minority.

3.3.1 Simulation design

For simulating the data, we use the close-to-reality setting as proposed in Filzmoser
and Walczak (2014). However, we restrict ourselves only to the high-dimensional case
(d� n), which we consider more relevant in this context. Accordingly, the columns xj of
a simulated data matrix X are generated as

xj = Nj + (1− S) · [(cj + aj) · rj +Bj ] · eMj , (3.9)

for j = 1, . . . , d. Here, Nj represents the background noise and it is generated from a
normal distribution N (0, 0.052). The size effect S is generated from N (0, 0.32), and it is
independent of j. Further, cj = aj/rj stands for the component concentration, where
aj is the signal abundance and rj the component absorptivity. These two parameters
come from uniform distributions: cj ∼ U [5, 10], rj ∼ U [1, 10]. The parameter aj creates
different abundance of the biomarker, and is defined as

aj =
{
A for j ∈ Ibm and observations of group 1
0 otherwise,

where Ibm is an index set containing the indices of the biomarkers. Here, d0 = 20 variables
are simulated as biomarkers, and without loss of generality, they are arranged at the
first 20 positions, Ibm = {1, 2, . . . , 20}. The sign of A is alternated among subsequent
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Table 3.1: Set of parameters for the simulation.

Setting Biol. variance Between class abundance Multipl. noise
σB A σM

1 + + +
2 + + −
3 + − +
4 − + +
5 − − −
6 − − +
7 − + −
8 + − −

where σB(+) = 0.8, σB(−) = 0.2, A(+) = 1.8, A(−) = 1, σM (+) = 0.021, σM (−) = 0.007.

variables. In the simulation study 480 non-informative variables (non-biomarkers) were
created which leads to 500 variables in total. The biological noise is modeled by Bj
generated from N (0, σ2

B). Finally, the multiplicative noise is generated according to
Mj ∼ N (0, σ2

M ). The rest of the parameter values are listed in Table 3.1. The different
parameter combinations result in eight different settings. The settings with high variance
(σ2
B and/or σ2

M ) and at the same time low abundance (A), so settings number 3, 6, 8,
will lead to poor signal-to-noise ratio. The opposite situations represent more clearer
separation between the groups.

3.3.2 Simulation of outliers

In order to generate outliers, the standard deviation for the noise term was increased by
a factor 10, thus Nj ∼ N (0, 0.52). Also, the distribution of the multiplicative noise is
modified to Mj ∼ N (±0.5, (10 · σM )2), where the sign for the mean is chosen randomly.
Outliers were generated in two different ways.

Observation outliers: For an outlying observation, all variables of this observation are
simulated as outliers, as described above. As a consequence, the outlier is indeed very
different from regular observations, and it will thus have a severe impact on non-robust
estimation.

Cell outliers: Outliers are generated only in randomly selected cells of the data matrix.
Thus, depending on the total amount of outlying cells, each observation may contain
outlying cells. This situation is more difficult to deal with.
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3.3.3 Performance evaluation

This simulation study contains d variables from which d0 are true biomarkers and
d1 = d− d0 non-biomarkers. The performance of the method is evaluated in the same
sense as a multiple testing procedure (Dunnett, 1955). In this case, the null hypothesis
would be that a certain variable is not a biomarker. Then the TP (True Positives)
denote the number of correctly identified biomarkers, the TN (True Negatives) are the
number of correctly identified non-biomarkers, FP (False Positives) are the number
of non-biomarkers that were declared as biomarker, and FN (False Negatives) are the
number of biomarkers that were not identified as such. These numbers are also presented
in Table 3.2, and they are the basis for computing the performance measures considered
here: the True Positive Rate (TPR) and the False Discovery Rate (FDR), defined as:

TPR = TP/(TP + FN) FDR = FP/(TP + FP).

The TPR reflects the proportion of true biomarkers which were correctly identified.
Ideally, this value should be one. The FDR mimics the concept of the type-I error in
hypothesis testing. Out of all decisions for biomarkers (“discoveries”), it provides the
proportion on all wrong decisions. Ideally, the value for FDR should be zero.

Table 3.2: Classification of an outcome of biomarker identification: number of True
Positives (TP), True Negatives (TN), False Positives (FP) and False Negatives (FN).

Identified as
Biomarker Non-biomarker Sum

True biomarker TP FN d0
Non-biomarker FP TN d1

3.3.4 Methods for comparison

The simulation design for the uncontaminated data follows closely the paper Filzmoser
and Walczak (2014), and there it turned out that probabilistic quotient normalization
(PQN) (Dieterle et al., 2006) had the best performance, followed by the method PLR
which uses all pairwise log-ratios of the variables. All other investigated methods had
some difficulties. For this reason, the PQN method will be used below as a reference
method.

After PQN is carried out, a decision on significance of the variable, referring to a
biomarker, has to be made. While in our procedure this decision is based on a critical
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value (V ∗j from Equation (3.5) exceeds the threshold of the standard normal quantile
u0.975), in Filzmoser and Walczak (2014) this decision was based on the uninformative
variables elimination partial least-squares method (UVE-PLS) (Centner et al., 1996;
Zerzucha and Walczak, 2012). Basically, UVE-PLS borrows the ideas of a permutation
test, since the observations of the original X matrix are randomly permuted. This is
done several times, and all resulting matrices, multiplied by a small factor to reduce the
importance, are augmented to X, yielding a wide input matrix for PLS, which can be
dealt with using the kernel PLS algorithm. The response for PLS is the class membership
variable, and the stability of the regression coefficients is determined by leave-one-out
cross-validation (Centner et al., 1996; Zerzucha and Walczak, 2012).

Note that in our studies where the data are contaminated by outliers, UVE-PLS may
lead to biased results because of the non-robustness of PLS to outliers. This could be
solved by using a robust partial least-squares method, like partial robust M regression
(PRM) (Serneels et al., 2006). However, because of the high dimensionality of the
augmented input matrix, and the computational complexity of the strategy to obtain
significance, this would result in a very time consuming procedure.

On a standard PC, UVE-PRM would take around 400 minutes for one dataset we
used in our simulations. Since for each parameter setting and each percentage of outliers
in the data, 100 simulations were performed, and we also consider different numbers of
observations in the groups, denoted as balanced and unbalanced settings, there are in
total 22 400 simulations. Therefore, the computational time for all the simulations using
UVE-PRM would be enormous. Thus, we will use UVE-PLS in combination with PQN
in our comparisons.

In addition, we compare with two further well-known methods: DESeq2 (Love et al.,
2014) and ALDEx (Fernandes et al., 2013; Gloor and Reid, 2016). Both are using an
internal normalization of the data and its own biomarker identification decision. DESeq2
performs an internal normalization based on geometric means of each variable across
all samples. Each sample is then divided by its mean. The median of the ratios is an
estimation of the size-effect for a specific sample. Then a negative binomial generalized
linear model is fitted for each variable, and the p-value from a Wald test (Wald, 1943;
Harrell, 2014) is used for biomarker identification. This method also uses Cook’s distance
to detect outliers and removes them from the analysis. The method ALDEx generates
Monte Carlo samples of the Dirichlet-multinomial model to derive the size-effect from the
data. Then, the method internally applies the centered logratio transformation (Aitchison,
1986) and computes Welch’s t-test for the biomarker identification. The authors of both
methods recommended to adjust the p-values for multiple testing using the procedure of
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Benjamini and Hochberg, see (Benjamini and Hochberg, 1995). In our simulations, an α
level of 0.05 was used as a cut-off value.

3.3.5 Results for the balanced setting

In the balanced setting, both groups have the same number of observations, namely
n1 = n2 = 20. As noted above, the number of variables is d = 500 and the number of
true biomarkers is d0 = 20, for each parameter setting listed in Table 3.1, 100 data sets
were generated. In the following we present the averages for TPR and FDR over all
simulations across all 8 parameter settings, and the corresponding standard errors are
represented in the figures as gray areas.

Table 3.3 shows the results for the uncontaminated data. The first three methods
are based on rPLR with the V ∗j statistic, see Equation (3.5), by using the empirical
standard deviation (SD), the median absolute deviation (MAD), and the τ estimator of
scale, respectively, to estimate the involved variation matrices. The last three methods
of comparison are PQN in combination with UVE-PLS, as proposed in Filzmoser and
Walczak (2014), DESeq2 (Love et al., 2014), and ALDEx (Fernandes et al., 2013). The
performance of all methods is excellent, with slightly better results for the true positive
rate for the last two methods. Note that other methods listed in Filzmoser and Walczak
(2014) had difficulties with these situations.

Table 3.3: Average of the true positive rates (TPR), false discovery rates (FDR) and
Standard Error of TPR over all simulations without outliers for the balanced setting,
compared for the estimators SD, MAD, and τ for computing the V ∗j statistic, UVE-PLS
combined with PQN, DESeq2 and ALDEx.

Method TPR FDR SE of TPR
SD 0.986 0.000 0.0022

MAD 0.985 0.003 0.0024
τ estimator 0.988 0.000 0.0019

UVE-PLS (PQN) 0.985 0.006 0.0018
DESeq2 0.994 0.007 0.0053
ALDEx 0.994 0.009 0.0100

Figure 3.1 presents the results for observation outliers. Up to 50% of the observations
from both groups are contaminated according to the scheme outlined in Section 3.3.2.
Although such high outlier percentages are unrealistic in real data, it is interesting to
see that the robust estimators MAD and τ still yield excellent results. The classical
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standard deviation estimation SD gives reasonable results only for small contamination,
but gets worse when the percentage of outlying observations increases. UVE-PLS for
normalized data based on PQN is unreliable already for 10% outliers (4 observations).
With increasing outlier percentage, also the results for DESeq2 and ALDEx deteriorate.
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Figure 3.1: Observation outliers in the balanced setting: A given percentage (horizontal
axes) of the observations is contaminated by outliers. The resulting TPR and FDR are
averages over all simulation scenarios. The shaded areas represent the standard errors of
the corresponding averages. Compared are different estimators of scale (SD, MAD, τ)
for the V ∗j statistic, UVE-PLS based on PQN, DESeq and ALDEx.

Figure 3.2 shows the averaged TPR and FDR over all simulation scenarios for the
balanced setting for cell outliers (see Section 3.3.2). The percentage varies from zero to
25%, the latter corresponds to 125 contaminated cells on average in each row of a data
matrix, which is again quite extreme. Still, rPLR with the τ estimator as robust measure
of scale delivers excellent results in this situation. The MAD leads to poor results of the
TPR after including more than 12.5% outlying cells. The non-robust SD is not suitable
in presence of outlying cells, and UVE-PLS with PQN leads to poor results for the TPR,
but also for FDR in case of higher percentages. The true positive rates of DESeq and
ALDEx are strongly influenced even by small percentages of cell outliers, while keeping
the false discovery rate relatively low.
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Figure 3.2: Cell outliers in the balanced setting: A given percentage (horizontal axes) of
randomly selected cells of the data matrix is contaminated by outliers. The resulting
TPR and FDR are averages over all simulation scenarios. The shaded areas represent
the standard error of the corresponding averages. Compared are different estimators of
scale (SD, MAD, τ) for the V ∗j statistic, UVE-PLS based on PQN, DESeq and ALDEx.

3.3.6 Results for the unbalanced setting

The number of observations in the groups is now fixed with n1 = 40 and n2 = 5,
corresponding to a highly unbalanced situation. The number of variables and of true
biomarkers is the same as before (d = 500, d0 = 20). We consider the (more difficult)
situation of cell outliers, where the outlying cells are now placed only in the observations
of the bigger group. Note that we could also contaminate the smaller group, but since the
cells are selected randomly, high percentages of outlying cells could completely destroy
the information contained in the small group.

Figure 3.3 shows the results, again as averages of all 100 simulations for all 8 parameter
combinations listed in Table 3.1. Already in the uncontaminated case (0% outlying cells)
one can see important differences: UVE-PLS for PQN leads to a considerably lower TPR.
The reason is that PLS is not appropriate for unbalanced groups. Also the MAD leads
to a poor performance, in particular for the FDR. This is caused by the low efficiency of
this estimator, which becomes crucial in the case of very small sample sizes. As expected,
SD and UVE-PLS with PQN get worse in case of contamination. The proposed method
with the τ estimator of scale gives excellent results for up to 17.5% ; then its performance
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gets worse. Similar as in the balanced situation with cell outliers, DESeq2 and ALDEx
have low TPR. On the other hand, these methods behave well in the situation without
outliers in the unbalanced case.
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Figure 3.3: Cell outliers in the unbalanced setting: A given percentage (horizontal axes)
of randomly selected cells of the observation in the larger group is contaminated by
outliers. The resulting TPR and FDR are averages over all simulation scenarios. The
shades areas represent the standard error of the corresponding averages. Compared are
different estimators of scale (SD, MAD, τ) for the V ∗j statistic, UVE-PLS based on PQN,
DESeq and ALDEx.

3.4 Outlier diagnostics

Identifying the correct biomarkers even in presence of moderate data quality is very
desirable. However, it is also interesting to get more insight into the structure of potential
data problems. In particular, it is interesting to know which observations are deviating
from the majority in order to identify possible measurement errors or other artifacts.
Also, identifying some variables or variable groups that show different behavior in all
or parts of the observations may lead to important insights. For all these reasons, an
outlier diagnostics tool is presented and discussed in this section.

The outlier diagnostics is based on the group variation matrices using the τ estimator
of scale. The τ estimator internally computes weights wi for the observations, see
Equation (3.7). In our context, the input for the τ estimator are log-ratios of a pair of

64



3.4. Outlier diagnostics

variables,
ln
(
x

(l)
1j /x

(l)
1k

)
, . . . , ln

(
x

(l)
nlj
/x

(l)
nlk

)
(3.10)

see Equation (3.2), and the resulting estimated variance is t̂(l)lk , the corresponding element
of the variation matrix for the lth group (l = 1, 2). The weights of the τ estimator
are thus assigned to each term in (3.10), leading to nl weights. Since all variable pairs
j, k = 1, . . . , d are considered for estimating the variation matrix, one can store all weights
in a three-way array W (l) with d rows, d columns, and nl slices. Denote the elements of
this matrix by w(l)

jki. Note that these robustness weights are computed already as part of
the computation of the τ estimator, and thus the only additional effort is to store the
weights.

The weights are used to identify cell-wise outliers, i.e. single matrix elements of
the data matrix. Therefore, the information contained in W (l) needs to be aggregated
appropriately. The information for a specific observation is contained in one particular
slice of W (l), and due to the construction, this slice of dimension d× d is symmetric. We
propose to average all weights for each observation and each involved variable,

m
(l)
ij = 1

d

d∑
k=1

w
(l)
jki, (3.11)

for j = 1, . . . , d, i = 1, . . . , nl, and l = 1, 2. This information is stored in the nl×d matrix
M(l), which can be represented graphically. All values are in the interval [0, 1], where
small values indicate outlying cells.

The outlier diagnostics is presented here for one simulated data set according to the
simulation design of Section 3.3. We use the balanced situation with n1 = n2 = 20, and
the parameter setting 4 from Table 3.1. The first 20 variables are simulated as biomarkers.
Outliers are included cell-wise according to the black spots and fields in Figure 3.4 (upper
plot), which represents the structure of the simulated data matrix. Thus, the cell-wise
outliers are not only arranged randomly, but also in specific rows and parts of the matrix
to test the method for diagnostics.

The lower part of Figure 3.4 shows the information of M(1) and M(2), arranged on
top of each other to obtain the same matrix dimension as for the upper plot. The weights
are represented by a continuous gray scale, where a weight of zero corresponds to black,
and a weight of one to white. One can see that all cells of the outlying rows were correctly
identified, and also most cells of the outlying block. Also, most cell-wise outliers are
correctly identified. Some cells are incorrectly indicated as outliers. However, due to the
data generation, it is likely that some cells, although generated by normal distribution,
are extreme just by chance.
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********************
Imputed outliers

********************
Identified outliers

Figure 3.4: Outlier diagnostics for a simulated data set: true outlying cells in black
(upper plot), and identified outlying cells (lower plot). The ∗ symbols on the top of the
plots represent the true biomarkers.

3.5 Example

Medium chain acyl-CoA dehydrogenase deficiency (MCADD OMIM # 201450) is one
of the metabolomic diseases called the fatty acid oxidation disorders (FAODs). Blood
samples from 25 healthy newborns as a control group and 8 newborns with MCADD
disease were collected in the laboratory for inherited metabolic disorders (University
Hospital Olomouc, CZ) within the pilot project of the Czech newborn screening program.
Using subsequent sampling, the number of samples of patients suffering from MCADD
was increased to 25. All these samples were analyzed using untargeted MS-based
metabolomics.

The data were preprocessed by Laboratory of metabolomics (Institute of Molecular
and Translational Medicine Faculty of Medicine and Dentistry Palacky University, Czech
Republic). The data preprocessing was done in the software environment R (R Core
Team, 2018) with the packages XCMS (Smith et al., 2006) and CAMERA (Kuhl et al.,
2012). The XCMS package was used for peak finding and 1900 features were identified.
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In the next step, isotopes and adducts were grouped by the CAMERA package and
excluded from the dataset. Quality control-based robust LOESS (LOcal regrESSion)
signal correction was applied. During the preprocessing, the data dimension was reduced
to 273 features. More details about the preprocessing can be found in Najdekr et al.
(2015).

The resulting V ∗j values of rPLR using the τ estimator of scale of the described
data are shown in Figure 3.5. By previous studies of MCADD, three biomarkers are
known (Najdekr et al., 2015) (plotted as triangles). All the values above the plotted
cut-off are identified as biomarkers by the new method. The identified biomarkers by
UVE-PLS (PQN) are plotted as full circles. Altogether, UVE-PLS (PQN) identified 75
biomarkers out of 273 variables, and similarly, DESeq2 identified 99 and ALDEx even
155 biomarkers. These high numbers are rather unrealistic, since the biomarkers should
represent only a small fraction of metabolites. These increased numbers corresponds to
the simulation study with outliers, where the number of false positives was also quite
high. On the other hand, the new method found all three previously known biomarkers
as well as 11 additional metabolites. These biomarkers need to be investigated in detail
by experts.
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Figure 3.5: Biomarker identification: The new method identifies V ∗j values bigger than
plotted cut-off as biomarkers. Full dots represent variables identified by UVE-PLS (with
PQN) and plus signs represent variables identified by DESeq2. The results of ALDEx
are not included in the plot since almost every variable (155 out of 273) was identified as
biomarker. The triangles are known biomarkers by other studies of the disease.

To examine the data more deeply and to demonstrate the fact that a robust method
should be used, the outlier diagnostics as described in Section 3.4 is performed, see
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Figure 3.6. Several observations can be seen as outliers, especially observation number
3, 10, and possibly even 26, 27. On top of that, various cell outliers are present in the
dataset. This suggests that the classical non-robust method might be influenced by the
outliers, which might have spoiled the results of biomarker identification.
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Figure 3.6: Outlier diagnostics in the real dataset MCADD. Observations 1 to 25
correspond with Control group, 26 to 50 with MCADD patients. The darker the cells,
the higher is the probability of outlyingness. Identified biomarkers are indicated by ∗.

3.6 Conclusions

In this paper, a novel robust method (rPLR) is proposed for the identification of the
key features (biomarkers), which are able to distinguish between two groups of samples
(e.g. patients with and without certain condition). This method can handle data where
the so called size effect is present. There are several methods suited to deal with this
problem, however, to the best of our knowledge, there is no robust method available
which is capable of dealing with outliers.

The new method is based on the variance of pairwise log-ratios. These log-ratios
are scale invariant, so they are suitable for dealing with the size-effect problem. The
method can be easily robustified just by estimating the variance (or its square-root)
robustly. Here, three versions of the method are presented, which are based on the
following scale estimators: 1) the non-robust standard deviation, 2) the robust median
absolute deviation, and 3) the robust τ estimator of scale.
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3.6. Conclusions

Simulation studies were carried out to investigate the performance of the new method
under different scenarios and to compare with UVE-PLS with the PQN transformation,
DESeq2 and ALDEx. The focus of the comparison was especially on the robustness
behavior. The simulations were evaluated based on the true positive rate (TPR) and the
false discovery rate (FDR). Two settings, the balanced and the unbalanced case were
considered. Also, two different types of outliers were generated: observational outliers
and cell outliers. Overall, UVE-PLS with the PQN transformation leads to good results
if there are no outliers and if the groups are balanced, but the results get worse with
increasing contamination and if the group sizes are very different. This is not directly
related to the PQN transformation, but rather to UVE-PLS which is sensitive to outliers
and unbalanced groups. The methods DESeq2 and ALDEx behave well in unbalanced
situations, but they fail if outliers are present in the data. The simulation also verified
that cell-wise outliers are more difficult to deal with compared to observational outliers.
The new method based on log-ratios works well for the unbalanced case. In presence
of outliers, a robust scale estimator is indispensable. The best results were achieved
for the τ scale estimator due to its high breakdown point and high efficiency. In this
paper, we evaluated the methods based only on TPR and FDR using certain cutoff
values. We did not consider the frequently used Area Under the Receiver Operating curve
(AUC). In our context, when only a small number of biomarkers is present, the AUC will
depend mainly on the evaluation of non-biomarkers. For this reason AUC results are
not included here. Anyway, AUC would suggest similar conclusions as using TPR and
FDR. The τ scale estimator has another advantage: The weights which are internally
computed to downweight outlying observations can be aggregated to identify outlying
cells in the data matrix. This information has been exploited in a diagnostics plot. Such
a plot can provide valuable information about data artifacts, since it reveals if complete
observations have deviating data structure, or if certain variables or cells have different
behavior. The reasons for outlyingness can be manifold, including problems during the
measurement or preprocessing step.

We believe that the plot of the V ∗j values, see e.g. Figure 3.5, and the diagnostics
plot, see Figure 3.6, provide valuable insight into the data analysis. The analyst may
not only be interested if a variable is a biomarker or not, but it is also interesting to see,
to which “degree” a variable is identified as biomarker. This is visible in the plot of the
V ∗j values. The new method is implemented in the R package robCompositions as
function biomarker, yielding both plots as an output.

It should be admitted that the proposed method has limitations concerning zero
entries in the data matrix. Zeros in combination with log-ratio methods lead to values of
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infinity, and thus to numerical difficulties. A way out would be to impute the zero values,
which might be considered as values below a certain detection limit, see Templ et al.
(2016), but currently it is not clear how the performance of the method would be affected,
and thus further research is needed in this direction. Another limitation is the fact that
the method would be computationally demanding in extremely high dimensions. In our
future research we also plan to extend this work from the two-group to the multi-group
setting.
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CHAPTER 4
Cellwise outlier detection and

biomarker identification in
metabolomics based on pairwise

log-ratios

Abstract: Data outliers can carry very valuable information and are often
most informative for the interpretation. An algorithm called cell-rPLR for
the identification of outliers in single cells of a data matrix is proposed. The
algorithm is designed for metabolomic data, where due to the size effect the
measured values are not directly comparable. Pairwise log-ratios between
the variable values form the elemental information for the algorithm, and
the aggregation of appropriate weights results in outlyingness information. A
further feature of cell-rPLR is that it is useful for biomarker identification,
particularly in presence of cellwise outliers. Real data examples and simulation
studies underline the good performance of this algorithm in comparison to
alternative methods.

4.1 Introduction

Metabolomic data, as well as many other data sets from “omics” disciplines, are high-
dimensional, with many variables and commonly limited by few observation, originating
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from two or more different groups (controls, diseased). The groups can typically be
distinguished at the basis of few variables only, the so-called biomarkers. Once they are
identified, they are important for the interpretation of the group differences (Strimbu
and Tavel, 2010; Pepe et al., 2001).

Biomarker identification is getting more challenging if outliers are present in the
data (Abeel et al., 2009). Outliers in this context can be observations that are somewhat
different in their data structure compared to the data majority, and this difference may
be caused by measurement problems, different data preprocessing, inconsistencies among
the observations, etc (Huber and Ronchetti, 1981; Maronna et al., 2019). An outlying
observation does not necessarily differ in all the variable values, but it could differ just
in few variables. This difference could be a data artifact, but it could also refer to a
biomarker, for which a difference is to be expected. This means that for the purpose of
biomarker identification, outliers could be disturbing if they are related to data artifacts,
or even helpful otherwise. In the latter case, one would expect that the outliers form a
pattern, i.e. all observations from that group should have outlying values for the respective
biomarker.

Traditionally, outlier identification has been carried out “rowwise”, assuming that
the observations are arranged in the rows of the data matrix. This means that if a
method identifies an outlier, the complete observation is flagged as such. This situation
is visualized in Figure 4.1 (left), which shows the cells of a data matrix, and the dark
cells refer to outliers. Robust statistical estimators would then typically downweight
outlying observations, see Maronna et al. (2006). In contrast to that, Figure 4.1 (right)
refers to a scheme of “cellwise” outliers, where single cells of the data matrix (colored
in black) are identified as outliers. Thus, for each observation, different variables can
be outlying. Especially for high-dimensional data it might happen that most of the
observations will contain at least one cellwise outlier. It would not make much sense
to downweight those observations which contain an outlying cell, since most of the
observations would then get downweighted. Cellwise outlier detection is a quite recent
topic in robust statistics (Rousseeuw and Bossche, 2018), as well as the development of
robust estimators with cellwise outliers (Öllerer et al., 2016).

A further important characteristic of metabolomic data is the so-called size-effect.
This refers to a situation in which the concentration or abundance is generally different
for each sample in the data set, e.g. in the analysis of urine samples with different
sample volume. Thus, the obtained data values are not directly comparable, and
the data need to be preprocessed first before applying a statistical method (Warrack
et al., 2009; Filzmoser and Walczak, 2014). Preprocessing can be done by making use
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Figure 4.1: Difference between rowwise (left) and cellwise (right) outliers of a data matrix.

of a specific data transformation or normalization, e.g. the total-sum normalization
(TSN) (Craig et al., 2006) or the probabilistic quotient normalization (PQN) (Dieterle
et al., 2006). An alternative is to use the log-ratio methodology from compositional data
analysis, which is based on pairwise log-ratios (Pawlowsky-Glahn et al., 2015). Since
for two observations x and y, and any positive constant s (representing the size effect),
ln ((s · x) / (s · y)) = ln (x/y), preprocessing is not necessary here (Walach et al., 2018).

In this paper we will introduce an algorithm called cell-rPLR, which is the abbreviation
for cellwise outlier diagnostics using robust pairwise log-ratios. The goal of cell-rPLR
is twofold: it can be used for (a) cell-wise outlier identification and for (b) biomarker
identification. Section 4.2 describes the theoretical basis of the method. Section 4.3
introduces a diagnostics plot for cellwise outlier identification. In a simulation scenario,
cell-rPLR is compared to an alternative approach for cellwise outlier detection. Section 4.4
shows how cell-rPLR is used for biomarker identification, and the performance is evaluated
in scenarios where cellwise outliers are artificially included in the data. Section 4.5
summarizes the paper, provides information about software, and concludes.

4.2 Method

Let us assume a dataset arranged in a data matrix X, with n samples and d variables.
The matrix X consists of elements xij , where i = 1, . . . , n and j = 1, . . . , d. There
are G ≥ 2 groups of samples in our data, and one can rearrange the samples so that
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samples belonging to one group are gathered together in one block in X. Each block is
denoted as X(g) with elements x(g)

ij for i = 1, . . . , ng, j = 1, . . . , d and g = 1, . . . , G and
n1 + . . .+ ng = n.

The proposed method cell-rPLR consists of three main steps. In the first step we
use the information of the log-ratios between pairs of variables. In the second step, the
log-ratios are robustly centered and scaled and a weighting function is applied. Finally,
the third step projects the data to the original dimensions n × d. In the following, a
detailed description of the individual steps is provided.

4.2.1 Centered and scaled pairwise log-ratios

Consider for a pair of variables, with index j, k ∈ {1, . . . , d}, the log-ratios of their
observations:

ln

x(1)
1j

x
(1)
1k

 , . . . , ln
x(1)

n1j

x
(1)
n1k

 , ln
x(2)

n1+1,j

x
(2)
n1+1,k

 , . . . , ln
x(2)

n1+n2,j

x
(2)
n1+n2,k

 , . . . , ln
x(G)

nj

x
(G)
nk

 (4.1)

Clearly, the log-ratios are zero if j = k, and exchanging denominator and nominator leads
to the same log-ratio, but with different sign. Subsequently, we will assign a weight to
each entry of the pairwise log-ratios. In order to design an appropriate weight function,
the log-ratios need to be centered and scaled first. Since potential group-differences
should not get lost, centering and scaling is performed with respect to the entries in one
group only, where we propose to use the majority group for this purpose. In case that
the group sizes of the biggest groups are equal, one can randomly select one of these
biggest groups. For simplicity, suppose now that the first group is the biggest group, thus

n1 > ng, for 1 < g ≤ G. Further, we simplify the notation by defining yijk := ln
(
x

(g)
ij

x
(g)
ik

)
,

for i = 1, . . . , n, and j, k ∈ {1, . . . , d}. For the following steps, let us drop the indexes j
and k for simplicity, and thus yi := yijk. The log-ratios of the first group are the values
y1, . . . yn1 .

Center and scale of the log-ratios of the first group are estimated robustly (Maronna
et al., 2006), as

ȳ1 =
∑n1
i=1 viyi∑n1
i=1 vi

, (4.2)

where
vi = ωc

(
yi −median (y1, . . . , yn1)

s1

)
, (4.3)

and s1 = MAD(y1, . . . , yn1) is the median absolute deviation, defined as

MAD(y1, . . . , yn1) = 1.483 ·mediani(| yi −medianj(yj) |) (4.4)
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The function ωc(·) in Equation (4.3) is Tukey’s biweight function (Beaton and Tukey,
1974), defined as

ωc(u) =
(

1−
(
u

c

)2
)2

· I (u, c) , (4.5)

with

I (u, c) =

1, for |u| < c.

0, otherwise
(4.6)

The tuning constant is usually chosen as c = 4.685. For more details, we refer to Yohai
and Zamar (1988) and Maronna and Zamar (2002), who introduced these concepts in
the framework of robust scale estimation.

The robustly centered and scaled values are obtained as

ỹi = yi − ȳ1
s1

for i = 1, . . . , n. (4.7)

Centering and scaling is done for fixed indexes j, k ∈ {1, . . . , d}, and now going back
to the notation including these indexes, we end up with robustly centered and scaled
values ỹijk. Note that for j = k, the function arguments in (4.3) are not defined, because
s1 would be zero. We will thus set the values ỹijk := 0 whenever j = k. Further, one can
see that ỹijk = −ỹikj , and therefore it is sufficient to actually compute only the values
ỹijk for j < k, which saves computational effort.

4.2.2 Weighting functions

The robustly centered and scaled pairwise log-ratios contain information about outlying-
ness, and this information will be revealed by applying an appropriate weight function to
these values. A weight function as proposed in Equation (4.5) would, however, not be
appropriate, since the resulting weights are in the interval [0, 1], and one would lose the
sign information of the log-ratios. This information will be important, because positive
values would refer to a dominance of the nominator, and negative values to a dominance
of the denominator. Therefore, we propose the adjusted Tukey biweight function as

ω∗c (u) = ωc(u) · sgn(−u) + sgn(u), (4.8)

with the sign function

sgn(v) =

1, for v ≥ 0,

-1, otherwise,
(4.9)

yielding values in [−1, 1]. Figure 4.2 shows the original definition of the Tukey biweight
weights (left plot) and compared with the adjusted version (right plot).
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Figure 4.2: Original (left) and adjusted (right) weighting functions

The adjusted weight function is applied to the robustly centered and scaled pairwise
log-ratios from (4.7). Weights around zero represent non-outlying values, and weights
closer to −1 or +1 represent potential outliers.

The shape of the weight function will determine the characteristics of the outlier
detection method, and thus other weighting functions shall be considered as well. In the
literature on robust statistics, many proposals are available, such as Huber’s (Huber and
Ronchetti, 1981) and Hampel’s (Hampel et al., 1986) functions. Below we will propose
the adjusted versions, resulting in weights in the interval [−1, 1].

Huber weighting function: The original definition is

ωk (u) = min

(
1, k
|u|

)
, (4.10)

where k is a tuning parameter, typically taken as 1.345 (Huber and Ronchetti, 1981). The
assignment of 1 to a broader range of values improves the efficiency of robust estimators,
while still keeping their robust properties. The adjusted version

ω∗k (u) = (ωk(u)− 1) · sgn(−u) (4.11)

assigns weights of 0 to those (non-outlying) log-ratios which are still in the usual range.
The resulting shape of the adjusted Huber weighting function can be seen in Figure 4.2
(right); the left plot shows the original definition.

76



4.2. Method

Hampel weighting function: The original definition is

ωh (u) =



1 |u| ≤ c1
c1
|u| c1 ≤ |u| ≤ c2
c3−|u|
c3−c2

c1
|u| c2 ≤ |u| ≤ c3

0 c3 < |u|

(4.12)

where the tuning parameters are typically chosen as c1 = z0.95, c2 = z0.975 and c3 = z0.99,
with zq as the q-quantile of the standard normal distribution. The Huber function
approaches zero asymptotically, whereas in the Hampel function one obtains zero weights
according to the tuning parameter c3. The adjusted version of the Hampel function is

ω∗h (u) = (ωh(u)− 1) · sgn(−u), (4.13)

which again provides values in [−1, 1]. Figure 4.2 shows the original (left) and adjusted
(right) Hampel weighting function.

4.2.3 Aggregation of weights

Let us denote the adjusted weight function by ω∗(·), which refers to one of the proposed
functions in Section 4.2.2. We apply this function to the centered and scaled pairwise
log-ratios, see Section 4.2.1, resulting in weights

w∗ijk = ω∗(ỹijk) (4.14)

for i = 1, . . . , n and j, k ∈ {1, . . . , d}. These weights are stored in an array W∗ with n
rows, d columns, and d slices.

Since we aim at a method for cell-wise outlier detection, the weights in the array W∗

need to be aggregated appropriately in order to obtain weights for each cell in the n× d
data matrix X. For robustness reasons we propose the aggregation into weights

wij = median
(
w∗ij1, w

∗
ij2, . . . , w

∗
ijd

)
, (4.15)

for i = 1, . . . , n and j = 1, . . . , d, and they are collected in the n× d weight matrix W.
Note that it would also be possible to aggregate the weights w∗ijk according to the second
index. This would result in the same values of aggregated weights, but with reverse sign,
because the considered weighting functions have the property ω∗(u) = −ω∗(−u), and
because ỹijk = −ỹikj .
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4.2.4 Cell-rPLR algorithm for outlier diagnostics

The algorithm for cell-rPLR can be summarized as follows:

Step 1: Compute all pairwise log-ratios ln
(
x

(g)
ij

x
(g)
ik

)
for i = 1, . . . , n and j, k ∈ {1 . . . , d}

with j > k, see (4.1).

Step 2: Center and scale them robustly according to the majority group. This gives
values ỹijk, for all i, j, k.

Step 3: Apply a weighting function to ỹijk, which yields weights w∗ijk, see (4.14).

Step 4: Aggregate the weights according to (4.15) to obtain the final weights wij , arranged
in the weight matrix W.

Note that this outlier detection algorithm is supervised, because the group information
of the observations is used in Step 2.

We do not specify an outlier cut-off value for identifying outlying cells. Rather, we
visualize the information contained in W, by using different colors for positive (red) and
negative (blue) values, and different color intensity, with light color for weights close to
zero, and intense color otherwise. Thus, cell-rPLR serves as a visual outlier diagnostics
tool.

4.2.5 Cell-rPLR algorithm for biomarker identification

As noted above, the cell-rPLR can also be used for feature selection. In this case, however,
this is limited only to the case of G = 2 groups. The weights wij from Step 4 of the
algorithm are still associated to the groups, and since we arranged the observations
group-wise, we have weights w(1)

j = {w1j , . . . , wn1j} for the first group, and weights
w

(2)
j = {wn1+1,j , . . . , wnj} for the second group, for j = 1, . . . , d. For feature selection we

compare the medians in both sets of weights by

mj =
∣∣∣ median

(
w

(1)
j

)
−median

(
w

(2)
j

) ∣∣∣ . (4.16)

The larger the difference is, the more important the variable is for the discrimination
of the groups. Note that the size of mj for different j can indeed be compared, since
the weights are on the same scale. One can either sort the values mj in descending
order, and obtain a ranked variable list, with potential biomarkers at the beginning of
the list. On the other hand, it might be desirable to obtain a cutoff value indicating
potential biomarkers. Therefore, we will make use of a permutation test. Permutation
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tests (Fisher, 1935; Rubin, 1980) are wildly used for significance testing. They are based
on resampling, and try to estimate the distribution of the test statistic. The goal is
to estimate a p-value for the testing problem. In our case, the null hypothesis states
that there is no difference between the two groups in the data for a certain variable,
i.e. mj = 0, and thus the variable is not a biomarker.

The permutation tests for cell-rPLR can be described as follows:

Step 1: Use as an input the matrix W∗ with the elements w∗ijk, defined in (4.14).

Step 2: Randomly permute the values w∗ijk according to the index j, resulting in values
w∗ijk(b) for replication b ∈ {1, . . . , B}

Step 3: Aggregate the values from the b-th permutation as in Eq. (4.15), yielding values
wij(b).

Step 4: Compute the differences according to Eq. (4.16), resulting in mj(b), for j =
1, . . . , d.

Step 5: Compute the proportion

1
B

B∑
b=1

(mj ≤ mj(b))

for j = 1, . . . , d, which is interpreted as p-value for the j-th variable. Here, mj refer
to the values from (4.16) for the unpermuted data.

In our numerical experiments we used B = 1000. The computations are still feasible,
because the input matrix W∗ is fixed, and with the B permutations, the p-values for all
variables are returned.

Note that in Step 2, the permutations do not necessarily have to be done just in the
index j, but one could permute all the elements in the blocks of the array W∗ which
correspond to the two groups of observations. The results would essentially be the same,
since the test statistic (4.16) is based on group-wise medians of median-aggregated values,
see (4.15). Since this is numerically easier to do, we have implemented this option.

4.3 Performance of cell-rPLR for outlier identification

The cell-rPLR algorithm results in weights wij , arranged in the weight matrix W, see
Equation (4.15) which indicate cellwise outlyingness, and they can be visualized in a
heatmap. A heatmap is a graphical visualization of the cells of a matrix, with the
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corresponding number of rows and columns, where each value of the data matrix is
represented by a colour information. We will use red color for positive weights, blue
color for negative values, and the magnitude of the weight values will determine the color
saturation (values around zero in light colors).

4.3.1 Data sets

Three metabolomic data sets were used to demonstrate the usefulness of the method.
The data sets differ in size and in the number of groups. For the last two data sets,
expert knowledge about biomarkers is available.

IMD: This data set (Janečková et al., 2012) consists of plasma samples from infants (50
control samples and 16 samples) with different metabolic diseases analyzed in the
Laboratory of Metabolomics, Institute of Molecular and Translational Medicine,
Faculty of Medicine and Dentistry, Palacký University Olomouc, Czech Republic.
There are in total four different inherited metabolic disorders (IMD) – phenylke-
tonuria (PKU), homocystinuria (HCYS), methylmalonic aciduria (MMA), propionic
aciduria (PA), each with different number of samples varying from two to six. The
samples were analyzed using the AbsoluteIDQ p150 kit (BIOCRATES Life Sciences
AG, Austria). All the measurements were performed on a QTRAP 5500 (AB
SCIEX, USA; Flow injection analysis, ESI in both + and - MRM mode) and the
data was processed in MetIQ software (AbsoluteIDQ kit). In total 163 metabolites
were quantified.

MTBL59: This data set is described in Franceschi et al. (2012); Wehrens et al. (2011)
and can be downloaded from the MetaboLight web page https://www.ebi.

ac.uk/metabolights/MTBLS59. It contains twenty apple samples which were
analyzed by Liquid chromatography mass spectrometry (LC-MS). The first ten
samples of apples were analyzed without any modification. The second ten samples
were spiked with naturally occurring substances in apples. In that way, two groups
with five known biomarkers were created and can be analyzed. Data pre-processing
was carried out as outlined in Wehrens et al. (2011). Only the first nine mintes of
the chromatography were subtracted, leading to 197 features.

PKU: This data set concerns plasma samples from PKU patients (n1 = 27) and healthy
controls (n2 = 17), where untargeted metabolomics analysis based on the work Wang
et al. (2014) was performed in the Laboratory of Metabolomics, Institute of Molecu-
lar and Translational Medicine, Palacký University Olomouc, Czech Republic. The
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data were processed using the vendor software Compound Discoverer 3.0 (Thermo
Fisher Scientific), exported to the R software to perform correlation analysis to
merge redundant features (RT difference ≤ 0.02 min, r ≥ 0.95, clr transformation)
and to perform other statistical evaluation (the data were corrected using QC
samples and LOESS regression (Cleveland and Devlin, 1988), potential metabolites
with CV higher than 30% were excluded from further data processing). There are
in total 2336 features in the data set. Based on the biological analysis of the PKU
disease, there are four known biomarkers (Miller et al., 2015; Jansen et al., 2015;
Václavík et al., 2018).

4.3.2 Visualization of cellwise outliers

We use the data set IMD to visualize cellwise outliers. In this multi-group data set,
centering and scaling was performed according to the majority group, which is the control
group, see Equation (4.7). Then the cell-rPLR method was applied as described in
Section 4.2. The resulting heatmap is shown in Figure 4.3 using the adjusted Tukey
biweight function (4.8), and in Figure 4.4 which is based on the adjusted Hampel
function (4.12). For reasons of space, we omitted the first 36 control patients from the
visualization, and show only Controls 37-50, and the patients from the different disease
groups, separated by black horizontal lines. At a first glance, Figure 4.4 seems to provide
a much clearer picture concerning potential cellwise outliers. This is due to the fact
that the adjusted Hampel function assigns zero to a much broader range of “normal”
values than the adjusted Tukey biweight function. A red value corresponds to a “positive
outlier”, and to a value which is higher than expected. A blue value indicates a “negative
outlier”, with a value lower than expected. Figure 4.3 shows that control observation 48
has systematic bias from the others: the first block of variables for this sample are outlying
in the positive direction whereas the last block is outlying in the negative direction. This
is not so clearly visible in Figure 4.4. A possible explanation for the outlyingness might
be that the sample preparation was done a bit different from the other samples, a different
device setting was used during the analysis or control might have been biased by certain
unknown nonphysiological state. Moreover, variable PC.aa.C40.3 shows several negative
outliers. However, the most visible (positive) outliers are in vertical blocks, indicated
by the black rectangulars. In fact, these rectangular regions are the known metabolites
C3 for group MMA and PA, Met for HCYS, and Phe for PKU. The first cell (patient
MMA 34) of the biomarker C3 was not identified as outlier, which might mean that this
patient is in an early stage of his/her disease, or is possibly already cured. Note that
positive outliers (red color) means that the corresponding variables have increased values
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(dominance) for these observations.
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Figure 4.3: Outlier diagnostics for the IMD data, using the adjusted Tukey biweight
function
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Figure 4.4: Outlier diagnostics for the IMD data, using the adjusted Hampel function

This example shows that the choice of the weighting function should be based on the
analysis goal. If a clear indication of outlyingness is desired, The adjusted Hampel or
Huber function could be used, where Hampel would in general lead to more saturated
colors. The adjusted Tukey biweight function would give more light red/blue colors
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instead of white cells , but indicate clearer small deviations from the “normal” behavior.

4.3.3 Simulation study for outlier identification

In this section we will more thoroughly test the algorithm cell-rPLR for outlier detection.
This will be based on the data sets MTBL59 and PKU, where (additional) cellwise
outliers will be generated by simulations, using

x̃ij = xij ·M +A, (4.17)

where a multiplicative effect M is generated from a uniform distribution U (0.2, 0.5) or
U (2, 10) (with equal probability), and an additive effect A, generated from U (2, 5). This
modification is done for a random percentage between 5% and 15% of the cells, which
are randomly picked.

The modified cells are treated as “true” outliers which should be identified with the
algorithm. Note that by accident, scheme (4.17) could produce values which are still not
very extreme and thus hard to identify as outliers. On the other hand, the data sets
could already include cellwise outliers, but since they are unknown, an identification by
the algorithm would count as a wrong decision.

We will compare our algorithm with the method DDC (Detect Deviating Cells),(Rousseeuw
and Bossche, 2018), which can be considered as a state-of-the-art cellwise outlier identifi-
cation method. In the first step, DDC robustly standardizes the columns of the data
matrix, univariate outlier detection is applied to all variables separately, and outlying
cells are marked. Later, the correlation structure is computed based on the non-marked
observations. This is followed by the prediction of each non-marked data cell in the same
row, considering only the correlating variables. The final outlyingness level is determined
by the difference between the predicted and the reported values for each cell. The bigger
the difference, the more outlying is the cell. In order to apply DDC appropriately, we
first preprocess the data with the PQN transformation.

In each of the 100 iterations, the Receiver Operating Characteristic (ROC) curve
was computed. The ROC curve shows the proportions of correctly identified outliers
(Sensitivity) and incorrectly identified non-outliers (one minus Specificity) for varying
outlier cut-off points. Figure 4.5 shows the 100 different ROC curves for the cell-rPLR
(with the adjusted Tukey biweight function) and the DDC algorithm for the data set (a)
MTBL59 and (b) PKU. A good method would lead to an ROC curve which is close to the
upper left corner of the plot (all outliers correctly identified, no false outlier indication).
The plots reveal that the performance of the algorithms is better for the MTBL59 data
set (197 variables) than for the PKU data set with much more variables (2336). In both
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(a) MTBL59 data (b) PKU data

Figure 4.5: ROC curve for the identification of cellwise outliers of the two algorithms
DDC (red) and cell-rPLR (blue).

data sets, the cell-rPLR algorithm clearly shows a better performance compared to the
DDC method.

4.4 Performance of cell-rPLR for biomarker identification

As in the previous Section 4.3.3, we use the data sets MTBL59 and PKU to test the
performance of the method cell-rPLR for identifying biomarkers. Note that these data sets
only consist of two groups of observations, which is the setting we require for cell-rPLR
biomarker identification. In particular, we are interested in the behavior of the method
in presence of contamination by cellwise outliers. Therefore, the same kind of data
contamination is applied as introduced in (4.17), and for 100 simulation runs, 5%, 10%,
15%, 20% and 25% of randomly selected cells of the data matrices are contaminated.

We will compare the following methods:

cell-rPLR: This algorithm is applied as described in Section 4.2.5. A ranked list for the
variable importance is obtained by the comparison of the medians of the weights,
see Equation (4.16). For a list of identified biomarkers, the permutation test as
described in Section 4.2.5 is applied.

PLS-VIP: Partial least squares discriminant analysis (PLS-DA) (Wold, 1975; Wold
et al., 1983; Ståhle and Wold, 1987) is applied to the data set, which is doing partial
least squares (PLS) regression on the binary response containing the group labels.
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This method results in a projection of the samples on few latent variables. Since
PLS-DA does not return the information of the most important variables for group
discrimination, a VIP (variable importance projection) score (Favilla et al., 2013;
Wold et al., 1993) is computed which sums up the contribution of each variable in
the model. The VIP scores are then sorted is ascending order so that a ranking of
the variables is created. It is generally accepted that a variable should be marked
as a biomarker if its VIP score is bigger than one (Chong and Jun, 2005; Gosselin
et al., 2010).

PLS-SR: There are many methods available for extracting the importance of the
variables in a PLS-DA model (Mehmood et al., 2012). Here we consider the
Selectivity Ratio (SR) (Rajalahti et al., 2009a; Kvalheim, 2009) which is using
scores and loadings from PLS-DA, and computes a proportion of explained variance
for each variable. Again, this results in a list of variables, sorted according to their
importance, as well as in a list of identified biomarkers which are selected as variables
with SR score above the 0.95 quantile of the distribution Fn−2,n−3 (Rajalahti et al.,
2009b).

PRM-VIP: PLS-DA is not robust against data outliers (Filzmoser et al., 2009), and
thus the robust counterpart based on PRM (partial robust M-Regression) (Serneels
et al., 2005) is used. This is followed by computing the VIP score as a measure for
variable importance.

PRM-SR: As before, PRM is applied, but followed by computing the Selectivity Ratio.

DesEq: This method builds on two steps: a) an internal normalization of the variables
by their geometric means, b) a decision about the importance of variables (Love
et al., 2014). For this purpose, a negative binomial generalized linear model is fit
to each variable, and the p-value from a Wald test (Wald, 1943; Harrell, 2014) is
computed for creating a rank of importance for the variables, and a list of identified
biomarkers. The method removes outliers based on the Cook’s distance.

Aldex: This method is based on Monte Carlo simulations of the Dirichlet multinomial
model (Fernandes et al., 2013; Gloor and Reid, 2016). The centered log-ratio
transformation (clr) (Aitchison, 1982) is internally used. Then, p-values obtained
from Welsch’s test (Welch, 1938) are employed for ranking the variables and for
returning a list of identified biomarkers.

For the methods employing PLS or PRM, a preprocessing step is necessary, and we
decided to apply the PQN transformation (Dieterle et al., 2006) which is widely used.
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Figures 4.6 and 4.7 show the results of the simulation study. The subplots in these
figures report the resulting ranks for one particular known biomarker. Figure 4.6 refers
to the results for the PKU data with four known biomarkers, and Figure 4.7 to those
from the MBTL59 data with five known biomarkers. We report here the average ranks
(over the 100 simulations) for the individual methods.

Figure 4.6 and 4.7 show that for many of the methods, the average ranks for the known
biomarkers increase with increasing data contamination. An exception is the cell-rPLR
algorithm, which leads in general to the lowest ranks (at least for the contaminated
situation), and also to stability in case of contamination. In particular for the PKU
data (Figure 4.6), the PRM-based methods show a very poor performance, even for the
uncontaminated data. This is because in this very high-dimensional data set, existing
cellwise outliers might affect several observations, and PRM then downweights all these
observations. Especially when adding cellwise outliers, PRM leads to poor results exactly
because of this reason, see also Figure 4.7. Depending on the specific biomarker, Aldex
and DesEq also lead to reasonable performance, but they are clearly affected by the
contamination. For the PKU data (Figure 4.6), PLS-SR is also quite competitive, but it
completely fails for the PKU data.

Each of the considered methods returns the information if a variable is identified
as a biomarker or not. In case of cell-rPLR, the permutation test (see Section 4.2) is
employed to deliver this information. Thus, we evaluate the performance of correct
biomarker identification based on the same simulation scenario as used before, for the
data sets PKU and MTBL59. For each method, the True Positive Rate (TPR) as the
proportion of correctly identified biomarkers (Sensitivity), and the True Negative Rate
(TNR) as the proportion of correctly identified non-biomarkers (Specificity) is computed.
In the ideal case, both the TPR and TNR should yield values close to one. Figure 4.8
summarizes the average values for TPR and TNR over the 100 simulation runs, and for
the MTBL59 data set. According to the FPR, the methods PLS-SR, Aldex, PRM-SR
and cell-rPLR show excellent behavior. However, PLS-SR has a very poor TPR (true
biomarkers not identified). Also the TPR of PRM-SR suffers from the contamination,
because PRM can only cope with rowwise contamination. Aldex, as well as DexEq are
also sensitive to contamination. Even the algorithm cell-rPLR shows a slight deterioration
with increasing contamination – probably due to some effect of the permutation test.
Overall, however, cell-rPLR is the clear winner under contamination, but shows also
competitive performance without contamination.

86



4.4. Performance of cell-rPLR for biomarker identification

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

1

10

50

100

500

800

0 5 10 15 20 25
Percentage of contamination

Lo
g−

sc
al

e 
of

 a
ve

ra
ge

 r
an

k

●

●

●

●

●

●

●

Aldex
DesEq
PLS−SR
PLS−VIP
PRM−SR
PRM−VIP
cell−rPLR

(a) Known biomarker #1

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

1

10

50

100

500

1000
1500

0 5 10 15 20 25
Percentage of contamination

Lo
g−

sc
al

e 
of

 a
ve

ra
ge

 r
an

k

(b) Known biomarker #2
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(c) Known biomarker #3
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(d) Known biomarker #4

Figure 4.6: Average ranks of the methods for the identification of the four known biomark-
ers in the PKU data, in a simulation setting with increasing amount of contamination.
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(b) Known biomarker #2
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(d) Known biomarker #4
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Figure 4.7: Average ranks of the methods for the identification of the five known
biomarkers in the MTBL59 data, in a simulation setting with increasing amount of
contamination.
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Figure 4.8: Performance of the methods for their ability in biomarker identification for
the MTBL59 data set, for different levels of cellwise contamination.

4.5 Summary and conclusions

This paper introduced a method called cell-rPLR (cellwise outlier diagnostics using robust
pairwise log-ratios), which allows to detect outlying cells in a data matrix of metabolomic
data, and also identifies biomarkers, even in presence of such cellwise outliers. This
method does not require the usual data preprocessing (normalization, scaling) needed by
many other methods, because the elemental information are pairwise log-ratios between
the variable values. The size effect which is often present in metabolomic data thus is
automatically filtered out by using the log-ratios. To the best of our knowledge, this is
the first paper focusing on cellwise outliers in the context of metabolomic data.

Cell-rPLR applies a weight function to the robustly centered and scaled pairwise
log-ratios, and the results are weights for each observation, and for each pair of variables
(3-way array). After robust aggregation one obtains a weight matrix of the same dimension
as the data matrix, containing the cell-wise outlyingness information. The weights are in
the interval [−1, 1]; weights around zero point at “normal” data cells, and weights close
to +1 or −1 indicate atypical data cells. This information can be visualized in a heatmap
by using a color-coding of the weights. The appearance of the heatmap depends a lot on
the chosen weight function, but the choice of the weight function would not essentially
change a resulting ROC curve (this is valid at least for the weight functions proposed in
this paper). Thus, the heatmap can be regarded as a diagnostics tool for investigating
the data structure. Cellwise outliers could indicate data problems, but they also indicate
biomarkers if they are systematically present in one variable of a particular data group.
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A permutation test for biomarker identification was developed based on the cell-rPLR
algorithm.

Based on simulations using artificially contaminated real data, the performance of
cell-rPLR was compared to a state-of-the art cellwise outlier detection algorithm, where
it turned out that cell-rPLR was more accurate and at the same time did spot fewer
“normal” data cells as outliers. Similarly, simulations have shown that the performance
of cell-rPLR in biomarker identification was competitive to alternative methods, and
superior in presence of cellwise contamination.

The cell-rPLR is implemented in the software environment R (R Core Team, 2018)
and can be downloaded as package cellrPLR from https://github.com/walachja/

cellrPLR. The package contains the implementation of the cell-rPLR algorithm and the
permutation test for biomarker identification. Heatmaps for visualizing cellwise outliers
are included as well. Furthermore, for an easier exploration and understanding of the
data, a Shiny app is a part of the package. Shiny (Chang et al., 2018), an open source
R package, is a web application and serves as an interactive tool for visualization. The
Shiny app allows to interactively apply different weighting and aggregation functions
for the cell-rPLR algorithm, and supports zooming into regions of the data matrix to
see more details. Moreover, the variables can be interactively ordered based on their
importance for the group discrimination.

In our future work we will focus on an automatic classification of cellwise outliers
into technical artifacts (cellwise outliers) and biological artifacts (biomarkers) using the
cell-rPLR algorithm. This is particularly important in case of very small groups of data,
where this distiction is difficult with the current version of the algorithm. Moreover, the
cell-rPLR method will be extended to biomarker identification for the multi-group case.
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CHAPTER 5
R implementation

This chapter describes two packages which have been written in the frame of this thesis,
the packages Biomarker and cellrPLR. Both are written in the open source software
R (R Core Team, 2018). The packages include the implementations of the algorithms
rPLR from Chapter 3 and cell-rPLR from Chapter 4, respectively. They are freely
available at https://github.com/walachja, and they can be installed after loading
the devtools library, which enables the GitHub installation by the commands:
install_github("walachja/Biomarker") and
install_github("walachja/cellrPLR").

The functionality of those two packages will be demonstrated on a simulated dataset
accessible by the gendata2 function from the cellrPLR package. The dataset has two
groups, each consisting of 20 samples. There are 200 variables in the data, including 15
variables with discrimination power between the groups, thus biomarkers. The data are
simulated based on the normal distribution (see Section 3.3), and contain additive as
well as multiplicative noise. Furthermore, the artificial size-effect is also considered.

library(Biomarker)

library(cellrPLR)

data <- gendata2(n1=20, n2=20, v=200, peaks=1:15)

x <- data$X

g1 <- data$g1

g2 <- data$g2
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5. R implementation

## dimensionality

dim(x)

# [1] 40 200

5.1 Package Biomarker

The package Biomarker is an implementation of the robust pairwise log-ratio method
(rPLR) described in Chapter 3. It includes the main function biomarker for the
identification of the biomarkers in the data. The biomarker function has several
parameters listed in Table 5.1. The corresponding rPLR method is based on the variation
matrix, which can be estimated classically, using the empirical standard deviation, or
robustly, with either the MAD or the τ estimator, see Section 3.2. The indexes of the
observations belonging to group 1 and 2 must be defined. The final information if the
variable is or is not identified as a biomarker depends on the predetermined cut-off value.
The default cut-off corresponds to the 97.5 quantile of the standard normal distribution.
Furthermore, plot, print and summary functions are available and can be applied on
the resulting object. The code below shows how to run the biomarker function, and the
plot results are shown in Figure 5.1. It is a plot of the V ∗j values (see Equation (3.5))
with the cut-off line. Each value above the cut-off line was identified as a biomarker.
Thus, the first 15 variables were correctly identified as biomarkers.

res1 <- biomarker(x=x, type= ’tau’, g1=g1, g2=g2, plot=TRUE,

diag=TRUE)

res1

# Number of identified biomarkers: 15

# Positions of Identified biomarkers: 1 2 3 4 5 6 7 8 9 10 11 12 13

14 15

5.2 Package cellrPLR

The cell-rPLR package can be used for two purposes. Firstly, the identification of the
biomarkers is implemented in the function cellrPLR_biom. Secondly, the identifi-
cation of cellwise outliers is implemented in the function plot_cellheatmap and
cell_shinyApp.
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Table 5.1: Arguments of biomarker function, their explanation and default value.

Function argument Description Default setting
x data matrix
g1 vector of locations of observations of gr. 1
g2 vector of locations of observations of gr. 2
type type of variation matrix "tau"
cut cut-off value u0.975
diag logical; compute outlier diagnostic TRUE
plot logical; plot results TRUE
diag.plot logical; plot outlier diagnostics FALSE
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Figure 5.1: Resulting plot from function biomarker.

cellrPLR_biom

The input arguments of the cellrPLR_biom function are described in Table 5.2. The
type of the weighting function used for the computation needs to be specified. Furthermore,
the group structure defined by the parameters g1 and g2 must be included. The group
which is used as a basis (see Section 4.2.5) can be specified by the parameter mainGroup,
where the "max" value will automatically select the bigger of the groups as the basis for
centering and scaling the data. The permutation parameter specifies if the permutation
tests, as described in Section 4.2.5, should be employed. The additional parameters B
and p.alpha refer to the number of the permutation repetitions and to the permutation
test cut-off value, respectively. If the true biomarkers are known, they can be specified
in the biomarkers parameter. Thus, the ranking positions of these biomarkers are
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returned, together with some basis information such as True Positive and False Positive
Rate.

The results are returned as a data frame containing the computed differences in the
interval [−1, 1], see Equation (4.16), the ranked list of the most discriminating variables,
and possibly results of the permutation tests.

res2 <- cellrPLR_biom(data, type = ’biweight’, mainGroup = 1, g1 =

g1, g2 = g2, biomarker = 1:15,permutation = TRUE, B = 100,p.alpha

= 0.95)

Table 5.2: The arguments of the cellrPLR_biom function, their explanation and default
value.

Function argument Description Default setting
data data matrix
type type of weighting function "biweight"
g1 index vector for observations from group 1
g2 index vector for observations from group 2
mainGroup group chosen as basis group "max"
biomarkers names of biomarker variables
permutation logical; perform permutation tests FALSE
B number of iterations for perm. tests 1000
p.alpha cut-off p-value for permutation tests 0.95

plot_cellheatmap

The function plot_cellheatmap is the main function for the analysis of the identifica-
tion of cellwise outliers. It creates a heatmap of cellwise outlier information. The function
has the same parameters as cellrPLR_biom, except e.g. permutation, since the
permutation tests cannot be employed in this scheme. Furthermore, the function returns
the final weight value for each cell. Figure 5.2 presents the resulting heatmap applied on
the simulated dataset. A red value corresponds to a “positive outlier”, and to a value
which is higher than expected. A blue value indicates a “negative outlier”, with a value
lower than expected. The same figure can also be plotted from the resulting object of the
cellrPLR_biom function, using the plot function. Since group 1 was selected as the
basis, most of the cells of the biomarker variables for the group 2 are marked as outlying.
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plot_cellheatmap(data = data, type = ’biweight’, mainGroup = 1, g1 =

g1, g2 = g2, plotly = TRUE, grid = TRUE, title = ’Simulated

Example’)

# Gives the same result as:

plot(res2, plotly = TRUE, grid = TRUE, title = ’Simulated Example’)
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Figure 5.2: Resulting heatmap from the function plot_cellheatmap.
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