Quantum clouds

http://tph.tuwien.ac.at/~ svozil/publ/2019-Svozil-Chile-pres.pdf https://arxiv.org/abs/1808.00813

Karl Svozil

ITP/Vienna University of Technology, Austria svozil@tuwien.ac.at

WOE2019, Santiago, Chile, March 7-8, 2019

"Soft" obstacles associated with quantum progress

- Who listens to whom? "Pecking order," "attention economy," Matthew effect in science (funding) [aka compound interest]" (DOI: 10.1126/science.159.3810.56 \& 10.1073/pnas.1719557115)
- Reconstruction of (physical) meaning from detector clicks (eg controversy about "a posteriori quantum teleportation" [aka Kimble versus Zeilinger] DOI: 10.1038/29678 \& 10.1038/29674) yield ambiguous or even unsustainable claims ("science marketing')
- Counterfactuals (Specker DOI 10.1111/j.1746-8361.1960.tb00422.x arXiv:1103.4537): Do "unperformed experiments have no results"? (Peres, DOI 10.1119/1.11393), "how can you measure a proof a [Kochen-Specker] contradiction?" (Clifton, IQSA meeting, personal communication, Prague 1995)
- Mind projection fallacy (Freud 1912, Jaynes 1989)

Methods \& ways of exploring value (in)definiteness

- cloud structure of intertwined contexts/cliques/maximal operators/Boolean subalgebras is quantum,
- predictions about what happens within the cloud, and, in particular, at its endpoints Alice \& Bob are classical

How is |Bob〉 given |Alice〉? True? False? Whatever? None?

True (1) implies whatever (quantum 50:50)

$$
\mid \text { Alice }\rangle=(1,0,0) \quad \mid \text { Bob }\rangle=\left(\frac{1}{\sqrt{2}}, \frac{1}{2}, \frac{1}{2}\right)
$$

True (1) implies false (0)

True (1) implies true (1)

True (1) implies value indefinite (Abbott, Calude, KS 2015)

Strategies to obtain value indefiniteness/partiality

The scheme of the construction \& proof of partiality of value assignments is as follows:
(i) Find a logic (collection of intertwined contexts of observables) exhibiting a true-implies-false property on the two atoms a and b.
(ii) Find another logic exhibiting a true-implies-true property on the same two atoms a and \mathbf{b}.
(iii) Then join (paste) these logics into a larger logic, which, given a, neither allows \mathbf{b} to be true nor false. Consequently b must be value indefinite.

Extensions of value indefiniteness/partiality

Partiality/value indefiniteness can be extended to any vector b non-collinear and non-orthogonal to a: Alastair A. Abbott and Cristian S. Calude and KS, "A variant of the Kochen-Specker theorem localising value indefiniteness", Journal of Mathematical Physics, 56(10), 102201(1-17),2015; https://doi.org/10.1063/1.4931658

For a (in some respects weaker) statement relative to global truth assignments, see Itamar Pitowsky's "Infinite and finite Gleason's theorems and the logic of indeterminacy", Journal of Mathematical Physics 39(1),218-228, 1998; https://doi.org/10.1063/1.532334

History of contextual sets \& elational properties realizable by two-point quantum clouds

if \mathbf{a} is true classical value assignments	anectodal, historic quantum realisation	reference to utility or relational properties
imply b is independent (arbitrary)	firefly logic L_{12} eg, Cohen, 1989[pp. 21, 22]	
imply b false (TIFS)	$\begin{aligned} & \text { Specker bug logic } \\ & \text { KS, } 1965 \text { [Fig. 1, p. 182] } \end{aligned}$	$\begin{aligned} & \text { Stairs, } 1983 \text { [p. 588-589], } \\ & \text { Cabello et al, 1995 . . } 2018 \end{aligned}$
imply b true (TITS)	$\begin{aligned} & \text { extended Specker bug } \\ & \text { logic } \end{aligned}$	KS, 1967 [${ }^{1} 1$, p. 68], Clifton, 1993 [Sects. II,III, Fig. 1], Belinfante, 73 [Fig. C.I. p. 67], Pitowsky, 1982 [p. 394], Hardy, 1992, 1993, 1997, Cabello et al, 1995 . . 2018
iff b true (nonseparability)	combo of intertwined Specker bugs	KS, 1967 [${ }_{3}$, p. 70]
imply value indefiniteness of b	depending on types of value assignments	Pitowsky, 1998, Abbott et al, 2012 . . 2015

Epistemology/ontology of clouds of intertwined contexts/cliques/maximal observables/Boolean subalgebras

Logic/cloud does not determine the probability

As long as there is a separating set of two-valued states (Kochen-Specker, Theorem 0, DOI: 10.1512/iumj.1968.17.17004) there quasi-classical analogies: partition logics/Wright's generalized urn models/automaton logics; with classical probabilities (convex combinations of 2-valued states): KS arXiv:1810.10423.

Quantum realization in terms of the faithful orthogonal representation (Lovász, Saks and Schrijver DOI 10.1016/0024-3795(89)90475-8) and the Theta-body (Grötschel,Lovász and Schrijver DOI: 10.1016/0095-8956(86)90087-0)

Anecdotal examples of "exotic" probability measures satisfying Kolmogorovian classical probabilitie on local contexts

- Wright's (1978) dispersionless measure on the pentagon (or cyclic arrangements of odd contexts ≥ 3
- Godsil and J. Zaks (1988) Coloring the sphere (arXiv:1201.0486) stimulates Meyer's "Nullification" of the Kochen-Specker theorem (DOI: 10.1103/PhysRevLett.83.3751): use unit vectors with rational coefficients: dense but discontinuous (Havlicek, Krenn, Summhammer and KS, DOI: 10.1088/0305-4470/34/14/312)

Thank you for your attention!

