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ABSTRACT
The SCAN meta-generalized gradient approximation (GGA) functional is known to describe multiple properties of various materials with
different types of bonds with greater accuracy, compared to the widely used PBE GGA functional. Yet, for alkali metals, SCAN shows worse
agreement with experimental results than PBE despite using more information about the system. In the current study, this behavior for alkali
metals is explained by identifying an inner semicore region which, within SCAN, contributes to an underbinding. The inner semicore push
toward larger lattice constants is a general feature but is particularly important for very soft materials, such as the alkali metals, while for
harder materials the valence region dominates.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5092748

I. INTRODUCTION
Presently, the most common theoretical approach to calculat-

ing the properties of solids and molecules is Kohn-Sham density
functional theory (KS-DFT).1 The main accuracy restricting factor
of this method is the functional form of the exchange-correlation
energy, Exc. For local and semilocal functionals, Exc is given by

Exc = ∫ exc(r)dr, (1)

where exc is the exchange-correlation energy per volume unit and is
a function of local electronic properties, such as the electron den-
sity, electron density gradient, or kinetic-energy density (KED). The
simplest approximation of exc is the local density approximation
(LDA).1 The next step of functional development was to add a func-
tional dependence on the gradient of the density. This led to the
generalized gradient approximations (GGAs),2,3 which have better
accuracy in multiple cases. In the meta-GGA (MGGA) functionals,
the KED and/or the Laplacian of the density are also used in the
parameterization of exc. Several MGGAs with different constraints
and goals have been developed (see Ref. 4 for a review), and bench-
marks of these different functionals have shown how MGGAs can
improve the overall accuracy compared to GGAs.5–8 The improved
performance can, depending on the point of view, be related to

the MGGAs being able to distinguish more bonding situations,9–11

better fit reference data,12 or satisfy more exact constraints.13

One of the recent MGGAs, which has gained considerable
attention, is the SCAN functional.13 For instance, it has shown suc-
cesses in calculating the formation enthalpy of various solids14 or the
structural and energetic properties of ferroelectric materials.15 On
the other hand, SCAN performs poorly for the magnetic properties
of transition metals.16–19 It is natural to compare SCAN with the PBE
GGA.3 First of all, they are constructed following a similar philoso-
phy of constraint satisfaction. Furthermore, PBE can be considered
as a good functional for solids since it gives reasonable equilibrium
lattice constants, a0, and cohesive energies, Ecoh (see, e.g., Ref. 5).
While it is possible to construct GGA functionals which give bet-
ter results than PBE for the lattice constants,20–23 these will tend to
overestimate the cohesive energies of solids.5 Thus, for SCAN to be a
systematic improvement on PBE for solids, one requirement would
be that it simultaneously improves on the lattice constants and the
cohesive energy. Numerical tests have shown that on average the
SCAN does exactly this for a wide range of solids.5,24

The improvement of SCAN over PBE is, however, not uni-
versal. A close look at the results in Ref. 5 also reveals how SCAN
performs disappointingly for most alkali metals. This is illustrated in
Fig. 1 where SCAN is compared to LDA and PBE for a few selected
materials. Considering first Si and Ge, which we use for illustrative
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FIG. 1. Relative error (in %) in the lattice constant (a) and cohesive energy (b)
obtained with the LDA, PBE, and SCAN functionals for Si, Ge, and the alkali
metals.

purposes as representatives for a large group of systems (covalent
semiconductors), the well known tendencies of LDA to overestimate
the cohesive energies, thereby underestimating the lattice constant,
and PBE to overestimate the lattice constants, thereby underesti-
mating the cohesive energies, can be seen. For Si and Ge, SCAN
systematically improves both the lattice constant and cohesive ener-
gies over PBE. For the alkali metals on the other hand, we can see
that SCAN underbinds even more, i.e., gives even larger lattice con-
stants (except for Na) and even smaller cohesive energies, than PBE
(Fig. 1).

In the present study, we aim at a detailed understanding of how
the poor performance of SCAN for the alkali metals is related to its
functional form. Apart from the obvious interest in the alkali metals
themselves, understanding the disappointing performance of SCAN
for this class of materials is also important for developing more accu-
rate density functionals in general. While SCAN may perform well in
statistical studies, where the focus is on average errors for databases
containing a large number of strongly ionic and covalently bonded
materials, these studies may somewhat hide a systematic problem
for the more weakly bonded alkali metals because these systems only
make up a small subset of the database. Actually, the density distri-
bution in the alkali metals is rather particular. The bonding region is
characterized by both the density and reduced gradients being low.
This means that the correlation energy becomes comparable to the
exchange and that regions of exc that are otherwise not sampled are
probed.

II. METHODOLOGY
As will be discussed below, we will focus on the exchange

energy in the present analysis. To describe the analytical form of

an exchange functional, it is common to define the enhancement
factor

Fx(r) =
ex(r)

eLDA
x (r)

, (2)

where eLDA
x = −Cxn4/3 [Cx = (3/4)(3/π)1/3, atomic units are used

throughout this work] is the LDA exchange-energy density for the
homogeneous electron gas1 and n = ∑

N
i=1 ∣ψi∣

2 is the electron den-
sity. For GGA functionals, Fx depends on the gradient of the density,
∇n, while for MGGA functionals it also depends on the noninter-
acting KS KED τKS

= (1/2)∑N
i=1 ∣∇ψi∣

2 (in the present work, we
are not concerned with Laplacian-dependent MGGAs). In the fol-
lowing, we will use dimensionless expressions to characterize the
density, namely, the reduced density gradient

p =
∣∇n∣2

4(3π2
)

2/3n8/3
(3)

and reduced KED

t =
τKS

τTF , (4)

where τTF
= (3/10)(3π2

)
2/3n5/3 is the Thomas-Fermi (TF) KED25,26

which is exact for the homogeneous electron gas. Here, we note
that in our previous studies8,10 and others,11,12 τKS/τTF was instead
labeled as t−1. In iso-orbital regions where the density is dominated
by one orbital, the KED is given exactly by the von Weizsäcker
form27

τvW
=

1
8
∣∇n∣2

n
, (5)

which makes

α =
τKS

− τvW

τTF (6)

a convenient measure of how much the density n at a point of space
is dominated by a single orbital.9 Since one can write τvW/τTF = 5p/3,
then

α = t −
5
3
p. (7)

Note that τvW is a strict lower bound to the KED9,28–30 so that 5p/3 is
a lower bound to t.

As mentioned in Sec. I, the goal of the present work is to ratio-
nalize the SCAN results on the alkali metals and to understand
the worsening in the performance compared to PBE. For this pur-
pose, potassium is the case study that will be considered in Sec. III.
The analysis will consist of a careful comparison of the PBE and
SCAN enhancement factors Fx. The calculations were carried out
with the WIEN2k code.31 The SCAN calculations were done non-
self-consistently using the PBE densities and orbitals5,32 so that the
only difference in the total energy stems from the functional form
of exc. Note that in our previous work,5 the self-consistent effects
were estimated to be quite small, below 0.01 Å in most cases, except
for the van der Waals systems where they could be larger. For
the spatial distribution analysis of the exchange-correlation energy,
the sampling of the Voronoi cell of one atom was done on an
equidistant radial mesh for 400 different directions from the atom.
The distance between the sample points is the same for both vol-
umes, resulting in a larger number of samples for the expanded
structure.
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III. ANALYSIS
We start by showing in Fig. 2 the difference between PBE and

SCAN of the exchange-correlation energy Exc as a function of lat-
tice constant a for the alkali metal potassium. Since all terms in the
total energy except Exc are the same for the PBE and SCAN cal-
culations and the SCAN energy is evaluated with PBE density, the
slope of ESCAN

xc − EPBE
xc is directly related to the difference between

the equilibrium lattice constants aPBE
0 and aSCAN

0 . As seen in Fig. 2,
the slope of the exchange-energy difference ESCAN

x −EPBE
x is negative.

As a direct consequence, the SCAN equilibrium lattice constant a0 is
“pushed” toward a larger value than the one obtained with PBE. As
PBE already overestimates a0 of potassium (as well as Rb and Cs, see
Fig. 1), then SCAN worsens the agreement. Thus, it is the exchange
component of ESCAN

xc that is responsible for the overestimated lattice
constant of K. An interesting feature about the alkali metals is that
the low density in the bonding region means that the correlation
energy density is comparable to the exchange energy density. Fig-
ure 2 shows that the correlation energy exhibits the opposite trend
and somewhat compensates for the “push” toward larger volume
by the SCAN exchange. However, the compensation is only partial
and the slope of the total exchange-correlation energy curve remains
negative. In the following, we will thus focus on a detailed analy-
sis of the exchange energy, which is the driving force behind the
overestimated lattice constant.

The variation of Ex with respect to the lattice constant a can
be explained in terms of changes in the density n and enhancement
factor Fx [Eq. (2)]. We separate these two effects by expanding the
exchange energy shifts and keeping only terms that are first order in
the perturbation

δex ≈ −Cx(n + δn)4/3
(Fx + δFx) + Cxn4/3Fx

≈ −Cx(n4/3δFx +
4
3
n1/3Fxδn). (8)

The first part, δeenha
x = −Cxn4/3δFx, corresponds to the changes

in the enhancement factor and the second part, δedens
x =

−Cx(4/3)n1/3Fxδn, to the changes in the density upon volume
change. Two unit cell volumes V (or equivalently two different lat-
tice constants a) were used to obtain δex. The smaller and bigger
volumes correspond to Vsmall = 0.97Vexp and V large = 1.03Vexp,

FIG. 2. Energy differences between SCAN and PBE in potassium. A shift,
E∗(a) = E(a) − E(aexp

0 ), is added so that E(aexp
0 ) = 0. X, C, and XC denote

the exchange, correlation, and exchange-correlation energies, respectively.

respectively. This choice of volumes for calculating δex is somehow
arbitrary; however, the linear monotonic behavior of Ex seen in Fig. 2
shows that it is unimportant for the conclusion. For the sampling
of δex, we have chosen grids of equidistant points starting at the
atomic positions. Since the grid contains more points for the larger
volume, an additional contribution, δenew

x = −Cxn4/3Fx, represent-
ing the new sample points has to be taken into account and added
to δeenha

x and δedens
x to get the full δex. Figure 3(a) illustrates these

components to the difference δeSCAN
x −δePBE

x as functions of distance
from the potassium atom. δenew

x is small and only appears for dis-
tances larger than 4 bohrs because of the shape of the Voronoi cell.
In the valence region that we define as the distance beyond 2 bohrs,
the density and enhancement terms tend to cancel each other. Actu-
ally, δeenha,SCAN

x −δeenha,PBE
x is positive, which indicates that the SCAN

exchange enhancement factor is less sensitive to a change in the vol-
ume. On the other hand, δedens,SCAN

x −δedens,PBE
x is negative reflecting

that FPBE
x is larger than FSCAN

x .
In Fig. 3(a), one can also identify a region, between 1

and 2 bohrs, where the total exchange energy density difference
δeSCAN

x − δePBE
x is negative, thus forcing SCAN lattice constant to

be larger than the PBE one. This region of negative values is clearly
due to the component δeenha

x , i.e., a faster increase in the magni-
tude of FSCAN

x in a region with a high density when the volume gets
bigger, which is particularly important for the lattice constant [see
Fig. 3(b)].

Actually, a strong influence on the equilibrium lattice con-
stant coming from the region between 1 and 2 bohrs is at first
sight somewhat surprising as one would associate it with an inner
semicore region. To understand its origin, we first show 5p/3 and
t, Eqs. (3) and (4), and the normalized orbital densities of a free
potassium atom as functions of the distance to the atom in Fig. 4.
It is seen that the 1–2 bohr region is indeed dominated by the 3s
and 3p semicore orbitals. In this region, the electron density n is
very large compared to the valence region such that even small
changes δFx in the enhancement factor have a large impact on
the exchange energy [since δFx is multiplied by n4/3, Eq. (8)] and
thereby lead to large values of δeenha

x . From Fig. 4, it is also possible
to understand why the 4s shell also contributes to δeSCAN

x − δePBE
x

below 2 bohrs. Indeed, at a distance around 1.6 bohrs from the
atom, the outer lobe of the 4s shell starts to become important.
Since the 4s shell is strongly perturbed by the chemical bonding,
then its influence on δFx in the 1.6–2.0 bohr region should be
important.

To obtain insight into the individual contributions33 to δFx in
δeenha

x , we proceed by expanding it as

δFx =
∂Fx
∂p
∣

a0

δp +
∂Fx
∂t
∣

a0

δt. (9)

We first consider the variations δp and δt due to an expansion of the
volume. These are depicted for the inner semicore region in Fig. 5(a).
As expected, the reduced density gradient p gets larger when the vol-
ume increases, i.e., δp > 0, especially for a distance larger than 1.6
bohrs. The reduced KED, t, on the other hand, shows an interest-
ing behavior. δt is negative up to about 1.9 bohrs, where it changes
sign. This illustrates that the KED contains important information
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FIG. 3. The differences in δex between
SCAN and PBE in potassium. (a)
The differences are integrated over
shells centered at the atomic posi-
tions ex (r) = r2 ∫ex (r)dΩ. The
integration is done in the Voronoi
cell of one atom. (b) Integrated
energy differences, ESCAN-PBE

x (R)
= ∫ R

0 δeSCAN
x (r) − δePBE

x (r)dr.

that is not available in the gradient of the electron density, some-
thing that is a premise for the development of MGGA. The behavior
of t can be understood from Fig. 4. As observed earlier,33,34 one
can clearly identify peaks in the reduced density gradient p that are

FIG. 4. (a) 5p/3 [Eq. (3)], α [Eq. (7)], and t [Eq. (4)] for the free potassium atom
plotted as functions of the distance from the atom. (b) Normalized densities of the
different shells, where the maximum of every curve is set to 1.

located in transition regions where the dominating shell is switching
from one to another. In these inter-shell regions, t is substantially
larger than 5p/3 (see Fig. 4) so that α is, as expected from Eq. (7),
larger in such regions with contributions coming from different
shells.9 In the inner semicore (1–2 bohrs) region, α is small, reflect-
ing how it is dominated by orbitals of similar shape (n = 3). In the
solid, the inner semicore region becomes increasingly dominated by
the 3s and 3p orbitals as the unit cell expands, thereby becoming
more “atomiclike.” As p hardly changes [δp ≈ 0 for r < 1.6 bohrs,
Fig. 5(a)], the smaller values of α are the result of smaller values of
t (δt < 0).

The partial derivatives in Eq. (9), depicted in Fig. 5(b), reflect
the dependence of the functional on changes in p and t around
their values at the equilibrium lattice constant a0. Figure 5(b) also
shows that ∂FSCAN

x /∂p is approximately twice larger than ∂FPBE
x /∂p.

Actually, the large derivatives of SCAN are somewhat surprising
because earlier illustrations (see, e.g., Fig. 1 of Ref. 13) give more
the impression of a smooth and subdued functional form. How-
ever, in Fig. 6(a), we show that the smooth behavior is mainly along
lines of constant values of α. Perpendicular to these lines, FSCAN

x
shows a somewhat more “bumpy” behavior. Such bumps lead to
an erratic behavior of the derivatives, as shown in Figs. 6(b) and
6(c).

The large positive ∂FSCAN
x /∂p will, when multiplied by the neg-

ative −Cxn4/3, Eq. (8), and the positive δp in the inner semicore
region, Fig. 5(a), contribute to the negative slope of ESCAN

x − EPBE
x
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FIG. 5. Various functions in potassium plotted as functions of the distance from the
atom. (a) δp = p(V large) − p(Vsmall) and δt = t(V large) − t(Vsmall). (b) ∂Fx /∂p and
∂Fx /∂t for PBE (dashed) and SCAN (solid). ∂FPBE

x /∂t = 0, as a GGA functional
has no dependence on t. (c) δFSCAN

x − δFPBE
x [Eq. (9)] and its two components.

observed in Fig. 2. We have already discussed how δt shows a differ-
ent behavior than δp in the inner semicore region and, in principle,
a MGGA could compensate for this contribution in its dependence
on the KED. However, as both δp and the corresponding partial
derivative ∂FSCAN

x /∂p have opposite signs of δt and ∂FSCAN
x /∂t, their

contributions to δFSCAN
x add up instead of canceling [see Fig. 5(c)].

Thereby, both contribute to a too large value for a0.
Equation (9) underlines how the partial derivatives are an

important factor in determining energy differences and thereby
the performance of a MGGA. This would suggest that they should
be routinely shown when reporting a new functional. We should
also point out that the partial derivatives in Eq. (9) are part of
the analytical expression of the MGGA potential for self-consistent
calculations,35 and the behavior observed in Figs. 6(b) and 6(c)
could thus be responsible for SCAN resulting in a large overesti-
mation of the magnetic moment in itinerant transition metals.16–19

In this context, it is interesting to note that a fixed-spin moment
calculation, which involved only the SCAN energy and used the
PBE potential, resulted in the same overestimation of the mag-
netic moment as a self-consistent calculation.19 The expansion with
respect to volume, Eq. (8), highlights how features of the analytic
form of the energy functional are directly related to the potential.
Similar to the expansion with respect to volume, the exchange-

FIG. 6. Maps of the SCAN exchange enhancement factor Fx and its partial deriva-
tives. On the 2D plots, slices of these maps are shown for constant p values as a
function of α, where α = t − 5p/3. The view is set so that lines of constant values
of α are perpendicular to the paper.

correlation energy can also be expanded with respect to the magnetic
moment.

The observation of an erratic behavior of the functional also
falls in line with recent observations of relative strong grid depen-
dence of SCAN results.36,37 Such a grid dependence has also been
analyzed previously in Ref. 38 for other MGGA functionals, where it
was also pointed out that poor convergence with grid size can lead
to unintended contributions to the energy differences.

It is noteworthy that among the 44 solids tested in Ref. 5, the
alkali and alkaline earth metals are the only ones for which lattice
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constants obtained with SCAN are larger than those obtained with
PBE. The analysis above raises the question why the SCAN inner
semicore push toward larger volumes is not observed for more sys-
tems. To answer this, we will use the closed packed metal Al, where
the semicore region, as in the alkali metals, constitutes a significant
part of the volume. Despite this, SCAN actually predicts a smaller
lattice constant, a0 = 4.012 Å, than both PBE a0 = 4.041 Å and exper-
iment a0 = 4.022 Å (see the supplementary material of Ref. 5). The
plot of δeSCAN

x − δePBE
x for Al is shown in Fig. 7. The inner semicore

region can be identified between 0.5 and 1.0 bohrs and does indeed
have a negative total δeSCAN

x − δePBE
x due to the δFx contribution.

It will therefore push SCAN to have a larger lattice constant com-
pared to PBE, similar to what was observed for potassium (Fig. 3).
However, contrary to potassium, the influence of the valence region
is much larger than the inner semicore region. The valence contri-
bution is mainly positive which results overall in a smaller SCAN
equilibrium lattice constant than with PBE. We have performed the
same analysis for FCC-Ca (not shown) Si in the diamond lattice.
Also here, an inner semicore push toward larger lattice constants
due to δeenha

x can be identified. However, this is compensated by the
valence region, which means that SCAN and PBE lead to very similar
lattice constants for Ca.

Finally, one could also argue that the SCAN underbinding of
the alkali metals should be cured by explicitly adding contributions
for the long-range dispersion interactions.36 Such corrections will
however universally strengthen the bonding and thus lead to a worse
performance in cases such as Ca and Al where SCAN already tends
to overbind. Thus, two strategies could be followed to cure the prob-
lem of SCAN for the alkali metals: either by modifying the func-
tional form such that the results for the alkali metals are improved
or by adding a term that explicitly accounts for the dispersion term.

FIG. 7. The differences in δex between SCAN and PBE in Al. (a) The differences
are integrated over shells centered at the atomic positions ex (r) = r2 ∫ex (r)dΩ.
The integration is done in the Voronoi cell of one atom. (b) Integrated energy
differences, ESCAN-PBE

x (R) = ∫ R
0 (δeSCAN

x (r) − δePBE
x (r))dr.

However, in the latter case, the functional form of SCAN should also
be modified in order to avoid an overbinding for other systems like
Ca or Al.

IV. SUMMARY
In the current study, we have analyzed in detail the results

obtained with the MGGA functional SCAN for the alkali metals.
For these systems, SCAN is less accurate than the more simple GGA
functional PBE. SCAN has a clear tendency to underbind the alkali
metals; i.e., the equilibrium lattice constants are too large and the
cohesive energies are too small. We have shown that this behav-
ior of SCAN is attributed to an inner semicore push toward larger
lattice constants, which was revealed by a careful comparison of
the PBE and SCAN enhancement factors. Such an inner semicore
push toward larger lattice constants can probably be identified for
many materials; however, it is the most important mechanism for
soft materials such as alkali metals, while for harder materials (e.g.,
semiconductors and ionic insulators) the valence region dominates
(as shown for Al).

A detailed analysis, such as the one that we have presented,
leads to a clear understanding of the failures or unexpected results
that a functional produces. A functional may have an analytical form
that is inappropriate within a particular regime, e.g., for low densi-
ties or high density gradients, and the precise identification of the
problem in the functional form may give a clue of how to modify the
functional form to cure the problem. Our study furthermore high-
lights the importance of the partial derivatives in determining energy
differences and suggests that these should be routinely shown when
reporting a new functional.
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