Neuron Pod is a three-legged, weathering steel monocoque structure that has been designed to support the Centre of the Cell and Molecular Science's Blizard Building, also designed by Will Alsop in 2006. Centre of the Cell delivers biomedical research educational programmes and Neuron Pod was created to extend this work.

The scheme has been designed using the monocoque structural technique whereby the steel skin also delivers the structural load. During construction, the structure was taken apart and reassembled at the site, some requiring police escort due to their size. Neuron Pod is raised on three legs to allow the space below to remain useable, and also so that the sensitive medical research labs beneath weren't disrupted during construction. The structure is accessed via an existing walkway with level, barrier-free access.

The structure consists of 13 large steel sections welded together, having been transported one by one to the site, some requiring police escort due to their size. Neuron Pod is raised on three legs to allow the space below to remain useable, and also so that the sensitive medical research labs beneath weren't disrupted during construction. The structure is accessed via an existing walkway with level, barrier-free access.

Given the significant levels of work involved with the three legs, it was imperative that all leg-to-body connections were rigid and precise. We worked with Queen Mary University of London to design several acoustic bases based on different cells, reiterating the design rationale of our work on the Blizard Institute, at a reduced scale. We worked with the University to ensure the design supported the educational function of the space, which is designed to engage and inspire.

Neuron Pod shows how you can use creativity and art as architecture by creating an object and 'mimic' a neuron – a nerve cell that processes and transmits information by electrical and chemical means.

Neuron Pod is a three-legged, weathering steel monocoque structure that has been designed to support the Centre of the Cell and Molecular Science's Blizard Building, also designed by Will Alsop in 2006. Centre of the Cell delivers biomedical research educational programmes and Neuron Pod was created to extend this work.

The scheme has been designed using the monocoque structural technique whereby the steel skin also delivers the structural load. During construction, the structure was taken apart and reassembled at the site, some requiring police escort due to their size. Neuron Pod is raised on three legs to allow the space below to remain useable, and also so that the sensitive medical research labs beneath weren't disrupted during construction. The structure is accessed via an existing walkway with level, barrier-free access.

Given the significant levels of work involved with the three legs, it was imperative that all leg-to-body connections were rigid and precise. We worked with Queen Mary University of London to design several acoustic bases based on different cells, reiterating the design rationale of our work on the Blizard Institute, at a reduced scale. We worked with the University to ensure the design supported the educational function of the space, which is designed to engage and inspire.

Neuron Pod shows how you can use creativity and art as architecture by creating an object and 'mimic' a neuron – a nerve cell that processes and transmits information by electrical and chemical means.

Neuron Pod is a three-legged, weathering steel monocoque structure that has been designed to support the Centre of the Cell and Molecular Science's Blizard Building, also designed by Will Alsop in 2006. Centre of the Cell delivers biomedical research educational programmes and Neuron Pod was created to extend this work.

The scheme has been designed using the monocoque structural technique whereby the steel skin also delivers the structural load. During construction, the structure was taken apart and reassembled at the site, some requiring police escort due to their size. Neuron Pod is raised on three legs to allow the space below to remain useable, and also so that the sensitive medical research labs beneath weren't disrupted during construction. The structure is accessed via an existing walkway with level, barrier-free access.

Given the significant levels of work involved with the three legs, it was imperative that all leg-to-body connections were rigid and precise. We worked with Queen Mary University of London to design several acoustic bases based on different cells, reiterating the design rationale of our work on the Blizard Institute, at a reduced scale. We worked with the University to ensure the design supported the educational function of the space, which is designed to engage and inspire.

Neuron Pod shows how you can use creativity and art as architecture by creating an object and 'mimic' a neuron – a nerve cell that processes and transmits information by electrical and chemical means.

Neuron Pod is a three-legged, weathering steel monocoque structure that has been designed to support the Centre of the Cell and Molecular Science's Blizard Building, also designed by Will Alsop in 2006. Centre of the Cell delivers biomedical research educational programmes and Neuron Pod was created to extend this work.

The scheme has been designed using the monocoque structural technique whereby the steel skin also delivers the structural load. During construction, the structure was taken apart and reassembled at the site, some requiring police escort due to their size. Neuron Pod is raised on three legs to allow the space below to remain useable, and also so that the sensitive medical research labs beneath weren't disrupted during construction. The structure is accessed via an existing walkway with level, barrier-free access.

Given the significant levels of work involved with the three legs, it was imperative that all leg-to-body connections were rigid and precise. We worked with Queen Mary University of London to design several acoustic bases based on different cells, reiterating the design rationale of our work on the Blizard Institute, at a reduced scale. We worked with the University to ensure the design supported the educational function of the space, which is designed to engage and inspire.

Neuron Pod shows how you can use creativity and art as architecture by creating an object and 'mimic' a neuron – a nerve cell that processes and transmits information by electrical and chemical means.

Neuron Pod is a three-legged, weathering steel monocoque structure that has been designed to support the Centre of the Cell and Molecular Science's Blizard Building, also designed by Will Alsop in 2006. Centre of the Cell delivers biomedical research educational programmes and Neuron Pod was created to extend this work.

The scheme has been designed using the monocoque structural technique whereby the steel skin also delivers the structural load. During construction, the structure was taken apart and reassembled at the site, some requiring police escort due to their size. Neuron Pod is raised on three legs to allow the space below to remain useable, and also so that the sensitive medical research labs beneath weren't disrupted during construction. The structure is accessed via an existing walkway with level, barrier-free access.

Given the significant levels of work involved with the three legs, it was imperative that all leg-to-body connections were rigid and precise. We worked with Queen Mary University of London to design several acoustic bases based on different cells, reiterating the design rationale of our work on the Blizard Institute, at a reduced scale. We worked with the University to ensure the design supported the educational function of the space, which is designed to engage and inspire.

Neuron Pod shows how you can use creativity and art as architecture by creating an object and 'mimic' a neuron – a nerve cell that processes and transmits information by electrical and chemical means.