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Quantum bistochasticity

In what follows any “largest” domain of mutually commuting
observables will be termed context. For quantum mechanics grounded
in Hilbert space, a context can be equivalently represented by (i) an
orthonormal basis, (ii) the respective one-dimensional orthogonal
projection operators associated with the basis elements, or (iii) a single
maximal operator whose spectral sum is non-degenerated.

An essential assumption entering Gleason's derivation of the Born rule
for quantum probabilities is the validity of classical probability theory
whenever the respective observables are co-measurable. Formally, this
amounts to the validity of Kolmogorov probability theory for mutually
commuting observables; and in particular, to the assumption of
Kolmogorov's axioms within contexts.

2/12



Quantum bistochasticity cntd.

Consider two orthonormal bases aka two contexts. Their respective
conditional probabilities can be arranged into a matrix form: The entry
in the i-th row j-th column element corresponds to the conditional
probability associated with the probability of occurrence of the j-th
element (observable) of the second context, given the i-th element
(observable) of the first context.

By Gleason's assumption of the validity of Kolmogorov's axioms within
contexts resulting in a conditional quantum probability of the Born
rule form, as well as by utilizing the dual role of projection operators in
quantum mechanics as elementary two-valued observables as well as of
pure states, and by taking into account that cyclically interchanging
factors inside a trace does not change its value, this matrix needs to
be doubly stochastic (bistochastic) [Auffeves-Grangier-2017
DOI:10.1038/srep43365, Auffeves-Grangier-2018;
DOI:10.1098/rsta.2017.0311]; that is, the sum taken within every
single row and every single column adds up to one.
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Generalization of Kolmogorov axioms for multi-context

environments

In order to generalize the quantum case, we suggest to postulate that
the quantum case is just one instance satisfying a very general axiom:
That, given two arbitrary contexts C; = {ei1,...en} and

Co = {f1,...f,}, the associated (n x m)-matrix whose entries are the

conditional probabilities P(f;|e;) of “f; given e;" must be such that the

sum taken within every single row adds up to one.

P S

We shall be mostly concerned with cases for which n = m; that is, the associated
matrix is a row (aka right) stochastic (square) matrix. Formally, such a matrix A
has nonnegative entries a; > 0 for i,j = 1,..., n whose row sums add up to one:
Ypai=1fori=1,...n

—~—~

The above criterium is a generalization of Kolmogorov's axioms, as it allows cases
in which both contexts do not coincide. For coinciding contexts this rule just

reduces to Kolmogorov's axioms.
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Quasi-classical partition logics |I: Two non-intertwining
two-atomic contexts
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Figure: Greechie orthogonality diagram of a logic consisting of two
nonintertwining contexts. (a) The associated (quasi)classical partition logic
representations obtained through in inverse construction using all two-valued
measures thereon (Svozil; DOI: 10.1007/s10773-005-7052-0); (b) a faithful
orthogonal representation (Lovasz, DOI: 10.1109/T1T.1979.1055985)

rendering a quantum double.
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Quasi-classical partition logics |I: Two non-intertwining

two-atomic contexts cntd.

This logic labels the atoms (aka elementary propositions) obtained by an “inverse
construction” using all two-valued measures thereon. With the identifications

e;1 ={1,2}, e2 = {3,4}, f1 = {1,3}, and f> = {2,4} we obtain all classical
probabilities by identifying i — A; > 0. The respective conditional probabilities are

[P(C2|C1)] = [P({f1, 2} |{e1, €2)]
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Quasi-classical partition logics Il: Two intertwining
three-atomic contexts
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Figure: Greechie orthogonality diagram of the L, “firefly” logic. (a) The
associated (quasi)classical partition logic representation obtained through in
inverse construction using all two-valued measures thereon (Svozil; DOI:
10.1007/s10773-005-7052-0); (b) a faithful orthogonal representation
(Lovasz, DOI: 10.1109/T1T.1979.1055985) rendering a quantum double.
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Quasi-classical partition logics |I: Two intertwining

three-atomic contexts cntd.

This Lip “firefly” logic labels the atoms (aka elementary propositions)

obtained by an “inverse construction” using all two-valued measures

thereon. By design, it will be very similar to the earlier logic with four

atoms. With the identifications e; = {1, 2}, e; = {3,4},
e3 = f3 = {5}, f; = {1,3}, and fo = {2,4} we obtain all classical
probabilities by identifying i — \; > 0. The respective conditional

probabilities are
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Quasi-classical partition logics Il:
Pentagon /pentagram /house logic with five cyclically

intertwining three-atomic contexts
By now it should be clear how classical conditional probabilities work
on partition logics. Consider the pentagon/pentagram/(orthomodular)
house logic in Fig. 3 labels the atoms (aka elementary propositions)
obtained by an “inverse construction” using all 11 two-valued measures
thereon. take, for example, one of the two contexts
Cs = {{2,7,8},{1,3,9,10,11},{4,5,6}} “opposite” to the context
¢ = {{1,2,3},{4,5,7,9,11},{6,8,10} }.

{1,2,3}

{7,8,9, 10,11}/'/3 {4,5,7,9,11}
{4,5,6) ® {6,8,10}
{1,3,9,10,11} {1,2,4,7,11}
{2,7,8} O—@—e {3,5,9}

{1,4,6,10,11}
9/ 12



Quasi-classical partition logics Il:
Pentagon /pentagram /house logic with five cyclically

intertwining three-atomic contexts cntd.

With the identifications e; = {1,2,3}, e2 = {4,5,7,9,11}, es = {6, 8,10},
f1={2,7,8}, f2={1,3,9,10,11}, and f3 = {4,5,6}. The respective conditional
probabilities are

[P(C2|C1)] = [P({f1,f2, f3}|{e1, €2, €3})]
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Extrema of conditional probabilities in row and doubly
stochastic matrices

The row stochastic matrices representing conditional probabilities form
a polytope in R™ whose vertices are the n” matrices T,,i=1,...,n",
with exactly one entry 1 in each row. Therefore, a row stochastic
matrix can be represented as the convex sum Zf;l A T;, with
nonnegative \; > 0 and 27;1 Ai=1.

For conditional probabilities yielding doubly stochastic matrices, such
as, for instance, the quantum case, the Birkhoff theorem yields more
restricted linear bounds: it states that any doubly stochastic

(n x n)-matrix is the convex hull of m < (n—1)2+1 < n!
permutation matrices. That is, if A = ajj is a doubly stochastic matrix
such that a; > 0and Y7 ;a5 => 7 ;a;=1for 1 </, j<n, then

<(n—1)241<n!
there exists a convex sum decomposition A = Zm (n—1)%+1<n! APy

in terms of m < (n — 1)? + 1 linear independent permutation matrices
P, such that Ay > 0 and Zm<(" 1) +1<n! A =1.
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Thank you for your attention!
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