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Quantum bistochasticity

In what follows any “largest” domain of mutually commuting
observables will be termed context. For quantum mechanics grounded
in Hilbert space, a context can be equivalently represented by (i) an
orthonormal basis, (ii) the respective one-dimensional orthogonal
projection operators associated with the basis elements, or (iii) a single
maximal operator whose spectral sum is non-degenerated.
An essential assumption entering Gleason’s derivation of the Born rule
for quantum probabilities is the validity of classical probability theory
whenever the respective observables are co-measurable. Formally, this
amounts to the validity of Kolmogorov probability theory for mutually
commuting observables; and in particular, to the assumption of
Kolmogorov’s axioms within contexts.
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Quantum bistochasticity cntd.

Consider two orthonormal bases aka two contexts. Their respective
conditional probabilities can be arranged into a matrix form: The entry
in the i-th row j-th column element corresponds to the conditional
probability associated with the probability of occurrence of the j-th
element (observable) of the second context, given the i-th element
(observable) of the first context.
By Gleason’s assumption of the validity of Kolmogorov’s axioms within
contexts resulting in a conditional quantum probability of the Born
rule form, as well as by utilizing the dual role of projection operators in
quantum mechanics as elementary two-valued observables as well as of
pure states, and by taking into account that cyclically interchanging
factors inside a trace does not change its value, this matrix needs to
be doubly stochastic (bistochastic) [Auffeves-Grangier-2017
DOI:10.1038/srep43365, Auffeves-Grangier-2018;
DOI:10.1098/rsta.2017.0311]; that is, the sum taken within every
single row and every single column adds up to one.
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Generalization of Kolmogorov axioms for multi-context
environments
In order to generalize the quantum case, we suggest to postulate that
the quantum case is just one instance satisfying a very general axiom:
That, given two arbitrary contexts C1 = {e1, . . . em} and
C2 = {f1, . . . fn}, the associated (n ×m)-matrix whose entries are the
conditional probabilities P(fj |ei ) of “fj given ei ” must be such that the
sum taken within every single row adds up to one.

˜ ˜ ˜
We shall be mostly concerned with cases for which n = m; that is, the associated
matrix is a row (aka right) stochastic (square) matrix. Formally, such a matrix A
has nonnegative entries aij ≥ 0 for i , j = 1, . . . , n whose row sums add up to one:∑n

j=1 aij = 1 for i = 1, . . . , n.

˜ ˜ ˜

The above criterium is a generalization of Kolmogorov’s axioms, as it allows cases
in which both contexts do not coincide. For coinciding contexts this rule just
reduces to Kolmogorov’s axioms.

4 / 12



Quasi-classical partition logics I: Two non-intertwining
two-atomic contexts
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Figure: Greechie orthogonality diagram of a logic consisting of two
nonintertwining contexts. (a) The associated (quasi)classical partition logic
representations obtained through in inverse construction using all two-valued
measures thereon (Svozil; DOI: 10.1007/s10773-005-7052-0); (b) a faithful
orthogonal representation (Lovasz, DOI: 10.1109/TIT.1979.1055985)
rendering a quantum double.
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Quasi-classical partition logics I: Two non-intertwining
two-atomic contexts cntd.
This logic labels the atoms (aka elementary propositions) obtained by an “inverse
construction” using all two-valued measures thereon. With the identifications
e1 ≡ {1, 2}, e2 ≡ {3, 4}, f1 ≡ {1, 3}, and f2 ≡ {2, 4} we obtain all classical
probabilities by identifying i → λi > 0. The respective conditional probabilities are

[P(C2|C1)] = [P({f1, f2}|{e1, e2)]

≡
(
P(f1|e1) P(f2|e1)
P(f1|e2) P(f2|e2)

)
=

(
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P(e2)

P(f2∩e2)
P(e2)

)

=
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P({1,3}∩{3,4})
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P({3,4})

)

=

(
P({1})
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P({2})
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P({4})
P({3,4})

)
=

(
λ1

λ1+λ2
λ2

λ1+λ2
λ3

λ3+λ4
λ4

λ3+λ4

)
,

(1)

as well as
[P(C1|C2)] = [P({e1, e2}|{f1, f2})]

≡

(
P({1})
P({1,3})

P({3})
P({1,3})

P({2})
P({2,4})

P({4})
P({2,4})

)
=

(
λ1

λ1+λ3
λ3

λ1+λ3
λ2

λ2+λ4
λ4

λ2+λ4

)
.

(2)
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Quasi-classical partition logics II: Two intertwining
three-atomic contexts
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Figure: Greechie orthogonality diagram of the L12 “firefly” logic. (a) The
associated (quasi)classical partition logic representation obtained through in
inverse construction using all two-valued measures thereon (Svozil; DOI:
10.1007/s10773-005-7052-0); (b) a faithful orthogonal representation
(Lovasz, DOI: 10.1109/TIT.1979.1055985) rendering a quantum double.
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Quasi-classical partition logics II: Two intertwining
three-atomic contexts cntd.
This L12 “firefly” logic labels the atoms (aka elementary propositions)
obtained by an “inverse construction” using all two-valued measures
thereon. By design, it will be very similar to the earlier logic with four
atoms. With the identifications e1 ≡ {1, 2}, e2 ≡ {3, 4},
e3 = f3 ≡ {5}, f1 ≡ {1, 3}, and f2 ≡ {2, 4} we obtain all classical
probabilities by identifying i → λi > 0. The respective conditional
probabilities are

[P(C2|C1)] ≡


P({1})
P({1,2})

P({2})
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P(∅)
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 =
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0
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λ4

λ3+λ4
0
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 ,

[P(C1|C2)] ≡


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 =
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0
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λ2+λ4
λ4

λ2+λ4
0

0 0 1

 .
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Quasi-classical partition logics II:
Pentagon/pentagram/house logic with five cyclically
intertwining three-atomic contexts
By now it should be clear how classical conditional probabilities work
on partition logics. Consider the pentagon/pentagram/(orthomodular)
house logic in Fig. 3 labels the atoms (aka elementary propositions)
obtained by an “inverse construction” using all 11 two-valued measures
thereon. take, for example, one of the two contexts
C4 = {{2, 7, 8}, {1, 3, 9, 10, 11}, {4, 5, 6}} “opposite” to the context
C1 = {{1, 2, 3}, {4, 5, 7, 9, 11}, {6, 8, 10}}.
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Figure: Greechie orthogonality diagrams of the pentagon/pentagram/house
logic.
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Quasi-classical partition logics II:
Pentagon/pentagram/house logic with five cyclically
intertwining three-atomic contexts cntd.
With the identifications e1 ≡ {1, 2, 3}, e2 ≡ {4, 5, 7, 9, 11}, e3 ≡ {6, 8, 10},
f1 ≡ {2, 7, 8}, f2 ≡ {1, 3, 9, 10, 11}, and f3 ≡ {4, 5, 6}. The respective conditional
probabilities are

[P(C2|C1)] = [P({f1, f2, f3}|{e1, e2, e3})]

≡


P({2,7,8}∩{1,2,3})

P({1,2,3})
P({1,3,9,10,11}∩{1,2,3})

P({1,2,3})
P({4,5,6}∩{1,2,3})

P({1,2,3})
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P({2,7,8}∩{6,8,10})
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P({6,8,10})
P({4,5,6}∩{6,8,10})

P({6,8,10})



=
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Extrema of conditional probabilities in row and doubly
stochastic matrices

The row stochastic matrices representing conditional probabilities form
a polytope in Rn2

whose vertices are the nn matrices Ti , i = 1, . . . , nn,
with exactly one entry 1 in each row. Therefore, a row stochastic
matrix can be represented as the convex sum

∑nn

i=1 λiTi , with
nonnegative λi ≥ 0 and

∑nn

i=1 λi = 1.
For conditional probabilities yielding doubly stochastic matrices, such
as, for instance, the quantum case, the Birkhoff theorem yields more
restricted linear bounds: it states that any doubly stochastic
(n × n)–matrix is the convex hull of m ≤ (n − 1)2 + 1 ≤ n!
permutation matrices. That is, if A ≡ aij is a doubly stochastic matrix
such that aij ≥ 0 and

∑n
i=1 aij =

∑n
i=1 aji = 1 for 1 ≤ i , j ≤ n, then

there exists a convex sum decomposition A =
∑m≤(n−1)2+1≤n!

k=1 λkPk

in terms of m ≤ (n − 1)2 + 1 linear independent permutation matrices
Pk such that λk ≥ 0 and

∑m≤(n−1)2+1≤n!
k=1 λk = 1.
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Thank you for your attention!
˜ ˜ ˜

12 / 12


