Effects of the DTRs’ fixed tap positions on the behaviour of distribution grid with high PV penetration

Daniel-Len SCHULTIS
daniel-leon.schultis@tuwien.ac.at

TU Wien
Institute of Energy Systems and Electrical Drives

Abstract

PV-systems are often operated with local Q(U)-control to maintain voltages in low voltage grids (LVG) within the limits. Meanwhile, distribution transformers (DTR) usually have Off-Load Tap Changers. Their tap positions impact LVGs’ voltages (direct effect), and thus the reactive power (Q) consumption of loads and Q(U)-controlled PV-systems. In further consequence, they impact Q-flows and voltage (indirect effect) in medium voltage grid (MGV). The indirect effect intensifies with the spread of Q(U)-controlled PV-systems.

Model

Two real LVGs are used for the simulations: rural and urban LVG.

Rural LVG:

- 61 (residential) prosumer plants are connected.
- Each prosumer plant includes a ZIP-load and a 5 kWp PV-system.

Urban LVG:

- 91 (residential) prosumer plants are connected.
- Each prosumer plant includes a ZIP-load and a 5 kWp PV-system.

Tap changer of DTRs:

Each DTR has an Off-Load Tap Changer.

Theoretical MVG:

One theoretical MVG is used for the simulations.

- On-Load Tap Changer keeps STR secondary voltage between 1.015 p.u. and 1.035 p.u.
- 3 rural and 16 urban LVGs are connected.

Impact of DTR tap position on LVGs’ Q(U)-characteristics

The Q(U)-characteristics of both LVGs with Q(U)-controlled PV-systems are extracted from the results of load-flow simulations for different DTR tap settings and two critical scenarios: maximal load – no production, and minimal load – maximal production.

Impact of DTR tap position on MVG voltage profile

The MVG voltage profiles and the Q(U)-consumption of connected LVGs with uncontrolled PV-systems are identified for different DTR tap settings and both LVG scenarios.

Results show that in the case of uncontrolled PV-systems the DTRs’ tap positions have a slight impact on MVG’s voltage profile and on the Q(U)-consumption of LVGs. Increasing the DTRs’ tap positions decreases LVG voltages and thus the Q(U)-consumption of ZIP-loads. This slightly increases MGV voltages.

In the following are shown the MVG voltage profiles and the Q(U)-consumption of connected LVGs with Q(U)-controlled PV-systems identified for different DTR tap settings and both scenarios.

Results show that in the case of Q(U)-controlled PV-systems, the DTRs’ tap positions have a strong impact on MVG’s voltage profile and on the Q(U)-consumption of LVGs. Increasing the DTRs’ tap positions decreases LVG voltages and thus the Q(U)-consumption of ZIP-loads and PV-systems. In return, this significantly increases the voltages in MGV.

Conclusion

The fixed DTR tap position has a strong impact on the behaviour of the distribution grid with high share on Q(U)-controlled PV-systems. Increasing the fixed DTR tap position …

- … shifts the Q(U)-characteristic of the corresponding LVG to the right.
- … decreases the voltage within the corresponding LVG. → direct effect
- … increases the voltage within the corresponding MVG. → indirect effect

The indirect effect intensifies with the spread of Q(U)-controlled PV-systems.

Acknowledgement

The authors acknowledge Lukas Kloibhofer who did all calculations in the framework of his Master Thesis [1].