
Performance and Scalability of Private
Ethereum Blockchains

Markus Schäffer, Monika di Angelo(B) , and Gernot Salzer

TU Wien, Vienna, Austria
{markus.schaeffer,monika.di.angelo,gernot.salzer}@tuwien.ac.at

Abstract. Smart contracts provide promising use cases for the public
and the private sector by combining cryptographically secure blockchains
and the versatility of software. In contrast to public blockchains, private
ones can be tailored by configuring blockchain-specific parameters like
the time passing between two consecutive blocks, the size of blocks, the
hardware of the nodes running the blockchain software, or simply the size
of the network. However, the effects of parameters on the performance
of private smart contract platforms are not well studied.

In this work, we systematically examine to which extent the perfor-
mance of private Ethereum blockchains scales with various parameters,
and which parameters constitute bottlenecks. We introduce a concept for
measuring the performance and scalability of private Ethereum smart
contract platforms, as well as a framework for the automatic deploy-
ment of differently configured private Ethereum blockchains on the cloud.
Based on the collected performance-related data, we visualize the impact
of parameter changes on performance. Our results show that the effect
of variations in one parameter is highly dependent on the configuration
of other parameters, especially when running the system near its limits.
Moreover, we identify a structure for the bottlenecks of current private
Ethereum smart contract platforms.

Keywords: Blockchain · Ethereum · Evaluation · Performance

1 Introduction

For blockchain systems, there is currently a trade-off between decentralization,
security, and scalability. This is known as the scalability trilemma [9], which
states that a blockchain can only have two of the three properties.

For the most prominent smart contract platform Ethereum, each mining
node stores the entire state (i.e. for each account its balance, code and storage)
and also processes all transactions sequentially. This approach provides a high
amount of security, yet greatly restricts scalability. Since there is no parallel
processing in Ethereum mining, the throughput is currently capped at around
15 transactions per second in the public network [9].

This paper is a condensed version of the measurements described in [19].

c© Springer Nature Switzerland AG 2019
C. Di Ciccio et al. (Eds.): BPM 2019 Blockchain and CEE Forum, LNBIP 361, pp. 103–118, 2019.
https://doi.org/10.1007/978-3-030-30429-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30429-4_8&domain=pdf
http://orcid.org/0000-0002-4217-4530
http://orcid.org/0000-0002-8950-1551
https://doi.org/10.1007/978-3-030-30429-4_8


104 M. Schäffer et al.

In order to drastically increase scalability of Ethereum, its key developers
focus on a combination of two approaches: sharding [9] and side-chains [7]. The
former approach requires only a small percentage of nodes to see and process
every transaction of the network, thereby allowing transactions to be processed
in parallel by means of horizontal partitioning. The latter involves creating addi-
tional chains for transactions to be executed off the main chain.

For private networks, the scalability trilemma can also be tackled by choosing
non-default values for the chain parameters (e.g. block size, block interval, or
power of a mining node) to improve performance. The choice of these blockchain
parameters affects throughput and latency. Even though Ethereum is compar-
atively well studied, there has been only little discussion about the effects of
the different chain parameters on performance in a private setting so far (see
Sect. 2).

Goals and Methods. The overall aim of this work is to further extend the under-
standing of the effects of different parameters in private Ethereum smart con-
tract platforms with respect to performance and scalability. In this context, we
specifically address the following research questions:

– What are suitable means for measurements?
– What are the effects of different parameter settings?
– Which parameters represent bottlenecks?

In order to answer these questions, we first devise a concept for measuring
the performance of differently configured Ethereum networks. This includes the
identification of relevant parameters, the definition of evaluation metrics, and
the development of a deployment mechanism. After the implementation of the
formulated concept as a measurement framework, the actual performance mea-
surements are carried out to collect data. For the data analysis, we visualize the
effects of parameters on performance, and we provide interpretations. Further-
more, we identify a bottleneck structure for the measured parameters. Finally,
we re-examine findings reported in related work.

Roadmap. Section 2 summarizes related work. Our measurement concept is
detailed in Sect. 3, and we analyze the collected data in Sect. 4. Identified bot-
tlenecks are presented Sect. 5. In Sect. 6, we discuss our results in relation to
related work, while we draw our conclusions in Sect. 7.

2 Related Work

In the most closely related work [4,5], the authors present an evaluation frame-
work where private blockchains can be benchmarked against pre-defined work-
loads. In order to compare different blockchains, four abstraction layers (appli-
cation, execution engine, data model and consensus) and according workloads
are defined. The evaluation of Ethereum used only the proof of work (PoW)
consensus algorithm, while the configuration of the nodes was not varied.



Performance and Scalability of Private Ethereum Blockchains 105

The performance and limitations of Hyperledger Fabric and Ethereum with
varying numbers of transactions are studied in [17]. Metrics measured execution
time, latency, and throughput. However, the consensus mechanism was disabled
and the analysis was performed on a single-node network. In addition, the con-
figuration of the node was not varied, and other parameters such as the mining
difficulty of Ethereum were not investigated either.

The effect of different Ethereum clients (Geth and Parity) with respect to
performance was studied in [18]. Even though the analysis was conducted with
different types of nodes (different amount of RAM is mentioned), there is no
information about the consensus algorithms and its parameters (e.g. mining
difficulty or block frequency) used. Apparently, the number of nodes was not
varied during the experiments.

A comparison of blockchain and relational databases is presented in [2]. For
testing purposes, Ethereum and MySQL were chosen. Although seven differently
configured machines have been used, no information is provided on how the con-
figuration of the machine affects the measured metrics. While it is stated that
results vary from computer to computer, results are provided for a single config-
uration only. In addition, the configuration of the machines resembles consumer
machines such as laptops. Moreover, the size of the private Ethereum blockchain
was fixed to six nodes and not varied. Consensus algorithms and their parameters
were not included in the study.

Overall performance metrics and a performance monitoring framework are
proposed in [24]. The authors provide detailed metrics for measuring performance
on the Ethereum blockchain. Still, their analysis lacks some parameters: only
one consensus algorithm (PoW) is covered; mining difficulty or block size are
not varied; the configuration of nodes is not addressed.

A quantitative framework for analyzing the security and performance trade-
offs of various consensus and network parameters of PoW blockchains is pre-
sented in [12]. However, it contains neither other consensus variants and their
parameters nor any other number and type of node. A model predicting the per-
formance and storage of executing contracts based on the transaction volume is
proposed in [23]. It consists of formulas which were derived via regression analy-
sis. The major drawback of this approach is that it only depends on the amount
of transactions. The formulas do not include other variables such as consensus
algorithm, or amount and configuration of the nodes. The authors of [11] deal
with Bitcoin’s scalability limits via proposing a new blockchain protocol which
is designed to scale. Variables such as block frequency and block size were varied
to make suggestions for a better blockchain protocol. For Hyperledger, there are
a few tools and studies [13,16,21] that use similar ideas as already presented.

Bottlenecks in Bitcoin that limit throughput and latency are addressed in [3].
The results show that a re-parametrization of block size and block intervals may
have a positive effect on performance and scalability. The authors of [22] pro-
posed to improve scalability by optimization of block construction, block size
and time control optimization, and transaction security mechanism optimiza-
tion. Experiments were conducted that studied the relationship of block size



106 M. Schäffer et al.

and block construction. The authors of [15] state that existing Byzantine toler-
ant permissioned blockchains only scale to a limited number of nodes. A differ-
ent design of blockchains is proposed in [14] where the authors argue that, for
improving the performance and scalability of blockchains to a significant level,
simply tweaking blockchain parameters such as block size is not enough.

In conclusion, previous work primarily focused on block frequency and block
size for blockchain systems in general. However, other parameters such as node
configuration or network size were hardly studied. For Ethereum in a private set-
ting, only very few researchers reported performance measurements with differ-
ently configured networks, while none included results with the proof of authority
(PoA) consensus variant. As PoA may be better suited for private blockchains
than PoW, an important part is missing in the existing literature.

3 Concept

For presenting our concept in this section, we first identify parameters that affect
the performance and scalability of Ethereum in a private setting. Then, we define
the metrics used in our analysis, and finally we introduce the experimental setup.

3.1 Identified Parameters

Table 1 lists the identified parameters, where the ones used for our experiment
are set in bold. The increase of block frequency may have a positive effect on per-
formance [3], while the block propagation time imposes a lower bound. Regarding
the effect of the block size on performance, the related work provides contradic-
tory statements. While a positive effect of block size increase on performance is
reported in [3], no positive effect is implied in [5]. Concerning workload, differ-
ent smart contracts may show different runtimes according to their instructions
and storage access. For example, [5] and [24] report a difference in performance.
The parameter characterizing the computational power of a node is called node

Table 1. Identified performance and scalability parameters

Parameter Description

Block frequency Time between two succeeding blocks

Block size Amount of transactions fitting in a block

Workload type Smart contract

Node configuration CPU, RAM, network speed

Network size Number of nodes

Network structure Structure of the blockchain network

Workload quantity Amount of transactions to be processed

Amount of miners/sealers Actively participating nodes

Blockchain client and API E.g. Geth or Parity, web3.js or web3.py



Performance and Scalability of Private Ethereum Blockchains 107

configuration; it includes hardware configuration like the amount and type of
CPU and RAM. This parameter was studied only to some extent in [18] and [2].
Again, only a few sources [5,24] discuss the effects of network size.

3.2 Evaluation Metrics

Nearly all studies (see Sect. 2) share the concept of throughput measured in
‘transactions per second’ (tps), but no other metrics beyond that. Table 2 defines
the metrics for our analyses. Due to the large number of parameters in Sect. 3.1,
we keep the amount of metrics low and focus on simple and high-level metrics.
Hence, metrics regarding the hardware layer (like the utilization of CPU or
memory) and the security of blockchains were excluded.

Table 2. Evaluation metrics

Metric Description

Throughput Number of successful transactions per second (tps)

Latency Time difference in seconds between submission
and completion of a transaction

Scalability Changes of throughput and latency when altering
a parameter (e.g. the network size or the hardware
configuration of a node)

3.3 Experimental Setup

We employed the architecture in Fig. 1 to collect measurement data in an auto-
mated way. According to [18], the Parity client processes transactions signif-
icantly faster than the Geth client. Nevertheless, we decided to use the lat-
ter one as it is Ethereum’s default client [8] and still is used more frequently
than Parity [10]. For interaction, Geth offers an interactive JavaScript console,
a JavaScript API for inclusion in applications and processes, and JSON-RPC1

endpoints. The web3.js API [6] is the de facto standard for interacting with
Ethereum clients. As a runtime environment for the application we selected
Node.js since it is the most commonly used framework of all technologies included
in the 2018 Stackoverflow developer survey [20].

As computing environment, we chose Amazon Web Services (AWS). Via the
Elastic Compute Cloud (EC2) service one can rent computing power for differ-
ent purposes on demand. Since the experiments required an Ethereum network
with more than one node, we used AWS Cloudformation to start the nodes
and install our mesaurement software in an automated manner. An additional

1 JSON-RPC is a stateless, light-weight Remote Procedure Call (RPC) protocol that
uses JavaScript Object Notation (JSON) as data format.



108 M. Schäffer et al.

Fig. 1. Experimental setup

node ran the bootnode (a peer discovery service) and the monitoring software
ETH-Netstats2. A local master node served as the command center for the exper-
iments. The communication between the various nodes was done in REST-style
(Representational State Transfer). For decoupling the major components, we
used the Model-View-Controller design pattern. For storing the measurements
for later analysis, we opted for MongoDB3.

4 Data Analysis

In our experiments, we collected 4 000 data points (‘measurements’), each corre-
sponding to the average over several runs of the network with specific parameter
settings. Each run comprised 1 000 transactions. In total, 4 million transactions
were processed, which is roughly the volume of eight days on the Ethereum main
chain. The computation time for all EC2 nodes and experiments was 380 h.

To measure the influence of node configuration and network size, we used
the EC2 instances listed in Table 3. Unless stated otherwise, we varied only one
variable at a time while the others were set to the default values in Table 4. The
2 ETH-Netstats for the public Ethereum is available at https://ethstats.net/.
3 MongoDB is a NoSQL database that uses JSON-like documents with schemata.

https://ethstats.net/


Performance and Scalability of Private Ethereum Blockchains 109

Table 3. EC2 instance types used for node configuration

Label # CPUs Speed Memory Network

c5.large 2 3 GHz 4 GB 10 Gbit

c5.xlarge 4 3 GHz 8 GB 10 Gbit

c5.2xlarge 8 3 GHz 16 GB 10 Gbit

c5.4xlarge 16 3 GHz 32 GB 10 Gbit

t2.xlarge 4 2.3 GHz 16 GB Moderate

default values for difficulty and block period are those proposed by puppeth, the
configuration utility of Geth.

Table 4. Default values for the variables included in the measurements

Difficulty Block period Gas limit Workload Instance type # Nodes

524 288 15 s 4 700 000 Account c5.xlarge 5

4.1 Block Frequency

Block frequency is inversely proportional to the time between blocks. In case of
PoW, we varied the mining difficulty to obtain average block periods between 1 s
and 2.5 s (0.25 to 4 times the default difficulty). For PoA, we used block periods
of 2, 4, 8, 12, and 15 s. The experiments confirmed: throughput decreases and
latency increases linearly with increasing block period.

4.2 Block Size

Ethereum uses the concept of gas to control the size of a block. Gas measures
the resources (computation time and memory) consumed by a transaction. The
total amount of gas in a block is capped by the block gas limit, which indirectly
determines the number of transactions fitting into a block. In our experiments,
the default value for the block gas limit results in blocks with 146 transactions of
the default workload (account contract). We varied the number of transactions
in a single block between 74 and 1 168 (gas limit factor 0.5 to 8).

As expected, we observe that as the block size increases, throughput increases
while latency decreases in the same proportion, at least when the block period is
large enough. For PoW and the default node configuration, the smallest consid-
ered block period approaches the time needed for creating, signing, and executing
the transactions of a block. Here, throughput and latency will not improve when
further increasing the block size.



110 M. Schäffer et al.

4.3 Workload

For simulating different workloads, we used one of two smart contracts as the
recipient of the transactions. The contracts differ in the state changes they per-
form: The first one (‘account’) changes the balance of two addresses, while the
other one (‘ballot’) only accesses its own state. A transaction directed towards
‘account’ requires 32 k gas, while a call to ‘ballot’ needs only 27 k gas.

The observed effect of different workloads is depicted in Fig. 2. Surprisingly,
there seems to be no difference between the two workloads for PoW, while there
is a difference in the case of PoA. Welch’s t-test with a significance level alpha of
5% shows that there is no significant difference for throughput and latency for
PoW. For PoA however, the null hypothesis (no significant difference of the mean

Fig. 2. Throughput and latency against workload type PoW (upper) and PoA (lower)



Performance and Scalability of Private Ethereum Blockchains 111

values of throughput and latency for the two workloads) can be strongly rejected,
meaning that the difference is statistically significant. Throughput differs by
17%, which corresponds to the difference in transaction size (32 k vs. 27 k gas).

We argue that the different results obtained for PoW and PoA are due to the
different block periods used. In case of PoW, the time needed for generating and
processing the transactions is comparable to the block period. We noticed that
the blocks were not always filled to their maximum. For PoA, on the contrary, the
low block frequency allowed the nodes to generate and process the transactions
within the block period. Hence, the effect of the workload on the performance
was only observable when the nodes were not operating at their limits.

4.4 Node Configuration

To investigate the influence of computational power on performance, we speci-
fied four types of EC2 instances, each with a doubled amount of memory and
cores (cf. Table 3). The parameters of the consensus algorithms were set to not
limit performance: The gas limit was set so that the entire workload of 1 000
transactions could fit into a single block. Moreover, the parameters determining
the block frequency were set to a maximum, i.e. the mining difficulty in case of
PoW and the block period in case of PoA were set to their respective minimum.

Table 5. Scalability: increase of performance between successive node types

large to xlarge xlarge to 2xlarge 2xlarge to 4xlarge

Throughput PoW 60.3% 48.9% 31.2%

PoA 49.9% 35.6% 17.2%

Latency PoW 37.8% 24.1% 18.9%

PoA 29.0% 1.1% 22.1%

Fig. 3. Runtime analysis of different node configurations



112 M. Schäffer et al.

As expected, the time required to complete the workload decreases as com-
puting power increases. Table 5 shows the performance changes between succes-
sive node types. While the effect of doubling memory and CPUs is still notice-
able, it becomes less apparent with more powerful node types. For PoA, this is
illustrated in Fig. 3. The changes are more significant for PoW than for PoA.

Next to the reduced runtime for workload execution and state changes, trans-
actions are also generated and signed faster when the computational power of a
node is increased. By querying the number of transactions per block, we found
that with less powerful node configurations, nodes are unable to pack the entire
workload into a single block, even though the block size (the gas limit) is large
enough. This is presumably due to a combination of slow workload generation,
slow workload execution, and high block frequency. In such a case, at least one
more complete block period is required for the rest of the workload, which aggra-
vates the effect of slow generation and execution of the workload.

4.5 Network Size

Sometimes, increasing the number of machines is a reasonable approach to
increase performance. However, factors such as network communication and con-
sensus costs also play a crucial role in the context of blockchains. The time needed
to propagate blocks to the majority of the nodes simply cannot be reduced by
adding nodes to the network. In fact, communication and consensus efforts rather
increase. On the other hand, information propagation is faster in a private set-
ting than in the public Ethereum network due to the much smaller number of
nodes in the network. For PoA, our measurements indicate that the performance
does not change significantly with different network sizes. We assume that this
is due to our experimental setup.

For PoW, however, the picture is different, and the effect of the network
size also depends heavily on other parameters. The two major factors are block
frequency and the computational strength of a node. Generally speaking, if the
nodes are unable to propagate blocks and transactions within a short period of
time, other parameters such as the number of nodes or a high block frequency
cannot unfold their impact on performance. A high block frequency does not have
the desired effect if the transactions and blocks cannot be propagated within the
network during one block period. As the computational power of the t2.xlarge
nodes could not compensate for network communication and consensus costs,
measurements were performed with computationally stronger nodes (c5.4xlarge)
to analyze these overheads more accurately.

In Table 6, one can observe that expected (calculated) and measured through-
put drift apart with increasing network size. While there is a match of around
90–100% with smaller network sizes, larger networks only show a match of around
60–75%. Networks with a larger number of nodes do not fully use their available
resources. This points to information propagation or computational power as a
limiting factor. Broadly speaking, a negative correlation between the network
size and the performance gain for an additional node could be identified.



Performance and Scalability of Private Ethereum Blockchains 113

Table 6. Calculated vs. Measured Throughput (PoW, 10× difficulty, c5.4xlarge)

Network size
[nodes]

Block
period [s]

Calculated
runtime [s]

Throughput
[tps]

Measured
throughput [tps]

2 3.8 26.9 37.2 33.3 (89%)

4 2.3 15.8 63.5 63.2 (99%)

6 1.6 11.3 88.7 65.9 (74%)

8 1.3 9.2 108.8 75.6 (70%)

10 1.2 8.1 124.1 76.6 (62%)

5 Bottlenecks

The effect of a parameter may also depend on the settings of other parameters.
When altering one parameter of the system, another one may become the bot-
tleneck. In contrast to related work, we therefore argue that beyond discussing
single parameters, information on the order of the bottlenecks is needed.

Bottleneck Structure. For private Ethereum networks using Geth, we derived
the hierarchy of bottlenecks as depicted in Fig. 4. Parameters higher up in the
hierarchy become a bottleneck as soon as the underlying ones no longer represent
a bottleneck.

Fig. 4. Hierarchy of bottlenecks

Block Frequency and Block Size. The performance of a blockchain is, by defini-
tion, mainly a function of these two parameters, which according to our exper-
iments are at the bottom of the hierarchy. With block frequencies at the limit
of one block per second and large-sized blocks, processes such as transaction
signing, transaction execution, changing the blockchain state, and propagating
information become bottlenecks.



114 M. Schäffer et al.

Node Configuration. The computational power of the nodes becomes the bottle-
neck as soon as the nodes in the network can no longer generate, sign, propagate
and execute the transactions during the block period.

Network Size. Due to the overhead inflicted on the network when adding a
node, the network size is at the top of the bottleneck hierarchy. When operating
a network at its limits, parameters such as block frequency, block size, and node
configuration restrict performance before performance is further reduced due to
a larger network.

6 Discussion

The parameter settings of a private Ethereum network have a tremendous impact
on performance. The values for throughput reported in literature range from a
maximum of 284 tps in [5] to a minimum of 0.5 tps in [2]. Our experiments show
that with a block period of 1 s, a block size large enough to fit 1 000 transactions
into the block, an AWS EC2 instance of type c5.4xlarge, and a network of a
single node, the throughput can be as high as 328 tps on average.

Block Frequency. When increasing the mining difficulty, the block frequency
decreases, throughput decreases as well and latency rises. This is to be expected
and consistent with more general findings already reported elsewhere. Our results
confirm the results of [3], who show that an adjustment of the block interval may
have a positive effect on performance. Furthermore, the results are in line with
the move of various blockchain communities to increase the block frequency for
better performance, as well as with Buterin who stated in a blog post [1] that the
block propagation time in a network puts a constraint on the maximum block
frequency.

Block Size. An appropriate choice of block frequency and block size is crucial.
As to be expected with PoA, we observed a performance boost proportional to
the increase in block size. Surprisingly, similar experiments with PoW show a
saturation point. We understand this behaviour as a consequence of the work
load being generated too slowly and the transactions being processed not fast
enough. The most important finding is that an increment in block size sub-
stantially affects performance only if the block period is larger than the time
needed for creating, signing, propagating, and executing the transactions as well
as reaching consensus.

Unlike [5], we argue that an increase in block size has the potential to boost
the performance of a private Ethereum network if the above-mentioned prereq-
uisites are fulfilled. Our results agree with [22] who advocate the optimization of
block size as a strategy for improving the scalability of blockchains to a certain
extent. However, we were unable to confirm their observation that as the block
size increases, the performance first increases, but decreases when it reaches a
certain level. It may be that the block size was not chosen large enough in our



Performance and Scalability of Private Ethereum Blockchains 115

experiments to trigger this effect. Finally, we want to emphasize that similar
to block frequency, the block size may change over time if the value of target-
GasLimit in the Geth client and the value of gasLimit in the genesis block do not
match. It is not clear whether other authors have taken this issue into account.

Workload. The experiments regarding workload show differences between PoW
and PoA that we attribute to the different block periods used (1 s for PoW vs.
15 s for PoA). Our observations are in line with previous findings [5,24] that
report a dependency of performance on the type of smart contract used. In our
experiments a throughput difference of around 17% was measured.

Node Configuration. When operating a private Ethereum blockchain at its lim-
its by choosing a high block frequency and large block size, node configura-
tion becomes more important. In a network with five nodes, throughput almost
tripled and latency halved when increasing the computational power of the nodes
by a factor of four. In our opinion, the marked difference between the our node
configurations can be attributed to the fact that stronger machines feature faster
transaction generation and signing, better network communication and consen-
sus handling, quicker execution of the transactions, and faster state changes.

An analysis of the time needed solely for executing the transactions and
changing a node’s blockchain state confirmed previous work [18] that reported
a decrease by 25% for processing transactions when increasing the memory of a
node from 4 GB to 24 GB. Indeed, when changing the node configuration from
c5.4xlarge (8 GB RAM) to c5.4xlarge (32 GB RAM), we observed an improve-
ment by roughly 26%. Another finding is that computationally weak nodes may
have troubles propagating transactions to the network.

Network Size. With the standard PoA settings, no significant performance dif-
ference could be observed when changing the network size. This is due to our
experimental setup where all nodes seal blocks in a pre-assigned and static time
interval. On the other hand, when adding nodes in the PoW setting, our results
show that the performance rises at first but starts to decrease once a peak has
been reached. Although it may seem puzzling that more power can actually
reduce the performance of a network, these results are in line with previous
work [5]. We found that additional network communication and consensus costs
are the main limiting factor for the scalability of the network. Moreover, the
effect of adding more nodes to a network also depends on block frequency, node
configuration, and the current size of the network. Nodes may get out of sync
and uncle blocks may be created if the time needed for propagating information
in the network is larger than the block period.

Bottlenecks. Our results confirm the findings in [24]. We also observed that
information propagation and consensus costs are the main factors limiting the
scalability of private Ethereum networks. However, the bottleneck may actually
shift from one parameter to another. The combined effect of block frequency and
block size as well as of the node configuration may limit the scalability before
information propagation and consensus costs become relevant.



116 M. Schäffer et al.

7 Conclusions

We investigated the effects of various parameters on the performance and scal-
ability of private Ethereum blockchains. To this end, we conducted 4 000 mea-
surements and visualized the impact of parameter changes in several charts and
tables. More details can be found in [19].

Summarizing, we conclude that the effects of different parameters are inter-
twined such that the optimal setting of one parameter often depends on the
setting of the others as well. Our results indicate that scaling is only possible to
a limited extent due to the current design of Ethereum. As a specific contribu-
tion, we identified a hierarchy of bottlenecks.

Limitations. Our experimental setup contains several sources for potential
errors. First, the process of measuring itself might have influenced the system
under observation. We ran a Node.js instance on each node that shared the
resources with the Ethereum client. Likewise, the additional services needed
for peer discovery (Bootnode) and live monitoring (ETH-Netstats) might have
influenced the system. It is also unclear if and to which extent the chosen vir-
tualization on the level of the operating system (Docker) produces results that
differ from nodes running on physically separate machines. Finally, the way we
generated and distributed the transactions may have affected the results.

It is unclear to which extent our observations can be generalized. Our work
was exploratory and descriptive by nature. Inferential approaches may be needed
to confirm, explain, and extend the findings. For some results, it may turn out
that the experiments have been carried out on too small a scale. Although
the volume of generated transactions equals eight days of transactions on the
Ethereum main chain, the test data may not fully reflect the variability of real
data.

Future Work. This study provides insights into the effects of different parame-
ters on performance and scalability in private Ethereum networks. Still, further
research is needed. Security considerations were beyond the scope of the present
paper. Hence, future work should address for instance trade-offs between security
and performance.

Our experimental setting can readily be used to collect data on further combi-
nations of parameters. In particular, it may be worthwhile adding multivariate
to our bivariate analyses to gain a better understanding of the interaction of
parameters.

The current setup is tailored to the Geth client and the web3.js API. These
technologies, the blockchain client and the used API, represent further param-
eters to be analyzed. It may well be that a client like Parity exhibits different
performance characteristics.

Finally, a layer could be introduced that facilitates the addition of new work-
load types to the framework.



Performance and Scalability of Private Ethereum Blockchains 117

References

1. Buterin, V.: Toward a 12-second Block Time. https://blog.ethereum.org/2014/07/
11/toward-a-12-second-block-time/. Accessed 19 Nov 2018

2. Chen, S., Zhang, J., Shi, R., Yan, J., Ke, Q.: A comparative testing on performance
of blockchain and relational database: foundation for applying smart technology
into current business systems. In: Streitz, N., Konomi, S. (eds.) DAPI 2018. LNCS,
vol. 10921, pp. 21–34. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
91125-0 2

3. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn,
S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS,
vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53357-4 8

4. Dinh, T.T.A., Liu, R., Zhang, M., Chen, G., Ooi, B.C., Wang, J.: Untangling
blockchain: a data processing view of blockchain systems (2017). http://arxiv.org/
pdf/1708.05665.pdf

5. Dinh, T.T.A., Wang, J., Chen, G., Liu, R., Ooi, B.C., Tan, K.L.: BLOCKBENCH:
a framework for analyzing private blockchains. In: International Conference on
Management of Data, SIGMOD 2017, pp. 1085–1100. ACM (2017)

6. Ethereum: web3.js. https://web3js.readthedocs.io/. Accessed 21 Dec 2018
7. Ethereum 2.0. https://github.com/ethereum/eth2.0-specs. Accessed 20 Feb 2019
8. Ethereum Repository. https://github.com/ethereum. Accessed 19 Nov 2018
9. Ethereum Sharding. https://github.com/ethereum/wiki/wiki/Sharding-FAQs.

Accessed 20 Feb 2019
10. Ethernodes.org. https://www.ethernodes.org/network/1. Accessed 19 Nov 2018
11. Eyal, I., Gencer, A.E., Sirer, E.G., Renesse, R.V.: Bitcoin-NG: a scalable blockchain

protocol. In: 13th Conference on Networked Systems Design and Implementation,
NSDI 2016, pp. 45–59. USENIX Association (2016)

12. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.: On
the security and performance of proof of work blockchains. In: SIGSAC Conference
on Computer and Communications Security, CCS 2016, pp. 3–16. ACM (2016)

13. Hyperledger. https://www.hyperledger.org. Accessed 14 Oct 2018
14. Kan, J., Chen, S., Huang, X.: Improve blockchain performance using graph data

structure and parallel mining (2018). http://arxiv.org/abs/1808.10810
15. Li, W., Sforzin, A., Fedorov, S., Karame, G.O.: Towards scalable and private indus-

trial blockchains. In: Workshop on Blockchain, Cryptocurrencies and Contracts,
BCC 2017, pp. 9–14. ACM (2017)

16. Nasir, Q., Qasse, I.A., Abu Talib, M., Nassif, A.B.: Performance analysis of hyper-
ledger fabric platforms. Secur. Commun. Netw. 2018, 1–14 (2018)

17. Pongnumkul, S., Siripanpornchana, C., Thajchayapong, S.: Performance analysis
of private blockchain platforms in varying workloads. In: 26th International Con-
ference on Computer Communication and Networks, ICCCN 2017 (2017)

18. Rouhani, S., Deters, R.: Performance analysis of ethereum transactions in private
blockchain. In: 8th International Conference on Software Engineering and Service
Science, ICSESS 2017, pp. 70–74. IEEE (2017)

19. Schäffer, M.: Performance and scalability of smart contracts in private ethereum
blockchains. Master’s thesis, TU Wien (2019)

20. Stackoverflow: Developer Survey Results (2018). https://insights.stackoverflow.
com/survey/2018#technology. Accessed 19 Nov 2018

https://blog.ethereum.org/2014/07/11/toward-a-12-second-block-time/
https://blog.ethereum.org/2014/07/11/toward-a-12-second-block-time/
https://doi.org/10.1007/978-3-319-91125-0_2
https://doi.org/10.1007/978-3-319-91125-0_2
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8
http://arxiv.org/pdf/1708.05665.pdf
http://arxiv.org/pdf/1708.05665.pdf
https://web3js.readthedocs.io/
https://github.com/ethereum/eth2.0-specs
https://github.com/ethereum
https://github.com/ethereum/wiki/wiki/Sharding-FAQs
https://www.ethernodes.org/network/1
https://www.hyperledger.org
http://arxiv.org/abs/1808.10810
https://insights.stackoverflow.com/survey/2018#technology
https://insights.stackoverflow.com/survey/2018#technology


118 M. Schäffer et al.

21. Thakkar, P., Nathan, S., Viswanathan, B.: Performance benchmarking and opti-
mizing hyperledger fabric blockchain platform. In: 26th International Symposium
on Modeling. Analysis, and Simulation of Computer and Telecommunication Sys-
tems, MASCOTS, pp. 264–276. IEEE (2018)

22. Xin, W., Zhang, T., Hu, C., Tang, C., Liu, C., Chen, Z.: On scaling and accelerating
decentralized private blockchains. In: 2017 IEEE 3rd International Conference on
Big Data Security on Cloud (bigdatasecurity), IEEE International Conference on
High Performance and Smart Computing (HPSC), and IEEE International Con-
ference on Intelligent Data and Security (IDS), pp. 267–271 (2017)

23. Zhang, H., Jin, C., Cui, H.: A method to predict the performance and storage
of executing contract for ethereum consortium-blockchain. In: Chen, S., Wang,
H., Zhang, L.-J. (eds.) ICBC 2018. LNCS, vol. 10974, pp. 63–74. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94478-4 5

24. Zheng, P., Zheng, Z., Luo, X., Chen, X., Liu, X.: A detailed and real-time perfor-
mance monitoring framework for blockchain systems. In: 40th International Con-
ference on Software Engineering: Software Engineering in Practice, ICSE-SEIP
2018, pp. 134–143. ACM (2018)

https://doi.org/10.1007/978-3-319-94478-4_5

	Performance and Scalability of Private Ethereum Blockchains
	1 Introduction
	2 Related Work
	3 Concept
	3.1 Identified Parameters
	3.2 Evaluation Metrics
	3.3 Experimental Setup

	4 Data Analysis
	4.1 Block Frequency
	4.2 Block Size
	4.3 Workload
	4.4 Node Configuration
	4.5 Network Size

	5 Bottlenecks
	6 Discussion
	7 Conclusions
	References




