Sparsity in the Delay-Doppler Domain for Measured 60 GHz Vehicle-to-Infrastructure Communication Channels

Herbert Groll*, Erich Zöchmann*m†, Stefan Pratschner*†, Martin Lerch*, Daniel Schützenhöfer*†, Markus Hofer*, Jiri Blumenstein†, Seun Sangodoyin†, Thomas Zemen†, Aleš Prokes‡, Andreas F. Molisch*, and Sebastian Caban*†

* Institute of Telecommunications, TU Wien, Austria
† Christian Doppler Laboratory for Dependable Wireless Connectivity for the Society in Motion
‡ Department of Radio Electronics, TU Brno, Czech Republic
§ Center for Digital Safety & Security, AIT Austrian Institute of Technology, Austria
¶ Wireless Devices and Systems Group, University of Southern California, USA

Abstract—We report results from millimeter wave vehicle-to-infrastructure (V2I) channel measurements conducted on Sept. 25, 2018 in an urban street environment, down-town Vienna, Austria. Measurements of a frequency-division multiplexed multiple-input single-output channel have been acquired with a time-domain channel sounder at 60 GHz with a bandwidth of 100 MHz and a frequency resolution of 5 MHz. Two horn antennas were used on a moving transmitter vehicle: one horn emitted a beam towards the horizon and the second horn emitted an elevated beam at 15-degrees up-tilt. This configuration was chosen to assess the impact of beam elevation on V2I communication channel characteristics: propagation loss and sparsity of the local scattering function in the delay-Doppler domain. The measurement results within urban speed limits show high sparsity in the delay-Doppler domain.

Index Terms—OTFS, delay-Doppler domain, sparsity, millimeter wave, vehicular communications, channel estimation

I. INTRODUCTION

Vehicular communications was intensely investigated in the last decade [1]–[4]. Millimeter waves (mmWaves) have been a research topic in vehicular communications for already several decades [5], [6]. The path loss for train-to-infrastructure scenarios in the mmWave frequency band is measured in [5], performance for vehicle-to-vehicle (V2V) communication is investigated in [6].

The effect of an overtaking vehicle on a V2V channel at 60 GHz of a communicating car platoon has been investigated in [7], [8]. A more detailed statistical analysis of delay and Doppler spread is provided in [9], [10]. V2V channel measurements with antennas placed in the bumpers of cars at 38 GHz and 60 GHz, using a channel sounder with 1 GHz bandwidth, have been conducted in [11]. Further mmWave V2V measurements with approaching cars are shown in [12]. Doppler spectra of vehicle-to-infrastructure (V2I) measurements at 28 GHz in an expressway environment are shown in [13]. Doppler spectra of vibrations appearing while the vehicle is in operation are shown in [14] and [15].

The mmWave wireless channel has been observed to have a sparse multipath structure in multiple domains [16]–[18]. For channel estimation using sparse reconstruction, several techniques exist [19]. Sparse channel fits via the least absolute shrinkage and selection operator (LASSO) applied in the delay domain are provided in [20]–[23], and in the delay-Doppler domain in [24]. In [22]–[24], Akaike’s information criterion was used to select the appropriate sparsity level, where approximately 4 to 6 clusters have been found in the delay domain, and 16 relevant echoes in the delay-Doppler domain. Sparse signal reconstruction using the sparse Bayesian learning (SBL) framework with low-complexity is used in [25], [26]. A fixed-point implementation of SBL [26] is shown in [27].

How to exploit the delay-Doppler sparsity of wireless channels is shown in [28]. The orthogonal time frequency space (OTFS) modulation [29] performs especially well for wireless channels with sparsity in the delay-Doppler domain, such as in mmWave communication systems [30].

OUR CONTRIBUTION

In this contribution, we show that the sparsity in the delay-Doppler domain holds true for measured 60 GHz V2I communication channels in a street crossing scenario in an urban environment. We estimate the channel and find a representation in the delay-Doppler domain with a multitaper estimator. Furthermore, a sparse estimation with sub-Nyquist sampling in the delay domain is carried out using SBL.
II. MEASURED SCENARIO

The measurement scenario and placement of the transmitters (TXs) and the receiver (RX) is shown in Fig. 1a. Our TXs are mounted on the roof rack of a car. The RX is positioned at the crossroads of a street canyon, at 5 m height. We are observing multipath components (MPCs) of the wireless channel during the approach and passage of the moving transmitter vehicle at the crossroads. All MPCs are Doppler shifted proportional to their respective radial velocity.

For our setup, the 60 GHz free space path loss calculates to 100 dB at the maximum distance of interest. Both TXs use horn antennas with a gain of 20 dBi, which point towards driving direction. One horn (TX 0°) emits a beam towards the horizon and the second horn (TX 15°) emits a beam at 15° up-tilt as shown in Fig. 1b. At the receiver side, an omni-directional λ/4 monopole antenna is used. The receive antenna gain is approximately −4 dBi including cable losses.

III. RF SETUP

The hardware setup for the measurement is shown in Fig. 2. Both TXs consist of external in-phase quadrature (I/Q) mixer modules, an arbitrary waveform generator (AWG), and a frequency reference. The AWG continuously repeats a baseband sounding sequence as I/Q signal for each external I/Q-mixer module. Each I/Q-mixer up-converts the input signal to passband at 60.15 GHz center frequency with a local oscillator, synthesized by a phase-locked loop (PLL). The radio frequency outputs of the I/Q-mixers emit mmWaves through conical horn antennas. The frequency reference feeds each PLL with a 285.714 MHz reference and the AWG with a 10 MHz reference. Our receiver is a signal analyzer (SA) connected to the omni-directional antenna and a light barrier. We measure the center frequency offset (CFO) between AWG and SA at standstill before each measurement. The oscillator drift during one measurement was found to be less than 1 Hz. A measurement is started as soon as the moving transmitter vehicle passes the light barrier, which triggers the recording at the RX. We directly access the I/Q samples from the SA with a sampling rate of 125 MSamples/s.

IV. SOUNDING SEQUENCE DESIGN

We extract an estimate of the channel transfer function with a multitone waveform as excitation signal for channel sounding similar to the approach in [31]. A Zadoff-Chu sequence [32] is used for its constant amplitude zero autocorrelation property to keep the crest factor low and to phase-align both TXs during calibration. For our scenario, we consider a maximum excess delay τ_max to the assumed propagation delay between the line of sight (LOS) component and MPCs due to single reflections. Paths due to multiple reflections and paths due to single reflections, due to back- and side-lobes at the TXs, are below the receiver sensitivity. Possible single reflections are limited by the surrounding street canyon. The width of the street canyon is 20 m. Therefore, at a maximum distance of 44 m between TXs and RX, we account for path differences between LOS and MPCs, which will not be larger than 16 m in length or 54 ns in time. Reflections at the crossing and beyond the crossing might lead to delays larger than 100 ns. The tone spacing Δf of our multitone waveform has to fulfill the sampling theorem. Therefore, Δf ≤ 1/τ_max needs to hold true for the maximum excess delay τ_max of the channel. We use a measurement bandwidth B = 100 MHz and K = 21 tones to get a tone spacing of Δf = 4.76 MHz, which leads to a maximum alias free delay of τ_max = 210 ns.

To measure the channel simultaneously for our two TXs, we use a frequency division multiplexing (FDM) approach as described in [33]. We derive the multitone waveform for the second TX from the first TX with a frequency offset Δf_ Ant = 1.19 MHz for every single tone. The superposition of both waveforms leads to a multitone-comb, so that TXs are orthogonally interleaved in frequency. The resulting multitone sounding sequence for each TX has a period of T = 840 ns, leaving possible additional tones unoccupied.

The snapshot time T_snap for the channel has to fulfill the sampling theorem for a maximum Doppler frequency ν_max, so that T_snap ≤ 1/(2ν_max). For a maximum assumed speed of
approaching cars $v_{\text{max}} = 14 \text{ m s}^{-1}$, $V_{\text{max}} = 2800 \text{ Hz}$ and thus $T_{\text{snap}} \leq 1/(2V_{\text{max}}) = 178.6 \mu s$.

The final signal-to-noise ratio (SNR) is enhanced to combat thermal noise by coherently averaging over N channel measurements up-to the maximum snapshot time. By using $N = 212$, a processing gain of 23.26 dB is achieved and $T_{\text{snap}} = 178.07 \mu s$ is low enough for v_{max}.

Our RX is able to record up to 450 MSamples at one shot, which influences the choice of measurement bandwidth. For a sampling rate of 125 MSamples/s, the recording time is $T_{\text{rec}} = 3.6 \text{ s}$ which translates to a travel distance of 50.4 m at v_{max}. An example of the measurement run is shown in Section VI. The parameters of the channel sounder are summarized in Table I.

Table I

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>center frequency</td>
<td>$f_c = 60.15 \text{ GHz}$</td>
</tr>
<tr>
<td>tone spacing</td>
<td>$\Delta f = 4.76 \text{ MHz}$</td>
</tr>
<tr>
<td>number of tones</td>
<td>$K = 21$</td>
</tr>
<tr>
<td>number of TX antennas</td>
<td>2</td>
</tr>
<tr>
<td>tone spacing between antennas</td>
<td>$\Delta f_{\text{Ant}} = 1.19 \text{ MHz}$</td>
</tr>
<tr>
<td>bandwidth</td>
<td>$B = 100 \text{ MHz}$</td>
</tr>
<tr>
<td>maximum alias free delay</td>
<td>$\tau_{\text{max}} = 210 \text{ ns}$</td>
</tr>
<tr>
<td>transmit antennas</td>
<td>20 dBi conical horn</td>
</tr>
<tr>
<td>receive antenna</td>
<td>3/4 monopole</td>
</tr>
<tr>
<td>snapshot time</td>
<td>$T_{\text{snap}} = 178.07 \mu s$</td>
</tr>
<tr>
<td>maximum car speed</td>
<td>$v_{\text{max}} = 14 \text{ m s}^{-1}$</td>
</tr>
<tr>
<td>recording time</td>
<td>$T_{\text{rec}} = 3.6 \text{ s}$</td>
</tr>
</tbody>
</table>

V. MEASUREMENT EVALUATION

Frequency and time synchronization is performed utilizing the LOS component.

Frequency synchronization: The CFO between the oscillator of RX and TX is measured at standstill with a correlator before each measurement.

Coherent averaging: I/Q samples of the actual measurement with the car in motion are recorded. A frequency offset of the LOS due to Doppler plus CFO is estimated using correlators for each TX. We calculate the average received sounding sequence by applying a frequency offset correction and coherent averaging. The frequency correction, without the CFO, is reversed afterwards. For averaging, we use a rectangular window without overlap.

Time synchronization through LOS alignment: We estimate the propagation delay of the LOS component from the known distance between TXs at the light barrier position to the RX. Therefore, we adjust the delay of the LOS component accordingly.

We calculate estimates of the time-variant transfer function $H_i[t, f_i]$ similar to [7], where t is the time index $t = \{t_0, \ldots, t_{N_{\text{snap}}-1}\}$ of a snapshot and f_i are the frequency indices $f_i = \{f_i, 0, \ldots, f_i, K-1\}$ selected for the given TX i due to the interleaved multitone waveform. For a total recording time $T_{\text{rec}} = 3.6 \text{ s}$, the number of snapshots is $N_{\text{snap}} = 20 \text{ 275}$. As common for example in OTFS modulation [29], we characterize the channel in delay-Doppler domain using a symplectic finite Fourier transform (SFFT) on $H_i[t, f_i]$. We use a multitaper based estimator within an evaluation region of M samples in time and K samples in frequency. The employed tapers are discrete prolate spheroidal sequences [34] to allow averaging of multiple independent spectral estimates of the same measurement with confinement in time and frequency. Furthermore, this type of estimator leads to delay and Doppler confined estimates. This approach is known as local scattering function (LSF) [35]–[37]. We use three tapers in time domain and three tapers in frequency domain.

From the LSF, we derive the Doppler power spectral density (DSD) as explained in [35]. For evaluation of the LSF, we set the number of snapshots to $M = 360$ and number of frequencies to $K = 21$ which corresponds to an evaluation time of $T_{\text{eval}} = 64.3 \text{ ms}$ and bandwidth of $B_{\text{eval}} = 100 \text{ MHz}$. In Fig. 5 and Fig. 6 we show the DSD and the LSF over the recording time.

Formalism for a sparse representation of the channel: We use the SFFT to transform consecutive time-variant frequency responses $H_i[k, l]$ into a Doppler-variant impulse response $S_i[n, m]$ and vice versa with the inverse SFFT (ISFFT). We write $H_i[k, l]$ and $S_i[n, m]$ as matrix $H \in \mathbb{C}^{K \times M}$ and $S \in \mathbb{C}^{K \times M}$ respectively for each i. K is the number of frequency indices k and delay indices n, and M is the number of time indices l and Doppler indices m. Splitting up the ISFFT into a discrete Fourier transform (DFT) and an inverse DFT as in [38] leads to

$$H = F_K S F_M^H,$$

where the index of the DFT matrix F denotes the size of the DFT. Using the Kronecker product \otimes, we find the vectorization $\text{vec}(\cdot)$ of H as

$$h = (F_M^H \otimes F_K) s,$$

with $h = \text{vec}(H)$ and $s = \text{vec}(S)$. With the transfer matrix $A = (F_M^H \otimes F_K)$ and additive noise w, h is expressed as

$$h = As + w,$$

where we want to find a vector s which is a sparse representation of the measured channel. In this contribution a sparse fit is obtained with two different methods.

Largest peaks of LSF: We find a sparse fit through trivial two-dimensional peak search of the LSF and selection of the ten largest peaks.

Sparse fit using SBL: Moreover, we find a sparse representation of the channel h with the SBL algorithm in [26] as a solver. Based on F_K, we define a DFT matrix $F_K \in \mathbb{C}^{K \times 4K}$ for super-resolution in the delay domain by a factor of 4. This enhances the resolution of the estimation, which is given by the channel sounder’s sampling in frequency. The modified transfer matrix for the solver is then $A = F_M^H \otimes \tilde{F}_K \in \mathbb{C}^{KM \times 4KM}$, which leads to the model

$$h = \tilde{A} \hat{s} + w,$$

with $\hat{s} \in \mathbb{C}^{4KM}$, the resolution enhanced version of s. Instead of \hat{s}, SBL iteratively estimates the channel powers through the
variances $\gamma = [\gamma_1, \ldots, \gamma_{4KM}]^T$. Furthermore, each iteration in SBL estimates the noise variance based on active set selection using the P largest peaks in γ. We modify the one-dimensional selection in [26] for a two-dimensional peak selection in $\text{vec}^{-1}(\gamma) \in \mathbb{R}^{4K \times M}$ according to our delay-Doppler plane. For the SBL algorithm, we use the SBL1 variant in [26] and $P = 10$. Initial channel variances are $\gamma = [1, \ldots, 1]^T$ and initial noise variance is 0.1. Ten iterations are done.

VI. RESULTS

![Fig. 3. Our transmitter car passing through the measurement scenario. The car triggers the recording by passing the light barrier. Within the first second of the recording, additional multipath components (MPCs) exist due to a parked truck, which contribute to fading. Those MPCs no longer exist after the car passes the truck at 2 s. The car passes the receiver near 3 s.](image)

![Fig. 4. The receiver SNR per transmitter for the measurement example. Additional MPCs in the first third of the recording cause stronger fading for TX 0° and more SNR for TX 15°. Both TXs show similar SNR in the second third because fading is dominated by two signal paths. In the last third, the elevated TX 15° shows a short soar in SNR compared to TX 0° due to the spatial filtering. The SNR drops quickly for both TXs as the car approaches the area below the receiver.](image)

As an example, we show a measurement in Fig. 3 with the transmitter car passing through the whole measurement scenario at constant speed. The recording is triggered when the car passes the light barrier 41 m before the RX position. The car continues towards the crossroads without stopping at the green traffic light and then passes the RX. The SNR at the RX is shown in Fig. 4. Fading is different for both TX antennas.

Fading through MPCs in the first third of the recording is due to a parked truck. In the second third, fading is equal for both TX antennas because only two dominant signal paths exist. As the car passes the RX, SNR decreases first for the horizontal beam and later for the elevated beam due to spatial filtering. The Doppler power spectral density is shown in Fig. 5 with a dominant LOS component. The elevated beam shows fewer MPCs due to spatial filtering of the street level. For both antenna elevations, a LOS component with Doppler shift of more than 2.5 kHz is visible at 0 s. As the car approaches the RX, Doppler shift of the LOS component decreases towards negative frequencies.

The measured V2I wireless channels in an urban environment are dominated by one cluster in the delay-Doppler domain. In a communication system, this allows for easy compensation for delay and Doppler shifts of the whole cluster, and enables the design of low-complexity receivers. This type of channel is especially suitable for OTFS modulation. Both considered beam elevations of the antennas at the car’s roof have only a weak impact on the V2I channel in delay-Doppler domain. However, the elevated beam is less subject to fading due to weaker illumination of the street level. SBL is able to find a sparse representation of the measured channel, which agrees with results from the LSF, and reveals additional MPCs.

VII. CONCLUSION

The measured V2I wireless channels in an urban environment are dominated by one cluster in the delay-Doppler domain. In a communication system, this allows for easy compensation for delay and Doppler shifts of the whole cluster, and enables the design of low-complexity receivers. This type of channel is especially suitable for OTFS modulation. Both considered beam elevations of the antennas at the car’s roof have only a weak impact on the V2I channel in delay-Doppler domain. However, the elevated beam is less subject to fading due to weaker illumination of the street level. SBL is able to find a sparse representation of the measured channel, which agrees with results from the LSF, and reveals additional MPCs.
Fig. 6. Spreading of channel power in the delay-Doppler domain for each transmitter. The delay is with respect to the LOS component. The ten largest peaks are shown as blue circles for the local scattering function (LSF), and red circles for the sparse Bayesian learning (SBL) results based on ten iterations. The wireless channel is dominated by a single cluster in the delay-Doppler domain at the LOS component. The SBL results agree with the largest peaks of the LSFs. Two strong paths with equal Doppler but different delay are resolved by SBL, e.g. at 2.6 s recording time.
REFERENCES

