
Western University
Scholarship@Western

Electronic Thesis and Dissertation Repository

September 2019

The Hydrodynamics and Heat Transfer of
Impinging Jet Flow and Circular Hydraulic Jump
Yunpeng Wang
The University of Western Ontario

Supervisor
Khayat, Roger E
The University of Western Ontario

Graduate Program in Mechanical and Materials Engineering

A thesis submitted in partial fulfillment of the requirements for the degree in Doctor of Philosophy

© Yunpeng Wang 2019

Follow this and additional works at: https://ir.lib.uwo.ca/etd
Part of the Applied Mechanics Commons

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis
and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

Recommended Citation
Wang, Yunpeng, "The Hydrodynamics and Heat Transfer of Impinging Jet Flow and Circular Hydraulic Jump" (2019). Electronic Thesis
and Dissertation Repository. 6526.
https://ir.lib.uwo.ca/etd/6526

https://ir.lib.uwo.ca/?utm_source=ir.lib.uwo.ca%2Fetd%2F6526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6526&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/295?utm_source=ir.lib.uwo.ca%2Fetd%2F6526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6526?utm_source=ir.lib.uwo.ca%2Fetd%2F6526&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca


ii 

 

Abstract 

The laminar axisymmetric flow and heat transfer of a circular impinging jet and hydraulic 

jump on a solid surface is analyzed theoretically using boundary-layer and thin-film 

approaches. Liquid jet impingement features many applications such as jet rinsing, jet 

cooling, liquid atomization and chemical reactors. The associated hydraulic jump 

dramatically affects the performance of the heat and mass transfer in such applications. In the 

current thesis, the effects of inertia, surface tension, surface rotation, gravity and heat transfer 

are comprehensively explored for impinging jet flow and the formation of hydraulic jump. 

The boundary-layer heights and film thickness are found to diminish with inertia. The wall 

shear stress is found to decrease with radial distance for on a stationary impingement surface 

but can increase for a rotary surface for large rotation speeds. When the surface is in rotation, 

a maximum liquid thickness occurs, reflecting the competition between inertia and rotation 

effects. The location of the hydraulic jump is determined for both low- and high-viscosity 

liquids. For low-viscosity liquid, the location of the jump is determined subject to the 

thickness near the trailing edge under static condition, reflecting the importance of surface 

tension. For high-viscosity liquids, the jump coincides with a singularity caused by gravity in 

the thin-film equation when surface tension is neglected. Downstream of the hydraulic jump, 

the recent finding of a constant ‘jump Froude number’ is also justified. 

The heat transfer analysis of impinging jet flow involves a two-way coupling due to the 

temperature-dependent viscosity and surface tension. To consider this non-linear coupling 

which is largely missing in the existing theoretical approaches, we develop a simple and 

iteration-free model, making exploring the influence of heat transfer on the flow field and the 

hydraulic jump feasible theoretically. Both the hydrodynamic and thermal boundary layers 

are found to decrease with a higher heat input at the solid surface. Enhanced heating is also 

found to push the hydraulic jump in the downstream direction. The Marangoni stress causes 

the hydraulic jump to occur earlier. The hydraulic jump leads to shock-type drops in the 

Nusselt number, confirming previous findings in the literature. 

 



 

iii 

 

Keywords 

impinging jet, impinging jet heat transfer, thermal fluid, hydraulic jump, surface tension, 

free-surface flow, rotating flow, two-way coupling 

Summary for Lay Audience 

The current thesis presents a theoretical analysis on the flow and heat transfer of a column of 

liquid impacting a solid surface which is known as the impinging jet flow. Impinging flow is 

encountered in many applications such as jet rinsing, industrial cooling, combustion engine 

cooling, liquid atomization and chemical reactors. For impinging jet flow, the hydraulic jump 

is an abrupt increase in the depth of the liquid layer which can be daily observed at the 

bottom of a kitchen sink in tap water flow. The hydraulic jump can significantly affect the 

performance of the associated applications. It is not surprising that hydraulic jump moves 

further away from the impingement point for a larger speed of the incoming jet. But the 

quantitative dependence of jump location on the flow rate, including the heat transfer 

character, is still not completely settled due to complexity of fluid flow.  For low-viscosity 

liquid, we find that surface tension is important on the location of the jump. But for a high-

viscosity liquid, it turns out that gravity is more dominant on the hydraulic jump. It is also 

found that rotation of the solid surface can push the hydraulic jump further away from the 

impingement point. In the heat transfer analysis of impinging jet flow in cooling applications, 

the viscosity of a liquid depends on the temperature. However, this dependence is largely 

neglected in existing theoretical analyses due to the mathematical difficulty. In this regard, 

we develop a simple and efficient model that can incorporate this dependence so that heat 

transfer and flow field can be more accurately calculated. The current results show that a 

higher heat input from the solid surface can push the hydraulic jump further away. In 

addition to the hydraulic jump, the important features of the flow field and heat transfer are 

comprehensively presented in the thesis. For validation, our quantitative predictions are 

compared with existing measurements and good agreements are achieved. 
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z vertical coordinate, dimensionless 

ẑ  Vertical coordinate, m 

Greek Symbols 

  Dimensionless parameter, 1/3 2Re Fr  

  Surface tension, dimensionless 

̂  Surface tension (variable), 1N m−  

0  Surface tension (constant), 1N m−  

  Hydrodynamic boundary layer thickness, dimensionless 

  Rescaled hydrodynamic boundary layer thickness, dimensionless 
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T  Thermal boundary layer thickness, dimensionless 
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  Perturbation parameter, dimensionless 

  Scaled vertical coordinate, z / h  

  Mapped vertical coordinate, z / h  

  azimuthal coordinate 

Y  Static contact angle 

  Thermal diffusivity, 2 1m s−  

  Kinematic viscosity, dimensionless 

̂  Kinematic viscosity (variable), 2 1m s−  

0  Kinematic viscosity (constant), 2 1m s−  

  Mapped radial coordinate (equal to r ) 
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max  Maximum hydrodynamic boundary layer thickness location, dimensionless  

w  Wall shear stress, dimensionless 

  Rotating speed, 1s−  

  Rotation parameter, 3a / Q   
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Chapter 1  

1 Introduction 

The circular impinging jet flow and hydraulic jump will be introduced including the 

applications, practical relevance and analogies to other physical phenomena. The major 

theoretical tools and theories are then introduced followed by an introduction to the 

existing literatures on the hydrodynamics and heat transfer of impinging jet flow and 

circular hydraulic jump. The objectives and thesis outline are given at the end of the 

chapter. 

1.1 Background and applications 

When a circular liquid jet impacts a solid surface, it spreads out radially as a thin film. 

The thickness of the liquid develops gradually until reaching a radial location where the 

height of the liquid rises abruptly as illustrated in Figure 1-1a. The sudden increase of the 

liquid depth is known as the circular hydraulic jump that can be daily observed when the 

tap water hits the bottom of a kitchen sink (Figure 1-1b). The region before the hydraulic 

jump is formally known as the supercritical region characterized by having high velocity. 

In the post-jump field, known as the subcritical region, the velocity of the liquid 

significantly drops due to the sudden increase of the liquid depth.  

 

Figure 1-1: Schematic illustration of impinging liquid jet and a circular hydraulic 

jump. 
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It is worth noting that the hydraulic jump can also occur on a much larger scale and non-

circular shape, which is generally known as planar jump. The planar hydraulic jump 

usually occurs when a fast discharging flow meets a slowly moving stream or an 

obstacle. Figure 1-2 illustrates a 2-D hydraulic jump in a discharging flow from a dam. 

For both circular and planar hydraulic jumps, a depth Froude number can be defined as 

h
V

Fr ,
ˆgh

=           (1.1.1) 

with V  being the flow velocity, g the gravitational acceleration and ĥ  the depth of the 

liquid. In the current thesis, a hat is used to denote a dimensional variable or parameter 

when necessary. The supercritical flow is characterized by having hFr 1  while the 

subcritical flow has hFr 1  (Crowe 2009). 

 

Figure 1-2: Planar hydraulic jump. 

Introductions to planar hydraulic jump can be found in undergraduate textbooks on fluid 

mechanics or open-channel flows. This type of hydraulic jump is often artificially created 

by engineers to dissipate energy below spillways and discharging outlets. A proper 

design can destruct large amounts of energy and reduce the scouring and damage to the 

channel bed. For this reason, there is extensive research on the planar hydraulic jump. 

However, the focus of the current thesis will be on the circular hydraulic jump. 

The circular hydraulic jump was first described by Leonardo da Vinci in the 1500s in one 

of his paintings and it is intriguing to find that such a common and simple-looking 
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phenomenon is still far from being fully understood today after such a long time of 

research and hundreds of publications. Based on the observation of Bush et al. (2006), 

there are three basic types of circular hydraulic jump as illustrated by Figure 1-3. In the 

absence of downstream obstacle, the height of the jump is relatively small and there is 

only a separation roller downstream of the jump. This is the standard hydraulic jump 

known as the type I jump (Figure 1-3a). If the downstream depth is increased by 

mounting an obstacle, a second roller near the free surface will appear as some of the 

liquid falls back on the coming flow from the supercritical region, which features a type 

IIa jump (Figure 1-3b). If the downstream depth increases further, the type IIa jump 

transforms into a type IIb jump (Figure 1-3c) marked by having a ‘double-jump’ 

structure. The current thesis focuses only on the standard type I jump. 

 

Figure 1-3: Different types of circular hydraulic jump. 

Before giving a detailed introduction and discussing outstanding issues, it is important to 

discuss first some of the many applications of impinging jet flow and heat transfer, and 

the practical relevance of the hydraulic jump to engineers and scientists. Apart from its 

common use as rinsing flow in many applications (Hsu et al. 2011; Walker et al. 2012), 
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the impinging jet flow is important in numerous industrial cooling applications. For 

example, liquid jet impingement is the major cooling method in machining process, 

where the cutting liquid (coolant) is directed to impinge at the target area to control the 

local temperature which affects significantly the mechanical properties of the product 

(DBMR 2019). Liquid oil jet cooling is also used in the car engine’s piston room 

(Melaniff 2003), on the other side of which is the combustion chamber where a large 

amount of heat is generated. A proper design of the cooling system helps to avoid the 

overheating the piston and its accessories. In addition, liquid jet impingement is always 

used in the jet quenching and jet cooling process in the heat treatment of steel and hot 

strip rolling production lines (Linz 2011). 

The impingement target can also be a rotating surface, for which a common application is 

the spinning disk reactor (SDR) for chemical reactions (Reay 2013). Usually one or more 

liquids can be fed at the centre of a rotating disk which can be either cooled or heated. 

The liquid spreads over the disc (and mixes if more than one liquid is present) and the 

produced liquids are collected from the outlet. The intensity of mixing, heat and mass 

transfer rate can be precisely controlled by adjusting the rotating speed. Moreover, by 

rotation, the liquid layer can be made ultra thin, providing good characteristics for iso-

thermal heating, chemical reaction and liquid atomization. 

Recently, micro electronic devices became increasingly popular and compact power 

modules are widely used in varieties of power control and conversion applications with 

increasing trends in the operating voltage and current (Bhunia et al. 2007). Consequently, 

temperature control of such high-thermal-density systems becomes quite challenging. In 

this case, traditional air fan cooling of electronic devices often falls short, begging more 

efficient liquid cooling systems. In recent decades, increasing attention has been drawn to 

the high performance of liquid jet cooling on electronic devices, making crucial the 

understanding of the hydrodynamics and heat transfer of liquid jet spreading. 

The hydraulic jump is a phenomenon often encountered in impinging jet flow, except for 

high-speed jets. The fast motion of a liquid inside the jump provides a high rate of heat 

and mass transfer as well as a large shear stress, whereas the low velocity in the 
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subcritical region (downstream of the jump), caused by the hydraulic jump, dramatically 

harms the performance (Mohajer & Li 2015). Consequently, the prediction of the jump 

location (radius) is crucial in the design of relevant processes. 

Apart from the direct relevance to practical applications, the problem is also of scientific 

interest, particularly the understanding of the transition from the supercritical to the 

subcritical flow along free surface flow. Due to its fundamental and practical importance, 

circular jet impingement and hydraulic jump has become the focuses of many studies in 

the recent decades. 

Before discussing existing theories and methodologies, there are two interesting 

analogies of the circular hydraulic jump worth discussing. The first one is the analogy to 

a white hole (the reverse of a black hole), which is a hypothetical region that light wave 

cannot enter but can always escape from. As mentioned above, hFr  is greater than 1 in 

the supercritical region so that ˆV gh , where ˆgh  is the speed of the shallow-water 

wave (Kundu et al. 2016). Consequently, the flow is faster than the shallow-water wave 

in the supercritical region. In this case, the wave can only travel downstream. In the 

subcritical region, however, the wave can travel in both directions as hFr  is smaller than 

1. In this sense, the region upstream of the hydraulic jump can be viewed as a 

hydrodynamic white hole since the wave is always trapped outside (Jannes et al. 2011).  

The second analogy of the circular hydraulic jump is the similarity to the transition from 

supersonic to subsonic flow in aerodynamics. The Mach number is defined by 

c

V
M ,

V
=           (1.1.2) 

with V being the velocity of an object and cV  being the speed of sound. If an object is 

traveling with a speed greater than the speed of sound (e.g. a supersonic jet), the air 

around the object will experience a transition from the supersonic (M > 1) to the subsonic 

state (M < 1). Therefore the circular hydraulic jump can be an important tool to study 

other problems involving transition effects. 
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1.2 Modeling of the flow and thermal fields of a spreading 
jet and a circular hydraulic jump 

The dimensionless numbers associated with the flow and thermal field in the impinging 

jet problem will be first introduced. The major theories and assumptions are then 

discussed followed by the introduction of the theoretical tools in the current thesis. 

1.2.1 Dimensionless numbers 

Dimensionless numbers are important parameters in the similarity analysis of 

hydrodynamic and thermal systems. We have already defined two dimensionless 

numbers as per Equations (1.1.1) and (1.1.2). In fact, for any problem of viscous flow, the 

first important dimensionless number is the Reynolds number, which is defined in the 

current thesis by 

0

Q
Re ,

a
=
 

          (1.2.1) 

with Q, a and 0  being the incoming volume flow rate, the jet radius and the kinematic 

viscosity, respectively. The Reynolds number reflects the strength of the inertial over the 

viscous effects or the strength of the convective momentum transfer to the diffusive 

momentum transfer. 

When heat transfer is involved, it is always convenient to introduce the Peclet number, 

defined by 

Q
Pe ,

a
=
 

          (1.2.2) 

where   is the thermal diffusivity, defined by 

p

k
,

C
 =


          (1.2.3) 
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with k,   and pC  being the thermal conductivity, density and specific heat respectively. 

By analogy, the Peclet number can be viewed as the counterpart of the Reynolds number 

as it reflects the strength of convective heat transfer over conductive heat transfer. The 

ratio of Peclet number to Reynolds number defines the Prandtl number, namely 

0Pr ,


=


          (1.2.4) 

which reflects the ratio of viscous diffusion to thermal diffusion. The Prandtl number is 

generally greater than 1 for non-metallic liquids but smaller than 1 for liquid metals. 

In thermal convection, another important dimensionless number characterising the heat 

transfer performance is the Nusselt number, defined by 

( )
w

w 0

q̂ a
Nu ,

ˆ ˆk T T
=

−
         (1.2.5) 

with wq̂  being the wall heat flux, wT̂  being the wall temperature and 0T̂  being the jet 

temperature. 

It should be noted that only some important dimensionless number are introduced here 

for convenience of discussion in the current chapter. Other dimensionless numbers will 

be introduced in later chapters when needed. 

1.2.2 Boundary layer theory and the thin-film approach 

The laminar boundary layer equations for axisymmetric flow and heat transfer can be 

written as 

ˆ ˆ ˆu u w
0,

ˆ ˆ ˆr r z

 
+ + =

 
        (1.2.6a) 

2

0 2

ˆˆ ˆ ˆu u 1 p u
ˆ ˆu v ,

ˆ ˆˆr z r ẑ

    
+ = − + 

     
      (1.2.6b) 
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2

0 2

ˆ ˆ ˆ ˆ ˆv v uv v
ˆ ˆu w ,

ˆ ˆˆr z r ẑ

  
+ + = 

  
       (1.2.6c) 

ˆ1 p
g 0,

ŷ


− + =
 

        (1.2.6d) 

2

2

ˆ ˆ ˆT T T
ˆ ˆu v ,

ˆ ˆr z ẑ

   
+ =  

   
       (1.2.6e) 

Here a hat denotes a dimensional variable. û , v̂  and ŵ  are the velocities in r̂ , ̂  and ẑ  

directions. p̂  and T̂  are the flow pressure and temperature. 0,g,   and   are physical 

parameters representing the density, gravitational acceleration, kinematic viscosity and 

thermal diffusivity respectively. As the flow is assumed to be axisymmetric, azimuthal 

dependence on the tangential coordinate is not involved. 

In fluid dynamics, the main idea behind the boundary layer theory is that the effect of 

viscosity is only important within a thin layer of fluid in the immediate vicinity of a solid 

boundary (Prandtl 1904), especially at moderate to large flow rate (i.e. a large Reynolds 

number). Therefore, the boundary layer is in nature a viscous layer, outside of which the 

fluid is of inviscid character as illustrated by Figure 1-4a. It is worth noting that there is 

no clear-cut border between the viscous and the inviscid regions. It is generally 

acceptable that the upper edge of the boundary layer can be defined at the position where 

the velocity approaches 99% of the free stream velocity (Schlichtling & Gersten 2000) 

where the velocity gradient is negligibly small. It is also noted that, even inside the 

boundary layer region, the velocity gradient is the largest at the wall and continuously 

decreases until it almost vanishes near the edge of the boundary layer. 

Particularly for the boundary layer on a flat plate, it is observed that the streamwise 

velocity varies much slower along the plate than in the direction normal to it according to 

a scaling analysis of the Navier-Stokes equations (Schlichtling & Gersten 2000, see also 

Appendix A). This theory in fact constitutes the leading order solution of a matched 

asymptotic expansion analysis for the whole flow field. Higher order boundary layers are 
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not of concern in the current thesis and interested readers are referred to the works of Van 

Dyke (1964) and Sobey (2000). 

While the general boundary layer is bounded by the same fluid, the thin-film theory is 

specifically applicable to the flow of a thin liquid layer on a solid surface, characterised 

by having a liquid-air interface, known as the free-surface thin-film flow, as shown in 

Figure 1-4b. The velocity distribution within the thin liquid film is also of the boundary-

layer type. As the air has a much smaller viscosity compared to the liquid, the velocity 

gradient and thus the shear stress of the liquid near the free surface is also negligible. A 

pressure boundary condition is generally obtained at the liquid-air interface based on the 

air pressure (and surface tension when a large surface curvature is present). In the present 

thesis, the boundary-layer equations and the thin-film theory constitute the major 

assumptions of the theoretical analysis. 

 

Figure 1-4: Boundary-layer and thin-film flow. 

1.2.3 The Kármán–Pohlhausen (K–P) approach 

One important observation regarding Equations (1.2.6) is that the partial derivatives with 

respect to the radial coordinate are of first order. This is not surprising since the large 

velocity (Reynolds number) makes the flow a one-way problem (i.e. only one boundary 

condition is needed) in the streamwise direction. The boundary-layer equations admit an 

exact solution in the absence of transverse pressure gradient (Watson 1964; Schlichtling 

& Gersten 2000). Therefore, it is also not surprising that an exact solution would not exist 

in the presence of a hydrostatic pressure. Consequently, the convenient Kármán–
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Pohlhausen (K–P) approach will be adopted due to its proven efficiency and accuracy 

(Schlichtling & Gersten 2000). 

The K-P approach is, to the best of the author’s knowledge, the earliest and still the most 

widely used method for solving the boundary layer equations, originally due to the works 

of Kármán (1921) and Pohlhausen (1921). It is essentially an integration of the boundary-

layer equations between the solid surface and the upper edge of the boundary layer or the 

free surface. By approximating the velocity profile, the boundary-layer thickness, film 

thickness and wall shear stress can be obtained. In fact, the K-P approach can also be 

understood from a numerical point of view as illustrated in Figure 1-5. 

 

Figure 1-5: A numerical view of the K-P approach. 

In a formal numerical method, the discretization (and meshing) in both the horizontal and 

the vertical direction are necessary. However, with the K-P approach, the discretization in 

the vertical direction is eliminated by imposing a certain profile for velocity distribution. 

The profile is designed as to satisfy the physical boundary conditions and mass 

conservation. This is equivalently to deploying one layer of mesh cells (Figure 1-5) with 

variable heights of each control volume. Then the solution can be obtained by an 

integration in the horizontal direction, which either admits an analytical solution or can 

be accurately obtained with a high-order Runge-Kutta method. It should be noted that the 
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boundary-layer equations and the K-P method are equally applicable to the energy 

equation and heat transfer problems as will be discussed in later chapters. 

1.2.4 Momentum-force relation across the hydraulic jump 

From many aspects in the studies of hydraulic jump, predicting its location is 

undoubtedly the most important aspect and is still an open issue due to its influence on 

the heat and mass transfer performance. Therefore, understanding the changes in velocity 

and pressure before and after the jump is crucial to compute the hydraulic jump profile 

and predict its location. The basic relation to use is derived from Newton’s second law 

that the rate of change of linear momentum equals to the total applied force in the 

direction of interest. In the current problem, the rate of destruction of momentum across 

the jump equals the reverse hydrostatic pressure force due to the jump in depth (Crowe 

2009). To demonstrate this method, a control volume of angle   across the jump is 

taken as shown in Figure 1-6a. Assuming inviscid flow for convenience for now, the 

relation per unit circumferential length between the velocity and pressure is given by 

( )2 2 2 1 1 1 1 1 2 2 0
ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆu h u u h u p h p h f , − = − +       (1.2.7) 

 

Figure 1-6: A schematic view of the control volume across the hydraulic jump: (a) 3-

dimensional view; (b) axisymmetric view. 
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where û , p̂  and ĥ  are the velocity, the average hydrostatic pressure and the height of the 

cross sections before and after the jump. It should be emphasized that for a viscous 

liquid, the left-hand-side of Equation (1.2.7) should be an integration over the cross 

section of the liquid as the velocity varies in the vertical direction. The viscous force at 

the bottom surface will be neglected anyway as the width of the jump is negligibly small 

(Watson 1964; Prince et al. 2012). Based on Equation (1.2.7), the hydrodynamic 

character on one side of the jump can be determined if the information on the other side 

is known. The additional term ( )0f   represents the force per unit circumferential length 

due to surface tension in the presence of large curvature (i.e. small jump radius) 

exclusively for circular jumps. We here give a brief derivation below for this additional 

term. 

Considering the shape of the jump in the axisymmetric plane as illustrated in Figure 1-6b, 

we write the force per unit circumferential length due to surface tension as 

( ) ( )( )0 0A
J

1
f dA,

r̂
 =  

 
n n r        (1.2.8) 

where Ĵr  is the radius of the jump, A is the area of the free surface within the control 

volume, 2ˆˆ ˆdA rd dr 1 h '=  +  and 1 2
ˆ ˆˆR r R  . Here a prime denotes a total 

differentiation. It should be noted that ĥ ' 0  at 1
ˆr̂ R=  and 2

ˆr̂ R= . The free surface is 

defined by ( ) ( )ˆˆ ˆˆ ˆH r,z z h r 0= − = , so that the outward unit surface normal can be written 

as 

2 2

ˆH h ' 1
, .

H ˆ ˆ1 h ' 1 h '

 
 − = =

  + + 

n        (1.2.9) 

Upon using Equation (1.2.9), the force due to surface tension, as per Equation (1.2.8), 

finally takes the following form 
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( )
R̂ˆ 2R2

2 20
0

R̂J ˆ1 R1

ˆ ˆˆ ˆf r 1 h ' 1 h ' dr .
r̂

 
   = + − +

  
 

     (1.2.10) 

It is not difficult to realize that the second term in Equation (1.2.10) represents the total 

arclength s of the free surface in the axisymmetric plane between 1
ˆr̂ R=  and 2

ˆr̂ R= . In 

this case, for a sharp jump, the first term vanishes since at 1 2
ˆ ˆR R= , and the second term 

becomes 2 1
ˆ ˆh h− . Therefore, 

( ) ( )0
0 2 1

J

ˆ ˆf h h ,
r̂


 = − −        (1.2.11) 

Equations (1.2.10) and (1.2.11) were first derived by Bush & Aristoff (2003). In fact, for 

a sharp jump, Equation (1.2.11) can be directly obtained by analysing the pressure jump 

across the cylindrical surface of radius Ĵr  and length ( )2 1
ˆ ˆh h−  . 

1.3 Literature review 

In this section, the existing studies relevant to the hydrodynamics and heat transfer of an 

impinging jet and hydraulic jump are introduced. The advantages and limitations of these 

works are also discussed. 

1.3.1 The hydrodynamics of the impinging jet and circular 
hydraulic jump 

Two major branches of studies exist on the circular impinging jet and hydraulic jump. To 

start with, it is natural to expect that the height after the jump should have a tangible 

effect on the location of the jump. In other words, a larger subcritical depth would result 

in a smaller jump radius due to the larger reverse hydrostatic pressure gradient at the 

jump. The first major contribution to the prediction of the circular hydraulic jump 

structure based on this idea is due to Watson (1964). In his work on the liquid jet 

spreading on a horizontal plate, Watson assumed that a boundary layer develops near the 

impingement point and grows until reaching the free surface at some transition location 
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(not the jump location) making the liquid layer fully-viscous. The thickness of the 

boundary layer is determined by the K-P approach and the fully-viscous region is solved 

by a similarity transformation method (Watson 1964). In the fully-viscous region, the 

film thickness continues to grow until reaching the hydraulic jump. Gravity was 

neglected in the supercritical region due to the small liquid thickness. Assuming the 

height of the liquid after the jump is known, the location of the jump was obtained using 

the force and momentum balance approach as discussed in Section 1.2.4. Watson (1964) 

made an approximation that the velocity is uniform across the subcritical depth due to the 

slow motion of the liquid. 

Watson’s (1964) approach yielded a reasonably good agreement with his own 

experiments on the location of the jump. In his experiment, the subcritical thickness is 

controlled by barrier downstream. Olsson & Turkdogan (1966) carried out experimental 

measurements on the free-surface velocity by dropping small corps on the surface of the 

liquid and taking photos using a high-speed camera. They found that the free-surface 

velocity is about 10% lower than the free stream velocity predicted by Watson (1964). In 

contrast, the experiments of Azuma & Hoshino (1984a,b) did support the theory of 

Watson (1964). It should be noted that, in the measurements of Olsson & Turkdogan 

(1966), it was not evident that those corps would accurately follow the speed of the free 

surface (Liu et al. 1991). Watson’s theory was later also tested by Errico (1986), Vasista 

(1989), Stevens & Webb (1992), Liu & Lienhard (1993), Bush & Aristoff (2003) and 

Baonga et al. (2006). It was observed that Watson’s prediction is generally satisfying for 

a large jump radius. Liu & Lienhard (1993) observed that Watson’s predictions are least 

satisfactory in the limit of relatively small jump radius for which surface tension effect 

becomes important. In this regard, Bush & Aristoff (2003) included the surface tension 

effect in the force and momentum balance relation, leading to a better agreement with 

experiment. 

Watson’s method laid out the foundation for numerous later extensions. Craik et al. 

(1981) observed a separation eddy precisely behind the hydraulic jump and attributed the 

cause of hydraulic jump to flow separation caused by the subcritical depth. Kate et al. 

(2007) experimentally studied the formation of the hydraulic jump on an inclined plane. 
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They observed that the hydraulic jump is bounded by a smooth curve or a curve with 

sharp corners depending on the inclination angle. Zhao & Khayat (2008) extended 

Watson’s theory to non-Newtonian liquids for both shear-thinning and shear-thickening 

fluids of the power-law type, and found that only the overall viscosity influences the 

location of the hydraulic jump. The influence of slip was examined by Dressaire et al. 

(2010) with a combination of experiment and theoretical analysis but no quantitative 

relation between the slip length and the hydraulic jump was given. Later the effect of slip 

was also examined by Prince et al. (2012, 2014) using a K-P approach, and by Khayat 

(2016) using a numerical approach. Both Prince et al. (2012, 2014) and Khayat (2016) 

observed that the location of the jump moves downstream for a larger slip length. The 

influence of the nozzle-to-disk distance on the hydraulic jump radius was investigated 

experimentally by Brechet & Neda (1999), who observed that the nozzle-to-disk distance 

has little influence on the jump location. Kuraan et al. (2017) however in their 

experiments found that when the ratio of nozzle-to-disk distance to the nozzle diameter is 

less than 0.4, the radius of the hydraulic jump increases. 

It is worth noting that the relation between the momentum and the force across the jump 

requires the knowledge of the height immediately downstream of the jump, which is 

usually artificially fixed by mounting a barrier downstream (Watson 1964; Bush & 

Aristoff 2003; Prince et al. 2012, 2014; Zhao & Khayat 2008; Khayat 2016). In fact, such 

barriers can give rise to both type I and type II jumps depending on the subcritical height 

(see Section 1.1). In practical applications, however, the target surface is often free of 

such controlled height and the flow is often allowed to drain freely at some edge far away 

from the impingement point. Therefore, the jump is most likely of type I. This constitutes 

the major drawback of Watson’s approach that the downstream depth has to be 

prescribed. Another consideration is that the velocity of the flow after the jump was 

assumed to be uniform (i.e. inviscid) across the liquid depth in most of these studies, but 

the fluid is viscous in reality (Duchesne et al. 2014). 

The other branch of studies initially began with the theoretical approach of Tani (1949), 

which assumes that the flow separation (and thus the hydraulic jump) is caused by the 

accumulating liquid thickness from the supercritical region, which explains the 
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occurrence of type I jump without a downstream confinement. Taking guidance from the 

pioneering work of Tani (1949), Bohr et al. (1993) incorporated the hydrostatic pressure 

in the shallow-water equations, and, by averaging the axisymmetric Navier–Stokes 

equations in the vertical direction, they obtained an ordinary differential equation for the 

average velocity. They found that the average velocity can exhibit a singularity at some 

finite distance, indicating a potential separation. They argued that the jump location is 

close to the singularity point of their averaged equation, and deduced that the jump radius 

scales as 5/8 3/8 1/8
0Q g− − , where Q is the flow rate, 0  is the kinematic viscosity and g 

is the acceleration due to gravity. The scaling constant depends on the velocity profile of 

choice. In their scaling law however, the radius of the jump depends only on the overall 

flow rate, not on the specific impinging velocity. The results of Bohr et al. (1993) predict 

well the trend from experiment but also shows some discrepancy quantitatively. In 

addition, their scaling cannot yield the shape of the jump. Later, Bohr et al. (1997) and 

Watanabe et al. (2003) adopted a non-self-similar velocity that allowed them to predict 

the shape of the jump. However, two experimental points are needed in their solution to 

fix the boundary conditions. Also, those two points must be close to the jump, otherwise 

would drive the solution to unstable states. Therefore, some prior knowledge of the jump 

location is required. More importantly, as the boundary-layer equations do not strictly 

hold across the jump, the validity of their solution is questionable. Kasimov (2008) 

modified the formulation of Bohr et al. (1993) by adding surface tension effect and 

incorporating a falling edge of the plate. However, no comparison against experiment 

was reported. 

Gajjar & Smith (1983) showed the relevance of hydraulic jump to the hypersonic 

separation/free interaction problem and concluded that viscous-inviscid interaction is the 

cause of hydraulic jump. They also showed that it is only in a viscous sub-sublayer where 

the flow reacts to the reverse hydrostatic pressure gradient and separates. Bowles & 

Smith (1992) analyzed the hydraulic jump caused by a bump using the ‘viscous-inviscid 

interaction’ theory and achieved a good agreement with the measured jump profile of 

Craik et al. (1981). They showed that the hydraulic jumps are due to the flow separation 

caused by a viscous-inviscid interaction resulted from downstream conditions (at locally 
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large but globally small Froude number). They also proposed that the hydraulic jump is 

governed by surface tension and viscosity upstream, and viscosity and hydrostatic 

pressure gradient downstream. Higuera (1994) numerically solved the location and 

structure of the planar jump using boundary-layer approach. The boundary condition was 

near the edge was fixed by matching the downstream flow with the flow that turns around 

the trailing edge under gravity. Later Higuera (1997) also extended his work to the 

circular case for the flow entering the jump for large values of Reynolds number and 

Froude number. The reader is also referred to the work of Scheichl (2018, 2019) for the 

case of a rotating disk using asymptotic and numerical analysis. 

The recent measurements of Duchesne et al. (2014) indicate that, for a steady hydraulic 

jump, the flow in the subcritical region is essentially of the lubrication type. More 

importantly, they found a constant jump Froude number based on the jump height and the 

depth-averaged velocity downstream of the jump. The constancy reflects the 

independence of the flow rate and a weak dependence on other parameters. With this 

jump Froude number, they deduced that the location of the hydraulic jump can be fully 

determined using the lubrication flow from downstream given the liquid thickness near 

the plate’s trailing edge. They also observed that the thickness near the trailing edge is 

almost constant with a weak dependence on the incoming flow rate. Therefore, its value 

can be taken from experiment for a given liquid. However, the mechanism behind the 

constant jump Froude number is unknown according to Duchesne et al. (2014). More 

recently, the measurements of Mohajer & Li (2015) indeed supported the claim of 

Duchesne et al. (2014), but they found that the jump Froude number is not independent 

of the surface tension. In the current thesis, the constancy of the jump Froude number 

will be justified in multiple ways for both low- and high-viscosity liquids. 

Most of the hydraulic jumps considered in the literature are steady, and the current thesis 

will also focus on the steady hydraulic jump. Nevertheless, the hydraulic jump can 

become unstable as well. Craik et al. (1981) reported the instability of circular hydraulic 

jump and showed that the jump becomes unstable once the Reynolds number 

immediately upstream of the jump exceeds a critical value. A growth of the separation 

eddy downstream of the jump was also observed prior to the instability. Ellegaard et al. 



18 

 

(1998) observed that the axial symmetry breaks after the jump becomes unstable. Stable 

polygonal jumps may form after the instability occurs. Bush et al. (2006) confirmed the 

findings of Ellegaard et al. (1998) with experiment and highlighted the influence of 

surface tension in causing the polygonal hydraulic jump. Kasimov (2008) also studied the 

influence of surface tension on the stability of the hydraulic jump, and found that a steady 

jump may not exist at high surface tension. The polygonal regime was recently examined 

theoretically by Martens et al. (2012) and numerically by Rojas & Tirapegui (2015). 

Experimental work was also reported by Teymourtash & Mokhlesi (2015). 

Numerical predictions on the formation of hydraulic jump were not so many in the 

literature. Ellegaard et al. (1996) studied the flow separation under the hydraulic jump. 

To circumvent the difficulties caused by the unknown free surface, they replaced the 

liquid-air interface by a fixed, but stress-free boundary at prescribed locations based on 

experiment. In other words, they imposed the free surface profile and only solved for the 

flow. As expected, the flow separation was captured behind the hydraulic jump due to the 

strong reverse pressure gradient. Passandideh-Fard et al. (2011) proposed a numerical 

approach to compute the hydraulic jump using the volume-of-fluid approach (Hirt & 

Nichols 1981). The location of the jump was accurately predicted. In their calculation 

domain however, the thickness near the trailing edge was artificially controlled. 

Passandideh-Fard et al. (2011) observed that, for high-viscosity liquids, the hydraulic 

jump is more stable and its location less sensitive to the subcritical thickness. Rojas et al. 

(2010, 2013, 2015) developed and implemented a spectral representation for the velocity 

profile in the vertical direction in their studies on the circular hydraulic jump. Both the 

location and the height of the jump were captured using their ‘inertia-lubrication theory’. 

The thickness of the liquid was imposed at the plate’s trailing edge based on experiment. 

In addition, two other parameters need to be artificially adjusted to match the 

experiments. Rohlfs et al. (2014) recently also investigated numerically the impinging jet 

flow. Their prediction of the shape of the free surface generally agrees with the prediction 

of Watson (1964). However, the hydraulic jump region is not included. 

As discussed earlier, it is generally agreed that the cause of the circular hydraulic jump is 

largely due to gravity. However, Bhagat et al. (2018) very recently observed that a 

hydraulic jump still forms when a horizontal jet impacts a vertical wall. They have also 
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proposed a scaling law using a surface energy approach in an approximate manner. Based 

on their scaling analysis, Bhagat et al. (2018) concluded that for a circular hydraulic 

jump, surface tension is the only dominant effect and gravity plays almost no role. Their 

findings seem to overthrow most of the existing studies. However, due to the nature of 

their approximate method, their findings are not conclusive. More recently, Duchesne et 

al. (2019) also pointed out that the approach of Bhagat et al. (2018) was “wrong”. Instead 

of using the approximate surface energy approach, Duchesne et al. (2019) rigorously 

derived a corrected energy equation based on the Laplace pressure and the effect of 

surface curvature, which reflects the only effect of surface tension. They showed that 

their corrected formulation reduces significantly the influence of surface tension, 

invalidating the conclusion of Bhagat et al. (2018). More rigorous analysis on the issue of 

Bhagat et al. (2018) can be found in Scheichl (2018, 2019). This recent dispute will also 

be addressed in the current thesis. 

1.3.2 The influence of a rotating surface on the impinging jet flow 
and hydraulic jump 

The influence of a rotating surface on impinging jet flow has also been explored in the 

literature. Dorfman (1967) investigated the boundary layer flow on a rotating surface 

using a similarity transformation. However, the flow field is infinite, without a free 

surface (see also Schlichtling & Gersten 2000). The early film thickness measurements of 

Charwat et al. (1972) for the flow on a rotating disk showed that the film thickness ĥ

decays with rotation speed   and radial distance r̂  like ( )
2/5

1 2
0

ˆ ˆh ~ r Q /−   . Charwat’s 

scaling law reflects the dominance of centrifugal effects over inertia to balance with the 

viscous effects. Rauscher et al. (1973) later proposed a similar scaling 

( )
1/3

2/3 2
0

ˆ ˆh ~ r Q /−    which also indicates a monotonic decay with radial distance. 

Miyasaka (1974) reported a maximum thickness at some location away from the 

impingement point, in contrast to the monotonic decay previously reported. The 

hydraulic jump was not involved in his work. Hung (1982) studied the impinging jet flow 

using an integral method. Both a radial and a tangential boundary layers are assumed. 

However, the physical origin of the tangential boundary layer development was not clear. 
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The hydraulic jump region was not included. Thomas et al. (1990) performed a numerical 

analysis on the axisymmetric film flow on a rotating surface and predicted a significant 

thinning of the film with increased speed of rotation. The radial velocity was assumed to 

be uniform across the thickness of the liquid. The hydraulic jump was found to disappear 

at a high rotating speed or in the absence of gravity. 

Later, Thomas et al. (1991) conducted thickness measurements of a film emerging from a 

collar on a rotating disk and found that the jump location depends on the rotation speed 

and the flow rate. However, no quantitative information was given for the rotating 

hydraulic jump. In addition, a local maximum in the film thickness was also observed in 

their experiments. They found that the local maximum moves downstream with 

increasing inertia but upstream with increasing rotation speed. They also identified three 

distinct flow regions: an inner inertia-dominated region near the centre of the disk, a 

transition region where inertia and rotation are of the same strength, and an outer 

rotation-dominated region near the perimeter of the disk. Rahman & Faghri (1992) 

investigated numerically the thin-film flow over a rotating disk using the same flow 

configuration of Thomas et al. (1991). The computed film thickness agreed reasonably 

with the measurements of Thomas et al. (1991). They also concluded that the flow is 

dominated by inertia near the collar and by rotation near the trailing edge of the disk 

confirming the findings of Thomas et al. (1990). But the hydraulic jump was not 

investigated in their numerical domain. Zhao et al. (2000) numerically simulated the flow 

field on a rotating surface downstream of the hydraulic jump in their study on liquid 

metal atomization. A monotonic decrease of the film surface was observed. Convective 

terms were not included in the governing equations. 

Ozar et al. (2003) examined experimentally again the radial spread of water emerging 

from a collar onto a rotating disk following the work of Thomas et al. (1991). They 

reported a similar behavior of the local maximum thickness as in the work of Thomas et 

al. (1991). Later, Rice et al. (2005) examined numerically the flow in a two-dimensional 

axisymmetric domain using the configuration of Ozar et al. (2003). The film thickness 

was determined using the volume-of-fluid method. Their results agreed reasonably with 

the measurements of Ozar et al. (2003). The formation of a hydraulic jump was not 
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included. An approximate approach for the emerging flow between a collar and rotating 

disk was also developed by Basu & Cetegen (2007) using a parabolic approximation for 

the velocity. The computed film thickness agreed with the numerical results of Rice et al. 

(2005). It should be noted that in most of these works, the thickness of the liquid is 

known at some upstream location since the flow is emitted from the gap between a collar 

and a rotating surface. Deng & Ouyang (2011) investigated the vibration of spinning 

disks and the powder formation in centrifugal atomization process. The information on 

hydraulic jump is not reported. Prieling & Steiner (2013) applied a transient integral 

approach in his study on axisymmetric flow over a rotating surface. Both an upstream 

maximum and a downstream waviness were observed. They also found that the 

difference between the steady and unsteady formulations is small. The results from their 

integral method generally agreed with the 2-D CFD model. Scheichl & Kluwick (2019) 

applied an asymptotic method to study the supercritical flow on a rotating disk with a 

large Reynolds number assumption. They captured a maximum film thickness that 

weakens with rotation, simultaneously with its location moving toward the center of the 

disk, confirming the findings of Thomas et al. (1991) and Ozar et al. (2003). 

In the works of both Thomas et al. (1991) and Ozar et al. (2003), waviness of the free 

surface was observed. Indeed, Surface waves of axisymmetric and non-axisymmetric 

shapes can form depending on the flow rate and rotation speed indicating the instability 

of the axisymmetric flow. Charwat et al. (1972) found that the smooth axisymmetric flow 

exists within a regime defined by the flow rate, rotation speed and surface tension of the 

liquid. Outside this regime, surface waves can form in concentric, spiral or irregular 

shapes depending the flow parameters. A linear stability analysis of the film was also 

given and found to agree with his experiment. Sisoev et al. (2003) developed a system of 

nonlinear evolution equations to model the axisymmetric capillary waves in rotating 

flow. Approximate solutions were presented and qualitative agreement with experiments 

was achieved with some quantitative discrepancies. Martar et al. (2005) numerically 

investigated the evolution equations for thin-film flow on a rotating surface. The 

formation of large finite-amplitude waves was observed and leads to deformations of the 

boundary layer. More aspects on the stability of rotating flow and wave formation can be 
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found in the work Sisoev et al. (2010) and the references therein. The current thesis will 

focus only on the smooth axisymmetric regime. 

1.3.3 Impinging jet heat transfer and its influence on the hydraulic 
jump 

For the heat transfer problem associated with a spreading jet, most existing studies 

focused only on the influence of the flow on the heat transfer. Chaudhury (1964) adopted 

Watson’s similarity approach for the impinging liquid jet on a heated wall. The 

temperature within the thermal boundary layer was approximated by a quartic profile. 

The convective heat transfer efficiency was found to exhibit a monotonic decrease with 

radial distance. As the stagnation zone was neglected, the solution is not valid near the 

impingement point. In fact, it leads to an infinite heat transfer rate (i.e. infinite Nusselt 

number). Chaudhury (1964) assumed that the fluid properties do not vary with 

temperature and there is no heat loss from the free surface due to the dominance of 

convection. These assumptions essentially lead to the independence of the Nusselt 

number of the temperature of the wall. Chaudhury’s (1964) work and assumptions 

became the basis for many later studies. Brdlik & Savin (1965) solved the thermal field 

of a liquid jet impinging on a solid surface at constant temperature using the K-P integral 

approach. In their model, it was assumed that the thickness ratio of the thermal and the 

hydrodynamic boundary layers remains equal to  1/3Pr−  so that the momentum equation 

was conveniently eliminated. Saad et al. (1977) numerically investigated a submerged jet 

impinging on a surface at constant temperature using an upwind finite-difference scheme. 

It was found that for a parabolic inlet velocity profile, the maximum Nusselt number is 

larger and closer to the center of the jet compared to a flat velocity profile. 

Wang et al. (1989a) considered the heat transfer in the stagnation zone and predicted a 

nearly constant Nusselt number. Later Wang et al. (1989b) also considered the heat 

transfer downstream of the stagnation region and extended their analysis to the case of 

distributed (varying with distance) wall temperature and heat flux condition using a series 

approach. Liu et al. (1993) numerically studied the effect of the surface tension on the 

stagnation heat transfer for inviscid liquids. They observed that at a very low flow rate, 

the inclusion of surface tension can slightly increase the Nusselt number. However, the 
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effect of surface tension is almost negligible for practical configurations. Gabour & 

Lienhard (1994) investigated experimentally the effect of surface roughness on the 

stagnation Nusselt number. The flow was found to be turbulent and the local Nusselt 

number could be increased by a maximum 50 percent compared to a smooth surface. 

Other studies on the stagnation zone heat transfer can be found in the review paper of 

Lienhard (2006). 

Baonga et al. (2006) showed that a smaller nozzle-to-disk distance slightly lowers the 

Nusselt number. In contrast, Kuraan et al. (2017) observed that at very low nozzle-to-disk 

spacing, the heat transfer can be enhanced due to the increase in the entrance velocity. 

Rohlfs et al. (2014) numerically investigated the heat transfer of an impinging free-

surface jet and found that a maximum Nusselt number can occur depending on the inlet 

velocity profile and the spacing between the nozzle the solid surface. Searle et al. (2017) 

studied impinging jet heat transfer of the axisymmetric flow over a slipping surface of 

constant temperature using a K-P approach. Their results suggested a drop in both the 

hydrodynamic and thermal boundary layers with increasing slip and temperature jump 

length. However, the effects of the temperature jump length was not conclusive since it 

was set equal to the slip length. 

The heat transfer of the thin film flow on a rotating disk was also explored. The effects of 

rotation were investigated by Ozar et al. (2004) experimentally, by Hung (1982), Thomas 

et al. (1990), Shevchuk (2003) and Basu & Cetegen (2006, 2007) using K-P methods, 

and by Rahman & Faghri (1992) by numerical simulation. In those studies, both the flow 

rate and rotation were found to increase the local heat transfer rate. Those works 

considered only the heat transfer of the flow field and assumed no heat loss from the free 

surface. The evaporation and conjugate effects (i.e. the heat transfer in the solid) were 

considered numerically by Rice et al. (2005) who observed that the conjugate effect can 

make 10% to 15% difference on the Nusselt number compared to the non-conjugated 

cases. 

For a large surface area or surface temperature, jet boiling may occur. In such cases, it is 

often necessary to deploy multiple jets to achieve the desired cooling performance. This 
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constitutes another hot area of research where most of the works are experimental and 

numerical due to the phase change in the physical domain. Such works can be found the 

in the review papers of Ma et al. (1993), Lienhard (2006), and Molana & Banooni 

(2013). They are not detailed here as the focus of the current thesis is on the single jet 

impingement without boiling effects. 

We emphasize that all the studies mentioned above assume constant fluid properties. 

Other theoretical and numerical works using such assumptions can also be found in the 

recent review paper of Jagtap et al. (2017). Nevertheless, it should be noted that even 

though the heat capacity and thermal conductivity do not change significantly with 

temperature for most liquids (Okhotin et al. 1992; Granato 2002), their viscosity 

decreases moderately or even significantly with temperature as a result of the decrease of 

the cohesive forces among liquid molecules (Kundu et al. 2016). For instance, water has 

a kinematic viscosity of 1.79 cSt at  0 C  which drops to 0.29 cSt when the temperature 

rises to 100 C  (Korson et al. 1969). The viscosity of other non-metallic liquids can have 

even larger variations of multiple orders of magnitude (Seeton 2006). It is therefore 

important to consider the dependence of viscosity on temperature, and consequently the 

influence of heat transfer on the flow. However, this two-way coupling consideration has 

largely been ignored in the existing theoretical and even in numerical works for jet 

impingement heat transfer problem. 

Currently the only known theoretical contribution to the two-way coupling for an 

impinging jet was carried out by Liu & Lienhard (1989). They adopted a K-P approach to 

solve the energy equation and obtained the thermal boundary layer thickness based on the 

established velocity and viscous boundary layer thickness. In their problem, the solid 

surface is heated by a uniform heat flux, and the Prandtl number is greater than unity. To 

account for the change of viscosity with temperature, they implemented a numerical 

iterative algorithm to solve the coupled problem. The viscosity was evaluated based on 

the locally averaged temperature. Later Liu et al. (1991) also extended their work to the 

regime where Prandtl number is smaller than unity. We note that the influence of heat 

transfer on the hydraulic jump region was not included in the work of Liu & Lienhard 

(1989) and Liu et al. (1991). In this regard, Sung et al. (1999), adopting a finite-element 
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implementation, solved the coupled problem and investigated the influence of heat 

transfer on the location and height of the hydraulic jump. The thickness of the liquid at 

the trailing edge was imposed with an empirical formula. The location of the hydraulic 

jump was found to move downstream with increasing wall temperature and heat flux. In 

addition, a sharp drop in the Nusselt number was reported in the hydraulic jump region. 

In the current thesis, a simple and efficient two-coupling method will be developed, 

allowing us to investigate the influence of heat transfer on the hydrodynamics of the 

spreading jet and the circular hydraulic jump. 

1.4 The objectives and the thesis outline 

1.4.1 The research gap 

First, as already discussed, the momentum and force balance approach across the jump 

requires the knowledge of the depth of the jump immediately after the jump. Previously it 

was usually taken from experimental measurements. Therefore a coherent theoretical 

model for the prediction of the jump without empirical input is still missing. In addition, 

the theoretical mechanism behind the constant jump Froude number (Duchesne et al. 

2014) is still not reported yet. 

Furthermore, the influence of surface rotation on a free impinging jet and hydraulic jump 

has rarely been reported even though there are works on the flow emerging from the slot 

between a collar and a rotational disk (Thomas et al. 1991; Ozar et al. 2003; Rice et al. 

2005). 

Recalling that the viscous force is neglected in momentum and force balance relation, one 

would anticipate that the accuracy of this method will drop if the width of the jump is not 

small. In other words, the viscous force at the bottom of the jump cannot be neglected if 

the jump is not steep. Indeed, the steep jump only occurs for low-viscosity liquid like 

water. For a high-viscosity liquid, the location of the jump is not always identifiable. The 

numerical simulation of Rojas et al. (2010) indeed depicts the ambiguity in the jump 

location. Their numerical film profiles illustrate how the abrupt jump ceases to exist with 

increasing viscosity, giving way to a smoother jump over a relatively large distance. It 

should also be noted that gravity is neglected before the jump in Watson’s (1964) method 
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and all the works following him. For a liquid with high viscosity however, gravity should 

not be omitted since the strong viscous effect often causes a large increase in the 

supercritical thickness, which in fact causes the smooth jump. Consequently, there should 

be a separate method specifically for high-viscosity liquids. But no such attempts have be 

made in the literature. 

For impinging jet heat transfer problem, extensive studies exist in literature. However, 

there is a lack in the consideration of the temperature-dependent viscosity as discussed. In 

the only couple of works where the two-way is considered, numerical iterations are 

unavoidable. In this case, the influence of the heat transfer on the hydraulic jump and the 

subcritical flow and thermal field are still missing theoretically. 

1.4.2 The objectives of the thesis 

The first objective of the thesis is to establish a theoretical model to determine the 

location of the jump without measuring the height of the jump. Consequently, the 

mechanism behind the constancy of the jump Froude number can also be justified. In 

addition, the influence of surface rotation on the flow and the hydraulic jump will also be 

investigated. 

A separated model for high-viscosity jump will be designed separately. And, since 

Bhagat et al. (2018) argued that surface tension is the dominant effect on formation of the 

circular hydraulic jump and gravity plays almost no role regardless of viscosity, it is 

desirable to isolate the effect of gravity (neglecting surface tension) to either validate or 

invalidate their arguments. 

For the thermal coupling problem, a simple iteration-free model will be developed to 

account for the temperature-dependent viscosity. Consequently, the influence of heat 

transfer on the flow and hydraulic jump will be quantified. 

1.4.3 Thesis outline 

In Chapter, to locate the hydraulic jump without empirical parameters, a theoretical 

model will be designed by directly connecting the inertia-dominated supercritical flow 

and the lubrication-type subcritical flow through a shock using the relation between the 
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momentum and pressure force. The mechanism behind the constancy of the jump Froude 

number will be investigated. The effects of rotation of the impingement surface will be 

also pursued. In Chapter 3, a specific model for high-viscosity hydraulic jump will be 

presented. We shall isolate the effects of gravity by neglecting surface tension so as to 

either validate or invalidate the recent arguments of Bhagat et al. (2018). In Chapter 4, a 

simple iteration-free model will be developed and tested. The influence of heating on the 

flow and hydraulic jump will be comprehensively explored. In Chapter 5, the overall 

concluding remarks and suggestions for future works will be given. 
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Chapter 2  

2 Impinging jet flow and hydraulic jump on a stationary 
and a rotating disk 

The impinging jet flow and hydraulic jump on both a stationary and a rotational surface 

will be treated in this chapter. The problem in formulated with the inclusion of a rotation 

parameter  . The stationary case is obtained by setting 0= . 

2.1 Introduction 

When a circular liquid jet impacts a solid surface, the fluid is expelled radially as a thin 

film until reaching a critical location where the layer depth increases abruptly, and a 

hydraulic jump occurs. The regions before and after the jump are known as the 

supercritical and subcritical regions respectively. The impinging jet flow on solid surface 

is important in numerous industrial applications such as the jet cooling, jet rinsing, 

spinning disk reactor, spray and atomization and powder production (Lawley 1992; Uma 

& Usha 2009; Mohajer & Li 2015). The hydraulic jump can significantly influence the 

performance of such processes. The impingement surface can either be stationary or 

rotational depending on the application. 

For stationary disk, Watson (1964) developed an appropriate description of supercritical 

flow using boundary layer approach and a similarity transformation. The location of the 

jump was determined by a force and momentum balance method. Watson’s (1964) theory 

was tested in a number of experimental investigations, including those of Watson 

himself, Craik et al. (1981), Stevens & Webb (1992). Liu & Lienhard (1993) observed 

that Watson’s predictions are least satisfactory for small jump radius for which surface 

tension is important. In this regard, Bush & Aristoff (2003) included the influence of 

surface tension for small circular jump radius, leading to better predictions. It is generally 

agreed that Watson’s theory is adequate for a circular jump with relatively large radius 

and height. 
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The influence of slip was examined by Prince et al. (2012) and Khayat (2016) and found 

to push the jump downstream. Watson’s theory was also extended to non-Newtonian jet 

by Zhao & Khayat (2008) who found that only the overall viscosity influences the 

location of the jump. The liquid height downstream of the jump were artificially 

prescribed in these studies. In experiments, the downstream depth can be controlled by a 

downstream barrier. Passandideh-Fard et al. (2011) proposed a numerical approach to 

determine the hydraulic jump location using volume-of-fluid approach (Hirt & Nichols 

1981). The hydraulic jump was successfully captured. However, the downstream depth 

must be imposed at the disk edge. 

Bohr et al. (1993) deduced that the jump radius scales as 5/8 3/8 1/8
0Q g− −  based on the 

critical point of the averaged shallow-water equations. However, their scaling only 

depends on the overall flow rate and cannot predict the shape of the jump. Later, Bohr et 

al. (1997) and Watanabe et al. (2003) obtained a solution that can resolve the shape of the 

jump using a non-self-similar velocity, but two experimental points were needed in their 

solution to fix the boundary conditions. Kasimov (2008) modified the formulation of 

Bohr et al. (1993) by incorporating a falling edge of the plate but no comparison was 

attempted against experiments. 

The recent measurements of Duchesne et al. (2014) showed that the subcritical flow is 

essentially of lubrication character. In addition, they observed that, for a stationary disk, 

the jump Froude number, based on the jump height and velocity, remains constant with 

varying flow rates. The constant jump Froude number together with the lubrication 

equation should in principle provide the desired relation for problem completion but the 

theoretical mechanism behind this constancy is unclear according to Duchesne et al. 

(2014). 

Regarding the influence of rotation, the film thickness was the main focus in experiments 

using mechanical, optical or electrical techniques. The early film thickness measurements 

of Charwat et al. (1972) suggested that the film thickness ĥ  decays with rotation speed 

  and radial distance r̂  like ( )
2/5

1 2
0

ˆ ˆh ~ r Q /−   . In fact, when rotation is dominant 
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over inertia, the balance between the centrifugal and viscous terms in the radial 

momentum equation yields ( )
1/3

2/3 2
0

ˆ ˆh ~ r Q /−   , which also corresponds to the 

asymptotic form obtained by Rauscher et al. (1973). However, these scaling relations 

indicate only the strong rotational case. Miyasaka (1974) reported a maximum thickness 

at some location away from the impingement point, in contrast to the monotonic decrease 

reported before. Good agreements were achieved with experiments. However, the focus 

was only on the neighbourhood of the impingement region without the consideration of 

hydraulic jump. 

Thomas and coworkers (1990, 1991) conducted both theoretical analysis and experiments 

on the radial flow emerging from a collar on a rotating disk. A local maximum in the film 

thickness was also observed. They identified three distinct flow regions: an inner inertia-

dominated region near the centre of the disk, a transition region where the maximum 

appears, and an outer rotation-dominated region. They found that hydraulic jump can 

appear at very low rotation speed, however quantitative information was not given. 

Rahman & Faghri (1992) investigated numerically the same problem. The computed film 

thickness agreed qualitatively with the measurements of Thomas et al. (1991). More 

recently, Burns et al. (2003) found similar results to those of Thomas et al. (1991). We 

shall assess these observations against our own findings in the current study. 

Ozar et al. (2003) also examined experimentally the emerging flow from the gap between 

a collar and a rotating disk. They provided detailed descriptions on the behavior of the 

maximum thickness. They observed that the strength of the maximum thickness weakens 

with both rotation and inertia. On the other hand, its location moves upstream with 

increasing rotation speed but travels downstream with increasing inertia. Later, Rice et al. 

(2005) examined numerically the same problem using the volume-of-fluid method and 

achieved a reasonable agreement with Ozar et al. (2003) at low rotation speed range. 

They did not consider the formation of a hydraulic jump. 

Both Thomas et al. (1991) and Ozar et al. (2003) observed strong surface waves at high 

rotation speeds, indicating the instability of the flow. Analyses on the rotating film 

stability can be found in the studies of Charwat et al. (1972), Sisoev et al. (2003), Matar 
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et al. (2004) and Sisoev et al. (2010). The current work focuses on the smooth 

axisymmetric flow regime. More discussions on the flow instability and wave formation 

will be given in Section 2.2. 

As discussed, most existing works for the rotational case are on the emerging flow 

between a collar and a rotating surface, in contrast to the present impinging jet problem. 

In addition, little is reported on the quantitative information of hydraulic jump. Therefore, 

it is important to examine how the impinging jet flow would behave in the presence of 

rotation. Moreover, a coherent theoretical model for the hydraulic jump is still lacking 

even in the stationary case since most of the existing models require experimental input. 

In this case, we shall directly connect the supercritical flow and the lubrication flow 

through a shock to locate the jump. Consequently, we can predict the height of the jump 

instead of imposing experimental values, and, provide a theoretical justification for the 

constancy of the jump Froude number (Duchesne et al. 2014).  

The current problem is formulated with the inclusion of a rotation parameter   and the 

stationary case is obtained by setting 0= . Since axisymmetric flow is examined, the 

surface-tension effect will be included when calculating the hydraulic jump. In Section 

2.2, we outline the problem formulation by giving the governing equations and boundary 

conditions in each region. The overall solution strategy is also discussed. In Section 2.3, 

the Kármán–Pohlhausen (K–P) approach is adopted to determine the boundary-layer 

structure and the film thickness upstream of the jump. The transition point is also located. 

In Section 2.4, the K–P approach is employed again to examine the fully-viscous region 

and assess the influence of rotation on the thin-film flow. In Section 2.5, the location of 

the hydraulic jump is determined by a momentum balance across the jump, and the effect 

of rotation on the jump is analyzed. The liquid thickness near the edge of the disk is 

established for a stationary disk to calculate the downstream flow and then extended to a 

rotating disk. Finally, concluding remarks are given in Section 2.6. 

2.2 Physical domain and problem statement 

Consider the steady laminar incompressible flow of a circular axisymmetric jet of a 

Newtonian fluid of radius a, impinging at a volume flow rate Q on a flat disk lying 
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normal to the jet direction and rotating at an angular velocity  . The flow configuration 

is depicted schematically in Figure 2-1, where dimensionless variables and parameters 

are used. The problem is formulated in the ( )r, , z  fixed coordinates, with the origin 

coinciding with the disk centre. In this case ( )u r,z , ( )v r,z  and ( )w r,z are the 

corresponding dimensionless velocity components in the radial, azimuthal and vertical 

directions, respectively. The r-axis is taken along the disk radius and the z-axis is taken 

parallel to the jet. Since the flow is assumed to be axisymmetric, there is no dependence 

on the azimuthal angle  . The length and velocity scales are conveniently taken to be a 

and 2Q / a in the radial, azimuthal and vertical directions. A more suitable scaling is 

used in the appendix where the thin-film problem is formulated. Since the pressure is 

expected to be predominantly hydrostatic for a thin film, it will be scaled by ga . Four 

dimensionless groups emerge in this case: the Reynolds number 0Re Q / a=   , where 

0  is the kinematic viscosity, the rotation parameter, 3a / Q =   , the Froude number, 

5Fr Q / a g=  , g being the acceleration due to gravity, and the Bond number, 

2
0Bo ga /=   , ρ being the density and 0  being surface tension. We note that 1−  may 

be introduced as the Rossby number. A Gravity number: 2G Re/ Fr  is useful to 

introduce, which reflects the effect of gravity relative to inertia and viscous effect. 

In this study, the flow is assumed to remain steady and axisymmetric. Therefore, surface 

waves that may be present on the liquid film under some conditions are not accounted 

for. When the flow rate or rotation speed is relatively small, or the apparent surface 

tension of a liquid is below a critical value, the flow is smooth and axisymmetric without 

any sign of wave (Charwat et al. 1972). Otherwise, surface waves of axisymmetric and 

non-axisymmetric shapes can be present, depending on flow rate and rotation speed. 

Charwat et al. (1972) carried out experimental measurements and linear stability analysis 

for a thin film formed on a rotating disk. Smooth flow was found to occur in a region 

defined by the flow rate, rotational speed and physical properties of the liquid. Outside 

this region various wave patterns were observed: concentric, spiral and irregular waves. 

In their experiments with water and glycerine solution, Butuzov & Pukhovoi (1976) 
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observed that a laminar film with no signs of wave formation is possible over the entire 

disk for angular velocities below 400 rpm and low flow rates. The second situation 

corresponds to a flow with low surface tension. In their experiment, Charwat et al. (1972) 

observed that for a fluid with surface tension coefficient less than approximately 57 

mN/m, the film becomes absolutely stable, with no waves of any kind observed 

throughout the entire range of flow rates and rotational speeds covered. Figure 2-2 

depicts the marginal stability curves, reproduced from Charwat et al. (1972) in the 

( )Re,  plane for three liquids: methyl alcohol, iso-propyl alcohol and water with a 

wetting agent. The region of stable axisymmetric flow lies below each curve while the 

region for the onset of spiral waves lies above. Clearly, axisymmetric flow is predicted 

over a wide range of Reynolds number and rotation speed. This range widens for liquids 

with lesser surface tension, which seem to exhibit wavy flow only if Re is of order 310 . 

The current calculations for the flow over a rotating disk are essentially limited to Re < 

500 and Ω << 1 (see figures 2-9 to 2-11), which ensures the validity of the assumption of 

flow axisymmetry. 

 

Figure 2-1: Schematic illustration of the axisymmetric jet flow impinging on a flat 

rotating disk. Illustrated are the stagnation region (i), the developing boundary-

layer region (ii), the fully viscous region (iii) and the hydraulic jump region (iv). All 

notations are dimensionless. 
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2.2.1 The physical domain 

Following the treatment of Watson (1964) of the flow over a flat plate, we identify four 

distinct flow regions for the jet over a rotating disk, with smooth passage from one region 

to the next (see Figure 2-1): a stagnation flow region (i), a developing boundary-layer 

region (ii), where the boundary layer grows until it reaches the film surface at 0r r= , and 

a fully viscous thin-film region (iii). Under some flow conditions, a hydraulic jump may 

form in region (iv), starting at Jr r= . In the vicinity of the stagnation point, in region (i), r 

= O(1). The velocity outside the boundary layer rises rapidly from 0 at the stagnation 

point to the impingement velocity in the inviscid far region. In region (ii), the boundary 

layer is expected to grow like r / Re , at a rate that diminishes with  . The speed 

outside the boundary layer remains almost constant, equal to 1 (in units of 2Q / a ), as 

the fluid here is unaffected by the viscous stresses. For r 1 , the flow field in region (ii) 

is not significantly affected by the stagnation flow of region (i). The region 01 r r  

will be referred to as the developing boundary-layer region, with boundary-layer 

thickness ( )r , outside which the flow is inviscid and constant. Here 0r  is the location of 

the transition point at which viscous stresses become appreciable right up to the free 

surface, where the whole flow is of the boundary-layer type. At this point, the velocity 

profile changes from the Blasius type to the similarity profile for a stationary disk. In 

contrast, a similarity profile does not exist for a jet impinging on a rotating disk. The flow 

in region (iii), 0r r , which will be referred to as the fully-viscous region, is bounded by 

the disk and the free surface z = h(r). 

Finally, the hydraulic jump in region (iv) occurs at a location Jr r= . The height 

immediately upstream of the jump is denoted by Jh− , and the height immediately 

downstream of the jump is denoted by Jh+ . In this study, the fluid is assumed to be 

drained at the edge of the disk r r=  to maintain steady flow, with the film thickness 

denoted by ( )h h r r = = . Although it is common practice to assume the jump height to 

remain equal to Jh+ , this assumption is valid for fluids of low viscosity on a stationary 
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disk. The edge thickness is expected to depend heavily on the rotation speed and surface 

tension, but not so much on the flow rate (Mohajer & Li 2015). In this study, we consider 

a viscous lubrication flow downstream of the jump. 

 

Figure 2-2: Marginal stability curves based on the analysis of Charwat et al. (1972) 

reproduced here in the ( )Re,  plane. The stable (unstable) region below (above) 

each curve that corresponds to axisymmetric (wavy) flow is indicated here for iso-

propyl alcohol. 

2.2.2 Governing equations and boundary conditions 

Unless otherwise specified, the Reynolds number is assumed to be large but without 

causing turbulence. Consequently, for steady axisymmetric thin-film flow, in the 

presence of rotation, the mass and momentum conservation equations are formulated 

using a thin-film or Prandtl boundary-layer approach, which amounts to assuming that 

the radial flow varies much slower than the vertical flow (Schlichtling & Gersten 2000). 

The thin-film problem is formulated in the appendix. By letting a subscript with respect 
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to r or z denote partial differentiation, the reduced dimensionless conservation equations 

become 

r z
u

u w 0,
r

+ + =         (2.2.1a) 

2

r z r zz2

v Re
Re uu wu p u ,

r Fr

 
+ − = − + 

 
 

     (2.2.1b) 

r z zz
uv

Re uv wv v ,
r

 
+ + = 

 
       (2.2.1c) 

j
z

j

0 r r
p

1 r r


= 

− 

        (2.2.1d) 

These equations are essentially the same as those used by Bohr et al. (1996). We observe 

that the pressure for a thin film is essentially hydrostatic as a result of its vanishing at the 

film surface (in the absence of surface tension) and the small thickness of the film. In 

addition, upstream of the jump, the variation of the film thickness with the radius is 

expected to be smooth and gradual. In this case, the radial variation of the hydrostatic 

pressure is also small. According to the calculations of Prince et al. (2012), the 

hydrostatic pressure exerts less than 0.4% cumulative influence on the dynamics of the 

thin film and is thus neglected upstream of the hydraulic jump. This is generally 

commonly assumed in modelling hydraulic jump flow, where the hydrostatic pressure is 

included only downstream of the jump where the film is relatively thicker (Watson 1964; 

Bush & Aristoff 2003; Dressaire et al. 2010; Prince et al. 2012). At the disk, the no-slip 

and no-penetration conditions are assumed to hold for any r. In this case: 

( ) ( ) ( )u r,z 0 0, v r,z 0 r, w r,z 0 0.= = = = = =   (2.2.2a-c) 

At the free surface ( )z h r= , the kinematic condition for steady flow takes the form 

( ) ( ) ( )w r,z h u r,z h h r .= = =        (2.2.3) 
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Here a prime denotes total differentiation. In addition, the radial and tangential shear 

stress components as well as the pressure must vanish everywhere ( )0 r r  , so that 

( ) ( ) ( )z zu r,z h v r,z h p r,z h 0.= = = = = =      (2.2.4a-c) 

The flow field is sought separately in the developing boundary-layer region (ii) for 

00 r r  , the fully-viscous region (iii) for 0 Jr r r   and the hydraulic jump region (iv) 

for Jr r r  . We observe that region (i) is negligible, and the leading edge of the 

boundary layer in region (ii) coincides with the disk centre (see Section 2.2.3). 

Consequently, the additional boundary conditions are as follows. In region (ii), the flow 

is assumed to be sufficiently inertial for inviscid flow to prevail between the boundary-

layer outer edge and the free surface (see Figure 2-1). In this case, the following 

condition at the outer edge of the boundary layer and beyond must hold: 

( ) ( )0 z 0u r r ,z 1, u r r ,z 0, =  =  =  =  ( )0u r r , z h 1,    =  (2.2.5a-c) 

Integrating Equation (2.2.1d) subject to condition (2.2.4c), the pressure becomes 

( )
( )

J

J

0 r r
p r, z

h r z r r .


= 

− 
       (2.2.6) 

To satisfy Equations (2.2.1b) and (2.2.1c) at the disk surface, we have 

( )
J

2
zz

J

0 r r

u r, z 0 Re r dh
G r r ,

dr




= = −  + 




    (2.2.7a) 

( )zzv r,z 0 0,= =         (2.2.7b) 

which are obtained subject to conditions (2.2.2) and (2.2.6). It is not difficult to see that, 

regardless of the distributions of ( )u r,z  and ( )w r,z , and subject to conditions (2.2.2b), 

(2.2.4b) and (2.2.7b), Equation (2.2.1c) admits the following exact solution for the 

tangential velocity component: 
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( )v r,z r.=           (2.2.8) 

This simple behaviour is not unexpected for a thin film flowing with a free surface and 

adhering to the rotating disk. We note that Equation (2.2.8) holds throughout the flow 

domain. Finally, the conservation of mass at any location upstream and downstream of 

the jump yields the following relation in dimensionless form: 

( )
( )h r

0

1
u r, z dz.

2r
=           (2.2.9) 

We note that this relation follows from the mass conservation relation in dimensional 

form: ( )
( )ˆ ˆh r

0

ˆ ˆˆ ˆ ˆQ 2 r u r, z dz=   , where a hat variable denotes a dimensional quantity. 

2.2.3 Overall solution strategy 

Throughout this study, the stagnation region (i) under the impinging jet is assumed to be 

negligibly small. The velocity outside the boundary layer rises rapidly from 0 at the 

stagnation point to the impingement velocity in the inviscid far region. For a jet on a 

stationary as well as a rotating disk, the impinging jet is predominantly inviscid close to 

the stagnation point, and the boundary-layer thickness remains negligibly small. 

Obviously, this is the case for a jet at relatively large Reynolds number. Disk rotation 

adds to the inviscid character of the flow upon impingement. Ideally, the flow at the 

boundary-layer edge should correspond to the potential flow near the stagnating point, 

with the boundary-layer leading edge coinciding with the stagnation point (Liu et al. 

1993). However, the assumption of uniform horizontal flow near the wall and outside the 

boundary layer (as illustrated in Figure 2-1) is reasonable since distance from the 

stagnation point for the inviscid flow to reach uniform horizontal velocity is small, of the 

order of the jet radius (Lienhard 2006). In addition, for a jet on a stationary disk, the flow 

acquires a similarity character. In this case, the position or effect of the leading edge is 

irrelevant. This is not the case for the jet on a rotating disk, where, as we shall see, a non-

similarity solution is sought subject to initial conditions at the leading edge. However, as 
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argued above, the dominance of inertia near the stagnation point, which is further 

enhanced by disk rotation, should make plausible the assumption of uniform horizontal 

flow and negligible stagnation region (i). This assumption, which was adopted initially by 

Watson (1964), is commonly used in the modelling of impinging jet flow (see, for 

instance, Bush & Aristoff 2003; Dressaire et al. 2010; Prince et al. 2012). 

The pressure due to gravitational effect is neglected upstream of the hydraulic jump. We 

shall calculate the flow of a liquid jet impinging on a stationary disk for reference, for 

which the similarity solution developed by Watson (1964) applies. In contrast, the 

rotation of the disk causes the flow to be non-similar in character. Therefore, in the 

present problem, approximate solutions are sought in each region. An integral approach 

of the Kármán–Pohlhausen type (Schlichtling & Gersten 2000) with a cubic profile is 

adopted upstream of the jump, similar to the formulation of Prince et al. (2012) for a jet 

impinging on a slippery disk. The cubic profile may also be considered as the leading-

order solution in a comprehensive spectral approach when inertia is included (Khayat & 

Kim 2006; Rojas et al. 2010). The cubic profile seems to be amply adequate as it leads to 

close agreement with Watson’s (1964) similarity solution for a jet impinging on a 

stationary disk (Prince et al. 2012). The validity of such a profile was also assessed by 

Khayat (2016) for a planar jet impinging on a slippery stationary surface; the cubic 

profile was found to yield good agreement against his numerical solution. See also Rao & 

Arakeri (1998) for an integral analysis of a rotating film. Higher-order polynomial 

velocity profiles were also used. In their study on flow separation and wave breaking, 

Bohr et al. (1996) used a quartic profile to illustrate the emergence of a singularity at the 

separation point for a thin film. The coefficients in the polynomial expansion were not 

obtained explicitly. Later, Bohr et al. (1997) adopted a cubic velocity profile in an 

averaging boundary-layer approach that accounts for regions of separation, yielding the 

structures of hydraulic jumps. 

Different forms of cubic profiles are used in region (ii) and region (iii) due to the 

difference in surface velocity. The flow in the entire supercritical domain is obtained 

upon matching the flows at the transition point r0. Downstream of the hydraulic jump, 

inertia is neglected, but the centrifugal effect is included. However, in contrast to the flow 
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over a stationary disk, an analytical solution is not possible for a rotating case, and the 

solution will be sought numerically. In an effort to obtain the location and height of the 

jump uniquely, we impose the value of the film thickness at the edge of the disk. Its value 

is estimated by applying the minimum energy principle at the disk edge. An additional 

contribution is included to account for rotation in the absence of radial flow as 

encountered in spin coating. 

2.3 Influence of rotation on the developing boundary-
layer and transition 

Given the non-similar character of the rotating flow, an approximate solution is sought in 

region (ii). We note that, in their study of a circular jet imping onto a slip surface, Prince 

et al. (2012) assumed a cubic profile for the radial velocity. However, they used a three-

coefficient profile with the 2z  term missing. This would have been indeed the case for an 

adhering fluid but not rigorous for a slipping film though it should not affect much the 

accuracy in an averaged method. In the current work, we impose a cubic velocity profile 

for ( )u r,z , with four unknown coefficients in the z direction. 

2.3.1 The developing boundary-layer in region (ii) 

In region (ii), the inviscid flow dominates the upper layer ( )z h    of the film in the 

radial direction; therefore, the radial velocity above the boundary layer remains equal to 

one. In addition, the tangential component of the inviscid flow outside the boundary-layer 

edge is negligible near the stagnation point where the Coriolis force is dominated by the 

impinging flow, which results in a dominant radial flow. A cubic profile is sought for the 

radial velocity component ( )u r,z , which is obtained using conditions (2.2.2a), (2.2.5a,b) 

and (2.2.7a), that is 

( )
2 2 2

2 3
0 3

3 Re Re Re r 1
u r r , z r z rz z .

2 4 2 4 2

     
 = +  − + −   

        

  (2.3.1) 

The boundary-layer height   is determined by considering the mass and momentum 

balance over the boundary-layer region (ii). Therefore, consider first the integral form of 
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the convective term in Equation (2.2.1b). The vertical velocity component is eliminated 

by noting from Equation (2.2.1a) that ( ) ( )( ) ( )
z

0
w r,z 1/ r / r r u r, z dz

 
= −    

 
 . In this 

case, ( )( ) ( ) ( )( )
z2 2

r z 0
uu wu u / r u / r 1/ r / z u r,z ru r, z / r dz

 
+ =   + −     

 
 . 

Consequently, upon integrating Equation (2.2.1b) over the boundary-layer thickness, and 

neglecting the radial pressure gradient, we obtain the integral form of the momentum 

equation upstream of the jump: 

( ) ( )2 2
z

0 0

d 1 1 1
u u dz v dz u r, z 0 ,

dr r r Re

 
 

+ − − = − = 
 

       (2.3.2) 

Upon substituting the velocity profiles (2.2.8) and (2.3.1), we obtain the desired 

differential equation for the boundary-layer height: 

( )2 6 4 2 2
1 2 3 4

3 5 2 3
5 6 7

C r C r C C r 2520rd
,

dr C r C r C r

 +  + +  +
= −

 +  + 
     (2.3.3) 

where the constant coefficients are 3 4
1C 3Re ,=   2 2

2C 6Re ,=   3C 234Re,= −  

( ) 2
4C 420 4Re 1 Re ,= − −   3 4

5C 5Re ,=   2 2
6C 9Re=   and 7C 234Re.= −  

Equation (2.3.3) is solved numerically subject to ( )r 0 0 = = . In the limit Ω = 0, the 

equation admits the solution ( )( )2 70 / 39 r / Re = , which agrees with the r / Re   

behaviour established from dimensional argument of Equation (2.2.1b). 

Figure 2-3 illustrates the influence of rotation on the boundary-layer height. In the limit 

of Ω = 0, the classical boundary-layer result is recovered (Watson 1964; Schlichtling & 

Gersten 2000). As expected, the rotation can have a tangible effect as it tends to lower the 

boundary-layer height. This is clearly reflected in Equation (2.2.1b) when Equation 

(2.2.8) is used. We see that the centrifugal effect, which enhances inertial effect by 

growing like 2Re r , tends to compete with the radial convective effect, which is 
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reflected by the term rReuu . An estimate of the order of magnitude of this term is 

reached upon taking u to correspond to the free-surface value. In this case, we see that 

rReuu  decays like Re/r. Thus, close to the impingement point, the convective and 

viscous effects must balance in Equation (2.2.1b), and the boundary-layer height grows 

like r / Re   regardless of the rotation speed. This is clearly depicted in Figure 2-3 

where all curves merge for 1/3Re r 0.1−  . Far from the impingement point, the 

centrifugal and viscous effects must balance, and the height decays like 21/ Re r   . 

Therefore, rotation has a similar effect of thinning the boundary layer like slip (Khayat 

2016, Prince et al. 2012) or shear thinning (Khayat 2014). Interestingly, unlike slip flow, 

where the boundary-layer height invariably increases in the radial direction, a high 

rotation rate causes the boundary layer height to decrease with radial distance after 

reaching a maximum as shown in Figure 2-3. 
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Figure 2-3: Influence of rotation in the developing boundary-layer region (ii). The 

boundary-layer thickness is plotted against the radial distance for different rotation 

speed. 

A maximum in the boundary-layer height is therefore expected to emerge as a result of 

the growing centrifugal effect with radial distance. The maximum height max  coincides 

with the balance between the radial convective and the centrifugal effects, at a distance 

that is roughly dictated by 21/ r ~ r . Thus, the location max  of the maximum 

decreases rather rapidly with rotation speed, like 1/Ω, and the maximum height behaves 

like 1/2− . Considering that the inherent reason of the boundary-layer growth is due to 

accumulating viscous effect, the location of the maximum boundary-layer height occurs 

closer to the disk center when  increases. We now examine the transition point and film 

thickness. 
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2.3.2 Influence of rotation on the transition location and film 
thickness 

As the boundary layer grows with radial distance, it eventually invades the entire film 

width, merging with the jet free surface at 0r r= . For 0r r  and above the boundary-

layer, at some height ( ) ( )z h r r=   , lies the free surface. The height of the free surface 

in region (ii) is then determined from mass conservation inside and outside the boundary 

layer. Therefore, for 0r r , 

( )
( )

( ) ( )
r

0

1
u r, z dz h r r .

2r



+ − =        (2.3.4) 

Upon substituting the velocity profile (2.3.1), the film thickness is obtained as 

( )
2 2 3

0
1 24 18r Re r

h r r .
48 r

+ −  
 =       (2.3.5) 

The term 2 2 3Re r   reflects the thinning effect of rotation on the film thickness. In the 

stationary case, we recall that ( )( )2 70 / 39 r / Re = , so that 

( )0
1 2 210 r

h r r ; 0 .
4 r 13 Re

 
  = = +  

 
      (2.3.6) 

Hence, in the stationary case, h decreases rapidly, like 1/r, near the disk center, reaching a 

minimum, and increases like r  further downstream. In contrast, in the presence of 

strong centrifugal effect, upon recalling that 
2~ 1/ Re r  , we find that the film 

thickness also behaves like ( ) 2
0h r r ~ 1/ Re r  . This will be discussed further later. 

Figure 2-4 depicts the influence of rotation on the transition location 0r and 

corresponding film thickness ( )0 0h h r , which are determined by setting ( ) ( )0 0h r r=  . 

The transition location increases as the film becomes thinner with increasing rotation 
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speed as inertia is enhanced by rotation. This is the same trend predicted for the effect of 

slip (see figure 8 of Khayat 2016). However, in contrast to the effect of slip, the rotation 

speed does not exhibit an asymptotic behaviour for large Ω. Another interesting 

contrasting behaviour is the slow deviation from the Ω = 0 level for small Ω in Figure 2-4 

as opposed to the strong departure for small slip. 

 

Figure 2-4: Dependence of location and film thickness at the transition point 

between the developing boundary-layer and fully-viscous regions (ii) and (iii). 

In the stationary case, upon equating ( ) ( )( )( )0 0 0h r ; 0 1/ 4 2 / r 210 /13 r / Re = = +  and 

( ) ( )( )0 0r ; 0 2 70 / 39 r / Re  = = , we obtain 

( )
1/3

0
78

r 0 Re .
875

 
 = =  

 
        (2.3.7) 
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In particular, 1/3
0Re r 0.447− = and ( )1/3

0Re h r 1.791= are the limit values reflected in 

Figure 2-4. In comparison, Watson’s transition location is given by 

( )1/3 2
0Re r 9 3c c 3 /16 0.463− = −  = , where c = 1.402 (Watson 1964), which 

reflects a discrepancy less than 3%. 

2.4 Influence of rotation on the flow in the fully-viscous 
region 

In region (iii), the potential flow in the radial direction ceases to exist, with the velocity 

( ) ( )su r u r,z h= =  at the free surface becoming dependent on r. We again assume a 

cubic velocity profile, subject to conditions (2.2.2a), (2.2.4a) and (2.2.7a), which amounts 

to setting h =  in Equation (2.3.1) for ( ) ( )su r,z / u r . In this case, ( )su r  is determined 

by using the mass conservation Equation (2.2.9), yielding the following relation: 

( )
( )

s 0 2 2

24
u r r .

hr Re rh 30
 =

 +
       (2.4.1) 

For Ω = 0, this equation agrees with equation (15) of Prince et al. (2012) upon setting 

their slip parameter equal to zero. The radial velocity profile is given as function of the 

surface velocity ( )su r : 

( ) ( ) ( )2 2 2 2 3 2 2 2 3s
0 3

u
u r r , z h Re h r 6 z 2Re h rz Re h r 2 z .

4h

  =  + −  +  −
  

 (2.4.2) 

This equation is equivalent to equation (3) of Bohr et al. (1997) for a stationary disk. In 

that case, the r-dependent coefficients were also obtained using the same boundary 

conditions at the disk and the film surface. 

Similar to Equation (2.3.2), the integral form of the momentum equation reads: 

( ) ( )
h

2 2
z

0

d 1 1
u u dz hr u r, z 0 .

dr r Re

 
+ − − = − = 

 
      (2.4.3) 
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Substituting Equation (2.4.2) into Equation (2.4.3), we obtain the equation for the film 

thickness in the fully-viscous region, which is integrated numerically for 0r r  subject to 

( ) ( )0 0h r r r= =  . The resulting differential equation for h is algebraically complicated 

and will not be displayed here. It takes a particularly simple form in the stationary case. 

Thus, for Ω = 0 and 0r r , the problem reduces to the following equation and boundary 

condition: 

( ) 0
0

rdh h 525 r 70
, h r , 0 2 ,

dr r 136 Re 39 Re
= − +  = =     (2.4.4a,b) 

which admits 

( ) ( )
2

3 3 0 0
0 0

r r175 70 175 r 1 39 1
h r r ; 0 r r 2 4 ,

136Rer r 39 Re 136 Re 5 68 r

 
  = = − + = + − 

 
 

 (2.4.5) 

as solution, where we recall ( )
1/3

0r 78 / 875Re=  from Equation (2.3.7). Clearly, 

Equation (2.4.5) indicates that the thickness increases like 2h ~ r  at large distance. The 

limit of large rotation speed will be discussed shortly. Figure 2-5 depicts the influence of 

rotation on the film thickness in the transition region. Results are shown for 1/3Re  , 

ranging from 0 to 1.6. In the limit  = 0, Watson’s film thickness profile is essentially 

recovered, which is the only profile that increases with r after exhibiting a strong 

minimum, as per Equation (2.4.5). For comparison, Watson’s expression is reproduced 

here in dimensionless form: 

( )
( )2

0

3c 3 3c2 r 1
h r r .

Re 8 r3 3

−
 = +


      (2.4.6) 

Thus, we have ( )2h 1.21r / Re 0.685 1/ r+  from Equation (2.4.5) compared to Watson’s 

( )2h 1.28r / Re 0.69 1/ r+  from Equation (2.4.6), showing a surprisingly close 

agreement. 
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The minimum film thickness weakens considerably as the rotation speed is slightly 

increased. The transition occurs upstream of the minimum, with unmatched slopes 

between h and δ at 0r r= . For a faster spinning disk, the film acquires additional radial 

momentum, with relatively reduced viscous effect (friction). The film thickness as well as 

the boundary-layer height decrease overall, and the minimum weakens further. As 

rotation intensifies further, the film does no longer exhibit a minimum in thickness. In the 

case of an infinite rotation speed, Figure 2-5 indicates that the film thickness saturates to 

a finite value, which is practical since the film thickness cannot vanish. Also shown in 

this figure is the location of the minimum height pushed outward as effects of viscosity 

decrease, which is a combined effect of Reynolds number and rotation speed. 

 

Figure 2-5: Influence of rotation on the developing boundary-layer height and film 

thickness. The transition location coincides with the intersection of the two heights. 

Figure 2-6 gives an overall view of the film thickness distribution. In addition to the 

minimum film thickness, there is also a maximum height whose location and strength 
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depend on the interplay between convective and centrifugal effects. This was also 

observed by Thomas et al. (1991) and Ozar et al. (2003) in their experimental studies on 

the radial film flow over a rotating disk. Downstream of the transition location, the liquid 

film behaviour can be divided into three zones: the inner inertia-dominated region, the 

outer rotation-dominated region and the intermediate region in between. In the inertia-

dominated region, the inertia and friction forces are dominant. The liquid film tends to 

slow down as a result of friction, and the film thickness increases as reported by Thomas 

et al (1991). In the rotation-dominated region, centrifugal forces come into play, causing 

a thinning of the liquid film. Meanwhile in the transition region, both the viscous effect 

and centrifugal effect come into play and are in balance. Thus, the film thickness reaches 

a maximum in the transition region, where deceleration of the flow due to friction is 

compensated and eventually balanced by the acceleration due to centrifugal effect. 

 

Figure 2-6: Influence of rotation on the thickness distribution upstream and 

downstream of the transition point 0r r= . The inner, intermediate and outer 

subregions are shown for 1/3Re 0.1= . 
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As is apparent from Figure 2-6, at a given Reynolds number, the location where the 

maximum film thickness occurs, moves towards the center of the disk as the rotation 

speed increases, which indicates that the centrifugal effect gradually dominates inertia. 

This is illustrated through the curves corresponding to 1/3Re 0.1,0.2,0.3= . Eventually, 

upon further increase of the rotation speed, the centrifugal effect becomes dominant over 

the entire disk, except in region (i) where convective effects appear to be always present. 

The film thickness decreases monotonically as the rotation speed increases and becomes 

essentially independent of the radial distance far downstream. Also, the thickness 

becomes gradually insensitive to the rotation speed as indicated by the curve saturation in 

Figure 2-6. This behaviour agrees closely with the measurements and leading-order 

asymptotic solution of Burns et al. (2003). The development from inertial to centrifugal 

dominance will be further examined below once the surface velocity is discussed. 

The influence of rotation on the corresponding free surface velocity profiles is depicted in 

Figure 2-7. Here the velocity in the developing boundary-layer region (ii) outside the 

boundary layer is equal to the uniform jet velocity, which then decreases monotonically 

with distance downstream of the transition location. We can see the significant effect of 

rotation on the surface velocity as it tends to enhance the radial flow but diminishes the 

rate at which the surface velocity decreases with radial distance, which is similar to the 

effect of slip (Prince et al. 2012, Khayat 2016). However, the effect of rotation seems 

stronger than that of slip since slip is nothing but a release in surface resistance, whereas 

rotation has an obvious effect of accelerating the flow. That is, the momentum dissipated 

by viscous stress is gradually recovered by the centrifugal force. The figure also suggests 

that when the rotation speed tends to infinity, the developing boundary-layer region 

dominates the entire flow, and the free surface velocity saturates to a horizontal line 

which is the free jet velocity, which is artificial since the flow becomes unstable for super 

large rotation speeds. 

In the stationary case, the surface velocity decreases rapidly. This behaviour is easily 

deduced from Equation (2.4.1) upon setting Ω = 0 and substituting Equation (2.4.5) to 

obtain 
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( ) ( )
1

3 3 0
s 0 0 0

r4 175 70
u r r ; 0 r r 2r .

5 136Re 39 Re

−
 

  = = − +  
 

    (2.4.7) 

In this case, su  decreases like 3r−  at large distance. 

 

Figure 2-7: Influence of rotation on the velocity at the film surface upstream and 

downstream of the transition point 0r r= . The transition point coincides with the 

location at which the velocity first deviates from 1. 

Although the explicit dependence of the film thickness and surface velocity on rotation 

speed and radial distance is complex, further insight is gained by examining the limits of 

negligible and dominant centrifugal effect. Figures 2-6 and 2-7 suggest the existence of 

three distinct sub regions downstream of the transition point in the fully-viscous region: 

an inner sub-region close to the transition point where the convective effect dominates 

the centrifugal effect, an intermediate sub-region where these two effects are comparable, 

and a sub-region far from the transition point where the centrifugal effect is dominant. 
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We observe that in all three sub-regions, the viscous effects are significant. An 

approximate relation between su  and h may be deduced from the mass conservation 

Equation (2.2.9): 

s
1

u h .
2r

          (2.4.8) 

Consider first the inner sub-region where inertia and viscous effects are dominant. In this 

case, Equation (2.2.1b) suggests that 

2
s s

2

u u
Re ~ .

r h
          (2.4.9) 

Using Equation (2.4.8), we obtain 

2

s 3

Re r
u ~ , h ~ .

Rer
       (2.4.10a,b) 

This behaviour corresponds to the more explicit expression (2.4.5) for h derived earlier in 

the stationary case and based on the cubic profile for velocity. The behaviour in Equation 

(2.4.10) clearly corroborates the trends reported in Figures 2-6 and 2-7 for the region 

close to the transition point 0r r= . 

Next, consider the situation in the intermediate subregion where both the convective and 

centrifugal effects, along with the viscous effects are significant. In this case, we have 

2
2s s

2

u u
Re ~ Re r ~ .

r h
        (2.4.11) 

These relations, along with Equation (2.4.8), yield the following estimates for the 

maximum thickness, and corresponding location and velocity: 

( )
1/4 1/4

3
max max max

1 Re
h ~ , r ~ , u ~ Re .

Re

 
 

  
  (2.4.12a-c) 
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Clearly, these estimates agree with the trends observed in Figures 2-6 and 2-7 in the 

intermediate region. Thus, Equations (2.4.12a-c) indicates that, with increasing rotation 

speed, the radial location of the maximum thickness decreases towards the center like 

1/4−  and the maximum thickness weakens and saturates like 1/2− , eventually 

disappearing altogether as shown in Figure 2-6. This behaviour will be confirmed further 

below. 

In the outer sub-region, at large radial distance, the centrifugal effect becomes 

particularly dominant whereas inertia becomes insignificant. In this case, and in the 

absence of gravity, the centrifugal term must balance the viscous term in the radial 

momentum Equation (2.2.1b), suggesting that 2 2
sRe r ~ u / h . Consequently, upon 

using Equation (2.4.8), the behaviours of the film thickness and surface velocity for large 

centrifugal effect become: 

( )
1/3

21/3
2 2

s
Re

h ~ Re r , u ~ .
r

−  
  

 
 

     (2.4.13a,b) 

These limit expressions closely corroborate the profiles reported in Figures 2-6 and 2-7. 

In particular, the 2/3h ~ −  behaviour reflects the saturation at large rotation speed in 

Figure 2-6. Also, Equation (2.4.13) reflects the faster decay with distance of the thickness 

compared to that of the velocity. Finally, we note that Equation (2.4.13a) is equivalent to 

the asymptotic behaviour obtained by Rauscher et al. (1973). 

Figure 2-8 illustrates the development of the dimensionless wall shear stress at the disk 

(skin friction) for the same rotation speeds as in Figures 2-6 and 2-7. From Equation 

(2.4.1) and Equation (2.4.2), we have 

( )
( )

2 2

w 0 2 2 2

Re h r 6
r r 6 .

h r Re h r 30

 +
  =

 +
      (2.4.14) 

The figure shows that the wall shear stress is always larger for a higher rotation speed 

anywhere along the disk. This larger shear stress, which reflects a larger shear rate at the 
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disk, is the result of a thinner film thickness and a greater free-surface velocity caused by 

higher rotation speed as already reported in Figures 2-6 and 2-7. The shear stress 

decreases rapidly in the developing boundary-layer region. For a stationary disk: 

( ) ( )
2

3 3 0
w 0 0 0

r6 175 70
r r ; 0 r r r 2r .

5 136Re 39 Re

−
 

   = = − + 
  

   (2.4.15) 

 

Figure 2-8: Influence of rotation on the wall shear stress upstream and downstream 

of the transition point 0r r= . 

In this case, after the rapid drop, w  exhibits a maximum before decaying monotonically. 

At large radial distance, the shear stress decays like 5r−  for a stationary disk as a result of 

film thickening and absence of flow (see Ω = 0 curves in Figures 6 and 7). In contrast, the 

shear stress on a rotating disk decreases to a minimum after which w  increases 

relatively slowly with r. The minimum strengthens and moves towards the center of the 
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disk with increasing rotation speed, signalling the increasing dominance of centrifugal 

effect over the entire viscous boundary-layer region. 

Figure 2-8 suggests that w  increases essentially linearly with radial distance for 

moderate rotation speed. In the outer region, upon substituting Equation (2.4.13a) into 

Equation (2.4.15), we have 

( )
1/3

2 4
w ~ Re r .          (2.4.16) 

We also arrive at the same result if we write w s~ u / h  and use Equation (2.4.10). This 

shows that the shear stress deviates from the linear growth with radial distance and 

behaves closer to 1/3r , which is also noticeable from Figure 2-8 for 2Re 1.6 = . Also, 

the behaviour 4/3
w ~   reflects the mildly nonlinear (slightly faster than linear) growth 

of the shear stress with rotation speed depicted in Figure 2-8. 

We next consider the effect of inertia by varying the Reynolds number and fixing the 

rotation speed to Ω = 0.02. Figure 2-9 shows the film thickness for Re between 200 and 

500. An increase in the Reynolds number causes an increase in film inertia. Therefore, a 

higher centrifugal force is required to overcome the higher inertial force to maintain the 

flow. If the rotation speed is kept constant and the Reynolds number is increased, then the 

maximum film thickness location travels towards the edge of the disk while the 

maximum weakens. This is in agreement with Equations (2.4.12a-c). Since the radial 

location influences the magnitude of centrifugal effects, the region where the centrifugal 

and inertia forces are comparable, moves towards the edge of the disk. 
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Figure 2-9: Influence of inertia on the film thickness upstream and downstream of 

the transition point. Here  0.02= . The inner, intermediate and outer subregions 

are indicated for the Re 200=  curve. 

A more explicit illustration is given in Figures 2-10 and 2-11, where both the location and 

the values of the minimum thickness as well as the maximum thickness are reported. 

Figure 2-10 indicates that the location of the minimum thickness moves outwards with 

rotation as well as inertia, whereas the minimum height decreases as argued earlier. In 

Figure 2-11, however, the location and the magnitude of the maximum height behave 

differently as emphasized by the arrows. 
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Figure 2-10: Influence of inertia and centrifugal effects on the minimum film 

thickness and its location. Arrows indicate direction of increasing rotation speed. 

The trends in Figure 2-10 are well reflected by the earlier analysis and Equations 

(2.4.12a-c). In particular, ( )
1/4

maxr ~ Re/  suggests that the location of the maximum 

increases with inertia like 1/4Re  and decreases with rotation speed like 1/4− , reflecting 

the saturation in Figure 2-11 with respect to Re and Ω, respectively. Similarly, the 

behaviour maxh ~1/ Re  is well represented in Figure 2-11 
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Figure 2-11: Influence of inertia and centrifugal effects on the maximum film 

thickness and its location. Arrows indicate direction of increasing rotation speed. 

Although there are no film thickness measurements for the flow impinging on a rotating 

disk, some data exist for a thin film emanating radially on a rotating disk. In particular 

Ozar et al. (2003) examined the flow of water emerging from a collar. In an effort to 

validate the observed behaviour in the viscous region (iii), we carry out a direct 

comparison with their measurements by solving Equation (2.4.3) for the thickness 

distribution. We choose the initial thickness and location to correspond to the height and 

radius of the collar, respectively. Figure 2-12 depicts the influence of rotation on the 

thickness distribution. The figure shows that the flow features predicted by our 

formulation in region (iii) are realistic as they are also observed experimentally. In 

particular, Figure 2-12 shows a good agreement between theory and experiment 

regarding the emergence of the thickness maximum and its location. As theory suggests 

(see also Figure 2-11), the observed maximum height and location decrease with 

increasing rotation speed. It is also worth noting that the discrepancies become larger 
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further downstream, and also when rotation speed increases. The reason for this is 

twofold: First, the flow configuration in the experiment (Ozar et al. 2003) is not strictly 

the same as ours since the flow is emitted from the gap between a collar and a rotating 

disk, which we mimic by our fully-viscous flow, taking the height of the gap as the initial 

condition; Second, there can be some turbulence occurring further downstream and the 

flow also becomes unstable when rotation speed increases to a higher level (Charwat et 

al. 1972).  

 

Figure 2-12: Influence of rotation speed on the maximum film thickness and its 

location. Comparison between theory and the measurements of Ozar et al. (2003). 

The data correspond to Q = 3 L/min. 

2.5 Influence of rotation on the hydraulic jump 

In this section, we consider the axisymmetric flow in region (iv), the hydraulic jump 

region. The flow on a stationary disk will be presented first, with discussion focused on 
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the prediction or determination of the thickness at the edge of the disk, which will be 

used as a boundary condition. The resulting arguments will be extended for the flow over 

a rotating disk. Although the flow downstream of the jump may be assumed to be 

inviscid or viscous, only the viscous flow will be examined as it seems to reflect closer 

the real flow (Duchesne et al. 2014). In fact, the hydraulic jump is associated with a 

considerable energy loss which is traditionally difficult to determine. As such, the energy 

equation is not suitable for the analysis of the hydraulic jump (Crowe 2009). 

Consequently, a momentum balance approach is applied across the jump. In addition, the 

surface tension effect will be included although a large jump radius is anticipated in the 

presence of rotation. 

2.5.1 General formulation 

Using Equation (2.2.1a), the integral form of Equation (2.2.1b) at any location becomes 

( )
h h h

2 2

2
z 00 0 0

1 d 1 1 p 1 u
r u u dz v dz dz .

r dr r r Re zFr =

 
− − = − −

        (2.5.1) 

We recall the position of the hydraulic jump as being Jr r= . We observe that the 

azimuthal velocity component at the jump is given by J Jv r=  as per Equation (2.2.8). 

Across the jump, Equation (2.5.1) is applied to a control volume of width r  in the radial 

direction, yielding 

( ) ( )
h h hJ J J2 2

2
J J J J J

J0 0 0

h hJ J
J

J J2
z 00 0

r
u u dz u u dz v dz

r

u1 r
p dz p dz .

Re zFr

+ −

+ + − −

+ −

+ −

=

    
− − − −   

   

 
  

= − − − 
 

 

  

 

    (2.5.2) 

From here on, a ‘-’ and a ‘+’ superscript denotes a value immediately upstream and 

downstream of the jump, respectively. Since the width of the jump r  is assumed to be 

small, the terms in Equation (2.5.2) containing r  become negligible. In this case, we 
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recall the pressure terms from Equation (2.2.6) and use Equation (2.2.9) for mass 

conservation. In addition, following Bush & Aristoff (2003), we include the effect of 

surface tension. The resulting equation takes the same form as in the case of a stationary 

disk, namely 

( ) ( )
( )

( ) ( )
hhJ J2 2 2 2J J 2 2

J J J J
J 0 0

h h1 1
h h Fr u dz Fr u dz.

2 Bo r

+−+ −

+ − − +
− 

− + = − 
 

    (2.5.3) 

We observe that the effect of rotation is reflected implicitly in Equation (2.5.3) in the 

height and velocity upstream and downstream of the jump. As in the case of a stationary 

disk, some assumptions are made regarding the nature of the flow downstream of the 

jump. 

In this work, we follow Duchesne et al. (2014), and adopt a lubrication flow assumption 

in the presence of rotation. In this case, a differential equation for ( )Jh r r  can be 

obtained by neglecting the first two inertia terms in Equation (2.2.1b). This is not 

unreasonable as the rotation effects is even stronger downstream. We note that the 

hydrostatic pressure term is not negligible due to the large film thickness downstream of 

the jump. Consequently, the remaining terms in Equation (2.2.1b), the hydrostatic 

pressure, the viscous and the centrifugal effects, must balance: 

2
zz2

Re dh
Re r u .

drFr
 = −         (2.5.4) 

By applying the no-slip condition at the fluid–disk interface and the no-shear condition at 

the free surface, Equation (2.5.4) can be integrated to yield the velocity downstream of 

the jump: 

( )
2

2
J 2

1 dh z
u r r , z Re r hz .

dr 2Fr

  
 = − −     

      (2.5.5) 



70 

 

Upon inserting Equation (2.5.5) into the mass conservation Equation (2.2.9) and 

integrating, the governing equation for the film thickness downstream of the jump 

becomes 

2 3
2 2dh 3 Fr h

Fr r.
dr 2 Re r

−

= − +          (2.5.6) 

The corresponding velocity reduces to 

( )
2

3
J

3 z
u r r , z h hz .

2r 2

−
 

 = − − 
 
 

       (2.5.7) 

The problem remains open as to the existence of an additional relation, which would 

allow us to determine uniquely the height and the location of the jump. This additional 

relation can be based on a boundary condition for the film height specified at the edge of 

the disk, that is ( )h r r h = = . However, the specification of the height at the edge is 

theoretically not a simple matter. We discuss this issue by first examine the flow over a 

stationary disk. 

2.5.2 The hydraulic jump over a stationary disk 

In the stationary case, and subject to ( )h r r h = = , an analytical solution exists for 

Equation (2.5.6): 

( )

1
2 4

4
J

rFr
h r r h 6 ln .

Re r




  
 = +     

      (2.5.8) 

Obviously, in the presence of radial flow, the film thickness at the edge of the disk cannot 

be zero. Direct measurements by Duchesne et al. (2014) of this edge thickness, 

performed at nearly 5 mm of the disk perimeter in their experiment, give a nearly 

constant value with a weak power-law variation not exceeding a few per cent. This 

constant thickness value is very close to the capillary length 0 / g   of the fluid, which 

results from the balance of forces between the hydrostatic pressure and the surface 
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tension at the disk perimeter. This value is also consistent with the measurements of 

Dressaire et al. (2013). Similarly, we assume here that the film thickness at the edge of 

the disk is essentially equal to the film thickness the liquid exhibits under static 

conditions. This is not an unreasonable assumption since the flow downstream of the 

jump has predominantly the character of gradually varied flow. This static thickness is 

governed by the minimum free energy and was given by Lubarda & Talke (2011) as 

( )s 0 Yh 2 / g sin / 2=    , where Y  is the contact angle. 

We note that the contact line is not present if the liquid flows off the edge evenly in ideal 

axisymmetric flow. In that case, the thickness near the edge of the disk should be pursued 

following the treatment of Higuera (1994). For realistic surface tension effect, however, 

the liquid film always breaks into several rivulets when falling off the edge, or even flows 

off the edge at only one spot in the capillary limit (Mohajer & Li 2015). Therefore, the 

film is mostly quasi static and stable along the rim of the disk and the thickness can be 

approximated by the quasi-static condition. Existing measurements show that the edge 

thickness is almost constant and on the order of the capillary length, which reflects the 

static film condition (Dressaire et al. 2010, Duchesne et al. 2014, Mohajer & Li 2015). 

We also observe that, even though the flow breaks into rivulets when flowing off the 

edge, the flow remains axisymmetric until getting very close to the rim of the disk where 

some weak azimuthal flow appears (Mohajer & Li 2015). In this case, the axisymmetric 

assumption should remain valid throughout most part of the domain, and this is the 

assumption we have made in the current work. 

In addition, in order to explore the small variation of edge thickness with flow rate as 

observed by Duchesne et al. (2014), we resort to a minimum mechanical energy principle 

(Yang & Chen 1992; Yang, Chen & Hsu 1997). This principle states that a fluid flowing 

over the edge of a disk under the influence of a hydrostatic pressure gradient will adjust 

itself so that the mechanical energy within the fluid will be minimum with respect to the 

film thickness at the disk edge. We note that this approach originates from open-channel 

hydraulics (Bakhmeteff 1966). Consequently, the contribution on the thickness at the 

edge of the disk can be calculated by setting the derivative of the mechanical energy with 

respect to the film thickness equal to zero, that is 
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h 2
2

0

u
Fr h dz 0.

h 2

 
+ = 

   
         (2.5.9) 

After substituting for ( )Ju r r ,z  from Equation (2.5.7) into Equation (2.5.9), we obtain 

the variation of the thickness with the Froude number (flow rate) at the edge of the disk 

( ) ( )
1/3 2/3

3 / 40 Fr / r . 

Taking into consideration this small dependence, we obtain the dimensionless film 

thickness at the edge as 

21

33Y1 3 Fr
h 2 sin .

Bo 2 40 r




    
= +    

    
     (2.5.10) 

Upon specifying the thickness ( )h r r h = =  at the edge of the disk as per Equation 

(2.5.10), we obtain the film thickness distribution downstream of the jump from Equation 

(2.5.8), which is then substituted into the momentum balance Equation (2.5.3) to 

determine the location of the jump. For the current problem, we achieve a good 

agreement with the measurements of Dressaire et al. (2010) by taking Y 90 =  . This 

value is well within the range of values measured for water on polydimethylsiloxane 

(Diversified Enterprises 2009), which is the material used by Dressaire et al. (2010) for 

their disk. 

The dependence of the jump location on the Froude number is reported in Figure 2-13, 

where a comparison with experiment is presented based on the data of Dressaire et al. 

(2010) for water, leading to good agreement. The original experimental data were 

reported in terms of the flow rate for a jet radius of 1 mm and a speed ranging 

approximately from 3 to 16 m/s. In this case, taking 2g 10m / s , 6 210 m / s− =  and 

70mN / m = , we have Bo = 0.13 and 2G 10−= . 
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Figure 2-13: Dependence of hydraulic jump location on flow rate (Froude number) 

for a stationary disk. The figure shows the comparison between the current 

theoretical predictions and the measurements of Dressaire et al. (2010) for a water. 

Bohr et al. (1993) and Rojas et al. (2013) found that the jump radius scales 

approximately as 5/8 3/8 1/8
0Q g− − . Avedisian & Zhao (2000) investigated the circular 

hydraulic jump experimentally for normal and reduced gravity conditions. They 

measured the jump diameter and shape at the free liquid surface for an impinging jet on a 

stationary disk. Based on the reported two values of the flow rate and two gravitational 

acceleration data provided, we find that the location of the jump behaves close to 1/9g− , 

roughly confirming the scaling of Bohr et al. (1993) for low gravity. Using the current 

scaling, the dimensionless form of Bohr et al. estimate can be written in terms of the 

transition location and the Froude number as 9/8 1/4
J 0r r Fr , where we recall 

( ) ( )
1/3

0r 0 78 / 875Re = =  from Equation (2.3.7). More recently, Duchesne et al. 

(2014) derived a more accurate estimate involving a logarithmic correction based on the 

thin-film approach. When cast in dimensionless form, we find that the jump location 
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behaves like 1 5/8 3/8
J Jr ~ Fr Fr G− − , where JFr  is the jump Froude number defined in terms 

of the jump height and the average velocity immediately after the jump. In our notation, 

( )
3/2

J J JFr Fr / 2r h+= . Duchesne et al. (2014) found that JFr  remains sensibly 

independent of the flow rate (constant with respect to Fr), especially for a jet of fluid of 

low viscosity or at relatively large flow rate. Figure 2-14 shows the behaviour of JFr  

against Fr, corresponding to the prediction in Figure 2-13, based on the current 

formulation. It is found that JFr  remains sensibly equal to 0.15. As a way to validate the 

current approach based on the cubic velocity profile, we also included in Figure 2-14 the 

result based on Watson’s similarity solution, which indicates that both approaches yield 

essentially the same value for JFr . As a reference, we also reproduced the measurements 

of Duchesne et al. (2014) for silicon oil. In this case, it turns out that we essentially have 

JFr 0.33 . However, the data also suggest a deviation from the constant level at very 

flow rate. This issue is further explored next by comparing the location of the jump in the 

low flow rate range. 

It appears that in order to determine both the location and the height of the jump, we 

seem to have two alternatives: fixing the value of JFr  or imposing the film thickness at 

the edge. Based on the results reported in Figures 2-13 and 2-14, the two alternatives are 

essentially equivalent. It is therefore important to further examine conditions where JFr  

may not remain independent of the flow rate. This is likely the case for impinging flow at 

low flow rate. For this purpose, we conduct a comparison against the data of Hansen et 

al. (1997), who measured the position of the hydraulic jump against the flow rate, 

ranging from 0 to 60 3cm / s . In this case, the contact angle in Equation (2.5.10) was 

taken for water and glass as 35  (Vicente et al. 2012).  Figure 2-15 depicts the 

comparison between our formulation and experiment. The experimental data are 

reproduced in dimensionless form. The distribution of JFr  versus Fr is also included for 

reference. The figure clearly confirms that JFr  remains constant over the large Froude 
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number (flow rate) range. At small flow rate, JFr  increases rather rapidly as Fr tends to 

zero. 

 

Figure 2-14: Dependence of JFr  on the flow rate (Froude number) for a stationary 

disk. The solid and dashed lines show the results corresponding to the configuration 

of Dressaire et al. (2010) for water, based on the current cubic and similarity 

profiles, respectively. The data corresponding to silicon oil from Duchesne et al. 

(2014) are also included. 
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Figure 2-15: Dependence of hydraulic jump location on flow rate (Froude number) 

for a stationary disk. The figure shows the comparison between the current 

theoretical predictions and the measurements of Hansen et al. (1997) for a water jet 

on a glass disk. The distribution of JFr  is also included. 

It is clear from Figures 2-13 and 2-15 that the range of Froude numbers is not the same. 

The data of Hansen et al. (1997) are restricted to the very low range with no overlap with 

the data of Dressaire et al. (2010). Therefore, we confirm from the observations of 

Duchesne et al. (2014) as well as from their data in Figure 2-14, that JFr  is not expected 

to remain constant in the low Froude number range. 

Finally, we examine the validity of our approach regarding the actual size and shape of 

the jump. In their experiment of the flow of a thin film, Ozar et al. (2003) measured the 

jump profile against the radial distance on a stationary aluminium disk. The comparison 

between theory and experiment is reported in Figure 2-16 for two different flow rates for 

a disk of radius 203mm or r 4 = . In this case, we take the contact angle for water and 
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aluminium to be 70  (Majeed 2014). For Q = 7 L/min, Figure 2-16a shows that the jump 

is located far upstream of the disk edge ( )Jr 2 , whereas for Q = 15 L/min, Figure 2-16b 

shows that the jump is located close to the edge. In both cases, the jump height exhibits a 

maximum and tapers rather rapidly near the edge. The comparison shows a rough 

agreement for the thickness distribution upstream of the jump as well as for the (average) 

location and height of the jump for the two flow rates. Again, due to the difference in 

flow configuration, the agreements should be acceptable. 
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Figure 2-16: Comparison between theory and the measurements of Ozar et al. 

(2003) for the hydraulic jump of a thin film flowing on a stationary disk for Q = 7 

L/min (a) and Q = 15 L/min (b). 

(a) 

(b) 
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2.5.3 The hydraulic jump over a rotating disk 

In the case of a rotating disk, the thickness at the edge is expected to vary with the speed 

of rotation as well as the jet flow rate and surface tension. In this case, while the 

minimum energy principle is expected to hold, the static film thickness must be adjusted 

to account for rotation. We expect the thickness at the edge to decrease with rotation 

speed and increase with the flow rate as it should somehow reflect a balance between the 

centrifugal acceleration, the hydrostatic pressure and the surface tension. However, the 

measurements of Duchesne et al. (2014) as well as those of Dressaire et al. (2010) seem 

to suggest little influence of the flow rate, which is also supported by our predictions in 

Section 2.5.2 above. Although these observations are conclusive for a stationary disk, we 

expect them to hold for a rotating disk. 

However, the influence of rotation speed on the thickness at the edge of a rotating disk 

remains unaddressed. Here, we examine the effect of rotation by taking guidance from 

the extensive existing insight in thin-film spin coating. In this process, a drop of liquid 

solution is deposited onto a rotating substrate (wafer). After an initial acceleration, the 

liquid reaches a uniform thickness that is sufficiently small for the viscous shear drag to 

balance the centrifugal acceleration. At this stage, the film begins to dry up as the solvent 

evaporates, ultimately exhibiting a constant and steady thickness. Theory as well as 

experiment suggest that the final thickness varies with rotation speed like 

1/3 2/3
f 0h ~ −   (Hall et al. 1998), where the kinematic viscosity 0  appears to be the 

main influencing liquid property. This behaviour is observed at relatively large spin 

speed and does not take into account the static limit that corresponds to ω = 0. We find 

the overall behaviour that seems to fit well experiment to be of the form: 

s
f 1/3

2

s

h
h .

1 h

=
 

+  
  

       (2.5.11) 

Here   is an empirical coefficient in units of ( )
1/3

s / m . To illustrate the applicability of 

Equation (2.5.11), we examine the flow of photoresist AZ6600 liquid series, which are 
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liquid films used as resistant substance applied as a coating to protect a surface during 

some process, for example to prevent dye or glaze adhering (MicroChemicals 2013). 

Figure 2-17 shows the data and curves based on Equation (2.5.11) for five AZ6600 liquid 

films based on measurements reported by Clariant GmbH (see reference source below). 

In this case, all five liquid films have sensibly the same surface tension for a contact 

angle of 90 , namely 10 mN/m. (Bauer et al. 1997), yielding sh 1.7mm= . The kinematic 

viscosities are as follows: 19 cSt (AZ6612), 27.7 cSt (AZ6615), 34.3 cSt (AZ6618), 58.5 

cSt (AZ6624) and 82 cSt (AZ6632). Figure 2-17 shows a significant drop in the film 

thickness from the static level at low spin speed, reflecting the difficulty of the liquid to 

spread initially. Figure 2-17 also shows the final film thickness as function of rotation 

speed in the spin coating of AZ6600 photoresist liquid films. The values of   are given 

for a best fit of expression Equation (2.5.11). The data are reproduced from 

MicroChemicals (2013). The inset shows data amplified in the small thickness range. 
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Figure 2-17: Final film thickness as function of rotation speed in the spin coating of 

AZ6600 photoresist liquid films. The values of   are given for a best fit of Equation 

(2.5.11). Data are reproduced from MicroChemicals (2013). Inset shows data 

amplified in the small thickness range. 

We now illustrate the influence of rotation on the jet flow and hydraulic jump by 

examining the behaviour of the AZ6612 liquid. The flow configuration is the same as that 

of Dressaire et al. (2010) discussed in Section 2.5.2 for the stationary disk; only the fluid 

is now AZ6612 instead of water and the jet radius is 4 mm instead of 1 mm. The location 

of the jump and corresponding height are shown respectively in Figures 2-18 and 2-19 

against the Froude number (flow rate). We can see that the location of the jump is pushed 

outwards with higher rotating speed as well as higher flow rate, which is consistent with 

existing experimental findings (Ozar et al. 2003; Deng & Ouyang 2011). Here, the 

Coriolis acceleration associated with rotation can be seen as weakening the effect of 

gravity. Indeed, an interesting parallel can be established between rotation and body 
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forces. The measurements of Avedisian & Zhao (2000) show that the steady state 

diameter of the jump under reduced gravity is larger than the diameter of the same jump 

under normal gravity conditions. Similar to the current case of a rotating disk, they 

predicted that the hydraulic jump would also disappear in the absence of gravity. 

For a stationary disk ( 0= ), Figure 2-18 suggests that the location of the jump grows 

essentially linearly with flow rate. On a rotating disk, the growth rate increases for large 

rotating speeds. 

 

Figure 2-18: Influence of rotation on the hydraulic jump location, plotted against 

the Froude number (flow rate) for the AZ6612 photoresist fluid. 
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Figure 2-19: Influence of rotation on the hydraulic jump height, plotted against the 

Froude number (flow rate) for the AZ6612 photoresist fluid. 

The jump height in Figure 2-19 is shown to grow monotonically with flow rate for a 

stationary disk but tends to exhibit a maximum at low rotation speed. At higher rotation 

speed, the jump decreases with flow rate, suggesting that the jump weakens as it is being 

pushed towards the disk edge. Although there is no indication from the figure that the 

jump has reached the edge of the disk ( r 90 = ), this may not be the case in reality. A 

more accurate prediction would have to be based on a formulation that includes inertia 

since convective effects are bound to become more significant at higher flow rate. 

The overall effect of rotation is illustrated in Figures 2-20 and 2-21, which depict the film 

thickness (Figure 2-20) and the corresponding surface velocity (Figure 2-21) over the 

entire disk for Fr = 30. For very small  , the jump saturates to the stationary case. The 

jump height decreases with increasing rotation rate, simultaneously as the jump location 

is pushed outwards toward the edge of the disk. However, the film thickness and surface 
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velocity upstream of the jump do not seem to vary significantly with   over the range 

reported here.  

 

Figure 2-20: Influence of rotation on the film thickness plotted against radial 

distance in regions (ii), (iii) and (iv) for the AZ6612 fluid. 

Overall, the velocity in Figure 2-21 is much less influenced by the rotation speed than the 

film thickness. For a stationary and low rotation speed ( 0.001= ), the existence of the 

jump is unquestionable. However, with higher rotation speed, the jump becomes weaker, 

which may signal the beginning of the vanishing of hydraulic jump. Both the thickness 

and velocity decrease monotonically with radial distance, followed by a drastic thinning 

near the edge of the disk that is enhanced by centrifugal effect. 

Finally, we observe from Figures 2-20 and 2-21 that the flow appears insensitive to the 

variation of the rotation speed. This insensitivity corroborates well with experiment at 

least for the range of speeds reported here. 
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Figure 2-21: Influence of rotation on the film free-surface velocity plotted against 

radial distance in regions (ii), (iii) and (iv) for the AZ6612 fluid. Inset shows the 

amplification around the jump. 

2.6 Concluding remarks 

In this study, the flow of a jet impinging on both a stationary and rotating disk is 

examined theoretically. The flow is assumed to remain steady and axisymmetric (Figure 

2-1). The range of Reynolds number and rotation speed for which axisymmetric flow is 

expected is established from existing linear stability analysis (Figure 2-2). A model is 

developed based on the Kármán–Pohlhausen integral approach to describe the behaviour 

of the flow in the developing boundary-layer region (ii) and the fully-viscous region (iii). 

The integral form of the continuity and momentum equations is treated numerically 

separately in each region, and the flow is matched at the transition point. Unlike the flow 

on a stationary disk, the radial velocity does not admit a similarity profile. A cubic profile 

is assumed for the velocity, which is commonly used and was shown to be accurate. A 

momentum balance is taken across the hydraulic jump, including the centrifugal effect 
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and surface tension, and the flow is assumed to be non-convective (non-inertial) 

downstream of the jump, where a lubrication flow is assumed with the rotational effect 

accounted for. 

We find that rotation tends to enhance inertia, leading to a drop in the boundary layer 

height as well as the film thickness in region (ii). Near the stagnation point, the boundary 

layer grows like r / Re , which is expected since the centrifugal effect is dominated by 

convective inertia. Further downstream, a maximum develops before the boundary-layer 

thickness decreases as a result of strong centrifugal effect (Figure 2-3). The transition 

point, where the outer edge of the boundary layer intersects the film surface, moves 

towards the perimeter of the disk with increasing rotation speed while the film thickness 

at the transition location diminishes (Figure 2-4). 

The development of a maximum also occurs for the thickness in the fully-viscous region 

(iii), which is a behaviour observed only for the flow of a film on a rotating disk. Closer 

to impingement, the film thickness decreases rapidly and exhibits a minimum that 

weakens with rotation speed before experiencing the maximum. Simultaneously, a 

significant effect of the rotation speed is predicted on the surface velocity as it tends to 

increase and decay at a lower rate with radial distance (Figures 2-5 and 2-6). 

Interestingly, unlike the film thickness, the surface velocity decays monotonically with 

distance (Figure 2-7). In contrast, the shear stress along the wall exhibits a minimum for a 

rotating disk, which strengthens and becomes located closer to impingement as the 

rotation speed increases (Figure 2-8). 

The numerical results clearly confirm the presence of an inner region that is inertia 

dominated where the film thickness grows with radial distance like 2h ~ r / Re  until it 

reaches the maximum height where convective and centrifugal effects are of the same 

order, at a location given approximately as ( )
1/4

maxr ~ Re/  and a value 

maxh ~1/ Re . Further downstream, in the outer region where the centrifugal effect 

dominates, the film thickness decreases like ( )
1/3

2 2h ~ Re r
−

 . Meanwhile, the wall 
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shear stress is found to decay like 2 5
w ~ Re r−  in the inner region. Further downstream, 

and in contrast to the flow on a stationary disk, the shear stress experiences a minimum 

and then increases like ( )
1/3

2 4
w ~ Re r   as a result of film thinning. Our numerical 

results corroborate well existing measurements in the published literature. 

An important issue that remains unaddressed in the literature is the prediction of the 

hydraulic jump without experimental input. In this study, we specify the thickness h  of 

the film at the edge of the disk based on a static and a dynamic contribution to the 

thickness at the edge of the disk. Comparison between our predictions and published 

measurements of the jump location against the flow rate for water lead to excellent 

agreement (Figures 2-13, 2-15 and 2-16), especially in the higher range of Froude 

number (high flow rate or low viscosity), where the jump is clearly identified (i.e. a sharp 

jump). These arguments are then extended to account for disk rotation, taking guidance 

from existing analyses and measurements on the influence of rotation on the film 

thickness in spin coating (Figure 2-17). The hydraulic jump is found to be pushed 

outwards with rotation speed as well as with flow rate. The existence of the jump is 

obvious for a stationary disk and at low rotation speed. However, the jump weakens with 

increasing rotation speed, and for very large rotating speed (small Rossby number), 

should eventually disappear (Figure 2-20). 

Finally, we observe that, downstream of the hydraulic jump, the change in liquid 

thickness with radial distance for low-viscosity liquids (e.g. water) is very small (Figure 

2-16a). This phenomenon is also reported by Dressaire et al. (2010). In fact, the 

hydrostatic pressure gradient is driving force of the flow in the subcritical region. Due to 

the small viscosity and thus wall resistance, the decrease in the height of the free surface 

is not expected to be large. In this case, the thickness immediately downstream of the 

jump is also very close to the static thickness of a large flat droplet, which in nature 

reflects the dominance of the surface tension effect. This to some extent confirms the 

finding of Bhagat et al. (2018). However, they went too far to argue that surface tension 

is the main reason for any circular hydraulic jump and gravity is irrelevant. In fact, the 

effect of gravity depends on the viscosity of the liquid and should be more dominant for 
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high-viscosity liquids. More rigorous analysis on the issue can be found in Scheichl 

(2018, 2019). 

On the other hand, it is also important to note that the viscous force is neglected in the 

momentum and force balance relation in Equation (2.5.3). This is surely a reasonable 

assumption provided the width of the jump is negligible. However, one would anticipate 

that the accuracy of this method should drop if the width of the jump is not small. In 

other words, the momentum destruction due to the viscous force at the bottom of the 

jump cannot be neglected if the jump is not sharp. Indeed, the sharp jump only occurs for 

low-viscosity liquid like water. For a high-viscosity liquid, the location of the jump is not 

always identifiable in reality, especially for high-viscosity liquids (Rojas et al. 2010). 

Moreover, gravity is neglected before the jump in the current chapter. For a liquid with 

high viscosity however, gravity should not be omitted before the jump since the strong 

viscous effect generally causes a large increase in the liquid thickness leading to a smooth 

jump. Consequently, there should be a more suitable method for high-viscosity liquids. 

These issues will be addressed in the next chapter. 
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Chapter 3  

3 The circular hydraulic jump for high-viscosity liquids 

As discussed at the end of last chapter, the force and momentum balance would become 

less accurate if the width of the jump is not negligible (i.e. a smooth jump) which is 

usually the case for liquids of high viscosity. Also, gravity effects will dominate the flow 

upstream of the jump and thus become non-negligible. In this chapter, we will include 

gravity in the supercritical region and illustrate the effects of gravity on the boundary 

layer, the liquid thickness and the hydraulic jump for high-viscosity liquids. 

3.1 Introduction 

A circular hydraulic jump is expected to arise when a fluid jet falling vertically at high 

Reynolds number impacts the disk. The fluid spreads radially as a thin film until reaching 

a critical radius at which the film rises abruptly. The regions before and after the jump are 

known as the supercritical and subcritical regions respectively. Impinging jet flow is 

important in numerous industrial applications such as jet cooling, jet quenching and 

surface cleaning etc. The fast motion of liquid inside the jump provides high rate of heat 

and mass transfer whereas the low velocity caused by hydraulic jump dramatically harms 

the performance (Mohajer & Li 2015). Although the impingement of a circular jet has 

been extensively considered, there remain important issues as to a fully theoretical 

formulation, particularly concerning the prediction of the jump location and height for 

high-viscosity liquids. 

Watson (1964) formulated an appropriate description of the supercritical flow using 

boundary layer equations. Gravity was neglected before the jump due to the small 

thickness. The location of the jump was determined by a force and momentum balance 

method given the downstream height of the liquid. Watson’s theory was tested in many 

experimental investigations, including those of Watson himself, Craik et al. (1981), 

Stevens & Webb (1992), Bush & Aristoff (2003) and Baonga et al. (2006). Bush & 

Aristoff (2003) improved Watson’s theory by including the effect of surface tension and 

achieved better agreements with experiments. 
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We note that in the force and momentum balance proposed by Watson (1964), the shear 

stress at the bottom of the jump is neglected since the width of the jump is assumed to be 

small. This approximation is generally satisfying for sharp (steep) hydraulic jumps. 

However, smooth jumps can also occur, and the location of the jump is not always 

identifiable in such cases, especially for high-viscosity liquids and flow at low speed. The 

numerical simulation of Rojas et al. (2010) also depicts the ambiguity in the jump 

location. Their numerical film profiles in their figure 2 illustrate how the abrupt jump 

ceases to exist with increasing viscosity, giving way to a smoother profile. We also note 

that gravity is neglected before the jump in Watson’s theory. For a liquid with high 

viscosity however, gravity should not be neglected in the supercritical region since the 

strong viscous effect often causes a large slope of the free surface. 

Several studies have considered the gravitational effect in the supercritical region. Tani 

(1949) first proposed the idea that the hydraulic jump is a result of flow separation caused 

by the accumulating hydrostatic pressure in the supercritical region. He incorporated 

gravity before the jump and obtained a differential equation governing the film thickness 

using the K-P approach. However, an upstream condition has to be artificially given or 

taken from the experiments. Following the idea of Tani (1949), Bohr et al. (1993) derived 

an ordinary differential equation for the average velocity using shallow-water theory (i.e. 

thin-film approximation). The equation turned out to have a single critical point which is 

a spiral (see Tani 1949) and can exhibit an essential singularity at some finite distance. 

Bohr et al. (1993) argued that the jump location is close to the critical spiral point of their 

averaged equation and deduced that the jump radius scales as 
5/8 3/8 1/8

0Q g− − . However, 

this scaling only depends on the overall flow rate, not the specific velocity. The influence 

of nozzle-to-disk distance on the hydraulic jump radius was investigated experimentally 

by Brechet & Neda (1999), who reached a scaling law similar to that proposed by Bohr et 

al. (1993). They also observed that the nozzle-to-disk distance has no influence on the 

jump location. We also note that the scaling law of Bohr et al. (1993) cannot predict the 

shape of the jump. In this regard, Bohr et al. (1997) and Watanabe et al. (2003) proposed 

a new model that can cross the jump and predict the shape of the jump using a non-self-

similar velocity. However, two experimental points are needed in their solution to fix the 
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boundary conditions. In addition, the two points should be close to the jump, otherwise 

making the solution unstable. Therefore, some prior knowledge of the location of the 

jump was also required. More importantly, as the boundary layer equations do not strictly 

hold across the jump, the validity of their solution is questionable. Kasimov (2008) 

modified the formulation of Bohr et al. (1993) by adding the effect of surface tension and 

incorporating the shape of a flat plate with a falling edge, however no comparison with 

experiments were attempted.  

Duchesne et al. (2014) showed experimentally that the jump Froude number based on the 

jump height and velocity is independent of the flow rate. This constant jump Froude 

number should in principle provide the desired relation for the full prediction of the jump 

location and height. However, no theoretical justification was provided. More recently, 

the measurements of Mohajer & Li (2015) do indeed support the claim of Duchesne et al. 

(2014) but found that the jump Froude number is not independent of the surface tension. 

Chapter 2 addressed this issue and provided some theoretical arguments and comparisons 

with experiment in support of the claim of Duchesne et al. (2014). The thickness at the 

edge of the disk was determined as a combination of static and dynamic contributions 

based on the local minimization of energy. The jump Froude number was found to 

remain essentially independent of the flow rate. However, the predictions were limited to 

low-viscosity liquids and high flow rates. We will revisit this issue in this chapter and 

prove that the constancy still holds for high-viscosity liquids. 

The main objective of the present study is the theoretical prediction of the jump location 

and height for liquids of high viscosity. In particular, we explore the role of gravity and 

its influence on the location and height of the jump. We demonstrate the crucial role of 

gravity for liquids of relatively large viscosity and low surface tension. In Section 3.2, we 

outline the problem by giving the governing equations and boundary conditions in each 

region of the physical domain. The overall solution strategy is also discussed. In Section 

3.3, the Kármán–Pohlhausen (K-P) approach is adopted to determine the boundary-layer 

structure and the film thickness upstream of the jump. The transition point is also located, 

where the boundary-layer edge and the free surface meet. In Section 3.4, the K-P 

approach is employed again to examine the viscous boundary-layer region and assess the 
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influence of gravity on the thin-film flow and jump location. Comparison with 

experiment is also carried out. In Section 3.5, the height of the hydraulic jump is first 

calculated using the momentum and force balance method, and the effect of gravity on 

the jump is analyzed. The drawback of this approach is then discussed. Alternatively, we 

propose an approach based on the knowledge of the edge thickness from Chapter 2. 

Finally, concluding remarks and discussion are given in Section 3.6. 

3.2 Physical domain and problem statement 

Consider the steady laminar incompressible flow of a circular (axisymmetric) jet of a 

Newtonian fluid emerging from a nozzle of radius a, impinging at a volume flow rate Q 

on a flat disk lying normal to the jet direction. The flow configuration is depicted 

schematically in Figure 3-1, where dimensionless variables and parameters are used. The 

problem is formulated in the ( )r, , z  fixed coordinates, with the origin coinciding with 

the disk center. The flow is assumed to be independent of θ, thus excluding polygonal 

flow. In this case, ( )u r,z  and ( )w r,z  are the corresponding dimensionless velocity 

components in the radial and vertical directions, respectively. The r-axis is taken along 

the disk radius and the z-axis is taken parallel to the jet. The length and the velocity 

scales are conveniently taken to be the radius of the jet, a, and 2Q / a  both in the radial 

and vertical directions. Since the pressure is expected to be predominantly hydrostatic for 

a thin film, it will be scaled by ga . Two main dimensionless groups emerge in this case: 

the Reynolds number 0Re Q / a=   , where 0  is the kinematic viscosity, and the Froude 

number 
5Fr Q / a g=  , g being the acceleration due to gravity. We shall see that the 

problem can be reduced to a one-parameter problem, but the two parameters remain 

useful when comparing with experiment. 
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Figure 3-1: Schematic illustration of the axisymmetric jet flow impinging on a flat 

stationary disk and the hydraulic jump of type I. Shown are the stagnation region 

(i), the developing boundary-layer region (ii), the fully-viscous region (iii), and the 

hydraulic jump region (iv). All notations are dimensionless. 

3.2.1 The physical domain 

Following the treatment of Watson (1964), we identify four distinct flow regions for the 

jet over a circular disk, with smooth passage from one region to the next (see Figure 3-1): 

a stagnation flow region (i), a developing boundary-layer region (ii), where the boundary 

layer grows until it reaches the film surface at the transition location 0r r=  and a fully-

viscous region (iii). A hydraulic jump emerges in region (iv), located at a radius Jr r= . 

We observe that r = O(1) near the stagnation point in region (i). The velocity outside the 

boundary layer rises rapidly from 0 at the stagnation point to the impingement velocity in 

the inviscid far region. In region (ii), and as we shall confirm, the boundary layer is not 

expected to grow like r / Re  in the presence of gravity. The speed outside the boundary 

layer remains almost constant, as the fluid here is unaffected by the viscous stresses. For r 

>> 1, the flow field in region (ii) is not significantly affected by the stagnation flow of 

region (i). The region 01 r r   will be referred to as the developing boundary-layer 
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region, with boundary-layer thickness ( )r , outside which the flow is inviscid and 

uniform. Here 0r  is the location of the transition point at which the viscous stresses 

become appreciable right up to the free surface, where the whole flow is of the boundary-

layer type. At this point, in the absence of gravity, the velocity profile changes from the 

Blasius type to the self-similar profile. In contrast, in the presence of gravity, a similarity 

profile does not exist. The flow in region (iii),  0r r , which will be referred to as the 

fully-viscous region, is bounded by the disk and the free surface z = h(r). 

Finally, the hydraulic jump in region (iv) occurs at a location Jr r= , which is larger than 

0r  since the jump typically occurs downstream of the transition point. Referring to Figure 

3-1, the height immediately upstream of the jump is denoted by Jh− , and the height 

immediately downstream of the jump is denoted by Jh+ . The subcritical height ( )Jh r r  

is generally not constant and is different from the jump height Jh+ . In this study, the fluid 

is assumed to be drained at the edge of the disk r r=  to maintain steady flow, with the 

film thickness denoted by ( )h h r r = = . The edge thickness is not expected to depend 

heavily on the flow rate (Rojas et al. 2013, Mohajer & Li 2015). 

3.2.2 Governing equations and boundary conditions 

Unless otherwise specified, the Reynolds number is assumed to be large but without 

causing turbulence. Consequently, for steady axisymmetric thin-film flow, in the 

presence of gravity, the mass and momentum conservation equations are formulated 

using a thin-film or Prandtl boundary-layer approach, which amounts to assuming that 

the radial flow varies much slower than the vertical flow (Schlichtling & Gersten 2000). 

By letting a subscript with respect to r or z denote partial differentiation, the reduced 

dimensionless conservation equations become 

r z
u

u w 0,
r

+ + =         (3.2.1a) 
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( )r z r zz2

Re
Re uu wu p u ,

Fr
+ = − +       (3.2.1b) 

zp 1.= −          (3.2.1c) 

Here, p is the dimensionless pressure. 

These are the thin-film equations commonly used to model the spreading liquid flow 

(Tani 1949; Bohr et al. 1993, 1996; Kasimov 2008). We observe that the pressure for a 

thin film is hydrostatic as a result of its vanishing at the film surface (in the absence of 

surface tension) and the small thickness of the film. In addition, upstream of the jump, the 

variation of the film thickness with the radius is expected to be smooth and gradual. In 

this case, the radial variation of the hydrostatic pressure is also small. Unlike the case of 

liquids of low viscosity, gravity cannot be neglected in the supercritical range. At the 

disk, the no-slip and no-penetration conditions are assumed to hold for any r. In this case: 

( ) ( )u r,z 0 w r,z 0 0.= = = =         (3.2.2) 

At the free surface ( )Jz h r r=  , the kinematic and dynamic conditions for steady flow 

take the form 

( ) ( ) ( ) ( ) ( )zw r,z h u r,z h h r , u r,z h p r,z h 0.= = = = = = =   (3.2.3a,b) 

Here a prime denotes total differentiation. The flow field is sought separately in the 

developing boundary-layer region (ii) for 00 r r  , the fully-viscous region (iii) for 

0 Jr r r   and the hydraulic jump region (iv) for Jr r r  . We observe that region (i) is 

neglected here as per Chapter 2. In this case, the leading edge of the boundary layer in 

region (ii) is taken to coincide with the disk center. Consequently, the additional 

boundary conditions are as follows. In region (ii), the flow is assumed to be sufficiently 

inertial for inviscid flow to prevail between the boundary-layer outer edge and the free 

surface (see Figure 3-1). In this case, the following conditions at the outer edge of the 

boundary layer and beyond must hold: 
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( ) ( )z 0 0u r r ,z 0, u r r , z h 1. =  =     =    (3.2.4a,b) 

Integrating Equation (3.2.1c) subject to condition (3.2.3b), the pressure becomes 

( ) ( )p r,z h r z= − , which is then eliminated so that Equation (3.2.1b) reduces to 

( )r z zz2

Re
Re uu wu h u .

Fr
+ = − +        (3.2.5) 

Finally, the conservation of mass at any location upstream and downstream of the jump 

yields the following relation in dimensionless form: 

( )
( )h r

J

0

1
u r r , z dz

2r
=          (3.2.6) 

The presence of gravity causes the flow to be non-self-similar in character. Therefore, in 

the present study, approximate solutions are sought in each region. An integral approach 

of the Kármán -Pohlhausen (K-P) type (Schlichtling & Gersten 2000) is adopted 

upstream of the jump. The cubic profile is used for the velocity, which is considered to be 

the leading-order solution in a comprehensive spectral approach when inertia is included 

(Khayat 2006, Rojas et al. 2010). The cubic profile seems to be amply adequate as it 

leads to close agreement with Watson’s (1964) similarity solution for a jet impinging on a 

stationary disk (Prince et al. 2012). The cubic profile was also assessed by Khayat (2016) 

for a planar jet impinging on a surface with slip and was found to yield a good agreement 

against his numerical solution. See also Rao & Arakeri (1998) for an integral analysis of 

a rotating film. Higher-order polynomial velocity profiles were also used. In their study 

on flow separation and wave breaking, Bohr et al. (1996) used a quartic profile to 

illustrate the emergence of a singularity at the separation point for a thin film. A cubic 

velocity profile was later adopted by Bohr et al. (1997), accounting for regions of 

separation. The cubic profile was also adopted in Chapter 2 and was found to yield close 

agreement with experiment. 
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3.3 The flow in the developing boundary-layer and the 
transition location 

Throughout this study, the stagnation region (i) under the impinging jet will not be 

considered. The velocity outside the boundary layer rises rapidly from 0 at the stagnation 

point to the impingement velocity in the inviscid far region. The impinging jet is 

predominantly inviscid close to the stagnation point, and the boundary-layer thickness 

remains negligibly small. Obviously, this is the case for a jet at relatively large Reynolds 

number. Ideally, the flow at the boundary-layer edge should correspond to the potential 

flow near the stagnating jet, with the boundary-layer leading edge coinciding with the 

stagnation point (Liu et al. 1993). However, the assumption of uniform horizontal flow 

near the wall and outside the boundary layer (as illustrated in Figure 3-1) is reasonable. 

The distance from the stagnation point for the inviscid flow to reach uniform horizontal 

velocity is small, of the order of the jet radius (Lienhard 2006). Also, the dominance of 

inertia near the stagnation point, albeit weakened by gravity, should make plausible the 

assumption of uniform horizontal flow near the impingement point. This assumption was 

adopted initially by Watson (1964) and is commonly used in the existing theories (see 

Bush & Aristoff 2003; Dressaire et al. 2010; Prince et al. 2012). 

We therefore start by examining the flow in region (ii), where the inviscid flow 

dominates the upper layer ( )z h    of the film in the radial direction. Consequently, 

the radial velocity above the boundary layer remains equal to one: ( )su r 1= . The 

boundary-layer height   is determined by considering the mass and momentum balance 

over the boundary-layer region (ii). Therefore, we consider first the integral form of the 

convective term in Equation (3.2.5). The vertical velocity component is eliminated by 

noting from Equation (3.2.1a) that ( ) ( ) ( )
z

0
w r,z 1/ r / r r u r, z dz

 
= −    

 
 . In this case, 

( )
( )z2 2

r z

0

ru r, zu u 1
uu wu u r,z dz

r r r z r

  
 + = + −
   
 

     (3.3.1) 
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Consequently, upon integrating Equation (3.3.1) across the boundary-layer thickness, we 

obtain the integral form of the momentum equation in the boundary-layer region: 

( ) ( )z2
0

Re d Re
ru u 1 dz h u r, z 0 .

r dr Fr

 
 − = − − =

  
      (3.3.2) 

The boundary layer grows with radial distance, eventually invading the entire film width, 

reaching the jet free surface at 0r r= . For 0r r  and above the boundary-layer outer edge, 

at some height ( ) ( )z h r r=   , lies the free surface. The height of the free surface in 

region (ii) is then determined from mass conservation inside and outside the boundary 

layer. Therefore, for 0r r , 

( )
( )

( ) ( )
r

0

1
u r, z dz h r r .

2r



+ − =        (3.3.3) 

For simplicity, we choose a cubic profile for the velocity. Thus, we let 

( ) ( ) ( )
3

2
0

3 z 1 z 1
u r r , z 3 f ,

2 2 2

   
 = − =  −     

    
    (3.3.4) 

where z /=  . The cubic profile (3.3.4) is obviously one of many that can be used. The 

cubic profile, which will also be modified and implemented in the fully-viscous region 

(iii), does not satisfy the momentum equation at z = 0 but so do many profiles used in the 

literature, including the parabolic profile used by Bohr et al. (1993) and Kasimov (2008). 

Indeed, it is not necessary to force to profile to satisfy the momentum equations at 

specific locations for an averaged method. For this reason, simple profiles are often 

adopted in the literature, including the cubic profile used by Prince et al. for a flow on a 

disk with isotropic (2012) and anisotropic (2014) slip, Watson’s (axisymmetric) 

similarity profile used by Dressaire et al. (2010) to simulate non-axisymmetric hydraulic 

jump patterns. None of these profiles satisfy the momentum equation at the disk, yet they 

all lead to an accurate description. See, for instance, the comparisons of Dressaire et al. 
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(2010), Prince et al. (2012) and Khayat (2016). The profile (3.3.4) fulfils desirable 

criteria as it is simple and, and as we shall see, yields accurate results. 

Upon inserting Equation (3.3.4) into Equation (3.3.2) and Equation (3.3.3), we obtain the 

following coupled equations for the boundary-layer and free-surface heights: 

3 1
h ,

8 2r
−  =          (3.3.5a) 

( ) 2

2

39 Re d Re 3
r h .

280 r dr 2Fr
  =  +       (3.3.5b) 

These equations are solved subject to ( )r 0 0 = = . In the absence of gravity ( )Fr → , 

Equations (3.3.5) are easily solved to yield the following boundary-layer and film 

thicknesses: 

( ) ( )0 0
70 r 1 2 210 r

r r 2 , h r r ,
39 Re 4 r 13 Re

 
  =  = +  

 
  (3.3.6a,b) 

which agree with the r / Re   behaviour established from the dimensional argument 

of Equation (3.2.5). In this case, h decreases rapidly, like 1/r, near the disk center, 

reaching a minimum, and increases like r  further downstream. The transition location 

is determined by equating ( )0h r  and ( )0r  to obtain ( )( )
1/3

0r 78 / 875 Re= . 

In the presence of gravity, Equations (3.3.5) must be solved numerically. The problem 

can be reduced to a one-parameter problem by introducing the following transformation: 

( ) ( )1/3 1/3r Re r , h, Re h, .−=  =       (3.3.7a,b) 

Eliminating the film height and using Equation (3.3.7), the equation for the boundary-

layer height reduces to, along with the film thickness:  
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2 2

2

3 1 13 39 1 3 1
3, h .

4 35 140 r 8 2rr

   
 −  = + − =  +        

   (3.3.8a,b) 

Here, we introduce 

1/3 2Re Fr ,           (3.3.9) 

which becomes the only parameter in the problem. Equation (3.3.8a) is solved 

numerically subject to ( )r 0 0 = = , yielding in turn the height from Equation (3.3.8b). 

Figure 3-2 illustrates the influence of gravity on the boundary-layer height. In the limit of 

infinite Froude number, the classical boundary-layer result is recovered (Watson 1964, 

Schlichtling & Gersten 2000). As expected, gravity can have a tangible effect as the 

profiles in Figure 3-2 show a departure from the classical parabolic character of the 

boundary layer height. In fact, it is not difficult to show that the asymptotic solution of 

Equation (3.3.8a) for small r that the behaviour of the boundary-layer height near 

impingement is linear with distance. More precisely, ( )23 r O r =  + , or 

( )3 Fr / Re r   as opposed to ( )2 70 / 39 r / Re =  in the absence of gravity. The 

linear growth is clearly reflected by the 10 =  curve. Thus, the boundary-layer height 

approaches the linear behaviour with a diminishing slope as the level of gravity increases. 

We observe from Equation (3.3.8b) that, since the boundary-layer height is small near the 

origin, the film height decays like h ~1/ 2r  regardless of the level of gravity. This 

behaviour is also reflected by the h curves in Figure 3-2, showing a narrow spread when 

α is varied compared to δ. Gravity tends to lower the boundary-layer height. 
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Figure 3-2: Influence of gravity in the developing boundary-layer region (ii). The 

rescaled boundary-layer height, δ, and film thickness, h, are plotted against the 

normalized radial distance. The transition location coincides with the intersection of 

the two heights (at the cusps in the figure). We only indicate the transition location 

by a vertical line for α = 10. 

The behaviour in Figure 3-2 can also be deduced qualitatively from Equation (3.2.5), 

where the effect of gravity tends to enhance the effect of inertia as a result of the 

decaying film thickness with distance. The level of inertia is reflected by the radial 

convective term rReu u . An estimate of the order of magnitude of this term is reached by 

taking u to correspond to the free-surface value. In this case, we see that rReu u  decays 

with distance like 1Rer− . There is an additional contribution to inertia stemming from 

gravity, namely through ( ) ( )2 2 2Re/ Fr h ~ Re/ 2Fr r−−  for small r, making the 

boundary-layer height behaves roughly like ( )
1/2

2~ r / Re 1 1/ 2Fr r
−

 + , which clearly 
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shows the diminishing influence of gravity on the boundary-layer height. Thus, for 

dominant gravity, this relation reduces to ( )~ Fr / Re r , which is the linear behaviour 

based on Equation (3.3.8). 

Figure 3-3 depicts the influence of gravity on the transition location 0r  and 

corresponding film thickness ( )0h r , which are determined by setting ( ) ( )0 0h r r=  . The 

transition location is further from impingement for a thinner film with increasing gravity 

as inertia is enhanced by gravity. This is the same trend predicted for the effect of slip. 

Similar to slip, gravity results in an asymptotic behaviour of the thickness for large α. 

 

Figure 3-3: Dependence of the location and film thickness at the transition point 

between the developing boundary-layer and fully-viscous regions (ii) and (iii) on 

gravity. 
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3.4 The fully-viscous region and prediction of the jump 
location 

In this section, we formulate the problem for the film thickness in region (iii) and 

examine the flow field in this region. We then determine the location of the jump based 

on the supercritical flow without recourse to the subcritical solution. The approach is 

validated against existing measurements of the jump radius and its dependence on the 

flow rate. 

3.4.1 The equation for the film thickness 

In region (iii), the potential flow in the radial direction ceases to exist, with the velocity 

( ) ( )su r u r,z h= =  at the free surface becoming dependent on r. We again assume a 

cubic velocity profile subject to conditions (3.2.3a) and (3.2.3b). In this case, the radial 

velocity profile is given as function of the surface velocity ( )su r  as 

( ) ( ) ( )
( )0 J s
z

u r r r , z u r f , .
h r

  =   =     (3.4.1a,b) 

Here, we observe that ( )f   is still given by Equation (3.3.4).  Using the mass 

conservation Equation (3.2.6) yields the following relation: 

( )s 0 J
4

u r r r .
5hr

  =          (3.4.2) 

This equation agrees with equation (15) of Prince et al. (2012) when setting their slip 

parameter equal to zero. 

Similar to Equation (3.3.2), the integral form of the momentum equation reads: 

( )
h

Re d Re2ru dz hh u r, z 0 .z2r dr Fr0

= − − =       (3.4.3) 



109 

 

Substituting Equation (3.4.1) into Equation (3.4.3) and using Equation (3.4.2) to 

eliminate su , we obtain the equation for the film thickness in the fully-viscous region: 

1 272 4 68Re 1 3
Re h ,

2 2 3 2 2175 2hFr 875r h 5rh r

   
− = −   

  
     (3.4.4) 

which is solved for 0r r  subject to ( ) ( )0 0h r r r= =  . We observe that the flow in the 

absence of gravity is recovered in the limit Fr → . In this case, the problem reduces to 

the following equation and boundary condition: 

( ) 0
0

rdh h 525 r 70
, h r 2 ,

dr r 136 Re 39 Re
= − + =     (3.4.5a,b) 

which admits 

( ) ( )
2

3 3 0 0
0 0

r r175 70 175 r 233 1
h r r r r 2 ,

136Rer r 39 Re 136 Re 340 r
 = − + = +    (3.4.6) 

as solution, where we recall ( )( )
1/3

0r 78 / 875 Re= . For comparison, Watson’s expression 

is reproduced here in dimensionless form: 

( )
( )2

0

3c 3 3c2 r 1
h r r .

Re 8 r3 3

−
 = +


      (3.4.7) 

Thus, we have ( ) ( )2h 1.21 r / Re 0.685 1/ r +  from Equation (3.4.6) compared to 

Watson’s ( ) ( )2h 1.28 r / Re 0.69 1/ r +  from Equation (3.4.7), showing a close 

agreement, and validity of the cubic profile. 

3.4.2 The supercritical flow and the location of the hydraulic jump 

Equation (3.4.4) indicates that a singularity exists, occurring at some distance where the 

slope of the free surface becomes infinite. An equation similar to Equation (3.4.4) was 
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obtained by Bohr et al. (1993) by approximating the mean of the derivative of 2u  in the 

averaged momentum Equation (3.4.3) in terms of the derivative of the mean square. They 

showed that the singularity is not an artefact of the averaging process but is inherent to 

the thin-film equations. Of closer relevance is the equation obtained by Kasimov (2008) 

using a parabolic velocity profile, incorporating the shape of a finite disk with a sudden 

falling edge. 

We conjecture that the location of the singularity coincides with the radius of the jump. 

Consequently, we now have a relation between the jump radius Jr  and the film height Jh−  

immediately upstream of the jump: 

272 12Fr .
2 3875 r hJJ

− =
−

         (3.4.8) 

We therefore identify the jump location or radius to occur when the slope of the free 

surface upstream of the jump becomes infinite, that is ( )Jh r r = → , which coincides 

with the occurrence of the singularity of Equation (3.4.4). At this location the relation 

between the jump radius and height is given by Equation (3.4.8). Obviously, this claim is 

bold and needs to be validated, which we shall do shortly. The jump location is found by 

simply integrating Equation (3.4.4) numerically subject to ( ) ( )0 0h r r=   from 0r  to a 

distance Jr  until Equation (3.4.8) is satisfied to within a certain tolerance. More details on 

the numerical treatment are given below. 

Before comparing the predicted jump radius with existing measurements, it is helpful to 

explore the general supercritical flow behaviour (upstream of the jump). Once again, the 

flow becomes governed by a one-parameter problem when transformation (3.3.7) is used. 

In this case, Equation (3.4.4) reduces to 

1 272 1 1 272 1 6
h ,

2 3 2 2875 875 5hr h rh r

   
− = −   

   
      (3.4.9) 

where we recall α from Equation (3.3.9). In this case, Equation (3.4.8) becomes 
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( )
3 2722r h .JJ 875

− =          (3.4.10) 

We observe that the velocity at the free surface remains invariant under transformation 

(3.3.7). Equation (3.4.9) is integrated numerically subject to the condition 

( ) ( )0 0h r r r= =   at the transition point, using MATLAB forth-order Runge-Kutta 

scheme. The integration is carried out at equal steps in the distance taken equal to 310− , 

until the turning point is reached at the singularity. The program is terminated when the 

slope 2h 10  , giving an accuracy in the jump location Jr  to the third decimal. The pre-

jump height Jh  is then deduced from (3.4.10). 

We observe that Equation (3.4.9), similar to equation (33) of Bohr et al. (1993) and 

equation (3.1) of Kasimov (2008) for a flat disk, has only one critical point 

( )3/81/4 1/8h 6 / 5 , r 272 / 875 5 / 6c c=  =  , which is the root of the system 

( )( ) ( )( )2 3 21/ 272 / 875 1/ r h 272 / 875 1/ r 6 / 5h 0− = − = , corresponding to a pair of 

complex conjugate eigenvalues of the Jacobian of the linearized two-dimensional 

dynamical system (Kasimov 2008). The real part is positive, indicating that the critical 

point is an unstable spiral, which in turn indicates that the solution cannot pass through 

the critical point. Bohr et al. (1993) estimated that the jump is located close to the critical 

point. They computed the flow and the free surface by choosing the pre-jump (inner) 

branch to correspond to a constant average velocity and chose the post-jump (outer) 

branch that emanates from the point of singularity. The two branches are then joined by 

the shock when they reach the same radial position, at a point that is identified as the 

jump radius (see their figure 3). This method led them to deduce the scaling for the jump 

radius to be 5/8 3/8 1/8
J 0r Q g− −  . In fact, if we assume the jump to occur at or near the 

critical point and recall Equation (3.3.9), we obtain 

( ) ( )
1/83/8 3 2r r 272 / 875 5 / 6 Re FrJ c = , which is the dimensionless form of the 

scaling deduced by Bohr et al. (1993). 
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Later, Kasimov (2008) derived an equation of closer similarity to Equation (3.4.9) but 

introduced the shape of a flat disk with a cutoff at the edge. See his equation (3.1) and 

figure 2. The addition of the variable disk shape led to the existence of a critical saddle 

point near the disk edge, in addition to the spiral critical point. Kasimov determined the 

flow and the surface height on the two sides of the jump. The upstream branch is sought 

by solving his equation (3.1) subject to an initial condition corresponding the location 

where the jet velocity at impact equals the free-surface velocity. The downstream branch 

is sought by integrating (3.1) inward toward the jump starting at the far critical saddle 

point through which the solution effectively must pass. The integration is terminated on 

each side at the turning points, corresponding to an infinite slope in the surface height or 

the singularity in (3.1). The two heights computed on either side are subsequently used to 

determine the location of the jump by applying the discretized momentum equation. 

Figure 3-4 gives an overview of the influence of gravity on the film thickness distribution 

up to the jump location. The film thickness exhibits a minimum typically downstream of 

the transition location. The film growth stops at the location where the slope becomes 

infinite. 
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Figure 3-4: Influence of gravity on the developing boundary layer height and film 

thickness for supercritical flow. Also indicated in vertical lines are the locations of 

the hydraulic jump location 
1/3

JRe r−
 for different α values. 

The influence of gravity on the corresponding free-surface velocity profiles is depicted in 

Figure 3-5. Here the velocity in the developing boundary-layer region (ii) outside the 

boundary layer is equal to 1 (the uniform jet velocity), which then decreases 

monotonically with distance downstream of the transition location. In the absence of 

gravity ( )→ , the surface velocity decreases rapidly. This behaviour is easily 

deduced from Equation (3.4.2) by substituting Equation (3.4.6) to obtain 

( ) ( )
1

3 3
s 0 J 0 0 0

4 175 70
u r r r ~ r r 2r r ,

5 136 39

−
 

  − +  
 

 as → . (3.4.11) 

In this case, su  decreases like 
3r−  at large distance. The figure indicates that gravity 

tends to enhance the radial flow near the transition point similar to the effects of disk 
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rotation (Chapter 2) and slip (Prince et al. 2012, Khayat 2016). The rate at which the 

surface velocity decays with radial distance is also enhanced by gravity. However, further 

downstream, gravity inhibits flow movement as the film thickens ahead of the jump. 

 

Figure 3-5: Influence of gravity on the free surface velocity for supercritical flow. 

For any gravity level, after the rapid drop, w  exhibits a maximum before decaying 

monotonically. At large radial distance, the shear stress decays like 5r−  in the absence of 

gravity effect. The strength of the maximum is essentially uninfluenced by gravity but 

tends to occur further downstream with increasing gravity effect. We emphasize that this 

maximum value might be an artificial effect due to the matching of the flow the slope of 

the free surface and the boundary layer are not smoothly connected. 

Figure 3-6 illustrates the development of the dimensionless wall shear stress at the disk 

(skin friction) for the same gravity levels as in Figures 3-4 and 3-5. The figure shows that 

the wall shear stress is always larger for higher gravity except near the jump. This larger 

shear stress, which reflects a larger shear rate at the disk, is the result of a thinner film 
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thickness and a greater free-surface velocity caused by a higher gravity effect as already 

reported in Figures 3-4 and 3-5. The shear stress decays rapidly with radial distance in the 

developing boundary-layer region. In the absence of gravity, 

( ) ( )
2

3 3
w 0 J 0 0 0

6 175 70
r r r ~ r r r 2r r ,

5 136 39

−
 

   − + 
 

 as → . (3.4.12) 

 

Figure 3-6: Influence of gravity on the wall shear stress for supercritical flow. 

Although both the film height in Figure 3-4 and the free-surface velocity in Figure 3-5 

are not significantly influenced by gravity, the location of the jump reflects a significant 

influence. This is depicted in Figure 3-7 where the jump radius and corresponding film 

thickness immediately upstream of the jump are plotted against α. The growth of the 

jump radius and the height closely follows the overall behaviour 1/6
Jr    and 

2/9
Jh−   , yielding 2 3r hJJ

−   , which agrees with the original Equation (3.4.10). The 

fractional power growth is also reflected from the position of the vertical lines in Figure 

3-4 as well. 
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Figure 3-7: Dependence on the jump location and height immediately upstream of 

the jump on α. 

3.4.3 Comparison with experiment 

Figure 3-8 shows the dependence of the dimensional jump location on the flow rate, 

where comparison is carried out with the measurements of Hansen et al. (1997) as well as 

the numerical predictions of Rojas et al. (2010) for silicon oils of two different 

viscosities. The same experimental data were also used by Rojas et al. (2010) when they 

validated their spectral solution. We have included our results using the same log-log 

ranges used by Rojas et al. (2010) in their figure 2. Our predictions are in excellent 

agreement with their numerical results. The qualitative and quantitative agreement for the 

highest-viscosity case 95cSt =  is especially encouraging given the simplicity of the 

present approach compared to their spectral approach. In particular, and in contrast to the 

numerical approach, the present formulation does not require imposing a boundary 

condition downstream of the jump. The agreement with experiment appears to suggest 

that the location of the jump can be determined without knowledge of downstream 

conditions such as the disk diameter or the thickness at the edge of the disk. This 
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observation corroborates well the experimental findings of Brechet & Neda (1999). We 

recall that Rojas et al. (2010) had to impose the thickness at the edge of the disk as 

measured by Hansen et al. (1997). Both the present theoretical and existing numerical 

predictions tend to overestimate slightly the jump radius compared to experiment. The 

discrepancy appears to be higher for low flow rates, for a given liquid. A plausible 

explanation for the discrepancy is the difficulty to accurately locate the jump radius in 

reality when it occurs very close to the jet, where the accuracy also drops due to the 

neglection of the stagnation region. 

 

Figure 3-8: Dependence of the hydraulic jump radius on the flow rate. The figure 

shows the comparison between the present theoretical predictions and the 

measurements of Hansen et al. (1997) for two silicon oils of viscosities ν = 15 cSt and 

95 cSt. The numerical predictions of Rojas et al. (2010) are also included. 

We further assess the validity of our approach by comparison against the scaling law 

proposed by Rojas et al. (2013), which relates the radius of the jump, in particular, to the 

height downstream of the jump (see their relation (15)). In the absence of surface tension, 
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the relation, written here as ( )( )( )
1/4

3 3
Jr 9 / 70 Q / gh    , becomes based on their 

spectral approach for inertial lubrication flow (Rojas et al. 2010) and the inviscid 

Belanger equation (White 2006). Figure 3-9 shows the comparison between our 

predictions and the scaling law. 

 

Figure 3-9: Dependence of the hydraulic jump radius on the flow rate. The figure 

shows the comparison between the present theoretical predictions (solid lines) and 

the ones based on the scaling law (dashed lines) of Rojas et al. (2013) for two silicon 

oils of viscosities ν = 15 cSt and 95 cSt. 

Finally, we observe that the approach in Chapter 2, where gravity is neglected in the 

supercritical regime, could not accurately locate the jump in comparison to experiment 

for heavily viscous liquids. On the other hand, the case of water is not considered here, 

not just because of the low viscosity but also due to the high surface tension. We have 

considered the case of water in Chapter 2. In the present work, we neglect surface tension 

upstream in order to investigate the role of gravity on the hydraulic jump. Our objective 
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is to also confirm or dismiss the claim and observation of Duchesne et al. (2014) for 

highly viscous liquids and Bhagat et al. (2018) who claimed that gravity is almost 

irrelevant in circular hydraulic jump. More comparisons with other existing 

measurements, including those of Duchesne et al. (2014), will be carried out in Section 

3.5. 

3.4.4 Further validation 

As further general assessment of the validity of Equation (3.4.9), we examine its solution 

against that of the shallow-water equations for weak gravity. Thus, we set 1−    as the 

small parameter and expand the thickness as ( ) ( )m
m

m 0

h r h r

=

=  . To leading order, 

Equation (3.4.9) yields the following equation for 0h : 

( ) 2
0

525
rh r ,

136

 =         (3.4.13) 

which corresponds to the thickness in the absence of gravity. The solution of this 

equation was already given earlier and is equivalent to Equation (3.4.6). To next order: 

( ) 3 3
1 0 0

875
rh r h h .

272

 =         (3.4.14) 

We next examine the corresponding solution of the shallow-water equations, which are 

first rescaled to involve the only parameter 1/3 2Re Fr =  by recalling Equation (3.3.7) 

and introducing all the barred variables as 

1/3 1/3 1/3 2/3r Re r , h Re h, z Re z, u u, w Re w.− − −= = = = =  (3.4.15a-e) 

In this case, Equations (3.2.1a), (3.2.5) and (3.2.6) become 

h
1

r z r z zz

0

u 1
u w 0, uu wu h u , u dz .

r 2r

− + + = + = − + =   (3.4.16a-c) 
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In the presence of gravity, a similarity solution is possible only under some conditions. 

Starting with the mapping ( ) ( ) ( )r, z r , r, z z / h r =  = , and taking 

( ) ( ) ( )su r, z u g=   , Equation (3.4.16a) becomes 

s
s

u gh 1
u g Ug w 0.

h h
 


 −  + + =


      (3.4.17) 

Isolating w  and rearranging terms: 

( ) ( )1
s sw hu g h u g .−

 
  =  −  +  
  

     (3.4.18) 

Now, from conservation of mass or Equation (3.4.16c), we have 

s 1

0

1
u hr Const,

2 gd

= =



 yielding ( )shu 0. =     (3.4.19) 

Consequently, Equation (3.4.18) reduces to ( )sw h u g 
=  . Integrating and recalling 

that ( )w , 0 0  = = , we get ( )sw h u g=   . 

We thus have so far 

( ) ( ) ( )

1
1

0

u Ug , w h U g , r U h C 2 g d ,

−
 
 =  =   =   
 
 
   (3.4.20a-c) 

where Equation (3.4.20c) is deduced from Equation (3.4.16c). Substituting the velocity 

components from Equations (3.4.20a,b) into Equation (3.4.16b), and eliminating U  using 

Equation (3.4.20c), yields the following problem for g: 

( ) ( ) ( ) ( )2 2 3 3 2C rh g h r h Cr g 0, g 0 g 1 0, g 1 1. 
 −  + = = = =  (3.4.21a-c) 
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We again seek the solution by expanding the thickness as ( ) ( )m
m

m 0

h r h r

=

=  . To 

leading order, we recover the classical equation of Watson (1964): 

( ) 2 2
0C rh g r g 0,
 + =        (3.4.22) 

which suggests that ( )2
0r rh−   must be constant. Multiplying Equation (3.4.22) by g , 

and integrating using the conditions in Equation (3.4.21), yields the following equation: 

( )
2

2
0

3c
rh r

2C
 = , where 

1

3
0

dg
c 1.402

1 g

= =

−
 .    (3.4.23) 

The value of C is determined by noting that 3c g / 1 g= − , yielding 

1 1 3

0 0
gdg gdg / 1 g 0.615= − =  , so that C = 0.813. To the next order in ε, Equation 

(4.21) gives  

( ) 3 3
1 0 02

3c
rh r h h ,

2C

 =        (3.4.24) 

where ( )
1 12 3 3

0 0
c g d 1/ 3 dg / 1 g 2 / 3= − =   was used. Comparison between the 

numerical coefficients of Equation (3.4.14) and Equation (3.4.24) indicates a discrepancy 

of 6%. The discrepancy for the first-order contribution is 1% when Equation (3.4.15) is 

compared with Equation (3.4.24). 

Avedisian & Zhao (2000) investigated the circular hydraulic jump experimentally for 

normal and reduced gravity conditions. They measured the jump diameter and shape at 

the free liquid surface for an impinging jet on a stationary disk. Based on the reported 

two values of the flow rate and two gravitational acceleration data provided, we find that 

the location of the jump behaves close to 1/9g− , roughly confirming the scaling of Bohr 

et al. (1993) for low gravity. We can also estimate the behaviour of the jump radius from 
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Equation (3.4.8) by assuming the thickness from Equation (3.4.6) or (3.4.7) for large 

distance or 2
J Jh r / Re−  . When inserted in Equation (3.4.8), we obtain 3/8 1/4

Jr Re Fr , 

which is precisely the scaling suggested by Bohr et al. (1993) cast in dimensionless form. 

Interestingly, this scaling law can also be expressed in terms of only one parameter as 

1/8
Jr   . 

3.5 The influence of gravity on the hydraulic jump 
height and the subcritical flow 

Now that the jump location has been determined, we are in a position to examine the flow 

and the film height in the subcritical region downstream of the jump, in particular the 

height of the jump. Here, we consider two alternatives and assess their validity, the first 

consisting of applying the conservation of momentum across the jump though we expect 

it will give less accuracy for high-viscosity liquids, and the second involving the use of 

the film thickness at the edge of the disk and integrating the momentum equation 

(backwards) to determine the jump height. 

3.5.1 Conservation of momentum across the jump 

We first recall the integral form Equation (3.4.3) of the momentum conservation 

equation, which holds for any position 0r r  in the super- and subcritical regions. Across 

the jump, Equation (3.4.3) is applied for a control volume of width r  in the radial 

direction, taking the following discretized form: 

( )
h 2

2
z J2

0

Re h
Re u dz r u r , z 0 .

2Fr


 = − − =       (3.5.1) 

Since the width of the jump r  is assumed to be small, Equation (3.5.1) reduces to 

( ) ( ) ( ) ( )
hhJ J2 2 2 2

2
J J J J

0 0

1
h h Fr u dz u dz .

2

+−

+ − − +

 
  

− = −  
   

 

      (3.5.2) 
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We observe that the supercritical velocity is already available from Equation (3.4.1) and 

Equation (3.4.2), yielding ( ) ( ) ( )J J J Ju r ,z 4 / 5r h f− −=  , where Jz / h− =  and ( )f   is 

given in Equation (3.3.4). We also use relation (3.4.8) to eliminate Jh , In this case, 

Equation (3.5.2) becomes 

( )
J

2/3 h2 2
2 2

J J2
J 0

272 Fr
h 3 2Fr u dz 0.

875 r

+

+ +
 

− + = 
 
 

      (3.5.3) 

Thus, the jump height is completely determined as a function of the Froude and the 

Reynolds numbers once the subcritical velocity profile Ju+  is imposed. Various 

assumptions have been adopted in the literature, ranging from inviscid to fully viscous 

flows. Both regimes will be explored next.  

We first consider the flow to be inviscid downstream of the jump. Although the present 

work is focused on heavily viscous liquids, the inviscid simply corresponds to uniform 

velocity assumption across the depth due to the slow motion of liquids. This is an 

assumption that has been widely adopted in the literature in various contexts (see, for 

instance, Watson 1964, Bush & Aristoff 2003, Dressaire et al. 2010, Prince et al. 2012). 

At the very least, the inclusion of the uniform subcritical flow is helpful as a reference 

limit. 

Thus, assuming uniform flow downstream of the jump, and using the mass conservation 

Equation (3.2.6), Equation (3.5.3) reduces to 

2/3
2 2

2
J 2 2

J J J

272 Fr Fr
h 3 0.

875 r 2r h

+

+

 
− + = 

 
 

       (3.5.4) 

Equation (3.5.4) takes an interesting form when cast in terms of the jump Froude number 

based on the jump radius and height. In this regard, there is a close connection with the 

recent experimental findings and claim of Duchesne et al. (2014), which we will now 

explore. 
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Duchesne et al. (2014) introduced the jump Froude number defined in terms of the jump 

height and the average velocity immediately after the jump, namely 

( )
3/2

J J JFr Fr / 2r h+
 

=  
 

 in our notations. Their measurements suggest that JFr  remains 

sensibly independent of the flow rate (constant with respect to Fr). However, they could 

not explain or theoretically support this observation, which, in turn, begs the question 

whether the constancy of JFr  has any theoretical basis. This turns out to be indeed the 

case as we shall now demonstrate. 

It is easy to see that Equation (3.5.4) yields the following equation for JFr : 

2/3
2 4/3
J J

24 17 1
Fr Fr 0.

25 7 2

 
− + = 

 
       (3.5.5) 

This equation indicates that JFr  is indeed a constant that is independent of the Fr or, 

equivalently, of the flow rate, confirming the observation of Duchesne et al. (2014). This 

is a cubic equation in 2/3
JFr , admitting JFr 0.58=  as a solution. Thus, we have 

established the constancy of JFr  when the subcritical flow is inviscid.  

We next address the question whether JFr  remains actually independent of the flow rate 

if the subcritical flow is assumed to be viscous. We follow Duchesne et al. (2014) and 

adopt a lubrication flow approach. In this case, a differential equation for h can be 

obtained by neglecting the inertial terms in Equation (3.2.5), yielding the following 

profile for the radial velocity: 

( )
2

J 2

Re dh z
u r r , z hz .

dr 2Fr

 
 = − 

 
 

       (3.5.6) 

Inserting u into the mass conservation Equation (3.2.6) and integrating, the equation 

governing the film thickness downstream of the jump becomes 



125 

 

2 3dh 3 Fr h
,

dr 2 Re r

−

= −          (3.5.7) 

which leads to the velocity profile just downstream of the jump as 

( )
2

J J J3
J J

3 z
u r , z h z .

22r h

+ +

+

 
= − − 

 
 

       (3.5.8) 

Finally, inserting Equation (3.5.8) into Equation (3.5.3), we obtain the following equation 

for JFr : 

2/3
2 4/3
J J

4 17 5
Fr Fr 0.

5 7 12

 
− + = 

 
       (3.5.9) 

Similar to Equation (3.5.5), Equation (3.5.9) also confirms that JFr  is independent of Fr 

(flow rate), with JFr 0.71= .  

What we have established so far, based on the discretized mass and momentum equations 

across the jump, is that JFr  is indeed constant (independent of the flow rate) as Duchesne 

et al. (2014) claim from their measurements. Surprisingly, this is the case whether the 

subcritical flow is assumed to be inviscid or viscous obeying the lubrication regime, thus 

covering a wide range of viscosity and flow rate. The value of JFr  is found to be slightly 

lower for inviscid compared to viscous subcritical flow. However, both values remain 

higher than the measured value by Duchesne et al. (2014): JFr 0.35to0.40 . It is 

important to observe that the values of JFr  can be found theoretically without the 

knowledge of downstream conditions of the jump such as the disk radius or the thickness 

at the edge of the disk. Such conditions are not needed when the discretized conservation 

equations are invoked. Another important observation to make is whether the discretized 

Equation (3.5.2) itself is valid. It is expected that Equation (3.5.2) remains reasonably 

valid for low-viscosity liquids or at high flow rate since the jump is of negligible 

thickness and its location is well defined. However, for high-viscosity liquids such as the 

silicon oils used by Duchesne et al. (2014), the jump is expected to be wide, and 
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Equation (3.5.2) cannot be entirely valid. This brings us to the second alternative when 

seeking the subcritical flow. 

3.5.2 The influence of disk radius and edge thickness 

We proceed by examining the flow in the subcritical range, downstream of the jump, 

without invoking Equation (3.5.3). In this case, an approximate or asymptotic solution of 

Equation (3.4,4) can be found by keeping the three dominant terms for large distance, 

reducing it to a lubrication-like equation for h: 

2 3dh 6 Fr h
.

dr 5 Re r

−

= −         (3.5.10) 

Subject to ( )h r r h = = , Equation (3.5.10) can be integrated analytically to give 

( )

1
2 4

4
J

r24 Fr
h r r h ln .

5 Re r




  
 = +     

     (3.5.11) 

The prediction of the edge thickness was already considered in Chapter 2. Both static and 

dynamic contributions were considered, which yielded an accurate prediction established 

by comparing against experiment for the edge thickness. Direct measurements by 

Duchesne et al. (2014) of the edge thickness, performed at nearly 5 mm of the disk 

perimeter in their experiment, give a nearly constant value with a weak power-law 

variation with the flow rate, not exceeding a few per cent. This constant thickness value 

is very close to the capillary length 0 / g   of the fluid, which results from the balance 

of forces between the hydrostatic pressure and the surface tension ( 0 ) at the disk 

perimeter. This value is also consistent with the measurements of Dressaire et al. (2010). 

Consequently, we assumed that the film thickness at the edge of the disk is essentially 

equal to the film thickness the liquid exhibits under static conditions. Lubarda & Talke 

(2011) proposed an expression for this static thickness as ( )s 0 Yh 2 / g sin / 2=    , 

based on the minimum free energy principle. Here Y  is the contact angle, which 

depends on both the liquid and the solid, and may then be deduced from experiment. 
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In addition to the static contribution, and in order to explore the small variation of edge 

thickness with flow rate as observed by Duchesne et al. (2014), we resorted to a 

minimum mechanical energy principle (Yang & Chen 1992; Yang, Chen & Hsu 1997), 

which states that a fluid flowing over the edge of a disk under the influence of a 

hydrostatic pressure gradient will adjust itself so that the mechanical energy within the 

fluid will be minimum with respect to the film thickness at the disk edge. Consequently, 

the contribution to the thickness at the edge of the disk is determined by setting the 

derivative of the mechanical energy with respect to the film thickness equal to zero. The 

thickness near the edge of the disk is finally given by 

21

33Y1 3 Fr
h 2 sin .

Bo 2 40 r




    
= +    

    
     (3.5.12) 

Here the Bond number is given by 2
0Bo ga /=   , with 0  being the surface tension. 

Clearly, in the presence of relatively strong gravity or surface tension and large disk 

radius, the second term tends to be dominated by the static contribution. As we shall see 

next, even the static contribution will turn out to be uninfluential for the heavily viscous 

liquids considered in the present work.  

Indeed, once the thickness ( )h r r h = =  at the edge of the disk is determined as per 

Equation (3.5.12), we obtain the film thickness distribution downstream of the jump from 

Equation (3.5.10). In particular, and given that the jump location has already been 

determined, the jump height is now obtained through 

1
2 4

4
J

J

r24 Fr
h h ln .

5 Re r

+ 


  
= +   

  

      (3.5.13) 

In this case, it is not difficult to confirm that, for a large disk and relatively small 

Reynolds number, the logarithmic term dominates on the right-hand side of Equation 

(3.5.13). This is obviously the case of very viscous liquids. As a comparison, the 

Reynolds number for the flow of silicon oils (Duchesne et al. 2014) is of the order of 210
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, whereas for water (Dressaire et al. 2010) its order is closer to 410 . It is important to 

note that the range of Froude number in both sets of measurements is essentially the 

same. Based on the range of Froude numbers in Figure 3-10 below, it is not difficult to 

deduce that the static contribution to the edge thickness is also dominated. In fact, 

experiments (Duchesne et al. 2014) indicate that ( )h O 1 =  at most, and h 0   for a 

liquid of high viscosity. 

 

Figure 3-10: Dependence of JFr  on the flow rate (Froude number). The solid line 

corresponds to predictions based on Equations (3.4.4) and (3.5.13). The 

experimental data corresponding to silicon oil from Duchesne et al. (2014). Also 

added as dashed and dash-dotted lines the result based on Equations (3.5.5) and 

(3.5.9), respectively. 

We now turn, once again, to examining conditions where JFr  may remain independent of 

the flow rate. This time, Equation (3.5.13) is used instead of Equation (3.5.3). In this 

case, since the pre-jump height Jh−  and the jump radius Jr  must be computed 
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numerically, it is not possible to derive a closed form equation similar to Equation (3.5.5) 

or Equation (3.5.9), confirming that JFr  is constant. In fact, Equation (3.5.13) suggests 

that JFr  is not independent of Fr. However, the dependence on Fr turns out to be weak, 

as Figure 3-10 suggests. The figure shows the variation of JFr  against Fr for the silicon 

oil of viscosity 20 cSt used by Duchesne et al. (2014) in their measurements, which are 

also shown in the Figure 3-10. The experimental data are reproduced in dimensionless 

form. Surprisingly, the figure indicates that JFr  not only is indeed sensibly constant but 

agrees closely with experiment. Some discrepancy is, however, noted for low flow rates, 

which is not surprising given the difficulty in measuring accurately the jump radius and 

height. 

Now that the solution is available in the supercritical and subcritical regions, we are in a 

position to validate our model over the entire domain, against existing numerical results 

and experiment. We also take the opportunity to assess the validity of the parabolic 

profile. For the supercritical range, an equation similar to Equation (3.4.4) is obtained 

when using the parabolic profile: ( ) 2f 2 = − , namely 

1 3 3 Re 5
Re h .

2 2 3 2 2 hFr 10r h 10rh r

   
− = −   

  
     (3.5.14) 

We observe that the asymptotic form of Equation (3.5.14) for large r is precisely the 

lubrication Equation (3.5.7), which when integrated yields 

( )

1
2 4

4
J

rFr
h r r h 6 ln .

Re r




  
 = +     

      (3.5.15) 

Figure 3-11 shows the comparison between the present theory and the numerical results 

of Rojas et al. (2015) as well as the measurements of Ellegaard et al. (1996) for ethylene 

glycol. Both formulations based on the parabolic and cubic profiles are represented. The 

results for the free-surface velocity are reported in dimensionless form, with 

corresponding parameters being Re = 334, Fr = 14.4 and Bo =1.21. The contact angle 
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used to determine the edge thickness is Y 70 =  , yielding a total edge thickness of 

h 1.7 = , including the height of the vertical edge. While the position of the jump is well 

reproduced by the present theory based on the cubic profile and the numerical method, 

Figure 3-11 shows that the theory tends to slightly underestimate the level of the surface 

velocity in both the super- and subcritical ranges. Figure 3-11 indicates that the numerical 

approach of Rojas et al. tends to agree slightly better with experiment than the present 

theory. The figure also indicates a larger discrepancy when the parabolic profile is used. 

 

Figure 3-11: Free-surface velocity in the supercritical and subcritical domains. 

Comparison between the present theory (solid line), the numerical results of Rojas 

et al. (2015), as well as the experimental data of Ellegaard et al. (1996). Also added is 

the velocity distribution based on the parabolic profile. 

We next examine the shape of the entire film under general flow conditions. For this, we 

rescale Equation (3.5.11) using Equation (3.3.7) to reduce the problem in terms of the 

parameter α: 
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( )
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Here ( ) ( )( )
1/3

2/3 2
Yh 2 Re / Bo sin / 2 3 / 40 r =  +   from Equation (3.5.12). The 

overall effect of gravity is illustrated in Figure 3-12, which depicts the film thickness 

over the entire disk. The jump height decreases with increasing gravity, simultaneously as 

the jump location is pushed upstream toward the stagnation point and away from the edge 

of the disk. We can also observe the logarithmic increase in height reported earlier in 

Figure 3-7. 

 

Figure 3-12: Influence of gravity on the film thickness plotted against radial 

distance in regions (ii), (iii) and (iv). 

While the use of Equation (3.4.4) or (3.4.9) is imperative in the supercritical range ahead 

of the jump, allowing us to locate the jump, it is not necessarily so for the subcritical 

flow, where we have the choice to use different approximations. For instance, as the flow 
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slows down downstream of the shock, we saw that the lubrication assumption holds well 

between the jump and the edge of the disk, yielding a good agreement with experiment 

(see Figures 3-10 and 3-11). Our calculations of the subcritical flow so far are based on 

the asymptotic Equation (3.5.11) of (3.4.4) or (3.5.16) of (3.4.9) for large r as it is 

convenient to use, given the analytical distribution of the thickness (and velocity) 

downstream of the jump and its direct relation to the edge thickness and the disk radius. 

Alternatively, we now consider using Equation (3.4.4), and apply it directly to capture the 

subcritical flow, which should allow us to assess the validity of Equation (3.5.11). 

Simultaneously, we examine the effect of the disk radius. The comparison is reported in 

Figure 3-13 for the film thickness distribution with distance in the super- and subcritical 

ranges for three different values of the disk radius. We take Re = 628, Fr = 63, Bo = 1.1 

and Y 55 =  . In this case, the values of the thickness at the edge of the disk are 

determined from Equation (3.5.12) are h 1.24 = , 1.2 and 1.18, corresponding to 

r 70,80 =  and 90, respectively. 
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Figure 3-13: Influence of the disk radius on the film thickness plotted against the 

radial distance in regions (ii), (iii) and (iv). Solution in solid line based on Equations 

(3.4.4) and (3.5.11). Dashed line shows the subcritical profile based on (3.4.4). 

Several observations are worth making here. Figure 3-13 shows that the subcritical 

branches exhibit a turning point corresponding to the singularity of Equation (3.4.4), 

which occurs slightly upstream of the jump location. As expected, the profile of the 

asymptotic Equation (3.5.11) collapses onto the profile based on Equation (3.4.4) at a 

distance not too far from the jump. This distance, nevertheless, increases with the disk 

radius. The asymptotic solution yields a jump height Jh+  that is slightly above the one 

based on the exact solution of Equation (3.4.4). Finally, despite the important spread in 

the values of the disk radius, the location of the singularity reached by the subcritical 

branches is essentially the same, as reflected in the saturation near the turning point. This 

seems to suggest that the location of the jump in reality, if it were to fall half-way, say, 

between the two locations of the singularity, is independent of downstream conditions. 
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We seem to reach this observation regardless of which branch, super- or subcritical, we 

are referring to. 

Next, we pursue our assessment of the validity of Equation (3.4.4) and the asymptotic 

form Equation (3.5.11) against experiment. The comparison is reported in Figure 3-14 for 

the film thickness distribution with distance in the super- and subcritical regions against 

the measurements of Duchesne et al. (2014) for silicon oil (20 cSt). The data are 

reproduced here in dimensionless form from their figure 2, corresponding to Re = 169, Fr 

= 14.88, Bo = 1.19, Y 55 =   and r 94 = . In this case, the value of the thickness at the 

edge of the disk is determined from Equation (3.5.12) as h 0.95 = . Several observations 

are worth making here. Figure 3-14 shows that the theoretical predictions, based on the 

solution of Equation (3.4.4), are generally in good agreement with the experiment of 

Duchesne et al. (2014), slightly underestimating their measurements. The location of the 

jump is predicted to be close to the level of the turning point or the singularity of the 

supercritical branch upstream of the jump. The subcritical branch also exhibits a turning 

point corresponding to the singularity of Equation (3.4.4), occurring slightly downstream 

of the jump location (see Figure 3-13). The behaviour of the two branches is in close 

(qualitative) agreement with the theoretical predictions of Kasimov (2008) who 

incorporated the shape of the bottom (flat disk with a sharp cut off at the edge). The 

reader is particularly referred to figure 3(a) from Kasimov (2008). The asymptotic 

solution cannot mimic the downward turning trend observed in the experiment, yielding a 

jump height Jh+  that is slightly above the one based on the exact solution of Equation 

(3.4.4). Interestingly, there is no need here to integrate from a critical point coinciding 

with at the edge of the disk to obtain the subcritical branch as Kasimov (2008) did. 

Kasimov estimated the location of the jump to be somewhere between the upstream and 

downstream singularities, which seems to be case here. However, this may not always be 

the case. Based on the agreement between theory and experiment in previous figures, we 

saw that the location of the jump coincides rather with the upstream singularity of the 

averaged momentum equation. 
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Figure 3-14: Free surface profile. Comparison between theoretical predictions and 

the measurements of Duchesne et al. (2014) for silicon oil (20 cSt). Results plotted in 

dimensionless form with Re = 169, Fr = 14.88, Bo = 1.19,  Y 55 =   and r 94 = . 

Theoretical profiles based on current theory or Equation (3.4.4) (solid lines) and 

asymptotic subcritical Equation (3.5.11) (dashed line). 

Finally, an interesting observation can be made regarding the (constant) value of JFr  and 

its independence of Fr (or the flow rate). The measurements of the film profile for heavily 

viscous liquids seem to give a rough estimate of the height Jh+  immediately downstream 

of the relative to the height Jh−  upstream of the jump. More precisely, experiment 

suggests that J Jh 2h+ −  (see, for instance, the measurements of Ellegaard et al. 1996, and 

those in figure 2 of Duchesne et al. 2014). By substituting J Jh h / 2− +=  in Equation 

(3.4.8) and recalling that ( )
3/2

J J JFr Fr / 2r h+= , we deduce that  
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J 5/2 3/2
J J

Fr 1 875
Fr 0.32,

16 342 r h−
= =      (3.5.17) 

which is very close to 0.33, the value measured by Duchesne et al. (2014). Another way 

of obtaining the same result is to assume that the singularity yielding Equation (3.4.8) 

occurs at a height half-way along the jump, where we expect the slope to be largest 

(infinite). In this case, one would replace Jh−  in Equation (3.4.8) by the average height, 

which, in turn, can be approximated as Jh / 2+  if one assumes that thickness before the 

jump is much smaller than the thickness after the jump (Watson 1964), and obtain 

Equation (3.5.17). The estimated value in Equation (3.5.17) confirms the important 

observation in this study that the jump characteristics appear to be dictated only by the 

supercritical flow and upstream conditions (for type I jump of course). 

3.6 Concluding remarks and discussion 

In this study, the flow of a high-viscosity jet impinging on a circular disk is examined 

theoretically. The present study focuses on the role of gravity in the prediction of both the 

location and height of the circular hydraulic jump and is restricted to laminar circular 

steady jump. Despite the numerous theoretical and numerical studies in the literature, this 

prediction remains somewhat difficult to achieve through a simple and practical 

theoretical model. This issue was partly addressed in Chapter 2 but was limited to low-

viscosity liquids. In the present study, we show how a closure to the problem can be 

brought by establishing a simple relation between the jump location and pre-jump height 

by including the effect of gravity in the developing boundary-layer region and the fully-

viscous region of the flow domain. We show that the jump Froude number for high-

viscosity liquid is constant confirming again the finding of Duchesne et al. (2014). 

The flow is assumed to remain steady and axisymmetric. A model is developed based on 

the Kármán-Pohlhausen integral approach to describe the behaviour of the flow in the 

developing boundary-layer region (ii) and the fully-viscous region (iii). The integral form 

of the continuity and momentum equations, governing the flow of a thin film, is treated 

numerically separately in each region, and the flow is matched at the transition point. 
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Unlike the flow in the absence of gravity, the problem does not admit a similarity 

solution. However, a self-similar cubic profile is nevertheless assumed for the velocity, 

which is commonly used and was previously shown to be accurate. Although two 

dimensionless parameters are involved in the absence of surface tension, namely the 

Reynolds number Re and the Froude number Fr defined in terms of the jet radius and the 

flow rate, we show that the problem can be cast in terms of only one parameter: 

1/3 2Re Fr = .  

We find that gravity tends to enhance inertia, leading to a drop in the boundary-layer 

height as well as the film thickness in region (ii). Near the stagnation point, the boundary 

layer departs from the r / Re  behaviour to grow increasingly linearly with distance like 

( )3 Fr / Re r   under the influence of gravity. The transition point, where the outer 

edge of the boundary layer intersects the film surface, moves towards the perimeter of the 

disk with increasing gravity while the film thickness at the transition location diminishes 

(Figures 3-2 and 3-3). 

In the fully-viscous region (iii), the shallow-water equations are reduced to a first-order 

equation for the thickness (3.4.4) or (3.4.9). We show that this equation exhibits an 

essential singularity in the presence of gravity at a distance identified as the jump 

location. As the flow slows down, inertia weakens, and friction increases with radial 

distance. At some distance gravity and viscous effects become equal, causing the 

singularity and therefore the jump to occur.  

The numerical solution indicates that the film thickness decreases rapidly near 

impingement and exhibits a minimum that strengthens with gravity (Figure 3-4), 

accompanied by an increase in the surface velocity that decays at a slower rate with radial 

distance (Figures 3-5). The shear stress along the wall exhibits a weak maximum that 

shifts downstream as the effect of gravity increases, which we believe is an artificial 

effect due to the matching of the flow (Figure 3-6). 

We show that, for a flat disk, the jump radius can be determined independently of its 

height or downstream conditions, in agreement with experimental observations. Based on 
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their measurements, Brechet & Neda (1999) concluded that ‘the boundary conditions on 

a perfectly flat plate do not influence the radius of the hydraulic jump.’ These findings 

are validated against existing experimental data and numerical simulation. Comparison 

between the predicted and measured jump locations in Figure 3-8 confirm that, for a 

circular jump, the jump radius is independent of the subcritical flow downstream of the 

jump, nor is it affected by the radius of the disk or the thickness at the edge of a flat disk. 

Despite the simplicity of the present approach, the predicted jump location shows 

surprisingly close agreement with existing numerical results based on a spectral 

methodology. 

We consider two alternatives to determine the jump height and assess the empirical claim 

of Duchesne et al. (2014) concerning the constancy of the jump Froude number JFr  

based on the jump radius and height, and its independence of the flow rate. The first 

approach, following Watson and many others, consists of applying a momentum balance 

across the (infinitely thin) hydraulic jump, yielding Equation (3.5.3). We demonstrate 

theoretically that for both uniform and lubrication flows downstream of the jump, the 

jump Froude number is indeed constant as Duchesne et al. (2014) claimed. However, the 

predicted values in both cases are higher than their measured value. This simultaneously 

suggests that the discretized momentum balance approach is not adequate, which is not 

surprising given the finite width of the jump for high-viscosity liquids. This brings us to 

the second alternative, which consists of solving the film Equation (3.4.4) by deducing an 

asymptotic form far from impingement, taking the thickness h  of the film at the edge 

of the disk as the boundary condition and integrating (upstream) towards the jump 

location to determine the height. This approach yields close agreement with the measured 

jump Froude number for silicon oil (see Figure 3-10). The value of h  is determined 

theoretically as a combined static and dynamic contributions as was done for low-

viscosity liquids (Chapter 2) but turns out to be negligible for high-viscosity liquids. 

Finally, the influence of gravity on the film shape in the entire flow domain is assessed 

(Figure 3-13). 



139 

 

Generally, once the flow field of impinging jet flow fully is established, the thermal field 

can be directly incorporated without modifying the flow field if constant fluid properties 

are assumed. In other words, as the momentum equations decouple themselves, the flow 

field can be solved independently. This is indeed a common practice in existing 

theoretical studies and even many numerical works due to its computational efficiency. 

However, this method becomes less accurate in the presence of large temperature 

variation in the domain since viscosity strongly depends on temperature. The difficulty in 

the inclusion of the dependence of viscosity on temperature is that the nonlinear two-way 

coupling usually requires numerical iteration. Consequently, it suffers not only from large 

computational time but also the danger of potential divergence. It is therefore desirable to 

design an efficient two-way coupled approach that is capable of accounting for the 

temperature-dependent viscosity but free from numerical iteration. This will be covered 

in the next chapter. 
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Chapter 4  

4  The influence of heat transfer on liquid jet spreading 
and hydraulic jump formation 

As pointed out at the end of Chapter 3, under the assumption of constant fluid properties, 

the accuracy of both the flow and the thermal field will drop in the presence of large 

temperature variation. On the other hand, incorporating the two-way coupling 

(temperature-dependent viscosity) generally requires non-linear iteration that suffers from 

large amounts of computing time and the potential danger of divergence. In this regard, 

we devote this chapter to design an iteration-free model to enhance the efficiency. More 

importantly, it makes investigating the influence of the heat transfer on the jet spreading 

and the hydraulic jump theoretically feasible. 

4.1 Introduction 

When a circular liquid jet impacts a solid surface, it spreads out radially as a thin film 

until reaching a critical radius at which the thickness of the liquid layer rises abruptly, 

forming a circular hydraulic jump as illustrated in Figure 4-1. The domains before and 

after the jump are formally known as the supercritical and subcritical regions, 

respectively. Impinging liquid jet is widely used in industrial cooling processes and 

hydraulic jump can significantly affect the performance. Consequently, the prediction of 

its location (radius) and the quantitative information of the flow and thermal fields are 

crucial in the design of such cooling applications. 

For the hydrodynamics of impinging jet flow, Watson (1964) solved the flow field in the 

supercritical region using the boundary-layer theory. Gravity was neglected before the 

jump due to the small film thickness. Based on the balance of forces, the location of the 

jump was obtained with an imposed downstream depth. Watson’s theory was tested in 

many experiments, including those of Watson himself, Craik et al. (1981), Bush & 

Aristoff (2003) and Baonga et al. (2006). The effect of surface tension was neglected in 

Watson’s work, and was later included by Bush & Aristoff (2003), yielding a better 

prediction. 
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Watson’s method requires an imposed downstream depth which is often controlled by 

downstream barrier. In practical applications, however, the target surface is often free of 

such controlled height. In this regard, Duchesne et al. (2014) found that the jump Froude 

number based on the jump height and depth-averaged velocity remains constant when the 

flow rate is varied. Consequently, they were able to determine the jump radius based on 

this constant jump Froude number, thus eliminating the need to impose a jump height. In 

Chapter 2, we have established a coherent model by connecting the super- and subcritical 

flows through a shock. The thickness near the disk edge was also derived. Consequently, 

we have also proved the constancy of the jump Froude number (see Chapter 2). 

Bhagat et al. (2018) highlighted the importance of the role of surface tension. Based on 

their analysis and experiments, they concluded that, for a circular hydraulic jump, surface 

tension is the major cause of hydraulic jump, and gravity plays little role. However, their 

findings are not conclusive as per Chapter 3. Duchesne et al. (2019) very recently also 

pointed out that the approach of Bhagat et al. (2018) has some flaws that can 

overestimate the role of surface tension (see also Scheichl 2018, 2019). In fact, the role of 

gravity can be crucial, at least for a fluid of high viscosity. In Chapter 3, we derived a 

method specifically for high-viscosity liquids and showed that the location of the jump 

can be well predicted without surface tension. 

However, since the liquids involved in jet cooling are generally low-viscosity fluids and 

thus the force and momentum balance method remains accurate, the hydraulic jump in 

the current heat transfer problem will be treated following the development of Chapter 2, 

which is based in part on the original approach of Watson (1964). 

As to the thermal field of an impinging liquid jet, most existing studies focused only on 

the effect of the flow on the heat transfer. Chaudhury (1964) obtained a similarity 

solution for the case of constant wall temperature. He showed that the heat transfer rate 

decreases monotonically with radial distance. Chaudhury (1964) assumed constant fluid 

properties and zero heat loss from the free surface due to the dominance of convection. 

These assumptions became the basis for most of the later studies. Brdlik & Savin (1965) 

solved the energy equation for the same problem using an integral approach. They 
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assumed that the ratio of the thermal boundary layer to hydrodynamic boundary layer is 

1/3Pr− , thus the momentum equation was conveniently eliminated. Saad et al. (1977) 

numerically investigated a submerged jet impinging on a surface of constant temperature 

using an upwind finite-difference scheme. It was found that, for a parabolic velocity inlet, 

the maximum Nusselt number is larger and closer to the impingement point when 

compared to a flat velocity profile. 

Wang et al. (1989a) first considered the heat transfer in the stagnation region and 

obtained a nearly constant Nusselt number. Later Wang et al. (1989b) also considered the 

heat transfer outside the stagnation region and extended their study to the case of 

distributed (varying with distance) wall temperature and heat flux. Liu et al. (1993) 

numerically analyzed the influence of surface tension on stagnation heat transfer for 

inviscid liquids. They observed that at low flow rate, surface tension can slightly increase 

the Nusselt number. But this effect is negligible for practical configurations. The effect of 

surface roughness was studied by Gabour & Lienhard (1994) with experiments. The flow 

was found to be turbulent and the local Nusselt can be increased by 50% compared to a 

smooth surface. 

Searle et al. (2017) considered impinging flow on slippery surface of constant 

temperature. They found that both the thermal and hydrodynamic boundary layer 

thicknesses decrease with increasing slip and temperature jump length. Hydraulic jump 

was not considered. Rohlfs et al. (2014) in their numerical work reported that a maximum 

Nusselt number can occur depending on the inlet velocity profile and the nozzle-to-plate 

distance. Kuraan et al. (2017) observed that at low nozzle-to-disk distance, the heat 

transfer will be enhanced with decreasing nozzle-to-disk distance. 

We emphasize here that all these studies introduced above have assumed constant fluid 

properties. Even though for most liquids, the heat capacity and thermal conductivity do 

not change significantly with temperature (Okhotin et al. 1992, Granato 2002), their 

viscosities decrease moderately or even significantly with temperature as a result of the 

decrease in the molecular cohesive forces (Kundu et al. 2016). Variations of multiple 

orders of magnitude is common for liquids (Seeton 2006). This will be demonstrated later 
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when the viscosity models are introduced. Although surface tension is generally less 

sensitive to temperature variation, and therefore is not expected to have a significant 

effect on the normal stress for a thin film, its influence can be important on the surface 

shear stress (Marangoni effect) for a large temperature gradient. This effect is also largely 

missing in existing theoretical works due to difficult of thermal coupling. 

For pure boundary-layer flow (i.e. infinite domain without a free surface) on a flat plate 

of constant temperature, the two-way coupling can be treated using a similarity or Blasius 

approach (Miller et al. 2018). However, the similarity solution is generally not possible to 

find even for boundary-layer flow as in the presence of gravity or for an imposed heat 

flux. Earlier, Kafoussius & Williams (1995) examined the heated boundary-layer flow in 

the presence of gravity, using the so-called local similarity approach. A similarity 

approach is clearly unfeasible for the current free-surface problem in the presence of 

Marangoni effect and general heating conditions at the disk. Due to these limitations, the 

two-way coupling has largely been ignored in the literature for free-surface impinging jet 

and hydraulic jump problem, which is the focus of the current chapter. 

The first major theoretical contribution to the two-way coupling problem for an 

impinging jet was due to Liu & Lienhard (1989). They adopted an integral approach to 

solve the energy equation and obtained the thermal boundary layer thickness based on the 

velocity and viscous boundary layer thickness. To account for the change of viscosity 

with temperature, they implemented an iterative algorithm to solve the coupled problem. 

The viscosity was evaluated based on the locally averaged temperature. Surface tension 

or Marangoni effect was ignored. They observed that the thermal boundary layer would 

not reach the free surface when the Prandtl number is greater than a critical value: 4.859. 

This value should however only be valid for a small temperature variation since the 

Prandtl number was obtained by assuming constant fluid properties. We note that the 

influence of heat transfer on the hydraulic jump region was not included in the work of 

Liu & Lienhard (1989). In this regard, Sung et al. (1999), adopting a finite-element 

implementation, and solved the coupled problem and investigated the influence of heat 

transfer on the location and height of the hydraulic jump. The location of the jump was 

found to move downstream with increased wall temperature. In addition, a sharp drop in 
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the Nusselt number was reported in the hydraulic jump region. We shall compare our 

predictions based on the thin-film approach against their finite-element results. 

To the best of our knowledge, a simple two-way coupling is still not available 

theoretically by far. In this case, we propose an approximate iteration-free model to 

address the coupling problem for a heated impinging jet. Thus, the influence of the 

coupling on the location and height of the circular hydraulic jump, as well as on the sub-

critical thermal field can be investigated theoretically. As will be seen, the advantage of 

the K-P approach provides a surprisingly convenient way to incorporate the temperature-

dependent viscosity and surface tension approximately through the thickness of the 

viscous layer. More importantly, the present approach enhances our physical 

understanding of the effects of heat transfer on the axisymmetric thin-film flow and 

hydraulic jump structure resulting from the nonlinear two-way coupling. The current 

approach inherently eliminates the potential possibility of divergence in iterative 

schemes. Due to the variation of free-surface temperature, we also explore the effect of 

Marangoni stress that is largely missing in existing theoretical studies. It turns out that the 

current model, despite its approximate nature (like all the K-P approaches in the 

literature), predicts well the flow and thermal fields since, as we shall see, a reasonably 

good agreement is found when compared with existing experimental, theoretical and 

numerical studies. 

In current chapter, the development of the hydrodynamic and thermal boundary layers, 

the influence of heating on the location and height of hydraulic jump are 

comprehensively explored. Additional important phenomena such as the difference 

between wall flux heating and wall temperature heating and the shock-type drop in the 

Nusselt number at the jump will also be investigated. The governing equations and 

boundary conditions as well as the viscosity model are presented in Section 4.2. The 

integral equations and the profiles for the velocity and temperature are detailed in Section 

4.3. Results on the influence of the temperature and the heat flux are also presented, 

along with comparison with existing measurements and numerical data. We devote 

Section 4.4 to the hydraulic jump and the subcritical flow and thermal fields. In the 

presence of the two-way coupling, solving solely the momentum balance across the jump 



149 

 

is not sufficient to yield the location of the jump. Therefore, we resort to an energy 

balance as an additional relation to close the problem. 

4.2 Physical domain and problem statement 

Consider the steady laminar liquid jet of radius a, impinging at a volume flow rate Q and 

temperature 0T̂  on a heated disk, lying normal to the jet direction. A hat is used to 

designate a dimensional variable or parameter when necessary. The liquid viscosity ̂  

and surface tension ̂  are assumed to depend on the temperature T̂ . The flow 

configuration is depicted schematically in Figure 4-1, where dimensionless variables are 

used. As the flow is assumed to be axisymmetric, the problem is formulated in the ( )r, z  

plane, with the origin coinciding with the disk center, r and z being the dimensionless 

radial and vertical coordinates. The r-axis is taken along the disk radius and the z-axis is 

taken in upwards direction parallel to the jet. In this case, ( )u r,z  and ( )w r,z  are the 

corresponding dimensionless velocity components, and ( )T r,z  is the dimensionless 

temperature. The length and velocity scales are taken to be a and ( )2W Q / a   in both 

the radial and vertical directions. The temperature and heat flux are scaled by 0T̂  and 

0
ˆkT / a , respectively, where k is the thermal conductivity, assumed to be constant. The 

two-way coupling is in principle ensured by adopting the temperature-dependent 

kinematic viscosity ( )T  and surface tension ( )T , scaled by their reference values 

( )0 0
ˆˆ T =   and ( )0 0

ˆˆ T =  .  
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Figure 4-1: Schematic illustration of the axisymmetric jet flow impinging on a 

heated disk. The four sub-regions of the physical domain are also shown. All 

notations are dimensionless. 

Upstream of the hydraulic jump, the variation of the film thickness with the radius is 

expected to be smooth and gradual, so that the radial variation of the hydrostatic pressure 

and Laplace pressure (caused by surface tension) are also small and thus negligible. 

Downstream of the jump, gravity is included due to the larger film thickness and serves 

as the driving force of the flow which is predominantly of lubrication type (Duchesne et 

al. 2014). Surface tension effect is also included at the jump and near the trailing edge of 

the disk when seeking the boundary condition for the flow downstream.  

Under these assumptions, five similarity groups emerge, namely the Reynolds number 

0Re Wa /=  , the Froude number Fr W / ag= , the Peclet number Pe Wa /=  , where 

( )pk / C =   is the thermal diffusivity, pC  being the heat capacity, and the capillary 

number 0 0Ca W /=   . In this work, the thermal diffusivity is assumed to be constant. 

Additional related groups are also introduced, namely the Prandtl number 
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0Pr / Pe / Re=   = . The Nusselt number is then defined as 

( ) ( )( ) ( ) ( )( )w w 0 w w
ˆ ˆˆNu r ha / k q a / k T T q r / T r 1= = − = − , given in terms of the 

(dimensionless) transverse heat flux at the wall, ( ) ( )w z 0
q r T / z

=
= −   , and the wall 

temperature, ( )wT r . In this study, either the heat flux ( )wq r  or the temperature ( )wT r  

can be prescribed along the disk, and the proposed methodology developed here is 

equally applicable for constant and varying wall conditions. 

4.2.1 The physical domain 

Following the treatments of Watson (1964) (see also Liu & Lienhard 1989, Searle et al. 

2017) and neglecting the stagnation region, we identify four distinct flow regions for the 

impinging jet heating problem. In region (I), both the hydrodynamic and the thermal 

boundary layers are below the liquid surface, growing until the former reaches the liquid 

surface at 0r r= . It is worth noting that for non-metallic liquids, the kinematic viscosity is 

generally larger than the thermal diffusivity (i.e. Prandtl number larger than unity), 

leading to the thermal boundary layer remaining thinner than the hydrodynamic boundary 

layer until it reaches the liquid-air interface. Region (II) begins from 0r , where the 

viscous effect is appreciable up to the liquid surface, but the thermal boundary layer 

continues to grow. In the first two regions, the velocity and temperature outside their 

respective boundary layers remain essentially constant and unaffected by the viscous and 

thermal effects, and thus retain the same values as the incoming jet. Region (III) is 

identified when the thermal boundary layer merges with the free surface at 1r r=  where 

both the viscous and thermal effects have invaded the film thickness. The circular 

hydraulic jump emerges at a radius Jr r= , which separates region (III) and region (IV). 

We observe that Marangoni effect is consequently present only in regions (III) and (IV) 

( )1r r r   where variation in the surface temperature is expected. The jump radius Jr  

is generally larger than 0r  as the jump typically occurs after the film becomes fully 

viscous, but not necessarily larger than 1r . However, the tested cases in the present work 

are limited to the scenario when Jr  is greater than 1r  for the ease of mathematical 
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demonstration. Referring to Figure 4-1, the height immediately upstream of the jump is 

denoted by Jh− , and the height immediately downstream of the jump is denoted by Jh+ . 

The subcritical height ( )Jh r r  is generally not constant and is different from the jump 

height Jh+ . This variation can be large for high-viscosity liquids (Duchesne et al. 2014). 

In this study, the fluid is assumed to be drained at the edge of the disk at r r= , and the 

flow remains steady, with the film thickness denoted by ( )h h r r = = . The edge 

thickness h  is not expected to depend heavily on the flow rate (Dressaire et al. 2010, 

Rojas et al. 2013, Duchesne et al. 2014, Mohajer & Li 2015). 

4.2.2 Governing equations and boundary conditions 

Unless otherwise specified, the Reynolds number is assumed to be large but without 

causing turbulence. Consequently, for steady axisymmetric flow, the mass and 

momentum conservation equations are formulated using a thin-film or Prandtl boundary-

layer approach, which amounts to assuming that the radial flow varies much slower than 

the vertical flow (Schlichtling & Gersten 2000). To account for the two-way coupling, 

the temperature dependent kinematic viscosity is incorporated in the formulation. In this 

case, the reduced dimensionless conservation equations for mass, radial momentum, 

transverse momentum and energy become 

u u w
0,

r r z

 
+ + =

 
        (4.2.1a) 

2

u u Re p u
Re u w ,

r z r z zFr

       
+ = − +    

       
     (4.2.1b) 

p
1,

z


= −


         (4.2.1c) 

2

2

T T T
Pe u w .

r z z

   
+ = 

   
       (4.2.1d) 
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These boundary-layer type equations are often used to model the spreading of thin-film 

flow and heat transfer (Chaudhury 1964, Liu & Lienhard 1989, Searle et al. 2017). We 

observe that the pressure for a thin film is hydrostatic as a result of its vanishing at the 

free surface in the absence of large surface curvature. In addition, upstream of the jump, 

the variation of the film thickness with the radius is expected to be smooth and gradual so 

that the radial variation of the hydrostatic pressure is negligible. Indeed, according to 

Prince et al. (2012), the hydrostatic term has at most a 0.4% cumulative influence on the 

flow dynamics. At the disk, the no-slip and no-penetration conditions are assumed to hold 

for any r: 

( ) ( )u r,z 0 w r,z 0 0.= = = =           (4.2.2a,b) 

In addition, the boundary condition for the temperature of the liquid at the disk surface is 

introduced as 

( ) ( )w
T

r,z 0 q r ,
z


= = −


       (4.2.3a) 

when the wall heat flux is imposed, and 

( ) ( )wT r,z 0 T r ,= =         (4.2.3b) 

when the wall temperature is imposed. We note that Equation (4.2.3b) is violated in the 

presence of slip, which automatically induces a temperature jump (Maynes & Crockett 

2014, Searle et al. 2017). At the free surface ( )z h r= , the kinematic condition and the 

balance between fluid stress and surface tension effect yield: 

( ) ( ) ( )w r,z h u r,z h h r ,= = =       (4.2.4a) 

( )p r,z h 0,= =         (4.2.4b) 

( )1
u

0 r r , z h 0,
z


  = =


       (4.2.4c) 
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( ) ( ) ( )1
s 1 s

s

u d
r r r r , z h Ca T r ,

z dT

−


 
   = =


    (4.2.4d) 

where ( ) ( )sT r T r,z h= =  and ( ) ( )s sr T T r    =  are the temperature and viscosity at 

the film surface. We also let 
( )s T T rs

d / dT d / dT
=

    denote the derivative of the 

surface tension with respect to the surface temperature. In general, a prime denotes total 

differentiation with respect to the independent variable. We observe that the Marangoni 

effect, reflected in (4.2.4d), is only present downstream of the second transition location 

where the surface temperature varies. 

Neglecting the heat loss (i.e. evaporation, radiation and air conduction) at the liquid-air 

interface (Chaudhury 1964, Liu & Lienhard 1989, Searle et al. 2017), the condition for 

temperature at the free surface becomes 

( )
T

r,z h 0.
z


= =


         (4.2.5) 

The flow field is sought separately in the four regions and the leading edge of the 

boundary layer in region (I) is taken to coincide with the disk centre. Consequently, the 

additional boundary conditions are as follows. In region (I), the flow is assumed to be 

sufficiently inertial for inviscid flow to prevail between the boundary-layer outer edge 

and the free surface. In this case, the following conditions at the outer edge of the 

boundary layer and beyond must hold: 

( ) ( )0 0
u

r r ,z 0, u r r , z h 1.
z


 =  =     =


     (4.2.6a,b) 

Similar conditions are established in regions (I) and (II) for the temperature, which 

remains the same as the incoming jet temperature above the thermal boundary layer (see 

Figure 4-1): 

( ) ( )1 t 1 t
T

r r ,z 0, T r r , z h 1.
z


 =  =     =


    (4.2.7a,b) 
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Finally, the conservation of mass at any location yields the following relation in 

dimensionless form: 

( )
( )h r

0

1
u r, z dz.

2r
=           (4.2.8) 

In liquid jet impingement problems, it is well established that under the assumption of 

constant fluid properties, similarity solutions exist for both the fluid flow (Watson 1964) 

and the heat transfer (Chaudhury 1964). However, the presence of coupling between 

hydrodynamics and heat transfer causes the failures of such self-similar solutions. 

Therefore, approximate solutions are sought in the current study in each region. 

Consequently, a two-way coupled integral approach of the Kármán-Pohlhausen (K-P) 

type (Schlichtling & Gersten 2000) is designed and adopted upstream of the jump, 

serving as a new extension to existing integral approaches (Watanabe et al. 2003, Prince 

et al. 2012, Searle et al 2017). The necessity to include a temperature-dependent viscosity 

is the result of the large change in value over a small temperature range as we shall see 

next. 

4.2.3 The viscosity and surface tension model 

Among a variety of temperature-dependent viscosity models available in the literature. 

The classical viscosity model proposed by Fulcher (1992) is commonly recommended as 

it gives fairly satisfying fits with experimental data (Mauro et al. 2009) except at very 

low temperature (Scherer 1992). Fulcher’s model is known as the Vogel–Tamman–

Fulcher (VTF) or the Vogel-Fulcher-Tamman (VFT) equation (Rampp et al. 2000). The 

kinematic viscosity of liquids using the VFT equation can be written in the dimensional 

form: ( ) ( )ˆˆ ˆB/ T Cˆˆˆ T A 10
−

 =  , with Â , B̂  and Ĉ  being the fitting parameters from 

experiments. We report in Figure 4-2 the fitting of viscosity data for three common 

liquids. The experimental data are taken from various sources. The fitting parameters are 

given in Table 1. 
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Figure 4-2: The dependence of viscosity on temperature for three common liquids. 

Solid lines indicate the fitting using the parameters in Table 1. The markers are 

experimental data from various sources (Korson et al. 1969 for water, Segur & 

Oberstar 1951 for glycerol, and Peleg 2017 for soybean oil). 

Table 1: Viscosity and surface tension fitting parameters for three common liquids. 

Liquid ( )Â cSt  ( )B̂ K  ( )Ĉ K  ( )D̂ N / mK  ( )Ê N / m  

Water 0.02414 247.8 140.0 -0.0001669 0.1216 

50% glycerol 0.03925 290.1 160.3 -0.0001049 0.09986 

Soybean oil 0.43260 240.2 180.5 -0.00005 0.0463 

The VFT model, when scaled by a reference kinematic viscosity at 0T̂  (here taken to 

correspond to the temperature of the impinging jet), is written in dimensionless form as a 

two-parameter expression: 
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( )
( ) ( )( )B 1 T / 1 C T C

T 10 ,
 − − −  =        (4.2.9) 

with T scaled by 0T̂ . Here 0
ˆ ˆB B / T=  and 0

ˆ ˆC C / T=  are dimensionless parameters. 

As to the surface tension, Figure 4-3 depict the temperature dependence for the same 

liquids, all reflecting a linear dependence of the form ( )ˆ ˆ ˆ ˆˆ T DT E = + . The values of the 

two parameters are reported in Table 1. In dimensionless form, we have 

( )T DT E, = +         (4.2.10) 

where ( )0 0
ˆ ˆ ˆ ˆ ˆD DT / DT E= +  and ( )0

ˆ ˆ ˆ ˆE E / DT E= +  are dimensionless parameters. 

 

Figure 4-3: The dependence of surface tension on temperature for three common 

liquids. Solid lines indicate the fitting using the parameters Tn table 1. The markers 

are experimental data from various sources (Agrawal & Menon 1992 for water, 

Takamura et al. 2012 for glycerol, Sahasrabudhe et al. 2017 for soybean oil). 
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For other popular models and their applicable liquids, the reader is referred to the paper 

of Seeton (2006) and the references therein. With the advantage of the integral approach, 

as we shall see, the resulting equations can be solved for any model of viscosity and 

surface tension given explicitly in terms of the temperature. The dimensionless kinematic 

viscosity and surface tension will be incorporated in the current formulation. Only the 

case of water will be considered in the present study. The temperature of the impinging 

jet will be specified, allowing the deductions of the values of the dimensionless 

parameters from Table 1. 

4.3 The influence of heat transfer on the flow in the 
supercritical region and transition locations. 

As mentioned earlier, either the heat flux or the temperature can be imposed at the wall. 

We shall examine both conditions. We formulate the general problem first 

4.3.1 The general supercritical integral formulation 

In region (I), where the inviscid flow dominates the upper layer ( )z h    of the film, 

the radial velocity above the boundary layer remains equal to unity. The boundary-layer 

height   is determined by considering the mass and momentum balance over the 

boundary-layer region. Consequently, upon integrating Equation (4.2.1b) across the 

hydrodynamic boundary-layer thickness and using Equation (4.2.1a) to eliminate w, we 

obtain the integral form of the momentum equation in the boundary-layer region: 

( )
( )

( )
r

w 0
z 00

Re d u
r u u 1 dz r , r r ,

r dr z



=

 
 − = − 

   
 

     (4.3.1) 

Here ( ) ( )w wr T T r   =    denotes the value of the viscosity at the wall (disk). 

Similarly, by integrating Equation (4.2.1d) across the thermal boundary layer and using 

Equation (4.2.1a), we obtain the thermal integral equation: 
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( )
( )rt

1
z 00

Pe d T
r u T 1 dz , r r .

r dr z



=

 
 − = − 

   
 

     (4.3.2) 

Inherent to the integral approach is the proper choice of the velocity and temperature 

profiles needed to solve the integral equations. A variety of profiles are of choice: 

parabolic velocity (Tani 1949, Bohr, et al. 1993, Basu & Cetegen 2007, Kasimov 2008), 

cubic velocity (Bohr et al. 1997, Prince et al. 2012), and even quartic velocity (Bohr et 

al. 1996). In the current study, we choose a cubic profile which is considered to be the 

leading-order solution in a comprehensive spectral approach when inertia is included 

(Khayat 2006, Rojas et al. 2010). The cubic profile seems to be amply adequate as it 

leads to a close agreement with Watson’s (1964) similarity solution for a jet impinging on 

a circular disk (Prince et al. 2012, Chapter 2). Khayat (2016) also found that the cubic 

profile yields a good agreement with his numerical solution for slipping flow. The 

corresponding velocity profile, in region (I), is thus given by 

( )
3

0
3 z 1 z

u r r , z ,
2 2

 
 = −  

  
        (4.3.3) 

which satisfies Equations (4.2.2a) and (4.2.6). Similarly, we also approximate the 

temperature by a cubic profile in the pre-jump jump region. Using conditions (4.2.3) and 

(4.2.7), the temperature in region (I) and (II) is given by 

( ) ( )
( ) ( )

3
w w

1 w
t t

T r 1 T r 1z z
T r r , z T r 3 ,

2 2

− −  
 = − +  

  
    (4.3.4) 

We note that the temperature profile (4.3.4) satisfies the energy Equation (4.2.1d) at the 

wall. Upon inserting Equation (4.3.3) and Equation (4.3.4) into Equation (4.3.1) and 

Equation (4.3.2), we obtain a pair of coupled differential equations for the hydrodynamic 

and thermal boundary-layer thickness over the range 00 r r  : 

wd 140
,

dr 13Re r

 
= −


         (4.3.5) 



160 

 

( )
( )( )

( )
( )

2 2
t t

t w

2 2
w t

3 2 2 3 3 5 4
t t t t

2 2 2
t t

14d dT

dr dr4 T 1 7

d
Pe r 14 3 14Pe Pe 140 r

dr .
4Pe r 7

  −
= −

−  −


  −  −   +  + 

+
   −

   (4.3.6) 

These equations are solved subject to ( ) ( )tr 0 r 0 0 = =  = = . In the isothermal limit 

( )1 = , one recovers the solution of Equation (4.3.1) as ( ) ( )0r r 2 70 / 39 r / Re  = , 

which agrees with the ~ r / Re  behaviour established from dimensional argument of 

Equation (4.2.1b).  

Originating from the disk centre, both the hydrodynamic and thermal boundary layers 

grow with the radial distance, eventually invading the entire film thickness. As the 

hydrodynamic boundary layer grows faster (see Section 4.2), it first reaches the jet free 

surface at 0r r= . For 0r r , the free surface at some height ( ) ( )z h r r=    lies above the 

boundary-layer outer edge. The height of the free surface in region (I) is then determined 

from mass conservation inside and outside the boundary layer. Therefore, 

( )
( )

( ) ( )
r

0

0

1
u r, z dz h r r , r r .

2r



+ − =        (4.3.7) 

The transition location 0r  where the hydrodynamic boundary layer first reaches the film 

surface is computed by equating ( )0h r  and ( )0r . The corresponding transition heights 

for the thermal boundary layer and liquid film are given by ( )t0 t 0r    and ( )0 0h h r  

respectively, which serve as the initial conditions for the next region. 

In region (II), the potential flow in the radial direction ceases to exist, with the velocity 

( ) ( )su r u r,z h= =  at the free surface becoming dependent on r. Integrating the 

momentum equation between the disk surface and the free surface, and using the mass 

conservation Equation (4.2.8), the momentum integral equation is obtained as 
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( )

( )
h r

2
w 0 1

z 00

Re d u
r u dz r , r r r .

r dr z =

 
  = −  

   
 

    (4.3.8) 

We note that both the temperature profile and the energy integral equation in region (II) 

remain the same as in region (I), given by Equations (4.3.4) and (4.3.2) since the thermal 

boundary layer is still below the liquid-air interface. However, the cubic velocity profile 

subject to conditions (4.2.2a) and (4.2.4b) takes a different form: 

( ) ( )
3

0 J s 3

1 z z
u r r r , z u r 3 ,

2 h h

 
  = − 

 
 

      (4.3.9) 

We observe that the shear stress at the film surface remains zero since the surface 

temperature ( )s 1T 0 r r 1  = . The surface velocity ( )su r  is determined from the mass 

conservation Equation (4.2.8) to yield:  

( )s 0 J
4

u r r r ,
5hr

  =        (4.3.10) 

which agrees with Prince et al. (2012) when setting their slip parameter equal to zero.  

The validity of the cubic velocity profiles (4.3.3) and (4.3.9) is assessed in Figure 4-4, 

which provides a comparison between the parabolic and cubic profiles for the isothermal 

flow. Also shown in the figure is the exact similarity solution (Watson 1964). It is clear 

from Figure 4-4 that the cubic profile is more accurate as it almost coincides with the 

exact solution. 
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Figure 4-4: Comparison of Watson’s similarity solution with the cubic and 

parabolic velocity profiles. 

Substituting Equation (4.3.4) and Equation (4.3.9) into Equation (4.3.2) and Equation 

(4.3.8), and eliminating ( )su r  using Equation (4.3.10), the pair of differential equations 

governing the film thickness and thermal boundary layer height in region (II) read 

( )0 1r r r  : 

w
dh 525 h

r ,
dr 136Re r

=  −        (4.3.11) 

( )
( )( ) ( )

2 2
4t t

t w t

2 2 2 2 2
w t t t

14hd dT 175rh dh
,

dr dr h dr4 T 1 7h 4Pe 7h

 − 
= − + +

− −  −
  (4.3.12) 
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which are solved simultaneously subject to ( ) ( )0 0h r r r= =   and ( )t 0 t0r r = =  . The 

second transition location 1r , which separates region (II) and (III) are obtained by 

equating ( ) ( )1 t 1h r r=  . The corresponding film thickness is defined as ( )1 t 1h r  , 

which in turn, serves as the initial condition for region (III), where both the 

hydrodynamic and thermal boundary layer thickness have reached the free surface. In the 

isothermal case, the solution of Equation (4.3.11) reduces to 

( ) ( ) ( )( )0 Jh r r r 1/ 4 2 / r 210 /13 r / Re  = +  and ( )( )
1/3

0r 78 / 875 Re= . 

In region (III), the heights of the two boundary layers are the same and equal to that of 

the liquid film. Moreover, the free-surface temperature ( )sT r , serving as a new variable, 

begins to vary as it becomes a function of radial location for 1r r . Consequently, the 

surface tension varies as well, yielding Marangoni induced flow. In this case, Equations 

(4.3.8)-(4.3.12) must be updated. Integrating Equation (4.2.1) and using (4.2.4d), we 

obtain ( )J1r r r   

( )

( ) ( )
h r

2 1
s w

s z 00

Re d d u
r u dz Ca T r r

r dr dT z

−

=

 
   = −

   
 

 .   (4.3.13) 

The corresponding velocity profile reads 

( )
3

1 1s s
1 J s s 3

s s s s

T T1 d z 1 d z
u r r r , z 3u Ca h u Ca h .

2 dT h 2 dT h

− −     
  = − − −   

    
(4.3.14) 

The free-surface velocity is obtained from (4.2.8): 

( ) 1 s
s 1 J

s s

T1 4 d
u r r r Ca h .

5 hr dT

− 
  = + 

 
     (4.3.15) 

The temperature profile in this region is updated by replacing 1 by sT  and t  by h in 

(4.3.4), yielding 
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( )
3

w s w s
1 J w

T T T Tz z
T r r r , z T 3 .

2 h 2 h

− −  
  = − +  

 
    (4.3.16) 

The corresponding integral equation of energy is obtained by integrating (4.2.1d) 

between z 0=  and ( )z h r=  , taking the following form 

( )
( )h r

1 J
z 00

Pe d T
r u T 1 dz , r r r .

r dr z =

 
 − = −  

   
 

    (4.3.17) 

By substituting profiles (4.3.14) and (4.3.16) into (4.3.13) and (4.3.17), eliminating 

( )su r  using (4.3.15), we obtain the following equations for the range 1 Jr r r  : 

2 2
1 2 3s s

2
s s s s

1 w w
s 2

s s

T Td 272 1 16 d 11 d
Re Ca h Ca rh

dr 875 hr 875 dT 2625 dT

d 1 6
Ca r T 1 .

dT 5 5 h

− −

−

     + +  
    

  
= + − 

 

 (4.3.18) 

( ) ( )1 2w s s
s w w s

s s

39T 136T Td 2 d 3 r
Pe Ca rh T T T T .

dr 350 175 dT 2 h

− + 
+ − = − 

 
 (4.3.19) 

Equations (4.3.18) and (4.3.19) govern the thickness ( )h r  and the surface temperature 

( )sT r , are solved subject to conditions ( )1 1h r r h= = , ( )s 1T r r 1= =  and ( )s 1T r r 0 = = . 

We observe that until now, all the resulting differential equations can be solved for any 

specific models for the viscosity and surface tension explicitly given as a function of the 

temperature, for any specified distribution of the temperature or heat flux along the wall. 

As it stands, the formulation above is readily implementable when ( )wT r  is specified. If, 

on the other hand, the wall heat flux ( )w z 0
q r T / z

=
= −   is imposed, then ( )wT r  is 

determined from the following relations between the wall temperature and heat flux, 

which are obtained from (4.3.4) and (4.3.16) as 



165 

 

( ) ( ) ( )w 1 w t
2

T 0 r r q r r 1,
3

  =  +       (4.3.20a) 

( ) ( ) ( ) ( )w 1 J w s
2

T r r r q r h r T r .
3

  = +      (4.3.20b) 

We shall examine separately the flow response when the temperature or hear flux are 

imposed along the disk in this section for super-critical flow, and in Section 4.4 for sub-

critical flow. Finally, we observe that the number of parameters can be reduced by 

introducing the following rescaled variables as 1/3r Re r−= , 1/3
w wq Re q−=  and 

( ) ( )1/3
t th, , Re h, ,  =   , and parameters as 2/3Ca Ca Re=  and 1/6Fr Re Fr= . Other 

variables remain unchanged. 

4.3.2 The influence of wall temperature 

The formulation in Section 4.3.1 is readily applicable once ( )wT r  is specified. We shall 

only consider an imposed constant wall temperature, although the case of variable 

temperature is easily treated. The constant wall temperature condition usually 

corresponds to the cooling of boilers and condensers. The influence of the wall 

temperature on the boundary and thermal layers and liquid film thickness is displayed in 

Figure 4-5 for 2/3Ca Re 10= . Both boundary layers and the film height decrease with 

increased wall temperature as expected since the increase in the wall temperature leads to 

a decrease in the viscosity, which in turn reduces the wall resistance. The figure shows 

that the first transition location 0r  moves downstream with higher wall temperature, 

whereas the second transition location 1r  moves upstream towards the disk center. The 

mechanisms and causes for this behaviour will be discussed in detail when the influence 

of the wall heat flux is covered. 
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Figure 4-5: Influence of the wall temperature on the film thickness and boundary-

layer heights for 0T̂ 278K=  and 2/3Ca Re 10=  in the super-critical region. Also 

indicated are the values of (rescaled) transition locations in light vertical lines for 

wT 1.05= . 

Figure 4-6 depicts the influence of the wall temperature on the temperature and velocity 

along the film surface. For a given wall temperature, while the surface velocity decays 

with distance as the film thickens (resisting the flow), the surface temperature increases 

with distance as a result of sustained convective effect. In fact, Equations (4.3.15) and 

(4.3.16) suggest that ( )( )
1/2

s w w 1T ~ T 1 T r / r
− 

+ − , indicating that s wT ~ T  at large 

distance as reflected in Figure 4-6; the liquid should indeed eventually acquire the same 

temperature as the solid surface far away. The figure also shows that the surface 

temperature is more sensitive to the change in the wall temperature than the surface 

velocity. When wT  increases, su  increases as a result of lower viscosity and ease of fluid 

movement, and sT  increases as well as a result of the increased heating from the wall. 
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Figure 4-6: Influence of the wall temperature on the surface temperature and 

velocity in the super-critical region for 0T̂ 278K=  and 2/3Ca Re 10= . 

Figure 4-7 displays the influence of the wall temperature on the wall shear stress and the 

shear (Marangoni) stress along the free surface for 2/3Ca Re 10= . All shear stresses tend 

to decrease with distance as a result of weakening flow and rising temperature. At 

impingement, the wall shear stress is singular, decaying rapidly with distance like 

1/ ~ Re/ r . In regions (I) and (II) ( )10 r r  , the wall shear stress decreases with the 

wall temperature, but this trend reverses downstream of the second transition location 

when Marangoni effect becomes palpable. At this point, the wall shear is typically one to 

two orders of magnitude larger than the Marangoni stress, but decays at a faster rate. We 

note that the shear stress is negative at the free surface (denoted by the negative sign in 

Figure 4-7) as the temperature decreases with radial distance. At the second transition 

location, the Marangoni stress rises rapidly from 0 to a non-zero value even though we 
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have imposed ( )s 1T r r 0 = = , and the solution turns out to be not sensitive to this 

condition. Eventually, both stresses become of comparable magnitudes as they weaken, 

especially for the higher wall temperature.  

 

Figure 4-7: Influence of the wall temperature on the wall shear stress and 

Marangoni stress (surface shear stress) in the super-critical region for 0T̂ 278K=  

and 2/3Ca Re 10= . Vertical lines indicate second transition locations. 

Chaudhury (1964) considered the heat transfer for a constant viscosity, for a jet and a 

disk held at different but constant temperatures. Watson’s (1964) similarity profile was 

used for the velocity along with an integral approach and a similarity profile for the 

temperature in the thermal boundary layer. In particular, he examined the distribution of 

the averaged Nusselt number: ( ) ( )
r

w w0
Nu r 2 q r / T 1 dr=  −  defined at a given radial 

location. To illustrate the effect of viscosity variation with temperature, we compare our 

predictions with those of Chaudhury in Figure 4-8 for two different Prandtl numbers (Pr 
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= 3 and 10) in the absence of Marangoni effect. While our results almost merge with the 

constant-viscosity prediction when the temperature of the wall is close to that of the 

incoming jet (corresponding to wT 1.01= ), the deviation grows significantly as the wall 

temperature departs from the jet temperature. This comparison suggests that the inclusion 

of the two-way coupling is crucial in the presence of large temperature change. 

 

Figure 4-8: Influence of the wall temperature on the average Nusselt number (no 

surface tension effect). Also shown in the figure is the predictions of Chaudhury 

(1964) for water without surface tension effect. Here, Pr=3 corresponds to 

0T̂ 329.45K=  and Pr=10 corresponds to 0T̂ 279.15K= . 

The influence of the wall temperature on the Nusselt number is illustrated in Figure 4-9 

where a monotonic decay with radial distance is observed as a result of the flow 

deceleration and thermal accumulation. Following Chaudhury’s approach, Searle et al. 

(2017) examined the heat transfer for a slipping flow of a fluid of constant viscosity and 
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the same properties as the incoming jet. Figure 4-9 shows the distribution of the Nusselt 

number for different wall temperatures, including the results of Searle et al. (2017) for 

the no-slip case, which we mimic here by taking wT 1.01= . The deviation again worsens 

when the wall temperature is increasingly different from that of the impinging jet. 

Therefore, we conclude that the constant viscosity assumption is only reasonable when 

the temperature of the wall is close to that of the incoming jet. 

 

Figure 4-9: Influence of the wall temperature on the Nusselt number (no surface 

tension effect). The data for constant fluid property is from Searle et al. (2017). The 

Reynolds number is maintained at Re 4300= , 0T̂ 278K= . 

4.3.3 The influence of constant wall heat flux on the flow 

We now consider the influence of heat transfer on the super-critical flow field when the 

heat flux is imposed at the wall. The constant wall heat flux condition is usually 

encountered when a constant heat load is specified in practical applications. In this case, 

the wall temperature is directly deduced using (4.3.20). We shall examine the influence 
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of a constant wall heat flux for a water jet impinging at 300 K (see Table 1 for the 

viscosity and surface tension parameters).  

For a constant wall heat flux, the hydrodynamic and thermal boundary layers, as well as 

the film thickness, all simultaneously decrease with increased wall heat flux, as reported 

in Figure 4-10. The response appears to be less sensitive to the variation of the heat flux 

compared to the influence of the wall temperature, especially near impingement. This 

congestion near the origin is expected since some accumulation distance is needed for the 

wall heat flux to cause a significant change in the wall temperature and hence the 

viscosity. 

 

Figure 4-10: Influence of the wall heat flux on the boundary-layer heights and the 

film thickness for 0T̂ 300K=  and 2/3Ca Re 10= . 

Figure 4-10 indicates that the thermal boundary layer appears to always reach the free 

surface as long as the disk is sufficiently large. This seems to contradict the finding of 

Liu & Lienhard (1989) that the thermal boundary layer cannot reach the free surface for a 
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Prandtl number greater than 4.859. However, this critical Prandtl number is based on the 

assumption of a constant viscosity. We report in Figure 4-11 the influence of the wall 

heat flux on the distribution of the effective Prandtl number ( )wT r Pr     at the wall and 

along the free surface ( )sT r Pr    . As the liquid travels downstream, the Prandtl number 

should continue to decrease due to the increase in the wall temperature, and hence 

decrease in viscosity and surface tension, and the thermal boundary layer will eventually 

reach the free surface (unless a hydraulic jump forms upstream of the transition location 

or the disk is not sufficiently large). Consequently, the critical Prandtl number criterion is 

only applicable when the heat flux is weak, with insignificant temperature variation. In 

fact, Figure 4-11 indicates that the Prandtl number at the wall can be less than 4.859. 

 

Figure 4-11: Influence of the wall-heat flux on the effective Prandtl number along 

the wall and the free surface for super-critical flow for 0T̂ 300K=  and 

2/3Ca Re 10= . 
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Interestingly, while both transition locations move downstream with increasing inertia 

(not obvious from Figures 4-5 and 4-10 because of the rescaling with respect to 1/3Re ), 

they move in opposite directions with increasing wall temperature and heat flux. Figure 

4-12 summarises the influence of the wall heat flux and inertia on the transition locations. 

The first transition location moves downstream with higher wall heat flux (or wall 

temperature in Figure 4-5), whereas the second transition location moves upstream 

towards the disk center. This is largely due to the dependence of the viscosity on the 

temperature. For common fluids, the viscosity can significantly decrease with 

temperature, while the thermal properties (thermal conductivity and heat capacity) remain 

relatively constant. This behaviour in turn causes an earlier second transition as the 

thermal boundary layer remains almost unchanged but the hydrodynamic boundary layer 

and the film thickness are moderately decreased. In other words, the free surface meets 

with the thermal boundary layer earlier. 

 

Figure 4-12: Influence of inertia and the wall heat flux on the transition locations for 

0T̂ 300K= . Inset shows the rescaled transition locations. 
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In fact, the inset in Figure 4-12 suggests that the location of the first transition is 

essentially constant, with 1/3
0r 0.454Re . It is not surprising that the increase of 0r  is 

very weak due to the curve congestion as discussed in Figure 4-10. The location of the 

second transition follows closely 4/9 1/3
1 wr 0.524Re q− . 

In any practical application with a constant heat load, it is the temperature at the solid 

surface wT  that needs to be controlled and monitored, making crucial the investigation of 

the influence of heat flux on the local wall temperature and Nusselt number 

( ) ( ) ( )( )w wNu r q r / T r 1= − . Figure 4-13 depicts the influence of the Reynolds number 

on the Nusselt number distribution. Also shown in the figure are the corresponding 

experimental measurements from Liu & Lienhard (1989) and their numerical predictions 

using an iterative scheme. Here the liquid is water, and the temperature of the incoming 

jet is 0T̂ 288.15K= . The value of the applied (dimensionless) heat flux is 0.09. The 

second transition location is not reached under these Reynolds numbers. Our predictions 

generally agree with their measurements and iterative solution. We emphasize that 

although the present method may not be as accurate as an iterative numerical approach, 

the high computational efficiency and the simplicity of implementation of the present 

approach far outweigh the relatively small inaccuracy, especially in the presence of a 

large temperature variation. 
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Figure 4-13: Influence of the Reynolds number on the local Nusselt number 

distribution). The comparison with the measurements and numerical results of Liu 

& Lienhard (1989) is also included. 

4.4 The influence of heat transfer on the hydraulic 
jump and subcritical flow 

In this section, we consider the flow in region (IV), the hydraulic-jump region. Although 

the flow field downstream of the jump may be assumed to be inviscid (Watson 1964) or 

viscous, only the viscous flow will be examined as it seems to represent better the real 

flow (Duchesne et al. 2014). In the absence of thermal coupling, the hydraulic jump can 

be examined using solely the discretized momentum equation with Watson’s method. In 

other words, the thermal field in the subcritical region can be obtained after the hydraulic 

jump and downstream flow field are fully determined. For a temperature-dependent 

viscosity, however, solving the momentum equation is not sufficient to yield the location 

of the jump. In this case, we resort to an energy balance across the jump as an additional 
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relation to close the problem as we shall see. The determination of the subcritical velocity 

and temperature profiles is discussed in Section 4.4.1. The location and height of the 

hydraulic jump will be discussed separately for the constant wall temperature and wall 

heat flux conditions in Section 4.4.2 and 4.4.3, respectively. 

4.4.1 The subcritical velocity and temperature profiles 

When the effect of gravity is included, the integral form of Equation (4.2.1b) at any 

location can be written as 

( )
h h

2
w2

z 00 0

d r p r u
r u dz dz r .

dr r Re zFr =

 
= − − 

         (4.4.1) 

We recall Jr r=  as being the position of the hydraulic jump. Across the jump, Equation 

(4.4.1) is applied to a control volume of width r  in the radial direction, yielding 

( )J J J J
w2 2 J

J J J J2

h h h h r u1
u dz u dz p dz p dz r .

Re zFr0 0 0 0 z 0

+ − + −
−

+ − + −
 

  − = − − −       = 

 (4.4.2) 

From here on, a ‘-’ and a ‘+’ superscript denotes a value immediately upstream and 

downstream of the jump, respectively. Integrating Equation (4.2.1c) subject to condition 

(4.2.4c), the pressure becomes ( ) ( )p r,z h r z= − , reflecting its hydrostatic nature. Since 

the width of the jump r  is assumed to be small, the viscous term in Equation (4.4.2) 

becomes negligible. In addition, the effect of surface tension resulting in a Hoop stress 

can be included following Bush & Aristoff (2003) so that Equation (4.4.2) reduces to 

( ) ( ) ( ) ( )

hhJ J2
2 2 2 2 2J J

J J J J J
J 0 0

h h1 Fr
h h T Fr u z dz u z dz .

2 Ca Re r

+−
+ −

+ − − +

 
 −

− +  = − 
 
 

   (4.4.3) 

Here ( )J s sT T T / 2− += +  is taken to be the average free-surface temperature of the values 

immediately up- and downstream of the jump. We observe that the effect of heat transfer 
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is reflected implicitly in (4.4.3) in the height and velocity upstream and downstream of 

the jump since the heat transfer has a tangible effect on the flow velocity as well as the 

film thickness as we saw earlier. Here Jh−  and Ju−  (as functions of Jr ) are directly 

obtained from the solution in the pre-jump region while the solution for Jh+  and Ju+  will 

be discussed next as they are both related to the thermal character downstream of the 

jump. For this, another relation is needed to obtain the temperature field after the jump, 

which naturally leads us to the consideration of the energy balance across the jump. 

Integrating Equation (4.2.1d) between the disk and the free surface leads to 

( )h r

z 00

d r T
r uTdz .

dr Pe z =


= −

         (4.4.4) 

If a thermal balance is applied to a control volume of an infinitely small width r  across 

the jump, we obtain 

( ) ( ) ( ) ( )

hhJ J

J J J J

0 0

u z T z dz u z T z dz.

+−

− − + +=        (4.4.5) 

It is clear by now that the super-critical flow and thermal fields are completely known at 

any given r, whereas the sub-critical flow and thermal structures are yet to be determined. 

Some assumptions are typically made regarding the nature of the flow downstream of the 

jump, ranging from the inviscid (Watson 1964) to the fully viscous (Duchesne et al. 

2014) character. Although the current formulation accommodates various assumptions on 

the flow and heat transfer, we shall focus on a relatively slow flow of the lubrication type 

downstream of the jump, with gravity becoming significant. In this case, the solution of 

the Stokes equation is sufficiently manageable to accommodate a velocity profile that is 

explicitly dependent on the viscosity. We observe that the influence of the viscosity on 

the vertical velocity distribution should be fully accounted while before the jump the 

influence of the viscosity on the velocity profile is not as crucial given the dominance of 

inertia since the shearing is mostly concentrated near the wall. On the other hand, for the 
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sub-critical flow, inertia effect is small, and the influence of viscosity is consequently 

significant. As to temperature, the same cubic profile is still reasonable to use since 

thermal convection remains in balance with conduction. Again, the formulation for the 

flow and heat transfer is valid for any temperature-dependent viscosity and surface 

tension. 

Consequently, the velocity will not be parabolic in z as is isothermal lubrication flow. In 

this case, neglecting the inertia terms in Equation (4.2.1b) and integrating twice the 

remaining terms ( ) ( )2Re/ Fr h / z u / z 0− +     =  subject to conditions (4.2.2a) and 

(4.2.4d), the velocity becomes 

( )
( ) ( )

z z
1

J s2 2
s0 0

Re ydy d Re dy
u r r , z h Ca T hh .

dTT y T yFr Fr

− 
   = + − 

        
    (4.4.6) 

As to the sub-critical temperature and heat flux at the wall, we adopt the same cubic 

profile (4.3.16), which is reproduced here as 

( )
3

w s w s
J w

T T T Tz z
T r r , z T 3 .

2 h 2 h

− −  
 = − +  

 
     (4.4.7) 

Inserting (4.4.6) into the mass conservation Equation (4.2.8), we obtain the following 

equation: 

( ) ( )

h z h z
1

s2 2
s0 0 0 0

Re ydydz d Re dydz 1
h Ca T hh .

dT 2rT y T yFr Fr

− 
  + − = 

        
       (4.4.8) 

Similarly, on inserting (4.4.6) and (4.4.7) into the energy Equation (4.4.4), we obtain 

( ) ( )

( )

h z z
1

s2 2
s0 0 0

3
w s w s

w w s

d Re ydy d Re dy
r h Ca T hh

dr dTT y T yFr Fr

T T T Tz z 3 r
T 3 dz T T .

2 h 2 h 2Pe h

−
  

   + − 
          

 − −  
  − + = − 

   

  
  (4.4.9) 
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Once T(y) is inserted from (4.4.7) into the temperature-dependent viscosity model, 

Equations (4.4.8) and (4.4.9) are used to determine ( )h r  and ( )sT r . They are integrated 

subject to ( )h r r h = = , the thickness at the edge of the disk. Another boundary 

condition, namely ( )s JT r r+=  is provided through relation (4.4.5), where use is made of 

the super- and sub-critical velocity and temperature profiles (4.3.14) and (4.3.16), and 

(4.4.6) and (4.4.7), respectively. The location of the jump (radius) is determined through 

(4.4.3), where use is made of (4.3.14) and (4.4.6). 

The value of the edge thickness h  was considered in Chapter 2 for the flow on 

stationary and rotating disks. We suggested that, as the flow has sufficiently decelerated, 

the film thickness at the edge of the disk should be essentially a value close to the film 

thickness the liquid exhibits under static conditions. De Gennes et al. (2004) proposed an 

expression for this static thickness as ( )s Yˆh 2 / g sin / 2=     using a force balance 

approach. Lubarda & Talke (2011) later obtained the same expression based on the 

minimum free energy principle. Here Y  is the contact angle, which depends on both the 

liquid and the solid, and may then be deduced from experiment. Apart from the static 

contribution, a weak dynamic contribution is also derived using a mechanical energy 

minimization theory. The dimensionless edge thickness is finally given by 

( ) ( )

21

33YFr 3 Fr
h T 2 T sin .

2 40 rCa Re




    
=  +    

    
   (4.4.10) 

Clearly, in the presence of relatively strong surface tension and a large disk radius, the 

second term tends to be dominated by the static contribution. For more details, the reader 

is referred to Chapter 2. Our predictions essentially confirmed the findings of Duchesne 

et al. (2014). Their direct measurements of the edge thickness give a nearly constant 

value on the order of the capillary length ˆ / g   with a small power-law variation. h  

can be neglected for a liquid of high viscosity (Duchesne et al. 2014). The dynamic 

variation is not considered in the present calculation since it is suggested to be negligibly 
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small by many experiments (Dressaire et al. 2010, Duchesne et al. 2014, Mohajer & Li 

2015). 

For our purpose here, we shall report on further results below for water. The thickness at 

the edge of the disk using a generic hydrophilic situation with Y 35 =  degree.  

Finally, although the numerical implementation does not pose any major challenge, the 

downstream formulation becomes significantly more manageable if we adopt the inverse 

linear model for the kinematic viscosity dependence on the temperature, namely the 

following two parameter model: ( )
-1

ˆ ˆ ˆˆ M T L = − . For water, as in the current study, 

( ) 2M̂ 1/ 29830 m K / s= and L̂ 258.6K= . Although slightly less accurate than the VFT 

model, especially in the low temperature range, this model is commonly used in the 

literature (see, for instance, the studies of Ling & Dybbs 1992 and Kafoussias & 

Williams 1993 on forced convection, and the more recent treatment of Miller et al. 2018 

on the boundary-layer flow over a heated plate). Here, M̂  is a constant, positive for 

liquids. In dimensionless form, we write the kinematic viscosity as 

( ) ( )
1

T 1 L T 1 ,
−

 = + −          (4.4.11) 

where ( )0
ˆ ˆL 1/ 1 L / T= −  is the only dimensionless parameter. In this case, the velocity 

profile (4.4.6) reduces to a fifth-order polynomial: 

( )
( )

( )

5 4
w s 3 2w s

J 2 2

s
s w2

s

L T T 5LT 3LT 2L 2Re z z
u r r , z h z z

2h 4h 4Fr 5h

LT 1 L d Re
T h LT L 1 h z.

Ca dT Fr

  − − − +
   = − + + 

    

 + − 
 + − − + 

 

 (4.4.12) 

Similarly, the double integrals in (4.4.8) and (4.4.9) can be carried out explicitly. In this 

case, (4.4.8) reduces to 
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( )

( )

3
s w2

1 2
s s

s

Re
rh 7LT 13LT 20L 20 h

Fr

d
30Ca rh LT 1 L T 30.

dT

−

+ − +


− + − =

    (4.4.13) 

The second equation governing sh andT  is similarly deduced from (4.4.9): 

( ) ( )

( )( )( )

( )

s w w w2
s

1 2
s w s s w s

s

s w

w s

T 7138LT 10248L 10248 T 2395LT 3192L 3192
19535 LT

3907

d
Ca h 719LT 3239LT 2520L 2520 LT 1 L T T r T

dTd

dr 7LT 13LT 20L 20

10080 r
T T . (4.4.14)

Pe h

−

  − + + − +
+  

  
 
 − − + − + − − 
 

+ − +

= −

 

Model (4.4.11) is used to determine the sub-critical flow and thermal fields below for the 

case of a water jet. The flow and thermal fields are obtained iteratively using a shooting 

method. An initial value for Jr  is guessed, and Jh+  and sT+  are obtained from (4.4.3) and 

(3.4.5). Equations (4.4.13) and (4.4.14) are then solved simultaneously subject to 

( )J Jh r r h+= = , ( )s J sT r r T+= =  and ( )s JT r r 0 = = , aiming to match the boundary 

condition at the edge of the disk, namely ( )h r r h = = . 

4.4.2 The influence of the wall temperature on the hydraulic jump 

Figure 4-14 illustrates the influence of the wall temperature on the film profiles in the 

super- and sub-critical regions. As observed from the figure, the jump height decreases 

with increased wall temperature, and the jump location is pushed downstream away from 

the centre of the disk at an almost constant rate. It is worth observing that the 

development of the shape of the jump under the influence of wall temperature is very 

similar to that under the effect of disk rotation (see Chapter 2); in both cases, the response 

is the result of enhanced convective effect. In fact, this similarity is not unexpected since 

a larger wall temperature lowers the wall resistance, reducing the loss of inertia. The 
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corresponding wall heat flux (not shown) experiences a drop that is relatively much 

sharper than the jump experienced by the surface height. This drop in the wall heat flux 

in turn leads to a drop in the Nusselt number as we shall see shortly. We recall that the 

effect of surface tension reflects both the Marangoni and hoop stresses. In an effort to 

isolate the Marangoni effect, we neglected the effect of surface tension except through 

the Hoop stress in (4.4.3), and the resulting plots are reported in included in Figure 4-14 

as dashed curves. The Marangoni effect is therefore reflected in the difference between 

the solid and dashed curves. 

 

Figure 4-14: Influence of the wall temperature on the film height in the super- and 

sub-critical regions for 0T̂ 300K= . Here 2/3Ca Re 100= , 1/2Fr Re 3− =  and 

1/3r Re 6−
 = . 

As expected, Figure 4-14 suggests that the Marangoni effect tends to increase with the 

wall temperature, enhancing the jump height at an earlier location. This is also depicted 

in Figure 4-15, where the jump location and height are plotted against the wall 
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temperature for three levels of surface tension. The wall temperature causes the jump 

radius to increase and the jump height to decrease almost linearly (see also Figure 4-14). 

There is a significant influence of the surface tension in the lower Ca range. The jump 

location and height are less sensitive for large Ca where a saturation appears for liquids 

of very weak surface tension. It is not surprising to see that the Marangoni effect (and 

surface tension, in general) tends to reduce the jump radius since it acts as a resistance to 

the flow. Simultaneously, this effect decreases with the radial distance as the surface 

temperature levels off. 

 

Figure 4-15: Influence of the wall temperature on the jump location and height for 

0T̂ 278K= , 1/2Fr Re 3− =  and 
1/3r Re 6−

 = . 

Sung et al. (1999) investigated numerically the heat transfer of a circular hydraulic jump 

using the finite-element method. We report a comparison in Figure 4-16 between our 

predictions for the hydraulic jump under the influence of the wall temperature against the 

numerical results of Sung et al. (1999). Our predictions generally agree with their results 
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on the location of the jump as well as the film thickness upstream and far downstream. 

The shape and height of the jump are different since we have assumed a shock-type 

transition whereas their numerical solution was obviously resolved continuously. 

Moreover, their nozzle to disk distance is very small, making the initial jet velocity not 

uniform and the inviscid flow assumption above the boundary layer not exactly satisfied. 

Therefore, the agreement is reasonably acceptable considering all the approximations we 

have made. 

 

Figure 4-16: . Comparison of the film thickness over the entire domain with the 

predictions of Sung et al. (1999) for different wall temperatures 

( )0T̂ 293K,  Re 16000,  Pe 112000,  Fr=5, Ca 0.022= = = = . 

Figure 4-16 indicates that the numerical profiles of Sung et al. (1999) shows a small dip 

in the film surface at the bottom of the jump, which is not captured by our thin-film 

approach. Although the discrepancy is insignificant, the presence of these mild 
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depressions becomes more consequential when the heat transfer is examined. Indeed, 

Sung et al. (1999) also examined the influence of the flow rate on the distribution of the 

Nusselt number for a fluid of constant viscosity. They reported a sharp drop of the 

Nusselt number in the hydraulic jump region, which we also capture in our solution, as 

reported in Figure 4-17. We note here that ih  is the initial film thickness in their flow 

domain. As can be seen, both the sharp-drop and downstream values of the Nusselt 

number are recovered overall. Our solution does not recover the undershoot predicted by 

Sung et al. (1999), resulting from the formation of a flow separation, which in turn 

impedes the convective heat transfer. We emphasize that numerical approaches to some 

extent do give us better local predictions of the hydrodynamic and heat transfer character 

of the flow even though they can be time consuming. Our model is computationally 

efficient but may sacrifice some accuracies as already seen. This is usually the limitations 

of theoretical models.  

 

Figure 4-17: Influence of the jet flow rate on the profiles of the Nusselt number. 

Comparison between our results and the predictions of Sung et al. (1999). 



186 

 

It is important to observe that Sung et al. (1999) did not provide the value of the wall 

temperature when generating their results reproduced here in Figure 4-17. It turns out that 

the Nusselt number is not influenced by the wall temperature for a fluid of constant 

viscosity. This important property is discussed here by means of the following statement: 

The Nusselt number for the super- and sub-critical regions is independent of the 

(constant) wall temperature for a fluid of constant properties. 

We prove this statement by first considering the flow of a fluid of constant viscosity. In 

this case, ( ) ( )T T 1 =  = , and the flow is decoupled from the heat transfer so that both 

( )r  and ( )h r  are everywhere independent of the wall temperature. We need to show in 

this case that ( ) ( ) ( )w wNu r q r / T 1= −  is independent of wT  for any r. Equation 

(4.3.20a) indicates that ( ) ( )( )1 tNu 0 r r 3 / 2 1/  =  . On the other hand, for constant 

wT 1 , the solution of Equations (4.3.5) gives ( ) ( )0r r 2 70 / 39 r / Re  =  and 

Equation (4.3.6) reduce to 

( )
( )

3 2 2 3 3 5 1 4
t t t t

t

2 2 2
t t

r 14 3 14 140Pe rd
.

dr 4 7 r

−  −   −   +  + 
=

   −
   (4.4.15) 

indicating that ( )t 00 r r    is independent of wT . Similarly (4.3.12) yields 

( ) ( ) ( )( )0 1h r r r 1/ 4 2 / r 210 /13 r / Re  = +  and (4.3.13) reduce to 

( )

1 4
t t

2 2 2
t t

d 175Pe rh
h ,

dr h4 7h

− 
= +

 −
      (4.4.16) 

indicating that ( )t 0 1r r r    is also independent of wT . This shows, in turn, that 

( )1Nu 0 r r   is independent of wT . Closer to the jump, Equation (4.3.20b) yields 

( ) ( ) ( ) ( )( )1 J w s wNu r r r 3 / 2 T T / h T 1   = − −  . Simultaneously, Equation (4.3.19) 

reduces to 
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( ) ( )w s w ss d T T T T rdT 525
.

dr dr 136Pe h

− −
= − =      (4.4.17) 

By dividing both sides of Equation (4.4.17) by wT 1− , we deduce that 

( ) ( )w s wT T / T 1− −  is independent of wT . Finally, in the sub-critical region, by setting 

1 =  = , Equation (4.4.8) can be integrating to give the thickness independent of the 

temperature: 

( )

1
2 4

4
J

Fr r
h r r h 6 ln .

Re r




  
 = +   

  

     (4.4.18) 

In this case, upon noting from Equation (4.4.7) that ( ) ( ) ( )w J w sq r r 3 T T / 2h = − , then 

the equation for the heat flux is obtained from the reduced Equation (4.4.9): 

2 3
w wdq q 5 3 Fr h

r ,
dr h Pe 2 Re r

− 
= − − 

 
 

      (4.4.19) 

which is solved subject to ( )w J wq r r q+= = . Clearly, (4.4.18) and (4.4.19) indicate that 

both the thickness and wall heat flux are independent of the wall temperature. 

Consequently, ( )JNu r r r   is independent of wT . This concludes the proof of our 

statement. 

4.4.3 The influence of the wall heat flux on the hydraulic jump 

Figure 4-18 illustrates the influence of the wall heat flux on the location and the height of 

the hydraulic jump, depicting the film profiles for different flux values. Similar to the 

influences of the wall temperature, the heat flux causes the jump radius to increase and 

the jump height to drop. The Marangoni effect is also reflected in the difference between 

the solid and dashed curves. As can be seen, the influence of the Marangoni stress is 

more dominant for an imposed wall heat flux than for an imposed wall temperature. This 

is not unexpected since the surface temperature increases with the radial distance (not 
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reported) caused by the constant heat addition from the wall. In contrast, when a constant 

wall temperature is imposed, the surface temperature invariably levels off since it cannot 

surpass the temperature of the wall. In fact, it should eventually saturate to the wall 

temperature level far downstream. 

 

Figure 4-18: Influence of the wall heat flux on the film profile in the super- and sub-

critical regions for 0T̂ 300K= . Here 2/3Ca Re 100= , 1/2Fr Re 3− =  and 
1/3r Re 6−

 =

. 

Finally, we report in Figure 4-19 on the influence of the wall heat flux on the Nusselt 

number profiles. We recall ( )w wNu q / T 1= −  for a given constant wall heat flux. Thus, 

the drop in Nu reflects a jump in the wall temperature. The figure indicates that the wall 

heat flux causes a significant jump in the wall temperature. However, the drop in Nu or 

the jump in wT  is not affected significantly by the increasing heat flux. This behaviour 

should be contrasted with the drop in the wall heat flux when the wall temperature is 

imposed. 
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Figure 4-19: Influence of the wall heat flux on the Nusselt number  in the super- and 

sub-critical regions for 0T̂ 300K= . Here 2/3Ca Re 100= , 1/2Fr Re 3− =  and 

1/3r Re 6−
 = . 

4.5 Conclusion 

We examine theoretically the influence of heat transfer on the axisymmetric spreading 

and structure of the hydraulic jump of a liquid jet impinging on a circular heated disk 

(Figure 4-1). The disk is maintained at either an imposed heat flux or temperature. The 

liquid viscosity and surface tension are assumed to depend on the temperature. The 

viscosity is taken to follow the well-established VFT model, whereas the surface tension 

is assumed to decrease linearly with temperature. Both models are validated by fitting 

existing measurements for various liquids (Figures 4-2 and 4-3). A Kármán–Pohlhausen 

(K-P) integral approach is adopted to capture the flow and heat transfer in the super-

critical region upstream of the jump. We develop an iteration-free model to incorporate 
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the temperature-dependent viscosity and surface tension, therefore eliminate the potential 

divergence of iterative schemes. With this approach, we investigate the super-critical 

flow and thermal fields by solving the boundary-layer equations approximately. The 

Marangoni stress is also considered, which manifests itself downstream after the 

temperature varies along the film free surface. At the hydraulic jump, we extend the 

method of Watson (1964) and develop an energy balance across the jump as an additional 

condition to close the system so that the hydraulic and thermal jumps, as well as the 

downstream flow and thermal fields can be simultaneously determined. Our approach is 

validated against existing experimental and numerical results. 

We find that both the hydrodynamic and thermal boundary layers grow with distance, 

with the former reaching the free surface first as our study is confined to non-metallic 

liquids which possess a higher kinematic viscosity than the thermal diffusivity. We find 

that both the wall heat flux and the wall temperature tend to enhance convection, leading 

to a drop in the height of boundary layers as well as the film thickness (Figures 4-5 and 4-

10). When a constant wall flux is imposed, the thermal boundary layer always reaches the 

free surface, which to some extent contradicts an earlier study. This contradiction is the 

result of the constant Prandtl number and decoupling typically assumed in the literature. 

The two transition locations 0r  and 1r  where the hydrodynamic and thermal boundary 

layers reach the free surface, respectively, behave differently under the influence of 

inertia and thermal effects (Figure 4-12). While both 0r  and 1r  move downstream with 

increased Reynolds number, they travel in opposite directions under enhanced wall 

heating regardless of the heating form (wall temperature or heat flux). With a larger 

thermal input at the disk, the first transition location 0r  moves downstream whereas the 

second transition location 1r  shifts upstream. The velocity and temperature at the free 

surface remain constant and equal to those of the incoming jet until reaching the first and 

second transition locations, respectively. Downstream of the transition locations, the 

surface velocity drops whereas the surface temperature begins to rise (Figure 4-6). 
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Consequently, the Marangoni stress emerges downstream of 1r  where the thermal effects 

reach the free surface. Although it decreases with radial distance as the temperature at the 

free surface flattens, it becomes relatively more dominant downstream since the wall 

shear stress decreases at a higher rate (Figure 4-7). The Marangoni stress is negative in 

the jet cooling problem since the free-surface temperature increases with radial distance. 

Consequently, it represents an additional resistance to the flow. 

At the disk (wall), either the temperature ( )wT r  or the heat flux ( )wq r  can be 

prescribed (constant or r dependent), and the non-prescribed variable is calculated. 

Interestingly, when wq  is imposed and constant, ( )wT r  increases with the radial 

direction. On the other hand, ( )wq r  decreases with the radial distance if a constant wT  

is imposed. Both behaviours reflect the drop of the cooling efficiency of the jet as the 

liquid travels downstream. Although the stagnation zone is not accounted for in the 

present formulation, our predictions of the Nusselt number distribution are in good 

agreements with existing experimental and theoretical studies (Figures 4-8, 4-9 and 4-

13). 

To locate the hydraulic jump in the presence of the hydrodynamic-thermal coupling, an 

additional energy balance across the jump is derived, allowing the jump radius and the 

sub-critical thermal field to be simultaneously determined. The jump is found to move 

outwards with increasing higher wall temperature and heat flux (Figures 4-14, 4-16 and 

4-18). On the other hand, the jump height decreases with enhanced thermal input at the 

wall. Our prediction of the influence of heating on the location and height of the 

hydraulic jump corroborate well existing numerical studies (Figure 4-16). The hydraulic 

jump induces shock-type drops in the Nusselt number, confirming existing numerical 

studies (Figure 4-17). 

The Marangoni stress tends to push the jump upstream as it induces further resistance to 

the flow in addition to the wall shear stress (Figure 4-14 and 4-18). Consequently, its 

effect decreases with capillary number as the viscous effect strengthens (Figure 4-15). 
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Finally, we show that the Nusselt number is independent of the wall temperature for a 

fluid of constant properties under the K-P approximation (Section 4.4.2). 
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Chapter 5  

5 Conclusions and recommendations for future works 

In this chapter, the conclusions of the current thesis are given, followed by some 

recommendations for future work. 

5.1 Conclusions 

The flow field and heat transfer of an impinging jet flow with a circular hydraulic jump 

are studied theoretically using boundary-layer approaches. Improved approaches on the 

circular hydraulic jumps for both low- and high-viscosity liquids are designed. An 

iteration-free model capable of incorporating the temperature-dependent viscosity is 

proposed for impinging jet problem. The effects of inertia, rotation, gravity and heat 

transfer are comprehensively explored. 

The boundary-layer heights and film thickness are found to diminish with inertia. The 

wall shear stress is found to decrease with radial distance for on a stationary impingement 

surface but can increase for a rotary surface for large rotation speeds. It is found that 

rotation tends to enhance inertia, leading to a drop in the boundary layer height as well as 

the film thickness. Interestingly, when the surface is in rotation, a maximum liquid 

thickness appears in the flow domain, reflecting the competition between convective and 

centrifugal effects. The maximum thickness moves downstream with higher inertia but 

moves upstream with stronger rotation. With higher rotating rates, the hydraulic jump is 

found to move downstream and its height diminishes (Chapter 2). 

The location of the hydraulic jump is determined for both low- and high-viscosity liquids. 

For low-viscosity liquid, the location of the jump is determined subject to the thickness 

near the trailing edge under static condition, reflecting the dominance of surface tension 

effect. For high high-viscosity liquids, the gravitational effect is more important, and the 

jump coincides with a singularity in the thin-film equation. The jump height decreases 

with increasing gravity, simultaneously as the jump location is pushed upstream toward 

the impingement point. Downstream of the hydraulic jump, the recent finding of a 
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constant ‘jump Froude number’ is also justified. As the jump location can be well 

predicted without the inclusion of the surface tension for high-viscosity liquids, it 

invalidates part of the recent argument of in Bhagat et al. (2018) who claimed that 

surface tension is the only dominant effect in circular hydraulic jump and gravity plays 

little role (Chapter 2 & 3). 

In the heat transfer analysis, to consider the non-linear two-way coupling caused by the 

dependence of viscosity on temperature, an iteration-free model is designed and applied. 

This method inherently shortens the computing time and eliminate the potential danger of 

divergence due to numerical iteration. Both the hydrodynamic and thermal boundary 

layers are found to decrease with heat input at the solid surface. At the hydraulic jump, 

we develop an energy balance across the jump as an additional condition to close the 

system so that the hydraulic and thermal jumps, as well as the downstream flow and 

thermal fields can be simultaneously determined. A higher heat input is also found to 

push the hydraulic jump downstream. The Marangoni stress is found to push the 

hydraulic jump upstream due to the increase of free-surface temperature with radial 

distance. The wall temperature and heat flux discontinuities at the hydraulic jump are 

observed. Such discontinuities lead to shock-type drops in the Nusselt number, 

confirming previous findings in the literature (Chapter 4).  

Here we emphasize that in some scenarios numerical approaches to some extent do give 

us better predictions of the hydrodynamic and heat transfer character of the flow even 

though they can be time consuming. Therefore cautions should definitely be exercised 

when choosing the proper method. Our presented models are computationally efficient 

but may sacrifice some accuracies as some comparisons have indicated, which is usually 

the limitations of theoretical models.  

5.2 Recommendations for future works 

For a hydraulic jump on a rotating surface, we have presented a method to determine the 

downstream thickness based on the analogy with spin coating. In fact, the measurements 

for the subcritical flow is still rare. To understand the downstream flow and hydraulic 

jump on a rotating surface better, some serious experimental measurements of the flow 
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field after the hydraulic jump are needed. In addition, the method we develop for high-

viscosity liquid can be also applied to a rotating flow, which can be done in future works. 

Surface tension effects can be dominant on hydraulic jump especially for low-viscosity 

liquids as discussed in Chapter 2. Interestingly, the hydraulic jump can be observed on a 

vertical wall. This reason for this phenomenon is still missing theoretically. Though 

Bhagat et al. (2018) proposed a method to emphasize the effect of surface tension, no 

conclusive agreement has been reached yet. Duchesne et al. (2019) also pointed out that 

the method of Bhagat et al. (2018) is wrong. In this case, the effects of surface tension 

deserve more rigorous treatments, which perhaps begs combined theoretical, numerical 

and experimental efforts. 

We finally emphasize that the flow separation is not captured in the present thesis. Even 

though Bohr et al. (1997) and Watanabe et al. (2003) adopted a non-self-similar cubic 

profile for the velocity that allowed them to force the solution cross the jump, two 

experimental points are needed in their solution to fix the boundaries and some prior 

knowledge of the location of the jump was required. More importantly, the boundary 

layer equations do not hold exactly at the jump. In fact, the flow very close to the 

hydraulic jump is of strongly two-dimensional character which is also the reason the 

current thesis did not explicitly solve the flow near the jump as it is based on the 

boundary layer equations. Ideally, the flow in the jump region should be solved using the 

full Navier-Stokes equations. This is can be done in future works with the fully inclusion 

of the non-linear two-way coupling on heat transfer. 
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Appendices 

Appendix A: The thin-film equations and boundary conditions 

In this appendix, we derive equations (2.2.1a-d) from the full Navier-Stokes equations. 

These equations govern the motion of the thin film on the rotating disk. Consequently, we 

assume the film thickness to be small relative to its (horizontal) length. We therefore take 

the jet radius a as the length scale in the vertical direction and L as the length scale in the 

radial direction. Here L may correspond to the radius of the disk. In this case, we let 

r r=   be the radial coordinate in the current analysis. Thus, the jet radius is assumed to 

be small relative to L so that a / L 1    becomes the small perturbation parameter in 

the problem. The radial and azimuthal velocity components, u and v, are scaled by 

2Q / a , while the vertical velocity component, w, is scaled by ( )2Q / a  , where Q is 

the jet flow rate. The pressure is scaled by ga . The full Navier-Stokes equations for 

axisymmetric flow are given by Schlichtling & Gersten (2000) in the (r, z) plane, and are 

recast here in dimensionless form: 

r z
u

u w 0,
r

+ + =          (A1a) 

2
2 r

r z r rr zz2 2

uv Re u
Re uu wu p u u ,

r rFr r

   
 + − = − +  + − +       
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Re uv wv v v ,

r r r

  
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r z z rr zz2 2
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0 r rwRe Re
Re uw ww p w w .

1 r rrFr Fr

 
 + = − +  + +  −  

  

  (A1d) 

These equations are subject to adherence and no-penetration at the disk: 

( ) ( ) ( )u r,z 0 0, v r ,z 0 r r, w r,z 0 0.= = = = = = =  (A2a-c) 
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the kinematic condition: 

( ) ( ) ( )w r,z h u r ,z h h r ,= = =        (A3) 

and the vanishing of the traction components at the film surface ( )z h r= : 

2 2
r z r2

Re
h p 2 h u u w 0,

Fr
 − +  + +  =       (A4a) 

2
r z

v
h v v 0,

r

 
 + + = 
 

        (A4b) 

( )2
z r z2

Re
p h u w 2 w 0.

Fr
− +  +  +  =       (A4c) 

Various levels of approximation can be envisaged, depending on the values of ε, Re and 

Fr. In this study, we follow the commonly adopted boundary-layer or thin-film 

formulation and assume that ( )1Re O −=   and ( )1/2Fr O −=   so that gravity and inertia 

effects are of the same strength. In this case, equations (A1b-d) reduce to 

2

r z r zz
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Re uu wu Rep u ,
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 
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0 r r
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1 r r .


= −



         (A5c) 

As to the dynamic conditions, we note from (A4c) that the pressure term is of leading 

order, yielding ( )p r ,z h 0= = , which, when inserted in (A4a), leads to ( )zu r ,z h 0= = . 

Also, ( )zv r ,z h 0= =  from (A4b). Finally, equation (A1a) and conditions (A2-A3) 
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remain the same. Upon setting r r=  , we recover equations (2.2.1) and conditions 

(2.2.2) - (2.2.4). 
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