Gemeinsame Jahrestagung in Zürich
26. - 30. August 2019
Universität Zürich, Irchel Campus
Réunion annuelle commune à Zürich
26 - 30 août 2019

Programmübersicht
Aperçu du programme

In Zusammenarbeit mit - en collaboration avec
12:30 136 Thermoelectrically cooled THz quantum cascade laser operating up to 210 K

Lorenzo Bosco, Martin Frankó, Giacomo Scalari, Matthias Beck, Jérôme Faist
ETH Zürich, Institute for Quantum Electronics

THz radiation is subject to a wide range of research and technological efforts, but it is limited by a lack of compact and powerful THz sources. A promising candidate is the quantum cascade laser (QCL), although it currently requires cryogenics since they only operate below 200 K. We present the first THz QCL operating on a thermoelectric cooler, up to a record-high temperature of 210 K. The design achieves high-temperature operation thanks to a systematic optimization by means of a nonequilibrium Green's function model, which also reliably reproduces the experimental results. Thanks to the relatively high peak power measured at 206 K (~1 mW), the laser spectra were acquired with a commercial room-temperature detector, making the whole setup cryogenic free.

12:45 137 Ring interband Cascade Lasers Running in Continuous Mode Operation

Hedwig Knüpfig 1, Borislav Hinkov 1, Robert Weih 2, Sven Hölling 2, Werner Schrenk 2
1 Institute of Solid State Electronics, TU Wien, 2 nanoplasics Nanosystems and Technologies GmbH

We present the first interband cascade lasers fabricated into ring-shaped cavities emitting in continuous wave operation. A second order distributed feedback grating is used for single mode emission and light outputting in vertical direction through the GaSb substrate. In addition, the implementation of an epitaxial-side down mounting scheme facilitates improved heat transport from the active region. The devices with a waveguide width of ~5 µm and an outer diameter of 800 µm show light emission at a wavelength of ~4.38 µm. These newly developed devices are employed in a project for trace gas analysis via the principle of photothermal interferometry.

13:00 138 Optoelectronic devices based on non-polar ZnO/ZnMgO quantum wells

Borislav Hinkov 1, Arnaud Jollivet 2, Hani T. Hoang 1, Stefano Pirota 1, Maria Tchernycheva 3
1 EPFL, 2 CNRS, 3 University of Innsbruck

The performance of state-of-the-art GaAs-based THz-QCLs is limited by parasitic LO phonon transitions, preventing above-200 K operation. This can be overcome by using material systems with higher LO-phonon energies like ZnO, for which above-room-temperature operation in THz-QCLs is predicted. Using novel optoelectronic materials like wurtzite Zn(Mg)O with no internal fields in the m-plane [10-10] orientation, simplifies the design of any QC structure. After the recent demonstration of intersubband absorption in such m-plane ZnMgO structures, we present the first mid-IR Zn(Mg)O-based QCL with peak responsivity of 0.15 mA/W (77 K) at 3 µm wavelength. The responsivity persists up to 300 K.

In addition, we show first photoluminescence measurements from m-plane Zn(Mg)O THz-QCL structures, emitting at ~4.8 THz at liquid-nitrogen temperatures.

13:15 139 n-type Ge/SiGe Quantum Cascade Devices for THz Electroeluminescence

David Stark 1, Luca Porscetti 2, Michele Montanari 1, Chiara Ciancio 2, Luciana di Gaspare 2
1 ETH Zürich, 2 Universidad di Roma Tre, 3 INFM-Centro di Innovative Nanoelettronica, 4 Università di Roma “La Sapienza”, 5 University of Pisa, 6 nexman GmbH

Exploiting intersubband transitions in Ge/SiGe quantum cascade devices provides a way to integrate terahertz light emitters into silicon-based technology. To date all electroeluminescence demonstrations of Si-based heterostructures have been p-type using hole-hole transitions. In the