
Generating Structured AutomationML Models
from IEC 62264 Information

Bernhard Wally
Business Informatics – SW Engineering

JKU Linz
Linz, Austria

bernhard.wally@jku.at

Laurens Lang
Information Systems Engineering

TU Wien
Vienna, Austria

e11719751@student.tuwien.ac.at

Rafał Włodarski
Information Systems Engineering

TU Wien
Vienna, Austria

e1327160@student.tuwien.ac.at

Radek Šindelář
Business Informatics – SW Engineering

JKU Linz
Linz, Austria

radek.sindelar@jku.at

Christian Huemer
Information Systems Engineering

TU Wien
Vienna, Austria

huemer@big.tuwien.ac.at

Alexandra Mazak
Business Informatics – SW Engineering

JKU Linz
Linz, Austria

alexandra.mazak@jku.at

Manuel Wimmer
Business Informatics – SW Engineering

JKU Linz
Linz, Austria

manuel.wimmer@jku.at

Abstract—AutomationML provides a versatile modeling en-
vironment for the description of production systems. However,
when starting a new AutomationML project, or when serializing
existing data with the AutomationML format, there are no rules
on how to structure these models in a meaningful way. In this
work, we present an approach for structuring AutomationML
models, based on the IEC 62264 standard. In our approach
we are implementing the process of serializing IEC 62264
information declaratively, by leveraging the power of model
transformations, as they are applied in the context of model-
driven (software) engineering.

Index Terms—Domain Specific Language, Model Transforma-
tion, AutomationML, IEC 62264

I. INTRODUCTION

AutomationML provides a versatile environment for the
modeling of role-based technical systems [1]. Its application
for the description of equipment hierarchies (representing,
e.g., production systems) is well described and supported
by a number of role class libraries [2]. However, model-
ing more complex systems, including information about
processes and materials such as described in [3], requires
clear modeling concepts in order to keep AutomationML
documents maintainable.

Recently, AutomationML e.V. has released an applica-
tion recommendation for the creation of AutomationML
documents that encode information in accordance with
IEC 62264 [4]. IEC 62264 is an established standard for

The financial support by the Austrian Federal Ministry for Digital and
Economic Affairs and the National Foundation for Research, Technology
and Development is gratefully acknowledged.

the description of manufacturing operations and their re-
sources [5, 6]. It has been adopted from the American
standard ISA-95 [7] and is considered a suitable standard for
the encoding of manufacturing execution information [8].
This application recommendation is a result of discussions
within the AutomationML working group that investigated
application scenarios on “higher levels” of the automation
hierarchy [9].

In this work, we present a format for the structuring of
AutomationML information based on modeling concepts of
IEC 62264. Our approach uses a graphical domain specific
language for the expression of production system and man-
ufacturing operations information, as well as formalized
model transformation rules for encoding this information
using language constructs of AutomationML. Technology-
wise, we are using the modeling framework of the Eclipse
platform as our technology stack [10], with EMF/Ecore1 as
our metamodeling infrastructure.

II. IEC 62264

IEC 62264 provides a set of metamodels for the definition
of several parts of a production system. The four basic kinds
of resources personnel, equipment, physical assets, material
are complemented with process segments and several kinds
of operations information that support the definition of
a variety of manufacturing approaches, including bills of
material and bills of processes [5].

1cf. https://www.eclipse.org/modeling/emf/

https://www.se.jku.at/bernhard-wally/
https://www.se.jku.at/
https://www.jku.at/
https://www.tuwien.at/
https://www.tuwien.at/
https://www.se.jku.at/
https://www.jku.at/
https://www.tuwien.at/
https://www.se.jku.at/
https://www.jku.at/
https://www.se.jku.at/
https://www.jku.at/
https://www.eclipse.org/modeling/emf/

Personnel: “Information about specific personnel, classes
of personnel, and qualifications of personnel” [5].

Equipment: “Information about specific equipment, the
classes of equipment, and equipment capability
tests” [5].

Physical Assets: “Information about the physical piece
of equipment, usually managed as a physical asset
within the enterprise often utilizing a specific serial
number” [5].

Material: “Defines the actual materials, material defini-
tions, and information about classes of material defi-
nitions” [5].

Process Segments: “A hierarchical model, in which mul-
tiple levels of abstraction of manufacturing processes
may be defined because there can be multiple business
processes requiring visibility to manufacturing activi-
ties” [5].

III. IEC 62264 DESIGNER

Domain-specific languages (DSLs) are a tool for express-
ing expert knowledge using expert terminology. Methods
and techniques for the definition and application of such
DSLs have been investigated and developed in the con-
text of model-driven software engineering [11]. Given its
wide use in software engineering, the Meta Object Facility
(MOF) has proven a viable way for constructing and using
DSLs [12]. The usual approach for constructing a DSL
is (i) defining a metamodel of the domain (the abstract
syntax), and (ii) defining the concrete syntax to be used for
describing elements of this domain. Two types of concrete
syntax are common: (i) textual, and (ii) graphical. Promi-
nent examples for graphical syntaxes are Unified Mod-
eling Language (UML) class diagrams, entity-relationship
diagrams or diagrams created according to the business
process model and notation (BPMN).

Given a metamodel describing the IEC 62264 domain,
formulated using Ecore, it is relatively simple to create
interactive graphical toolkits on top. Several development
frameworks are available, in this work we have chosen
to use Sirius2 as the visualization engine. In Sirius, the
visual syntax it declaratively defined, as depicted in Fig. 1.
Fig. 2 shows the resulting visualization of an IEC 62264
equipment hierarchy, Fig. 3 shows the result of such a
visualization declaration by the example of an IEC 62264
process segment.

With this tool at hand, it is relatively simple and intuitive
to create a fairly complex IEC 62264 model of a production
system. In its current state, the IEC 62264 Designer sup-
ports the creation and visualization of the basic resources
(personnel, equipment, physical assets, material; all except
for test specifications and test results), as well as process
segments and operations definitions.

2cf. https://www.eclipse.org/sirius/

Fig. 1. Defining visualizations and interaction points using the Eclipse
Sirius framework.

Fig. 2. Excerpt of an equipment hierarchy, as defined in an IEC 62264
model.

IV. IEC 62264
 AUTOMATIONML

In this section we will elaborate on the conversion be-
tween IEC 62264 models and AutomationML models.

Model transformations are at the core of model-driven
engineering [13], as they provide the means and methods
for converting data within a domain or even across do-
mains. Different approaches have been developed for the
realization of such model transformations [14], some of
them sporting a unidirectional nature, others providing bi-
directional semantics [15].

https://www.eclipse.org/sirius/

Fig. 3. IEC 62264 process segment “Assemble”, as defined with the help
of the Sirius framework.

For our implementation we are using the ATL transforma-
tion language3, which belongs to the group of unidirectional
transformation languages. ATL is a rule-based language,
where elements of different domains can be converted into
one another by specifying a set of rules. Concrete examples
for such rules are provided below.

In order to have a framework for bidirectional conversion,
two separate transformation modules need to be developed.
It might sound counter-intuitive to use two unidirectional
transformation modules instead of one bidirectional trans-
formation, however, the advantage of this approach is
that the two transformations can be implemented with
varying strictness. As we have mentioned earlier, we are
imposing a certain structure on the AutomationML model
that is generated from IEC 62264 information. Yet, this
kind of structure is not mandatory, and in order to extract
IEC 62264 information from an AutomationML document
this structural provisions need to be neglected.

Further, we have abstracted the AutomationML language
in two layers: first, we have reverse-engineered the XML
schema of CAEX (Computer Aided Engineering Exchange),
which provides the syntactic basis for AutomationML, into
a metamodel. CAEX itself is standardized as IEC 62424 [16].
The result is a metamodel that we call CAEX XML-based.
Second, we have constructed a metamodel of CAEX that
represents a strictly object-oriented view on CAEX elements.
Since the metamodel elements are related via associations,
the metamodel represents a graph. Therefore, we call this
metamodel CAEX graph-based.

For instance, the graph-based metamodel describes ex-
plicitly (within the formalisms of the modeling language)
that the target of a role requirement must be a role class,
as specified in a role class library. This is fundamentally
different from the XML-based CAEX metamodel, where the
reference to a role class is expressed as a string; and in the
accompanying documentation it is stated that this string
shall represent a path to a role class following a certain
syntax. For a model-driven framework, the graph-based
metamodel is of higher value as it enables many “out-of-

3cf. https://www.eclipse.org/atl/

the-box” features of generic modeling tools, that are not
available for the XML-based metamodel due to the lack of
formal definitions in several places.

As such, when we work with AutomationML data in
model-driven engineering, we usually use the graph-based
CAEX model, and only transform to the the XML-based
CAEX model, when required. Consequently, the work-
flow for transforming between IEC 62264 information and
the AutomationML exchange format (which corresponds
to XML-based CAEX) requires an additional step, which
is the transformation between the XML-based and the
graph-based CAEX metamodels. The workflow, expressed
in BPMN, is depicted in Fig. 4.

Fig. 4. Workflow of our approach, depicted using BPMN.

An example of an ATL rule for transforming graph-
based internal elements into XML-based internal elements
is given in Lst.1. Of course, this transformation rule is
rather simple, as it mostly copies data between the two
elements. The only mapping that is a little bit more complex
that of the refBaseSystemUnitPath: in the graph-
based model it is represented by a formal relation, called
baseSystemUnit, in the XML-based model it is a string
representing a path to the referenced element. This con-
version is conducted in a helper method named getPath
(cf. lines 12–13).

A. Transformation Rules

We have started with a formal implementation of the
mapping rules for modeling IEC 62264 information in the
context of AutomationML, as it is defined in [4]. Besides the
application of mandatory modeling rules, we have chosen
to structure the AutomationML instance hierarchy in a
semantically meaningful way that allows to quickly access
required information.

https://www.eclipse.org/atl/

The “entry” ATL rule of the transformation from
IEC 62264 to AutomationML is given in Lst. 2: an IEC 62264
model is converted into an AutomationML document.

Listing 1. ATL rule for converting InternalElements from the
graph-based metamodel (named CAEX) into InternalElementTypes
of the XML-based metamodel (named AML).

1 rule InternalElement extends SystemUnitClass {
2 from
3 caex: CAEX!InternalElement
4 to
5 aml: AML!InternalElementType (
6 attribute <- caex.attributes,
7 externalInterface <-
8 caex.externalInterfaces,
9 internalElement <-
10 caex.internalElements,
11 internalLink <- caex.internalLinks,
12 refBaseSystemUnitPath <- thisModule.
13 getPath(caex.baseSystemUnit),
14 roleRequirements <-
15 caex.roleRequirements,
16 supportedRoleClass <-
17 caex.supportedRoleClasses
18)
19 }

Listing 2. ATL rule for converting an IEC 62264 Model into an element
of type CaexFile.

1 rule Model2File {
2 from
3 model: IEC62264!Model
4 to
5 file: CAEX!CaexFile (
6 superiorStandardVersions <-
7 Sequence{’AutomationML 2.10’}
8 fileName <- model.name,
9 version <- version,
10 sourceDocumentInformations <- sdi,
11 instanceHierarchies <- hierarchy,
12 roleClassLibs <- roleClassLib,
13 systemUnitClassLibs <-
14 systemUnitClassLib,
15),
16 version: CAEX!Version (
17 version <- model.version
18),
19 sdi: CAEX!SourceDocumentInformation (
20 lastWritingDateTime <-
21 sdi.currentDateTime()
22),
23 -- ...
24 }

The current state of implementation supports the trans-
formation of basic resources (personnel, equipment, phys-
ical assets, material), process segments, and resource rela-
tionship networks. Transformations are supported in both
directions. Currently unsupported are the different kinds of
test specifications and test results. They are to be added in
future work.

B. Document Structure

The structure that we are imposing on the AutomationML
document follows the categorization of the IEC 62264 stan-

dard. With respect to the instance hierarchy, we are first
creating a “root” internal element that acts as a common
parent for all other internal elements. Then, we are creat-
ing separate “directories” for equipment, material, process
segments. A similar approach is applied to system unit
class libraries and role class libraries (except for the “root”
element). Fig. 5 depicts the structure we have chosen for
the modeling of production systems, when following the
vocabulary and definitions of IEC 62264.

We believe that this structure is as useful for IEC 62264
derived AutomationML models as it is for separately con-
ceived models of production systems or manufacturing
processes.

V. CONCLUSIONS

We have briefly described our approach for modeling
IEC 62264 information in the context of AutomationML:
we are deriving AutomationML documents from genuine
IEC 62264 data using formal transformation rules. The
resulting AutomationML document provides an internal
structure that fosters clear modeling by providing separate
sub-trees for different concerns, such as equipment, mate-
rial, or processes.

Further, we are arguing that a dedicated view on Automa-
tionML information that abstracts from syntactic compro-
mises defined in the underlying CAEX XML-file format helps
(i) keeping AutomationML data consistent and (ii) applying
model-driven tools on AutomationML models.

REFERENCES

[1] International Electrotechnical Commission. Engineer-
ing data exchange format for use in industrial au-
tomation systems engineering – Automation Markup
Language – Part 1: Architecture and general re-
quirements. International Standard. IEC 62714-1:2018.
2018.

[2] International Electrotechnical Commission. Engineer-
ing data exchange format for use in industrial au-
tomation systems engineering – Automation markup
language – Part 2: Role class libraries. International
Standard. IEC 62714-2:2015. 2015.

[3] Miriam Schleipen and Rainer Drath. “Three-view-
concept for modeling process or manufacturing
plants with AutomationML”. In: Proceedings of the
14th IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA). 2009. ISBN:
978-1-4244-2728-4. DOI: 10.1109/etfa.2009.5347260.

[4] Bernhard Wally. Provisioning for MES and ERP. Sup-
port for IEC 62264 and B2MML. Application Recom-
mendation. TU Wien and AutomationML e.V., 2018.

[5] International Electrotechnical Commission. Enter-
prise–control system integration – Part 2: Objects and
attributes for enterprise–control system integration.
International Standard. IEC 62264-2:2013. 2013.

https://doi.org/10.1109/etfa.2009.5347260

Fig. 5. AutomationML document structure, when applying IEC 62264 vocabulary and relations.

[6] International Electrotechnical Commission. Enter-
prise–control system integration – Part 4: Object model
attributes for manufacturing operations management
integration. International Standard. IEC 62264-4:2015.
2015.

[7] American National Standards Institute. Enterprise–
Control System Integration Part 1: Models and Ter-
minology. ANSI Standard. 2000.

[8] Yan Lu, Katherine C. Morris, and Simon P. Frechette.
Current Standards Landscape for Smart Manufactur-
ing Systems. NIST Interagency/Internal Report NISTIR
8107. 2016. DOI: 10.6028/NIST.IR.8107.

[9] Bernhard Wally, Miriam Schleipen, Nicole Schmidt,
Nikolai D’Agostino, Robert Henßen, and Ying-
bing Hua. “AutomationML auf höheren Automa-
tisierungsebenen. Eine Auswahl relevanter Anwen-
dungsfälle”. In: Proceedings of AUTOMATION 2017.
Technology networks Processes. 18. Leitkongress der
Mess- und Automatisierungstechnik. VDI-Berichte
2293. VDI-Verlag, 2017. ISBN: 978-3-18-092293-5.

[10] Richard C. Gronback. Eclipse Modeling Project: A
Domain-specific Language Toolkit. 1st ed. Addison-
Wesley, 2009. ISBN: 0321534077.

[11] Marco Brambilla, Jordi Cabot, and Manuel Wimmer.
Model-Driven Software Engineering in Practice.
2nd ed. Synthesis Lectures on Software

Engineering. Morgan & Claypool Publishers,
2017. ISBN: 978-1627057080. DOI: 10 . 2200 /
S00751ED2V01Y201701SWE004.

[12] Object Management Group. OMG Meta Object Facility
(MOF) Core Specification. 2016.

[13] Shane Sendall and Wojtek Kozaczynski. “Model Trans-
formation: The Heart and Soul of Model-Driven Soft-
ware Development”. In: IEEE Software 20.5 (2003),
pp. 42–45. ISSN: 0740-7459. DOI: 10.1109/MS.2003.
1231150.

[14] Tom Mens and Pieter Van Gorp. “A Taxonomy of
Model Transformation”. In: Electronic Notes in The-
oretical Computer Science 152 (2006). Proceedings
of the International Workshop on Graph and Model
Transformation (GraMoT), pp. 125–142. ISSN: 1571-
0661. DOI: 10.1016/j.entcs.2005.10.021.

[15] Zhenjiang Hu, Andy Schurr, Perdita Stevens, and
James F. Terwilliger. “Dagstuhl Seminar on Bidirec-
tional Transformations (BX)”. In: SIGMOD Rec. 40.1
(2011), pp. 35–39. DOI: 10.1145/2007206.2007217.

[16] International Electrotechnical Commission. Represen-
tation of process control engineering – Requests in
P&I diagrams and data exchange between P&ID
tools and PCE-CAE tools. International Standard. IEC
62424:2016. 2016.

https://doi.org/10.6028/NIST.IR.8107
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.2200/S00751ED2V01Y201701SWE004
https://doi.org/10.1109/MS.2003.1231150
https://doi.org/10.1109/MS.2003.1231150
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1145/2007206.2007217

	Introduction
	IEC 62264
	IEC 62264 Designer
	IEC 62264 AutomationML
	Transformation Rules
	Document Structure

	Conclusions

