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Metric sub-regularity in optimal control of affine problems with free

end state∗

N.P. Osmolovskii† V.M. Veliov‡

Abstract

The paper investigates the property of Strong Metric sub-Regularity (SMsR) of the mapping
representing the first order optimality system for a Lagrange-type optimal control problem which
is affine with respect to the control. The terminal time is fixed, the terminal state is free, and the
control values are restricted in a convex compact set U . The SMsR property is associated with a
reference solution of the optimality system and ensures that small additive perturbations in the
system result in solutions which are at distance to the reference one, at most proportional to the
size of the perturbations. A general sufficient condition for SMsR is obtained for appropriate
space settings and then specialized in the case of a polyhedral set U and purely bang-bang
reference control. Sufficient second-order optimality conditions are obtained as a by-product of
the analysis. Finally, the obtained results are utilized for error analysis of the Euler discretization
scheme applied to affine problems.

Key words: optimal control, affine control problems, bang-bang control, metric regularity, Pon-
tryagin’s maximum principle, second-order optimality conditions, Euler discretization
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1 Introduction

The paper investigates the following Lagrange-type optimal control problem:

(1) min
{
J(u) :=

∫ T

0
g(t, x(t), u(t)) dt

}
subject to

(2) ẋ(t) = f(t, x(t), u(t)), x(0) = x0,

(3) u(t) ∈ U, t ∈ [0, T ],

where the state x is a vector in Rn, the control u has values u(t) that belong to a given set U in
Rm for almost every (a.e.) t ∈ [0, T ]. The initial state x0 and the final time T > 0 are fixed. The
set of feasible control functions u, denoted in the sequel by U , consists of all Lebesgue measurable
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and bounded functions u : [0, T ] → U . Accordingly, the state trajectories x, that are solutions of
(2) for feasible controls, are Lipschitz continuous functions of time t ∈ [0, T ].

An important specific feature of the investigated problem is that it is assumed to be affine with
respect to the control, that is, f and g have the following form:

(4) f(t, x, u) = a(t, x) +B(t, x)u, g(t, x, u) = w(t, x) + 〈s(t, x), u〉,

with an (n×m)-dimensional matrix function B, a scalar function w and an m-dimensional vector
function s.

It is well known that the Pontryagin (local) maximum principle can be written in the form of
a generalized equation

(5) 0 ∈ F(y),

where y = (x(·), u(·), p(·)) encapsulates the state function x(·), the control function u(·) ∈ U , and
the adjoint (co-state) function p(·), and the inclusion 0 ∈ F(y) represents the state equation, the
co-state equation, the transversality condition, and the maximization condition in the maximum
principle (the last being the inclusion of the derivative of the associated Hamiltonian with respect
to the control in the normal cone to U at u(·)). The detailed formulations will be given in the next
two sections.

The main aim of the paper is to obtain sufficient conditions for Strong Metric sub-Regularity
(SMsR) of the mapping F . We remind this notion, following [6, p. 202]. Let (Y, dY) and (Z, dZ)
be two metric spaces. In any metric space, we denote by by IB(q;α) the ball with radius α centered
at the point q.

Definition 1.1 A set-valued mapping F : Y ⇒ Z is Strongly Metrically sub-Regular (SMsR) at ŷ
for ẑ if ẑ ∈ F(ŷ) and there exist numbers α > 0, β > 0 and c such that for any z ∈ IB(ẑ;α) and
for any solution y ∈ IB(ŷ;β) of the inclusion z ∈ F(y) it holds that dY(y, ŷ) ≤ cdZ(z, ẑ).

In the terms of the inverse mapping F−1(z) := {y ∈ Y : z ∈ F(y)}, the SMsR property reads
as

F−1(z) ∩ IB(ŷ;β) ⊂ IB(ŷ; cdZ(z, ẑ)) for all z ∈ IB(ẑ;α).

Notice that the mapping z ⇒ F−1(z) ∩ IB(ŷ;β) can be empty- or multi-valued, but its value at ẑ
is the singleton {ŷ}.

For the particular case of mapping F resulting from the optimality system for an optimal control
problem as (1)–(3) there are various options for the choice of the spaces Y and Z. For problems
satisfying the so-called coercivity condition, introduced (to the best of our knowledge) in [10], a
stronger property than SMsR has been proved in [5], where the L∞-metric in U is used for the
controls, and the metrics (norms) in the other components of Y and Z are defined correspondingly.
However, this coercivity condition never holds for affine problems.

In order to cope with the regularity issue for affine problems, one has to use the L1-metric in
U , and define appropriately the metric in the image space Z of the optimality mapping F . This is
done in Section 3, and a sufficient condition for SMsR is obtained in terms of positive definiteness
of a linear-quadratic functional defined on the set of feasible variations of the control component,
û, of a reference solution ŷ of inclusion (5). As shown in Section 2, this linear-quadratic functional
represents the second-order variation of the objective functional, J(u) in (1), which (despite of the
non-differentiability in L1) turns out to provide a second-order approximation of the cost J(u) at
a point u ∈ U in an L1-neighborhood of û. As a by-product, also in Section 2, we formulate simple
second-order sufficient conditions for local minimum in the space L1.
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The obtained sufficient condition for SMsR is somewhat stronger than the second-order sufficient
optimality condition in Section 2. In the same time, it is similar to (but weaker than) a condition
introduced in [1] in the context of error estimates for the Euler discretization scheme. The condition
is investigated in more details in Section 4, in the case of a polyhedral set U and purely bang-bang
optimal control û, where previous results from [2] and [13] are extended to the case of non-linear
affine problems and general polyhedral sets U .

The SMsR of the optimality system is a key property for obtaining error estimates for discrete
approximations to problem (1)–(3). In Section 5 we prove an error estimate of first order (with
respect to the mesh size) for the Euler discretization. As explained in more details in Section 5, the
result extends the ones in a sequence of previous publications (see [1] and the references therein).

2 Preliminary analysis

For the problem (1)–(3) with the affine specification (4) we make the following assumptions.

Assumption (A1). The set U is convex and compact, the functions f : R × Rn × Rm → Rn and
g : R × Rn × Rm → R (having the form as in (4)) are two times differentiable in x, the second
derivatives are continuous in x locally uniformly in t;1 for every x ∈ Rn and u ∈ U the functions
f , g and their first and second derivatives in x are measurable and bounded in t.

Here and in the squeal, we use the following standard notations. The euclidean norm and the scalar
product in Rn (the elements of which are regarded as column-vectors) are denoted by | · | and 〈·, ·〉,
respectively. The transpose of a matrix (or vector) E is denoted by E>. For a function ψ : Rp → Rr
of the variable z we denote by ψz(z) its derivative (Jacobian), represented by an (r × p)-matrix.
If r = 1, ∇zψ(z) = ψz(z)

> denotes its gradient (a vector-column of dimension p). Also for r = 1,
ψzz(z) denotes the second derivative (Hessian), represented by a (p × p)-matrix. For a function
ψ : Rp+q → R of the variables (z, v), ψzv(z, v) denotes its mixed second derivative, represented by
a (p× q)-matrix. The space Lk = Lk([0, T ],Rr), with k = 1, 2 or k =∞, consists of all (classes of
equivalent) Lebesgue measurable r-dimensional vector-functions defined on the interval [0, T ], for
which the standard norm ‖ · ‖k is finite. Often the specification ([0, T ],Rr) will be omitted in the
notations. As usual, W 1,1 = W 1,1([0, T ],Rr) denotes the space of absolutely continuous functions
x : [0, T ] → Rr for which the first derivative belongs to L1. For convenience, the norm in W 1,1 is
defined as ‖x‖1,1 := |x(0)|+ ‖ẋ‖1, so that ‖x‖∞ ≤ ‖x‖1,1.

Define the Hamiltonian associated with problem (1)–(3) as usual:

H(t, x, u, p) := g(t, x, u) + 〈p, f(t, x, u)〉, p ∈ Rn.

Although the feasible controls u ∈ U are bounded, we consider the control-trajectory pairs (x, u)
as elements of the space W 1,1([0, T ],Rn)× L1([0, T ],Rm).

The local form of the Pontryagin maximum (here minimum) principle for problem (1)-(3) can
be represented by the following optimality system for (x, u) and an absolutely continuous (here

1 Applied to f , for example, this means that for every bounded set S ⊂ Rn there exists a monotone increasing func-
tion (called modulus of continuity) ω : (0,+∞)→ [0,+∞) with lims→0 ω(s) = 0, such that |f(t, x′, u)− f(t, x, u)| ≤
ω(|x′ − x|) for every t ∈ [0, T ], u ∈ U and x, x′ ∈ S.
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Lipschitz) function p : [0, T ]→ Rn: for a.e. t ∈ [0, T ]

0 = −ẋ(t) + f(t, x(t), u(t)), x(0)− x0 = 0,(6)

0 = ṗ(t) +∇xH(t, x(t), u(t), p(t)),(7)

0 = p(T ),(8)

0 ∈ ∇uH(t, x(t), u(t), p(t)) +NU (u(t)),(9)

where the normal cone NU (u) to the set U at u ∈ Rm is defined as

NU (u) =

{
{y ∈ Rn | 〈y, v − u〉 ≤ 0 for all v ∈ U} if u ∈ U,
∅ otherwise.

Let a reference solution ŷ = (x̂, û, p̂) ∈ W 1,1 × U ×W 1,1 of the optimality system (6)–(9) be
fixed. To shorten the notations we skip arguments with “hat” in functions, shifting the “hat” on
the top of the notation of the function, so that f̂(t) := f(t, x̂(t), û(t)), ŝ(t) = s(t, x̂(t)), Ĥ(t) :=
H(t, x̂(t), û(t), p̂(t)), Ĥ(t, u) := H(t, x̂(t), u, p̂(t)), etc. Moreover, denote

Â(t) := fx(t, x̂(t), û(t)), B̂(t) := fu(t, x̂(t), û(t)) = B(t, x̂(t)), σ̂(t) := ∇uĤ(t) = B̂(t)>p̂(t)+ŝ(t).

Remark 2.1 Due to Assumption (A1), and since the solution x̂ of (2) with u = û exists on [0, T ],
there exist a number r > 0 and a convex compact set S̄ ⊂ Rn such that for every u ∈ U with
‖u− û‖1 ≤ r the solution x of (2) exists on [0, T ] and IB(x(t); 1) ⊂ S̄ for all t ∈ [0, T ]. By taking S̄
sufficiently large we may also ensure that IB(p̂(t); 1) ⊂ S̄ for all t ∈ [0, T ]. Using Assumption (A1),
we denote by L a Lipschitz constant with respect to x ∈ S̄ (uniformly with respect to t ∈ [0, T ],
u ∈ U , p ∈ S̄) of the functions f , g and H, their first derivatives in x, and Hux, Hup. Further,
we denote by M a bound of the functions f , fu, fx, fux, Hx, Hxx, Hxu, Hxxu and Hxxp for
(t, x, u, p) ∈ [0, T ]× S̄×U× S̄. Finally, we denote by ω̄ the modulus of continuity of Hxx, uniformly
with respect to (t, u, p) ∈ [0, T ]× U × S̄ (see Footnote 1).

According to this remark, for any u ∈ U with ‖u− û‖1 ≤ r the value of the objective functional

J(u) :=

∫ T

0
g(t, x(t), u(t)) dt

is well defined. In the next proposition we obtain a sort of second order expansion of J in an L1-
neighborhood of û in the set U (although the functional J is, in general, not Fréchet directionally
differentiable at û).

For any measurable function δu(t) ∈ U − û(t) a.e. in [0, T ], we introduce the linearized version
of equation (2):

(10) ˙δx(t) = Â(t)δx(t) + B̂(t)δu(t), δx(0) = 0, t ∈ [0, T ].

Adapting the usual definition to the affine case (see e.g. [11]) we introduce the following
quadratic functional of (δx, δu) ∈W 1,1 × L1:

(11) Ω(δx, δu) :=

∫ T

0

[
1

2
〈Ĥxx(t)δx(t), δx(t)〉+ 〈Ĥux(t)δx(t), δu(t)〉

]
dt.
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Proposition 2.1 Let Assumption (A1) be fulfilled. Then there exist constants c̄ and cf such that
for every u ∈ U for which δu = u− û satisfies ‖δu‖1 ≤ r (see Remark 2.1 for r) the solution x of
(2) exists on [0, T ] and the following representation holds:

(12) J(u) = J(û) +

∫ T

0
〈σ̂(t), δu(t)〉 dt+ Ω(δx, δu) + γ̂(δu),

where δx is the solution of (10) and the number γ̂(δu) satisfies

(13) |γ̂(δu)| ≤ c̄ [ ω̄(cf‖δu‖1) + ‖δu‖1] ‖δu‖21.

The numbers c̄ and cf depend on the reference solution ŷ = (x̂, û, p̂) of the optimality system (6)-(9)
and on the data of the problem (1)–(3), f , g, x0, T , U , only through the constants L and M , the
time horizon, T , and the modulus ω̄ (see Remark 2.1). Moreover, the fact that ŷ satisfies inclusion
(9) is not needed for the representation (12) with (13).

Proof. Let a triple (x̂, û, p̂) ∈ W 1,1 × U ×W 1,1 satisfy (6)-(8). Take an arbitrary function u ∈ U
such that δu(t) = u(t)− û(t) satisfies ‖δu‖1 ≤ r and let x be the solution of (2) on [0, T ]. According
to Remark 2.1 this solution exists and x(t) ∈ S̄ for every t ∈ [0, T ].

Due to the relations

f(t, x(t), u(t))− f̂(t) = f(t, x(t), u(t))− f(t, x̂(t), u(t)) + 〈B̂(t), u(t)− û(t)〉,

|f(t, x(t), u(t))− f(t, x̂(t), u(t))| ≤ L|x(t)− x̂(t)|,
∣∣∣〈B̂(t), u(t)− û(t)〉

∣∣∣ ≤M |u(t)− û(t)|,

the Grönwall inequality implies the estimation

(14) ‖x− x̂‖C ≤ cf‖u− û‖1 with cf = MeLT .

Setting ∆x = x− x̂, using the definition of H, equations (6)-(8) and integrating by parts, we obtain
the identity

J(u)− J(û) =

∫ T

0
[g(t, x(t), u(t))− ĝ(t)] dt

=

∫ T

0
[H(t, x(t), u(t), p̂(t))− Ĥ(t)] dt−

∫ T

0
〈p̂(t), f(t, x(t), u(t))− f̂(t)〉 dt

=

∫ T

0
[H(t, x(t), u(t), p̂(t))− Ĥ(t)] dt−

∫ T

0
〈p̂(t), ẋ(t)− ˙̂x(t)] dt

=

∫ T

0
[H(t, x(t), u(t), p̂(t))− Ĥ(t)] dt+

∫ T

0
〈 ˙̂p(t),∆x(t)〉 dt

=

∫ T

0
[H(t, x(t), u(t), p̂(t))− Ĥ(t)] dt−

∫ T

0
〈∇xĤ(t),∆x(t)〉 dt.(15)

Using the Taylor formula and the equality Huu = 0, we obtain that

H(t, x(t), u(t), p̂(t))− Ĥ(t) = 〈∇xĤ(t),∆x(t)〉+ 〈∇uĤ(t), δu(t)〉(16)

+
1

2
〈Ĥxx(t)∆x(t),∆x(t)〉+ 〈Ĥux(t)∆x(t), δu(t)〉+

1

2
〈W̃ (t)∆x(t),∆x(t)〉+ 〈S̃(t)∆x(t), δu(t)〉,
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where

|W̃ (t)| ≤ sup
x̃,ũ
|Hxx(t, x̃, ũ, p̂(t))− Ĥxx(t)|, |S̃(t)| ≤ sup

x̃,ũ
|Hux(t, x̃, ũ, p̂(t))− Ĥux(t)|

and the supremum is over x̃ ∈ [x(t), x̂(t)] and ũ ∈ [u(t), û(t)]. Having in mind that Hux is indepen-
dent of u, Remark 2.1 and (14), and also using the equality

Hxx(t, x̃, ũ, p̂(t))− Ĥxx = Hxx(t, x̃, ũ, p̂(t))−Hxx(t, x̂, ũ, p̂(t)) +Hxx(t, x̂, ũ, p̂(t))− Ĥxx,

we obtain the estimations

|W̃ (t)| ≤ ω̄(|∆x(t)|) +M |δu(t)| ≤ ω̄(cf‖δu‖1) +M |δu(t)|,
|S̃(t)| ≤ L|∆x(t)| ≤ Lcf‖δu‖1.

Combining (15), (16) and the last inequalities, we obtain that

(17) J(u)− J(û) =

∫ T

0
σ̂(t)δu(t) dt+ Ω(∆x, δu) + r1(δu),

where

(18) |r1(δu)| ≤
cf
2

(
Tcf ω̄(cf‖δu‖1) + (cfM + 2L)‖δu‖1

)
‖δu‖21.

Let δx be the solution of the linear equation (10). Now we replace (∆x, δu) with (δx, δu) in the
quadratic form Ω in (17). We have

d

dt
(∆x(t)− δx(t)) = f(t, x(t), u(t))− f(t, x̂(t), û(t))− Â(t)δx(t)− B̂(t)δu(t)

= f̂x(t)∆x(t) + f̂u(t)δu(t) + rf (t)− Â(t)δx(t)− B̂(t)δu(t)

= Â(t)(∆x(t)− δx(t)) + rf (t),

where, due to the linearity of f in u,

rf (t) = f(t, x(t), u(t))− f̂(t)− f̂x(t)∆x(t)− f̂u(t)δu(t)

= f(t, x(t), u(t))− f(t, x̂(t), u(t)) + f(t, x̂(t), u(t))− f̂(t)− f̂x(t)∆x(t)− f̂u(t)δu(t)

= f(t, x(t), u(t))− f(t, x̂(t), u(t))− f̂x(t)∆x(t) = (fx(t, x̂(t), u(t))− f̂x(t))∆x(t) +
1

2
ζf (t)|∆x(t)|2

with ‖ζf (t)‖∞ ≤ L, |rf (t)| ≤ M |δu(t)||∆x(t)| + 1
2L|∆x(t)|2. Using the Grönwall inequality we

obtain that

‖∆x− δx‖C ≤ eMT ‖rf‖1 ≤ eMT

(
M‖δu‖1‖∆x‖C +

1

2
LT‖∆x‖2C

)
≤ 1

2
eMT cf (2M + TLcf ) ‖δu‖21 =: d‖δu‖21.(19)

Then we can estimate the difference

r∆Ω(δu) := Ω(∆x, δu)− Ω(δx, δu)
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as follows:

|r∆Ω(δu)| ≤ 1

2

∫ T

0

[
|Ĥxx(t)| |∆x(t) + δx(t)| |∆x(t)− δx(t)|+ 2|Ĥux(t)| |∆x(t)− δx(t)| |δu(t)|

]
dt

≤ 1

2
MT‖∆x+ δx‖C ‖∆x− δx‖C +M‖∆x− δx‖C ‖δu‖1.(20)

In view of (10) we have ‖δx‖C ≤ eMTM‖δu‖1 =: d1‖δu‖1. Using this estimate together with
‖∆x‖C ≤ cf‖δu‖1 and (19) we obtain from (20) that

(21) |r∆Ω(δu)| ≤ 1

2
MT (cf + d1)d‖δu‖31 +Md‖δu‖31 =: d2‖δu‖31.

Combining this estimate with (17) we obtain the first claim of the proposition with

γ̂(δu) = r1(δu) + r∆Ω(δu).

Estimation (13) follows from this equality, (18) and (21) with

c̄ =
1

2
max

{
c2
fT, Mc2

f + 2Lcf + 2d2

}
.

The second claim of the proposition follows from the definition of the constants r, cf , d, d1 and
d2 above. In the proof we have assumed that (x̂, û, p̂) satisfies (6)-(8) only, hence the last claim of
the proposition. Q.E.D.

Notice that Ω in (11) is the usual “second variation” of the objective functional, adapted to the
affine case. Here we point out another feature which is specific for affine problems. For a general
(not necessarily affine) optimal control problem, the right-hand side of the estimate (13) contains
the term ‖δu‖2 (possibly even ‖δu‖∞, if the dependence of f and g on u is not linear-quadratic)
instead of ‖δu‖1, which makes a substantial difference. The terms ‖δu‖2 and ‖δu‖∞ do not appear
in (13) because in the affine case the derivatives fuu and Huu vanish.

Remark 2.2 It will be useful to observe that in the case of a linear function f (that is, linear
function a and independent of x function B) and a function g which is quadratic in x and bilinear
in (x, u), the number γ̂ in Proposition 2.1 equals zero. Indeed, as seen in the proof, in this case
r1(δu) = 0 and ∆x = δx, hence r∆Ω(δu) = 0.

Denote by Γ the set of all pairs (δx, δu) ∈W 1,1×L1 such that δu(t) ∈ U− û(t) a.e. in [0, T ] and
δx is the solution of the linearized equation (10). Proposition 2.1 invokes the following assumption,
which turns out to be a sufficient optimality condition for (x̂, û).

Assumption (A2). There exists a constant c0 > 0 such that∫ T

0
〈σ̂(t), δu(t)〉 dt+ Ω(δx, δu) ≥ c0‖δu‖21 for all (δx, δu) ∈ Γ.

Corollary 2.1 Let Assumption (A1) be fulfilled and let ŷ = (x̂, û, p̂) ∈ W 1,1 × U × W 1,1 be a
solution of the part (6)–(8) of the optimality system (6)–(9). Let, in addition, Assumption (A2)
be fulfilled. Then (x̂, û) is a strict strong local solution of problem (1)–(3). Consequently, inclusion
(9) is also satisfied.
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We clarify that “strict strong local solution” has the following meaning: there is a number ε > 0
such that for every u ∈ U with ‖u − û‖1 ≤ ε and u 6= û (in the sense of L1) it holds that if the
corresponding solution, x, of (2) exists on [0, T ], then J(u) > J(û).

Proof of Corollary 2.1. Take ε > 0 so small that ε ≤ r (see Remark 2.1 for the number r) and

|γ̂(δu)| ≤ c0

2
‖δu‖21

whenever u ∈ U and δu = u− û satisfies ‖δu‖1 ≤ ε (see (13)). Then the solution x exists on [0, T ]
and, according to Proposition 2.1 and Assumption (A2), we have

J(u)− J(û) =

∫ T

0
〈σ̂(t), δu(t)〉 dt+ Ω(δx, δu) + γ̂(δu) ≥ c0‖δu‖21 − |γ̂(δu)|

≥ c0

2
‖δu‖21 > 0.

Q.E.D.

Even more than claimed by Corollary 2.1, the last inequality in the proof shows quadratic growth
of the cost functional J at the reference point û in the L1-norm.

3 Strong metric sub-regularity of the optimality mapping

We begin this section with an abstract result about “stability” of the SMsR property, proved in the
recent paper [4]. Let (Y, dY) and (Z, dZ) be two metric spaces and let F : Y ⇒ Z be a set-valued
mapping. The numbers (α, β, c) in Definition 1.1 will be referred to as parameters of SMsR.

Proposition 3.1 Let Z be a linear space and the metric dZ be shift-invariant, that is dZ(z, z′) =
dZ(z − z′, 0). Let F : Y ⇒ Z be SMsR at ŷ for ẑ with parameters (α, β, c). Let α′ > 0, β′ > 0, c′

and λ be any numbers such that

(22) λc < 1, β′ ≤ β, α′ + λβ′ ≤ α, c′ ≥ c

1− λc
.

Then for any function ϕ : Y → Z that satisfies the conditions

(23) ϕ(ŷ) = 0, dZ(ϕ(y), ϕ(ŷ)) ≤ λdY(y, ŷ) for every y ∈ IB(ŷ;β′),

the mapping ϕ+ F is SMsR at ŷ for ẑ with parameters (α′, β′, c′).

We adapt the simple proof from [4], in order to explicitly formulate the conditions for the
parameters α′, β′, c′ and λ, which will be needed later.

Proof. Let the numbers α′ > 0, β′ > 0, c′ and λ, and the function ϕ be as in the formulation of
the proposition. Obviously ẑ ∈ ϕ(ŷ) + F(ŷ). Take an arbitrary z ∈ IB(ẑ;α′) and let y ∈ IB(ŷ;β′)
satisfy z ∈ ϕ(y) + F(y). Then

dZ(z − ϕ(y), ẑ) ≤ dZ(z, ẑ) + dZ(ϕ(y), 0) ≤ α′ + λdY(y, ŷ) ≤ α′ + λβ′ ≤ α,

and
dY(y, ŷ) ≤ β′ ≤ β.
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Hence, using the SMsR property of F and conditions (23) for ϕ we obtain that

dY(y, ŷ) ≤ cdZ(z − ϕ(y), ẑ) ≤ cdZ(z, ẑ) + cλdY(y, ŷ)

which, in view of the first and the last inequalities in (22), implies dY(y, ŷ) ≤ c′dZ(z, ẑ). Q.E.D.

Now we return to the affine problem (1)–(3), for which we specify the spaces

Y := W 1,1
0 × U ×W 1,1, Z := L1 × L1 × Rn × L∞,

where W 1,1
0 is the affine space consisting of those x ∈W 1,1 for which x(0) = x0, and U is endowed

with the L1-metric (thanks to the compactness of U , the metric space U is complete). Correspond-
ingly, the shift-invariant metrics in these spaces are defined as follows: for y = (x, u, p) ∈ Y and
z = (ξ, π, ν, ρ) ∈ Z

dY(y) := dY(y, 0) = ‖x‖1,1 + ‖u‖1 + ‖p‖1,1, dZ(z) := dZ(z, 0) = ‖ξ‖1 + ‖ π‖1 + |ν|+ ‖ρ‖∞.

The optimality system (6)–(9) can be recast as the generalized equation

(24) 0 ∈ ψ(y) + Ψ(y),

where y = (x, u, p) and

(25) Y 3 y 7→ ψ(y) :=


−ẋ+ f(·, x, u)
ṗ+∇xH(·, y)

p(T )
∇uH(·, y)

 ∈ Z, Y 3 y ⇒ Ψ(y) :=


0
0
0

NU (u)

 ⊂ Z.
Here

NU (u) := {v ∈ L∞ : v(t) ∈ NU (u(t)) for a.e. t ∈ [0, T ]}

is the normal cone to the set U (considered as a subset of L1) at u ∈ U . For u 6∈ U the normal cone
is empty.

We will prove the SMsR property of the mapping ψ + Ψ in the optimality system (24) under a
somewhat stronger requirement than Assumption (A2). Let ŷ = (x̂, û, p̂) ∈ Y satisfy (24).

Assumption (A2’). There exists a constant c0 > 0 such that∫ T

0
〈σ̂(t), δu(t)〉 dt+ 2 Ω(δx, δu) ≥ c0‖δu‖21 for all (δx, δu) ∈ Γ.

The difference with (A2) is the multiplier 2 of Ω. This assumption is stronger than (A2) because
in view of (9), 〈σ̂(t)δu(t)〉 ≥ 0 a.e. in [0, T ] for all δu ∈ U − û. Therefore (A2’) implies:

2

∫ T

0
〈σ̂(t), δu(t)〉 dt+ 2 Ω(δx, δu) ≥ c0‖δu‖21 for all (δx, δu) ∈ Γ,

that is (A2) holds with the constant c0/2 instead of c0. Of course, (A2’) and (A2) are equivalent
if Ω is non-negative on Γ, but not in general.

9



Theorem 3.1 Let assumptions (A1) and (A2’) be fulfilled. Then the optimality mapping ψ + Ψ,
associated with problem (1)-(3), is strongly metrically sub-regular at ŷ = (x̂, û, p̂) for zero. Moreover,
the parameters of SMsR can be chosen as depending on the data of the problem (1)–(3) only through
the constants L, M and T , the modulus ω̄ (see Remark 2.1), and the constant c0 in Assumption
(A2’).

In the proof we will use Proposition 3.1, for which we need some preparation. Define the
following linearized version of the mapping ψ + Ψ (along the reference point ŷ): for y ∈ Y

(26) F(y) :=


−ẋ+ f̂(·) + Â(·)(x− x̂) + B̂(·)(u− û)

ṗ+∇xĤ(·) + Ĥxy(·)(y − ŷ)
p(T )

∇uĤ(·) + Ĥuy(·)(y − ŷ) +NU (u)

 ⊂ Z,
Then we can represent ψ + Ψ = ϕ+ F , where

ϕ(y) :=


ϕ1(y)
ϕ2(y)
ϕ3(y)
ϕ4(y)

 =


f(·, x, u)− f̂(·)− Â(·)(x− x̂)− B̂(·)(u− û)

∇xH(·, y)−∇xĤ(·)− Ĥxy(·)(y − ŷ)
0

∇uH(·, y)−∇uĤ(·)− Ĥuy(·)(y − ŷ)

 ∈ Z,
Notice that Ĥxp = Â> and Ĥuy = (Ĥux, 0, Ĥup) = (Ĥux, 0, B̂

>). Now we can take advantage of
Proposition 3.1.

Proposition 3.2 Let Assumption (A1) be fulfilled. Then the optimality mapping ψ + Ψ is SMsR
at ŷ for zero with parameters depending only on L, M , T and the modulus ω̄ (see Remark 2.1) if
and only if the same is true for the mapping F in (26).

Proof. Since ψ+ Ψ = ϕ+F , it suffices to establish a connection between the properties of SMsR
for ϕ+ F and for F using Proposition 3.1. Let F be SMsR at ŷ for zero with parameters (α, β, c)
depending only on L,M, T , and ω̄. Let the numbers α′, β′, c′ and λ satisfy the inequalities (22),
and in addition,

(27) β′ ≤ r, 3Lβ′
(

1 +
T

2

)
≤ λ, 3ω̄(β′)T+

3

2
Mβ′(3+T )+

3

2
Lβ′(1+T ) ≤ λ, 3(2L+M)β′ ≤ λ.

Obviously this can be done in such a way that these numbers depend on L,M, T , and ω̄ only.
Since ϕ(ŷ) = 0, in order to apply Proposition 3.1 we have to estimate dZ(ϕ(y)) by dY(y, ŷ), where
dY(y, ŷ) ≤ β′. In the estimations below we use, in addition to Remark 2.1, just the first order
Taylor formula and the linearity with respect to u and p. We denote ∆x = x − x̂, ∆u = u − û,
∆p = p− p̂, which implies ‖∆x‖1,1 + ‖∆u‖1 + ‖∆p‖1,1 = dY(y, ŷ). Using the second inequality in
(27) and skipping the dummy argument t of integration we obtain

‖ϕ1(y)− ϕ1(ŷ)‖1 ≤ L

∫ T

0

[
|∆x||∆u|+ 1

2
|∆x|2

]
dt ≤ L

[
‖∆u‖1 +

1

2
‖∆x‖1

]
‖∆x‖∞

≤ L
(
β′ +

T

2
β′
)
‖∆x‖1,1 ≤

1

3
λ dY(y, ŷ).
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In the next estimation we denote ∆y = (∆x,∆u,∆p) and use the straightforward equality

∇xH(t, y(t)) = ∇xĤ(t) +

∫ 1

0

d

ds
∇xH(t, ŷ(t) + s∆y(t)) ds

= ∇xĤ(t) +

∫ 1

0
Hxy(t, ŷ(t) + s∆y(t))∆y(t) ds

= ∇xĤ(t) + Ĥxy(t)∆y(t) +

∫ 1

0

[
Hxy(t, ŷ(t) + s∆y(t))− Ĥxy(t)

]
∆y(t) ds.

Moreover, since H is linear in u and p, we have

|Hxx(t, ŷ(t) + s∆y(t))− Ĥxx(t)|
≤ |Hxx(t, ŷ(t) + s∆y(t))−Hxx(t, x̂(t), û(t) + s∆u(t), p̂(t) + s∆p(t))|
+ |Hxx(t, x̂(t), û(t) + s∆u(t), p̂(t) + s∆p(t))− Ĥxx(t)|
≤ ω̄(‖∆x‖∞) +Ms|∆u(t)|+Ms|∆p(t)| a.e. in (0, T ),

|Hxu(t, ŷ(t) + s∆y(t))− Ĥxu(t)| = |Hxu(t, x̂(t) + s∆x(t), û(t), p̂(t) + s∆p(t))− Ĥxu|
≤ |Hxu(t, x̂(t) + s∆x(t), û(t), p̂(t) + s∆p(t))−Hxu(t, x̂(t), û(t), p̂(t) + s∆p(t))|
+ |Hxu(t, x̂(t), û(t), p̂(t) + s∆p(t))− Ĥxu(t)| ≤ Ls|∆x(t)|+Ms|∆p(t)| a.e. in (0, T ),

and similarly,

|Hxp(t, ŷ(t) + s∆y(t))− Ĥxp(t)| ≤ Ls|∆x(t)|+Ms|∆u(t)| a.e. in (0, T ).

Then, using the above estimations, the third inequality in (27), and the inequality dY(y, ŷ) ≤ β′,
we obtain that

‖ϕ2(y)− ϕ2(ŷ)‖1 ≤
∫ T

0

∫ 1

0

∣∣[Hxy(t, ŷ(t) + s∆y(t))− Ĥxy(t)
]
∆y(t)

∣∣ dsdt

≤
∫ T

0

[(
ω̄(‖∆x‖∞) +

M

2
|∆u|+ M

2
|∆p|

)
|∆x|

+

(
L

2
|∆x|+ M

2
|∆p|

)
|∆u|+

(
L

2
|∆x|+ M

2
|∆u|

)
|∆p|

]
dt

≤
(
ω̄(β′)T‖∆x‖1,1 +

M

2
β′‖∆u‖1 +

M

2
Tβ′‖∆x‖1,1

)
+Mβ′‖∆u‖1

+

(
L

2
β′‖∆u‖1 +

L

2
β′T‖∆p‖1,1

)
≤

[
ω̄(β′)T +

1

2
Mβ′(3 + T ) +

1

2
Lβ′(1 + T )

]
dY(y, ŷ) ≤ 1

3
λ dY(y, ŷ).

Similarly (and shorter), using the linearity of H in u and p, and the last inequality in (27), we
obtain that

‖ϕ4(y)− ϕ4(ŷ)‖∞ ≤
1

3
λdY(y, ŷ).

Hence, dZ(ϕ(y), ϕ(ŷ)) ≤ λ dY(y, ŷ). Then the SMsR property of F follows from Proposition 3.1.
To prove the converse claim we just exchange the places of the non-linear and the linearized

problem, so that now F = ψ + Ψ and the linearized mapping in (26) takes the form F − ϕ, then
apply again Proposition 3.1 Q.E.D.
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It is worth mentioning (although it is not needed for the subsequent analysis) that the mapping
F in (26) is just the optimality mapping for the following linear-quadratic affine problem (we skip
the argument t of x, x̂, u and û):

(28) min

∫ T

0

[
1

2
〈Ĥxx(t)(x− x̂), x− x̂〉+ 〈Ĥux(t)(x− x̂), u− û〉+ 〈∇uĤ(t), u− û〉

]
dt

subject to

(29) ẋ = Â(t)(x− x̂) + B̂(t)(u− û) + f̂(t), x(0) = x0,

(30) u(t) ∈ U, t ∈ [0, T ].

Notice that the switching function σ̂ and the quadratic form Ω (see (11)) associated with the
nonlinear problem (1)–(3) coincide with those associated with the linear-quadratic affine problem
(28)–(30). Thus also assumptions (A2) and (A2’) for these two problems are identical.

The proof of Theorem 3.1 follows.

ProofA. ccording to Proposition 3.2, it is enough to prove the claim of the theorem for the
linearized mapping F in (26). The positive parameters α and β of SMsR of F will be arbitrary
(that is, can be taken infinite) and c will be fixed later as depending only on L, M , T and the
constant c0 in Assumption (A2’).

Take an arbitrary z = (ξ, π, ν, ρ) ∈ Z with dZ(z) ≤ α and a solution y = (x, u, p) ∈ Y of the
“perturbed” inclusion

(31) z ∈ F(y),

satisfying ‖u− û‖1 ≤ β. In detail, inclusion (31) reads as

ẋ(t) = Â(t)(x(t)− x̂(t)) + B̂(t)(u(t)− û(t)) + f̂(t)− ξ(t), x(0) = x0,(32)

ṗ(t) = −∇xĤ(t)− Ĥxy(t)(y(t)− ŷ(t)) + π(t),(33)

p(T ) = ν,(34)

−NU (u(t)) 3 ∇uĤ(t) + Ĥuy(t)(y(t)− ŷ(t))− ρ(t),(35)

where the differential equations (32) and (33) have to be fulfilled for a.e. t ∈ [0, T ].
We denote again ∆x = x− x̂, ∆u = u− û, ∆p = p− p̂, , ∆y = y − ŷ and we set ∆ẋ = ẋ− ˙̂x,

∆ṗ = ṗ− ˙̂p. Then

(36) ∆ẋ(t) = Â(t)∆x(t) + B̂(t)∆u(t)− ξ(t), ∆x(0) = 0,

(37) ∆ṗ(t) = −Ĥxy(t)∆y(t) + π(t), ∆p(T ) = ν,

(38) −NU (u(t)) 3 σ̂(t) + Ĥuy(t)∆y(t)− ρ(t)

Since

〈∆x(T ), ν〉 = 〈∆x(T ),∆p(T )〉 − 〈∆x(0),∆p(0)〉 =

∫ T

0

d

dt
〈∆x(t),∆p(t)〉 dt

=

∫ T

0
[〈∆ẋ(t),∆p(t)〉+ 〈∆x(t),∆ṗ(t)〉] dt,
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using (36) and (37) and the identity Ĥxp(t)
> = Â(t) we obtain that

〈∆x(T ), ν〉 =

∫ T

0

[
〈B̂(t)∆u(t),∆p(t)〉 − 〈ξ(t),∆p(t)〉

−〈Ĥxx(t)∆x(t),∆x(t)〉 − 〈Ĥxu(t)∆u(t),∆x(t)〉+ 〈π(t),∆x(t)〉
]

dt.(39)

From (38) and the identity Ĥup(t) = B̂(t)> we have

0 ≤ 〈σ̂(t) + Ĥuy(t)∆y(t)− ρ(t), û(t)− u(t)〉
= −〈σ̂(t),∆u(t)〉 − 〈Ĥux(t)∆x(t),∆u(t)〉 − 〈B̂(t)>∆p(t),∆u(t)〉+ 〈ρ(t),∆u(t)〉.

Integrating this inequality and adding the result to (39), we obtain

〈∆x(T ), ν〉 ≤
∫ T

0

[
− 〈σ̂(t),∆u(t)〉 − 〈Ĥxx(t)∆x(t),∆x(t)〉 − 2〈Ĥux(t)∆x(t),∆u(t)〉

−〈ξ(t),∆p(t)〉+ 〈π(t),∆x(t)〉+ 〈ρ(t),∆u(t)〉
]

dt.

Hence,

(40)

∫ T

0
〈σ̂(t),∆u(t)〉 dt+ 2Ω(∆x,∆u) ≤ |∆x(T )| |ν|+‖∆p‖∞ ‖ξ‖1 +‖∆x‖∞ ‖π‖1 +‖∆u‖1 ‖ρ‖∞.

Let us denote δu := ∆u ∈ U − û, and let δx be the corresponding solution of the linearized
equation (10). Then from (10) and (36), using the Cauchy formula we obtain that

‖∆x− δx‖C ≤ eMT ‖ξ‖1, ‖δx‖C ≤ eMTM‖δu‖1, ‖∆x‖C ≤ eMT (M‖δu‖1 + ‖ξ‖1).

Further c1, c2, . . . will denote constants that depend only on the numbers M , L and T . Thus we
can write

(41) ε := ‖∆x−δx‖C ≤ c1‖ξ‖1 ≤ c1dY(z), ‖δx‖C ≤ c2‖δu‖1, ‖∆x‖C ≤ c3(‖δu‖1+dY(z)),

and also in view of (37) (again due to the Cauchy formula, and using the above estimations for
‖∆x‖C),

(42) ‖∆p‖C ≤ c4(‖δu‖1 + |ν|+ ‖π‖1 + ‖ξ‖1) ≤ c4(‖δu‖1 + dZ(z)).

Moreover, using (20) and (41) we easily get

|Ω(∆x, δu)− Ω(δx, δu)| ≤ c5dY(z)(‖δu‖1 + dY(z)).

Using the obtained estimate, Assumption (A2’) in (40), the last estimate in (41), and (42), we
obtain

c0‖δu‖21 ≤
∫ T

0
〈σ̂(t), δu(t)〉 dt+ 2Ω(δx, δu)

≤
∫ T

0
〈σ̂(t), δu(t)〉 dt+ 2Ω(∆x, δu) + 2c5dY(z)(‖δu‖1 + dY(z))

≤ dZ(z) max {|∆x(T )|, ‖∆p‖∞, ‖∆x‖∞, ‖∆u‖1}+ 2c5dY(z)(‖δu‖1 + dY(z))

≤ c6dY(z)(‖δu‖1 + dY(z)).
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This inequality implies that

‖δu‖1 ≤
c6

c0

1 +
√

1 + 4c0/c6

2
dY(z).

Then the needed inequality dY(y, ŷ) ≤ cdZ(z) follows from the last estimate, combined with the
last estimate in (41) and (42). Q.E.D.

4 The case of a bang-bang optimal control

Now we give sufficient conditions under which Assumption (A2’) is fulfilled. It applies to the case
where the reference control û has a bang-bang structure. We remind that ŷ = (x̂, û, p̂) ∈ Y is a
fixed reference solution of the optimality system (24), and under (A2) û is a strict locally optimal
solution of problem (1)-(3) (see Corollary 2.1).

Let U be a compact convex polyhedron. Using geometric (rather than analytic) terminology
we denote by V the set of all vertices of U , and by E, the set of all unit vectors e ∈ Rm that are
parallel to some edge of U . For every unit vector e ∈ Rm denote

σ̂e(t) = 〈σ̂(t), e〉.

For a vertex v ∈ V , denote by E(v) the set of all unit vectors (v′ − v)/|v′ − v|, where v′ is any
neighboring vertex to v (that is, the segment [v, v′] is an edge of U). Notice that E = ∪v∈VE(v).

We introduce the following two assumptions in a somewhat more general form than needed in
the context of Theorem 3.1.

Assumption (B’). There exist numbers κ ≥ 1, γ0 > 0 and τ0 > 0 such that for every e ∈ E and for
every s ∈ [0, T ] for which σ̂e(s) = 0, it holds that

(43) |σ̂e(t)| ≥ γ0|t− s|κ for every t ∈ [s− τ0, s+ τ0] ∩ [0, T ].

Set Ê(s) := Limsup
[0,T ]3t→s

E(û(t)), where Limsup denotes the Kuratowski upper limit.Whenever û is

piece-wise constant, it holds that Ê(s) := E(û(s)) except at the jump points of û. If s is a jump
point of û, then Ê(s) := E(û(s−)) ∪ E(û(s+)).

Assumption (B”). The function û is piecewise constant with values in the set of vertices, V , of U .
Moreover, there exist numbers κ ≥ 1, γ0 > 0 and τ0 > 0 such that condition (43) is fulfilled for
every s ∈ [0, T ] and e ∈ Ê(s), for which σ̂e(s) = 0.

Proposition 4.1 Let assumption (A1) and at least one of the assumptions (B’) and (B”) be ful-
filled. Then there exists a number µ > 0 such that for every u ∈ U it holds that

(44)

∫ T

0
〈σ̂(t), u(t)− û(t)〉 dt ≥ µ‖u− û‖κ+1

1 .

The proof includes argumentation similar to those used in the case of a box-like set U , see [7,
Lemma 3.3], [14], [16, Lemma 1.3], [13, Sect. 3]. However, the case of a general polyhedral set U
requires additional analysis, therefore we present the proof below.
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Proof. First we prove that (B’) implies (B”). For this it is enough to prove that, under Assumption
(B’), the control û is piecewise constant and takes values (after changing it on a set of measure
zero) in V . Assumption (B’) implies that for every e ∈ E, the function 〈σ̂(·), e〉 has at most
K0 := T/τ0 + 1 zeros in [0, T ]. Then the set of all zeros of 〈σ̂(·), e〉 with e ∈ E has at most KK0

elements, where K is the number of edges of U . In every interval (s′, s′′) which does not contain
any of these zeros, and for every e ∈ E, the function 〈σ̂(·), e〉 does not vanish in (s′, s′′) and since it
is continuous, it has a constant sign in this interval. Then 〈σ̂(t), v〉 has a unique minimizer v ∈ U ,
it is a vertex of U , and the vertex v is the same for every t ∈ (s′, s′′). Then due to condition (9) in
the Pontryagin principle, û(t) = v on (s′, s′′) modulo a set of zero measure.

Now, assume that Assumption (B”) is fulfilled. For every vertex v ∈ V and every u ∈ U there
exists a representation

(45) u = v +
∑

e∈E(v)

λe e with λe ≥ 0.

Since v ∈ V , there exist q ∈ Rm, |q| = 1, and a number ε > 0 such that

〈q, e〉 ≥ ε for every e ∈ E(v).

Then
|u− v| = |u− v| |q| ≥ 〈q, u− v〉 =

∑
e∈E(v)

λe〈q, e〉 ≥ ε
∑

e∈E(v)

λe

Hence,

(46)
∑

e∈E(v)

λe ≤
diam(U)

ε
=: d,

where diam(U) = max{|u′ − u′′| : u′, u′′ ∈ U}.
Let us fix an arbitrary u ∈ U . From the representation (45) and (46) we have

u(t)− û(t) ∈ G(t) := d co
{
E(û(t)), 0

}
.

The mapping G is closed-valued with values in Rm and Lebesgue measurable (we remind that
û takes only finitely many values). Then Theorem 8.2.15 in [3] (Carathéodory representation)
asserts that there exist measurable selections e0(·), . . . em(·) of E(û(·)) and measurable functions
α0(·), . . . , αm(·) such that

(47) u(t)− û(t) = d

m∑
i=0

αi(t)ei(t), αi(t) ≥ 0,

m∑
i=0

αi(t) ≤ 1.

Denoting λi(t) = dαi(t) we have

u(t)− û(t) =
m∑
i=0

λi(t)ei(t), λi(t) ≥ 0, ei(t) ∈ E(û(t)),

with measurable λi and ei.
On the other hand,

(48) |u(t)− û(t)| ≤
m∑
i=0

λi(t)|ei(t)| =
m∑
i=0

λi(t).
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Now we consider the quantity

∆ :=

∫ T

0
〈σ̂(t), u(t)− û(t)〉 dt =

∫ T

0

〈
σ̂(t),

m∑
i=0

λi(t)ei(t)
〉

dt =

∫ T

0

m∑
i=0

λi(t) |σ̂ei(t)(t)| dt,

where we use the fact that σ̂e(t) ≥ 0 for every e ∈ E(û(t)), in particular for e = ei(t). Denoting
ψ(t) := mine∈E(û(t)) |σ̂e(t)|, and using the inclusion ei(t) ∈ E(û(t)) and (48), we obtain that

(49) ∆ ≥
∫ T

0
ψ(t)

m∑
i=0

λi(t) dt ≥
∫ T

0
ψ(t) |u(t)− û(t)|dt.

We shall show that there exists a number c1 such that for every number β > 0, the Lebesgue
measure of the set

Ψβ = {t ∈ [0, T ] : ψ(t) ≤ β}

satisfies

(50) meas (Ψβ) ≤ c1β
1
κ .

Let us consider a maximal open interval (s′, s′′) in which û has a constant value v ∈ V , so that we
have E(û(t)) = E(v) for all t ∈ (s′, s′′). Let e ∈ E(v) be arbitrarily fixed. Then e ∈ Ê(t) for every
t ∈ [s′, s′′].

Denote by Θ the union of all intervals (s − τ0, s + τ0) ∩ [s′, s′′], where s is a zero of σ̂e in
[s′, s′′]. Assumption (B”) is applicable for any such s and the fixed e. It implies that the intervals
(s − τ0, s + τ0) ∩ [s′, s′′] are disjoint and their number is at most K0 = T/(2τ0) + 1. The set
[s′, s′′] \Θ is compact and σ̂e(t) 6= 0 for every t ∈ [s′, s′′] \Θ. Then there is a number β0 > 0 such
that |σ̂e(t)| ≥ β0 for every t ∈ [s′, s′′] \Θ. For β ∈ (0, β0) we have

meas {t ∈ [s′, s′′] : |σ̂e(t)| ≤ β} = meas {t ∈ Θ : |σ̂e(t)| ≤ β}.

Using again Assumption (B”) we obtain that for each of the intervals (s− τ0, s+ τ0) ∩ [s′, s′′]

meas {t ∈ (s− τ0, s+ τ0) ∩ [s′, s′′] : |σ̂e(t)| ≤ β} ≤ 2

(
β

γ0

) 1
κ

.

Hence,

meas {t ∈ [s′, s′′] : |σ̂e(t)| ≤ β} ≤ 2K0

(
β

γ0

) 1
κ

.

For β ≥ β0 we have

meas {t ∈ [s′, s′′] : |σ̂e(t)| ≤ β} ≤ T ≤ T
(
β

β0

) 1
κ

.

Thus for any β > 0 we have

meas {t ∈ [s′, s′′] : |σ̂e(t)| ≤ β} ≤ c′β
1
κ , where c′ = max

{
2K0

(γ0)
1
κ

,
T

(β0)
1
κ

}
.

Since e ∈ E(v) was arbitrarily chosen and the set E(v) contains at most K elements,

meas {t ∈ [s′, s′′] : ψ(t) ≤ β} ≤ Kc′β
1
κ .
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This implies (50) with c1 = (KK0 +1)Kc′ (we remind that KK0 is an upper bound for the number
of jumps of û).

From (49) and (50) we obtain that for every β > 0

∆ ≥
∫

[0,T ]\Ψβ
β |u(t)− û(t)|dt ≥

∫ T

0
β |u(t)− û(t)| dt−

∫
Ψβ

β |u(t)− û(t)| dt

≥ β‖u− û‖1 − c1‖u− û‖∞β1+ 1
κ ≥ β‖u− û‖1 − c1dβ

1+ 1
κ ,

where d denotes the diameter of the set U . Using this inequality with β = (2c1d)−κ‖u − û‖κ1 and
remembering the definition of ∆ we obtain the inequality (44) with µ = 2−1(2c1d)−κ. Q.E.D.

Corollary 4.1 Let assumption (A1) and at least one of the assumptions (B’) and (B”) be fulfilled
with κ = 1. Let, in addition, there exists a constant µ0 ∈ (0, µ) (where µ is the constant in
Proposition 4.1) such that

(51) 2 Ω(δx, δu) ≥ −µ0‖δu‖21 for all (δx, δu) ∈ Γ.

Then the optimality mapping ψ + Ψ, associated with problem (1)-(3), is strongly metrically sub-
regular at ŷ = (x̂, û, p̂) for zero.

As shown in the proof of Proposition 4.1, Assumption (B’) is stronger than (B”). However, it has
the minor advantage that it explicitly involves only U and σ̂, while (B”) also explicitly involves the
reference solution û.

Remark 4.1 A similar assumption as (51) was introduced in [1] and was used for error analysis of
the Euler discretization scheme applied to affine problems. The result of Proposition 4.1 was taken
as an assumption there, but as mentioned in [1], this result was essentially known from e.g. [7, 16].
However, only the case of a box-like set U was investigated in these papers (which brings technical
simplifications), and even in this case the assumptions made were somewhat stronger than our (B’).
Namely, the switching functions σe were not allowed to have zeros at 0 and T . A stability result
in a form close to Corollary 4.1 is presented in [2, Theorem 8] for linear-quadratic affine problems
with box-like control constraints (more references about stability of solutions are also given there).

5 Error analysis of the Euler discretization

In this section we utilize the SMsR property of the optimality mapping, associated with the affine
problem (1)-(3) with the specification (4), for error analysis of the Euler discretization scheme.
The investigation of the convergence rate of Runge-Kutta discretization schemes applied to affine
optimal control problems began with the paper [17] some three decades later than for problems
satisfying a Legendre-type condition. A sequence of papers followed, most of them for problems
with linear dynamics. We refer to the recent paper [1], where the dynamics is non-linear and more
detailed bibliography is given. In all these papers (except [12, 15], where a different, not Runge-
Kutta-type, discretization scheme is proposed) the convergence rate is of at most first order, and
using higher order Runge-Kutta schemes on a uniform mesh cannot help to improve the convergence
rate if the optimal control is discontinuous. Therefore, below we focus on the simplest scheme –
the Euler one.
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Let t0, . . . , tN be the uniform mesh in [0, T ] with step h = T/N (N is a natural number), that is,
ti = iT/N , i = 0, . . . , N . The discrete-time (mathematical programming) problem obtained by the
Euler discretization, denoted further by Ph, reads as

min h
N−1∑
i=0

g(ti, xi, ui)

subject to the constraints

xi+1 = xi + hf(ti, xi, ui), i = 0, . . . , N − 1, x0 – given,

ui ∈ U, i = 0, . . . , N − 1,

where x = (x0, . . . , xN ) ∈ Rn(N+1) and u = (u0, . . . , uN−1) ∈ RmN are the discrete-time state
and control vectors. The local form of the discrete-time maximum (here minimum) principle (the
Karush-Kuhn-Tacker conditions) for this problem claims that any locally optimal pair (x, u), sat-
isfies, together with a co-state vector p = (p0, . . . , pN ) ∈ Rn(N+1) the system

xi+1 = xi + hf(ti, xi, ui), x0 – given,(52)

pi = pi+1 + h∇xH(ti, xi, ui, pi+1), pN = 0,(53)

0 ∈ ∇uH(ti, xi, ui, pi+1) +NU (ui),(54)

where i runs between 0 and N − 1.
Let (xh, uh) be a solution of problem Ph and let ph be the corresponding co-state vector, so that

yh := (xh, uh, ph) satisfies system (52)–(54). In order to compare this solution with the reference
solution ŷ = (x̂, û, p̂) of the continuous-time problem we embed the sequence (xh, uh, ph) into the
space W 1,1 × L1 ×W 1,1 defining

xh(t) := xhi +
t− ti
h

(xhi+1 − xhi ), uh(t) := uhi , ph(t) = phi +
t− ti
h

(phi+1 − phi ),

for t ∈ [ti, ti+1), i = 0, . . . , N − 1. Denote yh := (xh, uh, ph).

Assumption (C1). Assumption (A1) is fulfilled with the additional requirement that f and g and
their first derivatives in x and u are Lipschitz continuous in t, uniformly with respect to (x, u) in
any compact set.

Assumption (C2). The optimality mapping ψ + Ψ, associated with problem (1)-(3) (see (24) and
(25)), is strongly metrically sub-regular at ŷ = (x̂, û, p̂) for zero with some parameters (α̂, β̂, ĉ).

Assumption (C3). For all sufficiently small h > 0, all components of xh and ph (thus also the values
of xh and ph) belong to the set S̄ defined in Remark 2.1. Moreover, dY(yh, ŷ) ≤ β̂.

The first part of Assumption (C3) is technical. It means that the solution yh of (52)–(54) is not
far away from the reference solution (x̂, û, p̂) of the continuous-time problem, at least for h small
enough. It allowes us to use in the subsequent analysis the same constants L and M defined in
Remark 2.1. The second part is crucial, at least because yh may happen to be close to some
other local solution of the continuous-time problem, and we have to eliminate this possibility by
an assumption.
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Theorem 5.1 Let assumptions (C1)–(C3) be fulfilled. Then there exists a constant C such that
the estimate

‖xh − x̂‖1,1 + ‖uh − û‖1 + ‖ph − p̂‖1,1 ≤ Ch

holds for all sufficiently small h > 0.

Proof. In order to make use of the SMsR property of the optimality mapping for problem (1)-(3),
we have to estimate the residuals

ξ(t) := ẋh(t)− f(t, xh(t), uh(t)),

π(t) := ṗh(t) +∇xH(t, xh(t), uh(t), ph(t)),

ρ(t) := ∇uH(ti, x
h
i , u

h
i , p

h
i )−∇uH(t, xh(t), uh(t), ph(t)), t ∈ [ti, ti+1), i = 0, . . . , N − 1.

The residual in the transversality condition (8) is ν = 0. We mention that the inclusion (9) is
satisfied by (xh, uh, ph) with residual ρ because of the constancy of uh in every interval [ti, ti+1), so
that NU (uh(t)) = NU (uhi ), t ∈ [ti, ti+1), i = 0, . . . , N − 1.

We have

‖ξ‖1 =
N−1∑
i=0

∫ ti+1

ti

∣∣∣∣1h(xhi+1 − xhi )− f
(
t, xhi +

t− ti
h

(xhi+1 − xhi ), uhi

)∣∣∣∣ dt

=
N−1∑
i=0

∫ ti+1

ti

∣∣∣∣f(ti, x
h
i , u

h
i )− f

(
t, xhi +

t− ti
h

(xhi+1 − xhi ), uhi

)∣∣∣∣ dt

≤
N−1∑
i=0

∫ ti+1

ti

L[(t− ti) +
t− ti
h
|xhi+1 − xhi |] dt ≤

N−1∑
i=0

∫ ti+1

ti

L(1 +M)(t− ti) dt

≤ 1

2
TL(M + 1)h.

The estimation for ‖π‖1 is similar. Moreover, for t ∈ [ti, ti+1) we have

|ρ(t)| ≤ L
[
(t− ti) +

t− ti
h
|xhi+1 − xhi |+

t− ti
h
|phi+1 − phi |

]
≤ L(1 + 2M)h,

thus ‖ρ‖∞ ≤ L(2M + 1)h.
For all sufficiently small h we have ‖ξ‖1 +‖π‖1 + |ν|+‖ρ‖∞ ≤ α̂. Then the claim of the theorem

follows from the SMsR property of ψ + Ψ and the above estimates of the norms ‖ξ‖1, ‖π‖1, ‖ρ‖∞
via h, using the second part of Assumption (C3). Q.E.D.

The principle advantage of this theorem compared with [1] is that Theorem 4 in [1] claims a first
order error estimate under particular sufficient conditions for SMsR (this notion is not used there),
while our result is based only on the SMsR property, thus it holds under any sufficient conditions
for this property. In particular, it holds under the conditions in Theorem 3.1 or under the more
elaborated but more restrictive conditions in Corollary 4.1 (which are still weaker than those in
[1]).

We mention that in practice one may only obtain an approximate solution of the discrete
problem Ph. Usually the numerical methods for solving this problem produce an approximate
solution ỹh of the optimality system (52)–(54). In this case, the error estimate in Theorem 5.1 can
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be modified by adding the additional residuals caused by the non-exactness in solving problem Ph
to the residuals resulting from the discretization. More precisely, let the approximate solution ỹh

satisfy (52)–(54) with residual (ξ̃h, π̃h, ν̃h, ρ̃h) =
(
{ξ̃hi }

N−1
0 , {π̃hi }

N−1
0 , ν̃h, {ρ̃hi }

N−1
0

)
. We measure

the size or this residual by the number

ε := h
N−1∑
i=0

(|ξ̃hi |+ |π̃hi |) + |ν̃h| + max
i=0,...,N−1

|ρ̃hi |.

Then, after embedding the sequence ỹh as ỹh into the space W 1,1×L1×W 1,1, as we did before for
yh, the estimate in Theorem 5.1 takes the form

‖x̃h − x̂‖1,1 + ‖ũh − û‖1 + ‖p̃h − p̂‖1,1 ≤ C(h+ ε).
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