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Elliptical Line Voronoi Skeletons on the GPU

Maximilian Langer

Abstract

Calculation of a shape skeleton can be slow, therefore an implementation on the GPU is
beneficial. This report covers the algorithm and implementation of an Elliptical Voronoi
Skeleton and compares implementations on the CPU and GPU. Additionally, a speed im-
proved CPU version using Python’s Numba library is compared. An advanced residual
calculation on a per pixel level is introduced and theoretical, although computationally ex-
pensive, elliptical residual calculations are given. A short comparision of Elliptical Voronoi
and Classical Line Voronoi is given.



1 Introduction

Shape skeletons are a widely used technique in computer vision. There exist
many different methods of calculating the skeleton or medial axis of a shape.
In a previous work [4] we have introduced an algorithm that makes use of
distance maps to calculate off-centered skeletons of polygonal shape approx-
imations. This algorithm allows for arbitrary distance maps. The paper has
a focus on elliptical distance, calculating Elliptical Line Voronoi Skeletons.

Here we want to extend this algorithm by improving on the skeleton
candidate selection and give experimental results on three implementations
with different speed gains.

The remainder of the report is organized as follows: Section 2 gives an
overview of Elliptical Line Voronoi Skeletons. Section 3 introduces improve-
ments to Elliptical Line Voronoi Skeletons and the adaptation of the algo-
rithm. Section 4 explains implementation details with Python. Section 5
presents the results of the different implementations and Section 6 concludes
the report.

2 Elliptical Line Voronoi Skeletons

In theory the proposed Algorithm works for arbitrary distances, but was con-
structed with Elliptical Line Voronoi Skeletons (ELVD Skeletons) in mind.
In this section a short introduction to Elliptical Line Voronoi Skeletons is
given.

2.1 Confocal Elliptical Distance

Gabdulkhakova and Kropatsch [2] introduced a point to line segment distance
d.(P,1) based on confocal ellipses that defines the distance of a point P € R?
to the line segment [ between points Fy, F, € R2, the Confocal Elliptical
Distance (CED). Fy, Fy are the focal point of an ellipse that includes P in
its boundary. The distance is given by

de(P7 l) = (5(P7 Fl) + (S(P7 Fg) - 6(F17F2) (1)

where § denotes the Euclidean distance.
Compared to the Hausdorff distance dj (P, 1) = I?l? d(P, L) the CED does
€

only take endpoints of a line segment into account.
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2.2 Elliptical Line Voronoi Diagram

Based on the CED Gabdulkhakova et al. [3] introduced Elliptical Line
Voronoi Diagrams (ELVD). Similar to Line Voronoi Diagrams (LVD) it par-
titions the plane into regions where all points within are closest to a particular
line (=site). LVD uses Hausdorff distance, ELVD uses CED. The boundaries
between Voronoi regions are called Voronoi edges.

2.3 Line Voronoi Skeletons

Ogniewicz and Ilg [6] introduced Voronoi Skeletons (VS) that calculate the
skeleton of an image shape by building a Point Voronoi Diagram. The bound-
ary points are the sites of the Voronoi Diagram, resulting in skeletons where
skeleton edges go through pixel connections. By using lines Voronoi edges go
through pixels instead and the skeleton can also be calculated on a polygonal
approximation. Mayya and Rajau [5] introduces Line Voronoi Skeletons with
a simple pruning strategy to eliminate some spurious branches.

2.4 Elliptical Line Voronoi Skeletons

Building on ELVDs and LVS Langer et al. [4] introduced Elliptical Line
Voronoi Skeletons with a pruning strategy based on the one of Ogniewicz
and Ilg. Again they use CED instead of Hausdorff distance for Skeleton
creation. Figure 1 gives an example Elliptical Line Voronoi Skeleton and the
ELVD it was constructed from.

(a) Horse ELVD. (b) Skeleton generated from (a)

Figure 1: ELVD and constructed skeleton using method from [4]



2.5 Difference between ELVD and LVD

Major differences between ELVD and LVD were already highlighted in the
work by Gabdulkhakova et al. [3], but there exist another property con-
cerning the boundaries between Voronoi cells. Most applications using LVDs
split a line site into three separate sites: an open line segment site and two
point sites. This is done to avoid boundaries between cells that consist of
two-dimensional surfaces. ELVD on the other hand does not introduce those
surfaces. See Fig. 2 for an illustration.

Figure 2: ELVD (red) and LVD (green dashed) of a polygon. Points in the
green area are equidistant to two sites.

We have conducted an experiment on the MPEG-7 shape dataset ! where
we do not split the line sites and ended up with an average of 5% bound-
ary pixels (this includes line and surface boundaries). On the other hand,
the Elliptical Line Voronoi Diagramm does not have this problem and has
an average of 0.04% boundary pixels on the above experiment. Although
not as important for skeletonization, because convex Voronoi boundaries are
omitted anyway we still consider this a good property of the Elliptical Line
Voronoi Diagram.

http://www.dabi.temple.edu/~shape/MPEG7/dataset .html



3 Improved Residual Calculations

Ogniewicz [7] proposes four different residual calculations to decide whether
a Voronoi edge belongs to the skeleton or not. Since his method operates on
point sides Voronoi edges that build up the skeleton are rather short. For
LVD and ELVD they tend to be longer and therefore removing whole Voronoi
edges introduces errors. In this section an improved pixel-wise calculation of
the four residuals is given.

3.1 Different Residuals

For all residuals the anchor points of the Voronoi edge must be known. For
the original Voronoi skeletons they correspond to the sites that generate the
edge, for the Line Voronoi Skeletons proposed before [4] the midpoints of the
line sites are used. In this work the anchor points are the closest points on
the line segments to the pixel in consideration.

The simplest residual is the Potential Residual ARp which is the distance
along the boundary between the two anchor points. The Chord Residual
ARy subtracts the Euclidean distance between the anchor points from the
Potential Residual. The Circular Residual subtracts the smaller arc length of
the arcs centered at the Voronoi edge/pixel in question and spanning between
the two anchor points from the Potential Residual. The Bicircular Residual
is similar to te Circular Residual but multiplies the Potential Residual by 7
before subtraction and scaling the result by % to be comparable to the other
residuals. See Fig. 3

3.2 Anchor points in LVD and ELVD

As stated above, the calculation of anchor points is important. For point site
Voronoi diagrams the anchor points are given as the point site coordinates.
For LVD the anchor points correspond to the closest point on the line site to
the point P on the Voronoi edge in question.

For ELVD the anchor points Aj, As correspond to the intersection points
of hyperbola arms hi, hs through P with foci in two opposite points (see
Fig. 4) of the two line sites ((A4, B), (C, D)) and the line sites themselves,
resulting in foci A, D and C, B. On each line the closer point is chosen.



Figure 3: Different Residuals: (a) Circular Residual, (b) Bicircular Residual
and (c) Chord Residual. Figure from [6]

3.3 Circular Residual

The Circular Residual, as well as the Bicircular Residual, use the circle arc
length between the two anchor points. For LVD this is straight forward
but for ELVD it is more complicated. In the following, two approaches are
discussed: Elliptical arc using a midpoint on the LVD and an approximated
circle arc.

3.3.1 Elliptical Arc

As we use elliptical Voronois we can use an elliptical arc that better approx-
imates the boundary in elongated shapes. See Fig. 5 for an illustration of
the following explanation. After obtaining the anchor points as described
above, the intersection point M of the two tangents (dashed lines) of the
before mentioned hyperbolic branch (see Fig. 4) at the anchor points A, As
is chosen as midpoint 7. This point lies on the LVD if all four intersection
points of the hyperbolic branches hy, ho with the line segments exist. Fur-
thermore the endpoints Ey, Fy of the LVD edge are needed to construct two
ellipses that have one focal point F; in those endponints. The other focus F,
can be constructed by mirroring the endpoint about the tangent used above
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Figure 4: Anchor points of ELVD. Dotted lines are the hyperbola major
axises.



into a temporary point Tj,T,. The intersection point of a line constructed
by 71 /T and the anchor point of the used tangent with the line constructed
by the endpoints is the second focus point Fy. There exists an ellipse that
includes both anchor points. After constructing the two ellipses one can then
create one arc for each ellipse that goes around the focal point that coincides
with the endpoint. The smaller one of those two arcs can then be used for
residual calculations.

Figure 5: Construction of elliptical arc (green) from ellipse with foci Fy,F5.

3.3.2 Approximated Circle Arc

As the goal of this project is to speed up ELVD skeleton calculation the
approach above is not ideal. It is faster to calculate the circle arc length as
given here.

First the anchor points are constructed by looking for the closest (Eu-
clidean distance) point on the line sites. If the closest point does not lie on
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the line segment (site) and the two constructing sites are connected then this
Voronoi edge point is leading to a convex part and can be dismissed, i.e. it
is not a valid skeleton point. After calculating the anchor points, the circu-
lar arc radius is determined by taking the mean distance of the two anchor
points to the Voronoi edge point. The Arc length is then calculated likewise
to the LVD.

4 Implementation in Python

The following section gives some details on the implementation in Python.
Three different methods were implemented and tested (see Sect. 5). The
three methods are a native Numpy Python implementation, a CPU enhanced
Numba implementation and a GPU version again using Numba with CUDA.

4.1 NumPy and Numba

Python is a high level programming language and provides, together with
NumPy, a scientific computing language. NumPy extends the basic language
with powerful nD array modification and scientific tools that are implemented
in C/C++ and therefore run very fast with a feature set that is compatible
to other modern solutions (like e.g. MATLAB).

To further enhance the speed of NumPy and Python code, Numba can
be used. It utilizes a JIT (just-in-time) compiler to run specific code parts
in C/C++ speed on CPU. For experiments in this project it is interesting
that Numba also allows the creation of JIT function that are compiled for
GPU using Nvidia’s CUDA library. This allows to build GPU executable
code from within Python.

The combination of NumPy and Numba leaves three different approaches
for the algorithm: Basic NumPy, NumPy with time critical functions JIT
compiled and with those functions run on the GPU. Note that a naive func-
tion without NumPy that calculates values per pixel on the CPU was not
implemented as it would lead to very poor performance.

4.2 The Algorithm

The algorithm was implemented three times. Version 1 (V1) is implemented
only on the CPU, Version 2 (V2) is partly implemented with Numba’s JIT



functions and Version 3 (V3) is mostly implemented on the GPU (using
Numba). Figure 6 gives an overview of the steps of the algorithm. First the
segmented image is approximated as a polygonal shape as needed for ELVD.
Then a distance map for a single point is created. This is later used in the ID
map creation together with the polygon. The ID map gives every pixel the
ID of the closest line segment of the polygon. Then the Boundary Maps are
extracted. There are two boundary maps, a small and a big map. Boundary
maps are undefined for non-boundary pixels and the small boundary map
saves the lower ID and the big boundary map the bigger ID of a Voronoi
edge. All pixels that have a different valued neighbor in horizontal or vertical
direction in the ID map belong to a Voronoi edge. For every valid pixel in
the boundary maps (note that if a pixel is valid in one boundary map it is
valid in the other one too) a residual value is calculated. In a last step only
boundary pixels with a residual value higher than a certain threshold are
included in the skeleton.

s N
Shape Approximation Voronoi Creation Residual Extraction

'Get Big Distance Mapl
www Skeleton Selection

D cPU Get ID Map
BET
. i Get Boundary Maps
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Figure 6: Overview of the algorithm and where the computation is done.

The algorithm was first implemented on the CPU only. After bench-
marking different parts of the algorithm, slow parts were implemented using
Numba’s JIT in V2. Finally, all grid based steps of the algorithm were im-
plemented on the GPU (V3). Note that for the sake of comparability the
steps were kept similar to the CPU version. Faster implementations with
everything implemented on the GPU are possible.



5 Results

In this section a time comparison is presented based on multiple tests. Also
some example skeletons are shown.

5.1 Experiment Configurations

The three versions of the algorithms were tested on the MPEG-7 shape
dataset?. The dataset consists of 1400 images in various sizes ranging from
around 2500 total pixels to around 1 million total pixel, that is around 50 x 50
to 1000 x 1000. In total 12 runs were executed. For each run three values
were varied:

Approximation Tolerance The polygon is approximated from the original
pixel shape with the Douglas-Peucker algorithm [1]. This gives the
tolerance level. Higher tolerance yields fewer lines in polygon.

Image Scale This is the scaling factor the image is scaled before processing.

Polygon Scale This gives the scaling factor for scaling the polygon (and
resulting skeleton image).

As comparison with a state-of-the-art, parallel skeletonization algorithm
(ZS84) was done [8]. Note that this algorithm produces different results,
as it does a thinning approach, not an elliptical skeleton on a polygonal
approximation of the shape. Polygon Scale is also an image scale for ZS84.
Table 1 shows the different runs and their different values for approximation,
image and polygon scale.

5.2 Results on CPU/GPU

All tests were conducted on a Linux Mint desktop with an AMD Ryzen 7
2700X with 8 cores at 3.70 GHz, 32 GB of memory and an NVIDIA GeForce
GTX 1060 with 6GB GRAM.

Table 2 gives the average times per run and the standard deviation in
parenthesis. Note that the MPEGT dataset has different image and shape

2http://www.dabi.temple.edu/~shape/MPEG7/dataset . html
30nly 300/1400 images run.
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Table 1: Overview of conducted test runs.

Run # | Approx. Tol. | Image Scale | Polygon Scale
Run 1 3 0.5 0.5
Run 2 3 1 0.5
Run 3 3 1 1
Run 4 3 1 3
Run 5 3 1 5
Run 6 3 3 1
Run 7 3 5 1
Run 8 5 1 3
Run 9 5 3 1
Run 10 |5 1 5
Run 11 |5 5 1
Run 12% | 3 3 3

sizes. Table 3 shows the speed improvement of the Numba and GPU imple-
mentation compared to the CPU implementation. It also shows the degra-
dation/improvement compared to ZS84. Figure 7 illustrates the values of
Table 3.

As can be seen, GPU computation gets significantly faster with bigger
images, even gaining vast speedups compared to the very performant ZS84
C++ implementation (using SkImage 4). The Numba implementation on the
other hand is not much faster than the default Numpy implementation. This
most likely comes from the fact that Numpy already does a lot of optimization
and Numba needs to compile the code first (Note that this is only done once
for the run of 1400 images) without significant improvement later on.

5.3 Example Skeletons

Figure 8 gives six examples from the MPEG-7 dataset and the ELVD skele-
tons generated by the GPU. Note in Fig 8f the skeleton leaves the object.
This is because of shape approximation for line generation needed for ELVD.
All example images use the Circular Residual.

‘http://scikit-image.org/docs/dev/api/skimage.html
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Table 2: Average times of algorithm on MPEG7 dataset in ms.

Run # | 2S84 CPU Numba GPU

Run 1 | 0.42 (0.00043) 9.5 (0.00674) 9.94 (0.05155) 8.23 (0.0198)
Run 2 | 2.67 (0.00326) 31.57 (0.03565) 29.86 (0.03304) 13.09 (0.00818)
Run 3 | 19.24 (0.02433) 126.9 (0.17516) 114.41 (0.1539) 15.26 (0.01161)
Run 4 | 497.74 (0.66767) 1404.94 (2.07993) 1266.85 (1.81363) 42.23 (0.05074)
Run 5 | 2338.03 (3.11432) | 5115.79 (7.44559) 4567.13 (6.41103) 100.35 (0.13695)
Run 6 | 499.51 (0.67034) 3925.68 (10.94507) | 3338.29 (9.17605) 124.87 (0.20994)
Run 7 | 2320.01 (3.090.82) | 39749.41 (77.78169) | 33108.99 (64.78515) | 761.55 (1.24783)
Run 8 | 495.98 (0.66541) 1209.6 (1.64169) 1109.98 (1.44618) 33.89 (0.03618)
Run 9 | 498.98 (0.66918) 2102.86 (4.34114) 1843.41 (3.67406) 74.88 (0.10188)
Run 10 | 2322.49 (3.08909) | 4134.24 (5.34866) 3761.56 (4.68866) 78.94 (0.09765)
Run 11 | 2326.2 (3.10157) 15467.9 (34.55211) | 13117.13 (28.92259) | 344.55 (0.63329)
Run 12 | 13726.5 (19.17575) | 48014.31 (97.04433) | 41494.66 (83.55067) | 927.57 (1.95543)

Table 3: Average gains if using Numab/GPU algorithm (first and second
values) and average gain to ZS84 algorithm using CPU and GPU algorithm.

Run # | Numba Gain | GPU Gain CPU Gain to ZS84 | GPU Gain to ZS84
Run 1 | 1.13 (0.06) 1.14 (0.32) 0.04 (0.03) 0.05 (0.04)
Run 2 1.()7 (0.06) 1 (0.87) 0.08 (0.06) 0.19 (0.19)
Run 3 1 (0.05) 6.6 (3.69) 0.18 (0.13) 1.18 (1.18)
Run 4 1 09 (0.04) | 2034 (92) | 0.39 (0.28) 11.74 (11.01)
Run 5 | 1.08 (0.05) 45.54 (12.26) | 0.55 (0.41) 25.35 (22.3)
Run 6 | 1.13 (0.05) 22.67 (7.8) 0.23 (0.2) 5.04 (5.06)
Run 7 | 1.18 (0.04) 36.03 (14.96) | 0.13 (0.1) 3.9 (2.89)
Run 8 1 07 (0.04) 31.18 (10.07) | 0.42 (0.29) 13.53 (12.11)
Run 9 1 (0.05) 22.21 (7.08) | 0.31 (0.25) 7.02 (6.57)
Run 10 1 07 (0.04) 47.62 (12.35) | 0.61 (0.43) 29.43 (24.3)
Run 11 | 1.14 (0.05) 32.36 (10.85) | 0.31 (0.27) 9.22 (8.24)
Run 12 | 1.13 (0.04) 51.09 (9.67) | 0.47 (0.44) 24.23 (24.54)

12




Numba/GPU Gain per run CPU/Numba/GPU Gain per run compared to ZS84
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(a) Gain of Numba/GPU compared to (b) Gain of CPU/Numba/GPU com-
CPU implementation. pared to ZS84.

Figure 7: Speed Relation of different algorithms.

6 Conclusion and Future Work

This work presents an improved Elliptical Voronoi Skeleton and goes into
detail of implementation on CPU and GPU. The provided results show that
even for big images (> 5000 x 5000 pixels) an implementation on GPU hard-
ware can lead to fast computation.

GPU implementation is already promising in the way presented here, but
could be improved in various ways: all steps on GPU; dedicated shader or
smart memory management (3D arrays). Furthermore, Elliptical Voronoi
Skeletons must be further researched and their application domain estab-
lished. We now know that efficient computation is possible.
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Figure 8: Example skeletons. Note that in (f) there are errors because of the
approximation of the boundary.
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