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Abstract. The paper presents a sufficient condition for strong metric
sub-regularity (SMsR) of the system of first order optimality conditions
(optimality system) for a Mayer-type optimal control problem with a
dynamics affine with respect to the control. The SMsR property at a ref-
erence solution means that any solution of the optimality system, sub-
jected to “small” disturbances, which is close enough to the reference
one is at a distance to it, at most proportional to the size of the distur-
bance. The property is well understood for problems satisfying certain
coercivity conditions, which however, are not fulfilled for affine problems.

1 Introduction

In the paper, we analyze the question of strong metric sub-regularity (SMsR) of
the system of optimality conditions at a reference point û for the following affine
optimal control problem, presented in the Mayer form:

min g(x(T )) (1)

subject to
ẋ(t) = a(t, x(t)) +B(t, x(t))u(t), x(0) = x0, (2)

u(t) ∈ U, t ∈ [0, T ], (3)

where the state x is a vector in IRn, the control u has values u(t) that belong to
a given set U in IRm for almost every (a.e.) t ∈ [0, T ]. The initial state x0 and
the final time T > 0 are fixed. The set of feasible control functions u, denoted
in the sequel by U , consists of all Lebesgue measurable and bounded functions
u : [0, T ] → U . Accordingly, the state trajectories x, that are solutions of (2)
for feasible controls, are Lipschitz continuous functions of time t ∈ [0, T ]. For
brevity we denote f(t, x, u) := a(t, x) +B(t, x)u.

? This research is supported by the Austrian Science Foundation (FWF) under grant
No P31400-N32.
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Assumption (A1). The set U is convex and compact, the components of the
functions a,B, g (of dimensions n × 1, n × m and 1, correspondingly) are two
times differentiable with respect to x, the second derivatives are continuous in
x locally uniformly in t,5 a and B and their first and second derivatives in x are
measurable and bounded in t.

Here, and in the squeal, we use the following standard notations. The euclidean
norm and the scalar product in IRn (the elements of which are regarded as
column-vectors) are denoted by | · | and 〈·, ·〉, respectively. The transpose of
a matrix (or vector) E is denoted by E>. For a function ψ : IRp → IRr of
the variable z we denote by ψz(z) its derivative (Jacobian), represented by an
(r× p)-matrix. If r = 1, ∇zψ(z) = ψz(z)

> denotes its gradient (a vector-column
of dimension p). Also for r = 1, ψzz(z) denotes the second derivative (Hessian),
represented by a (p × p)-matrix. For a function ψ : IRp×q → IR of the variables
(z, v), ψzv(z, v) denotes its mixed second derivative, represented by a (p × q)-
matrix. The space Lk = Lk([0, T ], IRr), with k = 1, 2 or k = ∞, consists of
all (classes of equivalent) Lebesgue measurable r-dimensional vector-functions
defined on the interval [0, T ], for which the standard norm ‖ · ‖k is finite. As
usual, W 1,k = W 1,k([0, T ], IRr) denotes the space of absolutely continuous r-
dimensional vector-functions on [0, T ] for which the first derivative belongs to
Lk, with the usual norm, ‖ · ‖1,k. Often the specification ([0, T ], IRr) will be
omitted in the notations. In any metric space we denote by Ba(x) the closed
ball of radius a centered at x.

Define the Hamiltonian associated with problem (1)–(3) as usual:

H(t, x, u, p) := 〈p, f(t, x, u)〉, p ∈ IRn.

Although the feasible controls u ∈ U are bounded, we consider the control-
trajectory pairs (x, u) as elements of the space W 1,1([0, 1], IRn)×L1([0, 1], IRm).

The local form of the Pontryagin maximum (here minimum) principle for
problem (1)-(3) can be represented by the following optimality system for (x, u)
and an absolutely continuous (here Lipschitz) function p : [0, T ] → IRn: for a.e.
t ∈ [0, T ]

0 = −ẋ(t) + f(t, x(t), u(t)), x(0)− x0 = 0, (4)

0 = ṗ(t) +∇xH(t, x(t), u(t), p(t)), (5)

0 = p(T )−∇xg(x(T )), (6)

0 ∈ ∇uH(t, x(t), u(t), p(t)) +NU (u(t)), (7)

where the normal cone NU (u) to the set U at u ∈ IRm is defined as

NU (u) =

{
{y ∈ IRn | 〈y, v − u〉 ≤ 0 for all v ∈ U} if u ∈ U,
∅ otherwise.

5 Applied to a, for example, this means that for every bounded set S ⊂ IRn there exists
a function (called modulus of continuity) ω : (0,+∞)→ [0,+∞) with lims→0 ω(s) =
0, such that |a(t, x′)− a(t, x)| ≤ ω(|x′ − x|) for every t ∈ [0, T ] and x, x′ ∈ S.
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Introduce the spaces

Y := W 1,1
0 × U ×W 1,1, Z := L1 × L1 × IRn × L∞,

where W 1,1
0 is the affine space consisting of those x ∈W 1,1 for which x(0) = x0

and U is endowed with the L1-metric. Norms in this spaces are also defined as
usual: for y = (x, u, p) ∈ Y and z = (ξ, π, ν, ρ) ∈ Z

‖y‖ = ‖x‖1,1 + ‖u‖1 + ‖p‖1,1, ‖z‖ = ‖ξ‖1 + ‖ π‖1 + |ν|+ ‖ρ‖∞.

Then the optimality system (4)–(7) can be recast as the generalized equation

0 ∈ ψ(y) + Ψ(y), (8)

where y = (x, u, p) and

Y 3 y 7→ ψ(y) :=


−ẋ+ f(·, x, u)
ṗ+∇xH(·, y)

p(T )−∇xg(x(T ))
∇uH(·, y)

 ∈ Z, Y 3 y ⇒ Ψ(y) :=


0
0
0

NU (u)

 ⊂ Z.
Here NU (u) := {v ∈ L∞ : v(t) ∈ NU (u(t)) for a.e. t ∈ [0, T ]} is the normal cone
to the set U (considered as a subset of L1) at u ∈ U . For u 6∈ U the normal cone
is empty.

Below we remind one of the several equivalent definitions of the notion of
strong metric sub-regularity, adapted to our notations, see e.g. [4, p. 202].

Definition 1 The set-valued mapping ψ + Ψ : Y →→ Z is Strongly Metrically
sub-Regular (SMsR) at the point ŷ for ẑ if ẑ ∈ ψ(ŷ) + Ψ(ŷ) and there exist
numbers α0 > 0, β0 > 0 and c0 such that for any z ∈ Z with ‖z‖ ≤ α0 and for
any solution y ∈ Y of the inclusion z ∈ ψ(y) + Ψ(y) with ‖y − ŷ‖ ≤ β0, it holds
that ‖y − ŷ‖ ≤ c0‖z − ẑ‖.

We will prove the SMsR property of the mapping ψ+Ψ in the optimality system
(8) under an additional assumption, given in the next section. At the end of the
next section we will also compare our result with the few existing ones. Here
we only mention that in contrast to the case of the so-called “coercive” prob-
lems, where a Legendre-type condition is satisfied, the investigation of regularity
properties for affine control problems started just a few years ago and is still in
progress.

2 Main result

Let a solution ŷ = (x̂, û, p̂) ∈ W 1,1 × U × W 1,1 of the optimality system
(4)–(7) be fixed. To shorten the notations we skip arguments with “hat” in
functions, shifting the “hat” on the top of the notation of the function, so
that f̂(t) := f(t, x̂(t), û(t)), B̂(t) := B(t, x̂(t)), Ĥ(t) := H(t, x̂(t), û(t), p̂(t)),
Ĥ(t, u) := H(t, x̂(t), u, p̂(t)), etc. Moreover, denote

Â(t) := f̂x(t) = fx(t, x̂(t), û(t)), σ̂(t) := ∇uĤ(t, x̂(t), û(t), p̂(t)) = B̂(t)>p̂(t).
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Remark 1 Due to Assumption (A1), and since the solution x̂ of (2) with u = û,
exists on [0, T ], there exist a number r > 0 and a convex compact set S̄ ⊂ IRn

such that for every u ∈ U with ‖u − û‖1 ≤ r the solution x of (2) exists on
[0, T ] and B1(x(t)) ⊂ S̄ for all t ∈ [0, T ]. By taking S̄ sufficiently large we may
also ensure that B1(p̂(t)) ⊂ S̄ for all t ∈ [0, T ]. Using Assumption (A1), we
denote by L a Lipschitz constant with respect to x ∈ S̄ (uniformly with respect
to t ∈ [0, T ], u ∈ U , p ∈ S̄) of the functions a, B, g, f , and H and their first
derivatives in x. Further, we denote by M a bound of all these functions, their
first and second derivatives in x, for (t, x, u, p) ∈ [0, T ] × S̄ × U × S̄. Finally,
we denote by ω̄ a modulus of continuity of the second derivative in x of the
functions a, B, g, f , and H, uniformly with respect to (t, u, p) ∈ [0, T ]× U × S̄
(see Footnote 5). Due to the Grönwal inequality, the following estimation holds
for every u ∈ U with ‖u− û‖1 ≤ r: ‖x− x̂‖C ≤ cf‖u− û‖1 where cf = MeLT .

According to this remark, for any u ∈ U with ‖u− û‖1 ≤ r the value of the
objective functional J(u) := g(x(T )) is well defined. For any function δu ∈ U − û
we introduce the linearized version of equation (2):

δẋ(t) = Â(t)δx+ B̂(t)δu(t), δx(0) = 0, t ∈ [0, T ]. (9)

Denote by Γ the set of all pairs (δx, δu) ∈W 1,1 × L1 such that δu ∈ U − û and
δx is the solution of the linearized equation (9). Let us introduce the following
quadratic functional of (δx, δu) ∈W 1,1 × L1:

Ω(δx, δu) :=
1

2
〈gxx(x̂(T )) δx(T ), δx(T )〉

+

∫ T

0

[
1

2
〈Ĥxx(t)δx(t), δx(t)〉+ 〈Ĥux(t)δx(t), δu(t)〉

]
dt. (10)

Assumption (A2). There exists a constant c0 > 0 such that∫ T

0

〈σ̂(t), δu(t)〉dt+ 2Ω(δx, δu) ≥ c0‖δu‖21 for all (δx, δu) ∈ Γ. (11)

Consider the following “perturbed” version of (8):

z ∈ ψ(y) + Ψ(y), (12)

where z = (ξ, π, ν, ρ) ∈ Z.

Theorem 1 Let assumptions (A1) and (A2) be fulfilled. Then there exist con-
stants α0 > 0, β0 > 0 and c0 such that for any z ∈ Z with ‖z‖ ≤ α0 and
for any solution y = (x, u, p) ∈ Y of the disturbed optimality system (12), with
‖u− û‖1 ≤ β0, it holds that

‖x− x̂‖1,1 + ‖u− û‖1 + ‖p− p̂‖1,1 ≤ c0‖z‖. (13)

Thus, the mapping ψ+Ψ , associated with problem (1)-(3), is strongly metrically
sub-regular at ŷ = (x̂, û, p̂) for zero.
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It is interesting to note that Assumption (A2) guarantees not only strong
metric sub-regularity of the mapping ψ + Ψ at the point (x̂, û, p̂), but also that
û is a strict L1-local minimizer. Moreover, it can be proved that even (formally)
a weaker condition than (A2) guarantees such a minimum at û. This weakened
condition differs from (A2) only by changing 2Ω with Ω in the inequality (11)
(and then it follows from (A2) since 〈σ̂(t), δu(t)〉 ≥ 0 a.e. in [0, T ] for all δu ∈
U − û).

The following more demanding condition than (A2) appears in [1, Section 5]
and is used for error analysis of the Euler discretization scheme:∫ T

0

〈σ̂(t), δu(t)〉dt ≥ c1‖δu‖21 for all (δx, δu) ∈ Γ, (14)

2Ω(δx, δu) ≥ c2‖δu‖21 for all (δx, δu) ∈ Γ

with c1+c2 > 0. Sufficient conditions for (14) are known in the case of a box-like
set U ; see the forthcoming paper [8] for the relevant bibliography, and also for
the case of a general compact convex polyhedral set U .

3 Proof of Theorem 1

We give the proof omitting some details. The positive numbers α0 and β0 will
be fixed later as depending only on L, M and ω̄ (see Remark 1). Now take an
arbitrary z = (ξ, π, ν, ρ) ∈ Z with ‖z‖ ≤ α0 and a solution y = (x, u, p) ∈ Y of
(12) satisfying ‖u− û‖1 ≤ β0. In detail, inclusion (12) reads as

ẋ(t) = f(t, x(t), u(t))− ξ(t), x(0) = x0, (15)

ṗ(t) = −∇xH(t, x(t), u(t), p(t)) + π(t), (16)

p(T ) = ∇xg(x(T )) + ν, (17)

−NU (u(t)) 3 ∇uH(t, x(t), u(t), p(t))− ρ(t), (18)

where differential equations (15), (16) and inclusion (18) have to be fulfilled
for a.e. t ∈ [0, T ]. Denote ∆x(t) = x(t) − x̂(t), ∆ẋ(t) = ẋ(t) − ˙̂x(t), ∆u(t) =

u(t)− û(t) = δu(t), ∆f(t) = f(t, x(t), u(t))− f̂(t), etc. Then

∆ẋ(t) = ∆f(t)− ξ(t), ∆x(0) = 0, (19)

∆ṗ(t) = −∆(∇xH)(t) + π(t), ∆p(T ) = ∆(∇xg)(T ) + ν, (20)

∆σ(t) = ∆(∇uH)(t)− ρ(t). (21)

Applying the Grönwall inequality to equation (19) we obtain

‖∆x‖C ≤ eLT (M‖δu‖1 + ‖ξ‖1) ≤ cf (‖δu‖1 + ‖ξ‖1) ≤ cf (‖δu‖1 + ‖z‖), (22)

where cf = eLT max{M, 1}. Similarly applying the Grönwall inequality to equa-
tion (20) and using (22) we get

‖∆p‖C ≤ cH(‖δu‖1 + ‖z‖), (23)
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where cH = eMT max{L(T +1)cf +M, 1}. The following obvious equality serves
as a source for further key estimations:∫ T

0

〈∆ṗ(t), ∆x(t)〉dt+

∫ T

0

〈∆p(t), ∆ẋ(t)〉dt = 〈∆p(T ), ∆x(T )〉,

whence in view of (19) and (20), we get

〈∆(∇xg), ∆x(T )〉+

∫ T

0

(
〈∆(∇xH)(t), ∆x(t)〉 − 〈∆p(t), ∆f(t)〉

)
dt

= −〈ν,∆x(T )〉+

∫ T

0

(
〈π(t), ∆x(t)〉 − 〈∆p(t), ξ(t)〉

)
dt. (24)

Further, simple expansions and transformations show that

〈∆(∇xH)(t), ∆x(t)〉 = 〈Ĥxu(t)δu(t), ∆x(t)〉+ 〈Ĥxx(t)∆x(t), ∆x(t)〉
+〈Ĥxp(t)∆p(t), ∆x(t)〉+ rHx ,

〈∆p(t), ∆f(t)〉 = 〈Ĥpu(t)δu(t), ∆p(t)〉+ 〈Ĥpx(t)∆x(t), ∆p(t)〉+ rHp(t),

〈Ĥpu(t)δu(t), ∆p(t)〉 = 〈∆(∇uH)(t), δu(t)〉 − 〈Ĥux(t)∆x(t), δu(t)〉+ rσ(t),

where

‖rHx‖1 ≤
(
T ω̄(‖∆x‖C) +MT‖∆p‖C +M‖δu‖1

)
‖∆x‖2C +M‖∆x‖C‖∆p‖C‖δu‖1,

‖rHp‖1 ≤
(
T ω̄(‖∆x‖C) +M‖δu‖1

)
‖∆x‖C‖∆p‖C ,

‖rσ‖1 ≤ ω̄(‖∆x‖C)‖∆x‖C‖δu‖1 +M‖∆x‖C‖δu‖1‖∆p‖C .

Using these formulas together with (22) and (23), we obtain

〈∆(∇xg), ∆x(T )〉+

∫ T

0

(
〈∆(∇xH)(t), ∆x(t)〉 − 〈∆p(t), ∆f(t)〉

)
dt

= 2Ω(∆x, δu)−
∫ T

0

〈∆(∇uH)(t), δu(t)〉dt+ rΩ , (25)

where

|rΩ | ≤ crΩ [ω̄(cf (‖z‖+ ‖δu‖1)) + ‖z‖+ ‖δu‖1](‖z‖+ ‖δu‖1)2, (26)

and crΩ > 0 depends only on L, M , T (therefore also on x̂, û).
The next step involves replacing (∆x, δu) with (δx, δu) ∈ Γ in the quadratic

form Ω. Let δx(t) be the solution of linear equation (9). Then it follows from
(19) and (9) that

d

dt
(∆x(t)− δx(t)) = Â(t)(∆x(t)− δx(t)) + rf (t)− ξ(t),

where |rf (t)| ≤ M |∆u(t)||∆x(t)| + 1
2L|∆x(t)|2. Using the Grönwall inequality

and estimate (22) we obtain that

‖∆x−δx‖C ≤ eMT (‖rf‖1+‖ξ‖1) ≤ cfeMT (M+
1

2
LTcf )(‖ξ‖1+‖δu‖1)2+eMT ‖ξ‖1.
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Since ‖ξ‖1 ≤ α0 and hence (‖ξ‖1 + ‖δu‖1)2 ≤ 2α0‖ξ‖1 + 2‖δu‖21, we get

‖∆x− δx‖C ≤ d̃‖δu‖21 + d̂‖ξ‖1 ≤ d̃‖δu‖21 + d̂‖z‖1, (27)

where d̃ and d̂ depend only on L, M , and T . Now we can estimate the difference
r∆Ω(δu) := Ω(∆x, δu)−Ω(δx, δu) as follows:

|r∆Ω(δu)| ≤M
[1

2
(1 + T )(‖∆x‖C + ‖δx‖C) + ‖δu‖1

]
‖∆x− δx‖C .

In view of (9) we have ‖δx‖C ≤ eMTM‖δu‖1 =: cM‖δu‖1. Using this estimate
together with (22) and (27), we obtain

|r∆Ω(δu)| ≤ c∆Ω(‖δu‖1 + ‖z‖)(‖δu‖21 + ‖z‖), (28)

where c∆Ω := M( 1
2 (1+T )cf +cM )(d̃+ d̂). It follows from (25) and the definition

of r∆Ω that

〈∆(∇xg), ∆x(T )〉+

∫ T

0

(
〈∆(∇xH)(t), δx(t)〉 − 〈∆p(t), ∆f(t)〉

)
dt

= 2Ω(δx, δu)−
∫ T

0

〈∆(∇uH)(t), δu(t)〉dt+ rΩ + 2r∆Ω . (29)

According to (21) σ(t) − σ̂(t) = ∆(∇uH)(t) − ρ(t). This and the inequality
〈σ(t), δu(t)〉 ≤ 0 a.e. in (0, T ), following from (18), imply∫ T

0

〈∆(∇uH)(t), δu(t)〉dt ≤ −
∫ T

0

〈σ̂(t), δu(t)〉dt+

∫ T

0

〈ρ(t), δu(t)〉dt,

and then in view of Assumption (A2) we get from (29) that

〈∆(∇xg), ∆x(T )〉+

∫ T

0

(
〈∆(∇xH)(t), δx(t)〉 − 〈∆p(t), ∆f(t)〉

)
dt

≥ 2Ω(δx, δu) +

∫ T

0

〈σ̂(t), δu(t)〉dt−
∫ T

0

〈ρ(t), δu(t)〉dt+ rΩ + 2r∆Ω

≥ c0‖δu‖21 −
∫ T

0

〈ρ(t), δu(t)〉dt+ rΩ + 2r∆Ω . (30)

Combining this with (24) we get

c0‖δu‖21 + rΩ + 2r∆Ω ≤
∫ T

0

(
〈π(t), ∆x(t)〉〉 − 〈∆p(t), ξ(t)〉+ 〈ρ(t), δu(t)〉

)
dt

−〈ν,∆x(T )〉 ≤ (|∆x(T )|+ ‖∆x‖C + ‖∆p‖C + ‖δu‖1)‖z‖.

Using also (22) and (23) we obtain

c0‖δu‖21 + rΩ + 2r∆Ω ≤ ĉ(‖δu‖1 + ‖z‖)‖z‖, (31)
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where ĉ = (2cf + cH + 1). Take α0 and β0 such that ω̄(cf (‖z‖+ ‖δu‖1)) + ‖z‖+
‖δu‖1 ≤ ε for all ‖z‖ ≤ α0, ‖δu‖1 ≤ β0, where ε ∈ (0, 1) will be defined later.
Then in view of (26) and (28), |rΩ | ≤ 2crΩε‖z‖2 + 2crΩε‖δu‖21 and |r∆Ω | ≤
c∆Ωε‖δu‖21 + c∆Ω‖z‖(‖δu‖1 + ‖z‖). Using these estimates and inequality (31)
we get

(c0 − 2crΩε− 2c∆Ωε)‖δu‖21 ≤ (ĉ+ 2crΩε+ 2c∆Ω)(‖δu‖1 + ‖z‖)‖z‖.

Take ε ∈ (0, 1) such that c0 − 2crΩε − 2c∆Ωε ≥ 1
2c0, and set a = (ĉ + 2crΩ +

2c∆Ω)/c0. Then ‖δu‖21 ≤ 2a(‖δu‖1 + ‖z‖)‖z‖, whence (‖δu‖1 − a‖z‖)2 ≤ (a +
1)2‖z‖2, which implies ‖δu‖1 ≤ (2a + 1)‖z‖. Combined with (22) and (23) this
inequality completes the proof. �
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