
A Model-Driven and Ontology-based Engineering
Approach for Smart Grid Automation Applications

Claudia Zanabria∗, Filip Pröstl Andrén†, Thomas I. Strasser†‡, Wolfgang Kastner‡

∗Réseau de Transport d’Electricité (RTE), Paris, France, claudia.zanabria@rte-france.com
†AIT Austrian Institute of Technology, Vienna, Austria {filip.proestl-andren, thomas.strasser}@ait.ac.at
‡Vienna University of Technology, Vienna, Austria {thomas.strasser, wolfgang.kastner}@tuwien.ac.at

Abstract—Due to the increasing power system complexity
caused by a higher penetration of distributed energy resources,
advanced engineering methods are required which can handle
power system aspects together with information and commu-
nication technologies and new automation concepts. In order
to handle such a complexity, various engineering concepts have
been introduced by providing support such as guidelines, code
generation, and reasoning for the development of smart grid
use cases and applications in the last few years. Nevertheless,
none of these approaches covers all phases in the engineering
of smart grid solutions and the corresponding requirements. In
this paper, two approaches—focusing on rapid development and
on the identification of application inconsistencies—are selected
and combined to cover a wider scope of the requirements for
smart grid automation application engineering. The integration
of the two approaches is shown using an example use case, where
multiple functions for a battery energy management system are
designed, implemented, and validated.

I. INTRODUCTION

The ongoing large-scale integration of Photovoltaic (PV),
wind, and other Distributed Energy Resources (DER) into
the power system—especially at distribution level—is one
of the main reasons for implementing new and advanced
control solutions to guarantee supply of electricity [1]–[3].
Additionally, to accommodate many new DER units also new
energy market approaches are being developed and imple-
mented [4]. While new intelligent methods for operating the
power system emerge, the complexity of the corresponding
engineering process is increasing as well (e.g., due to new
business models and services, the handling of interoperability
between various devices). The realization of complex solutions
is associated with increasing engineering complexity, which
usually results in higher development costs. This motivates
the investment in research and development of innovative
engineering and validation approaches [5], [6].

In order to tackle these issues, several new and advanced
smart grid engineering approaches and concepts have been
introduced during the last years [7]–[12]. However, when
comparing them along the design, development, and validation
phases it turns out that there is still a lack in the fulfillment
of important engineering requirements [13]. Of course, due
to the different characteristics of various tasks within each
phase, it is difficult to cover all requirements in only one
approach. However, the comparison also shows that gaps could
be probably closed or narrowed down when existing methods

are combined with each other [13]. Until now, this has never
been investigated.

This paper examines the potential of such a solution by
combining two of the most recently published engineering
approaches: the Power System Automation Language (PSAL)
[11] and the Energy Management System Ontology (EM-
SOnto) [14]. Compared to other smart grid engineering ap-
proaches, PSAL and EMSOnto were both explicitly devel-
oped to support rapid prototyping of smart grid applications.
Rapid prototyping is important for the development of smart
grid applications since it provides methods implementing and
testing new solutions in a rapid and secure manner, without
jeopardizing the existing infrastructure [15]. In the paper, an
integration of PSAL and EMSOnto is presented. Whereas
PSAL focuses more on providing code generation support,
EMSOnto’s ontology-based approach can provide the engineer
with inferred information, such as reports on controller con-
flicts. Thus, the two approaches complement each other and a
combination can provide a user with even better engineering
support. The integrated approach is illustrated by developing
an example use case starting with a design, followed by a
simulative validation, and completed with code generation for
hardware devices and controllers.

The remaining part of the paper is organized as follows:
Section II presents related and previous work, which this paper
is based upon. In Section III, the example use case is presented
which is later used to show the potential of the combined engi-
neering solution. In the following Section IV, the combination
of PSAL and EMSOnto is discussed. Section V presents a
simulative proof-of-concept validation and shows how code
can be generated for real controllers. Finally, the paper is
concluded with Section VI.

II. RELATED WORK

A. Engineering Methods for Smart Grids

Through an increasing digitalisation, today’s power systems
are in a transit towards cyber-physical energy systems (also
referred to as “smart grids”) [9], [16]–[18]. As a consequence,
classical engineering methods are replaced by advanced en-
gineering approaches where automation and Information and
Communication Technologies (ICT) concepts are increasingly
used. Due to this, common software and systems engineering
and modeling approaches—such as the Unified Modeling

Language (UML) or Systems Modeling Language (SysML)—
are becoming also more common in the domain of power and
energy systems [13].

Apart from general-purpose software engineering methods,
several domain specific engineering approaches for smart grids
have also been developed during the last years. For example,
the IntelliGrid method [19], originally developed in 2003,
was intended as a response to the increasing complexity of
power system automation. Since then, IntelliGrid has also been
published as IEC standard IEC 62559. Today, it is one of
the most commonly used methods for describing smart grid
use cases [8]. Related to IntelliGrid is also the Smart Grid
Architecture Model (SGAM), which provides a visually struc-
tured approach for modeling advanced power system/smart
grid use cases [10]. SGAM proposes different interoperability
layers (business, function, information, communication, and
component) that can be used to model different parts of a
corresponding use case. With the “SGAM Toolbox” [10], a
tool-support for the SGAM approach was also introduced.

Several current smart grid engineering approaches were
compared by Zanabria et al. [13]. A brief overview of this
comparison is shown in Table I. This study mainly focused
on the engineering phases covering specification, design, and
implementation. One conclusion that can be drawn from the
comparison is that approaches that support the specification
phase do not fully support the design phase and vice versa.
For example, both the SGAM Toolbox and SysML show good
support in the specification phase but only limited support for
design and implementation. Furthermore, not all approaches
provide automated support for the implementation phase [13].

TABLE I: Comparison of engineering approaches for the specification, design,
and implementation (adapted from [13]).

Phase Specification Design Impl.
Approach bus./

fun.
inf. comm./

comp.
fun. inf. comm./

comp.
rapid
prot.

UML D d # # #

SysML D D D D d # #

IntelliGrid D # d # # #

SGAM TB D D D # d d

EMSOnto D # D D #

PSAL d D D D D D D

MATLAB # # D d d D

Legend: not supported (#), minimal support (d), basic support (), and
fully supported (D)

As seen in Table I, a good overall support is provided by
PSAL, which can be complemented by EMSOnto especially
for the specification of business and functional logic. Addi-
tionally to the features compared in the study, EMSOnto also
offers an automatic detection of application inconsistencies—
such as controller conflicts. This is unique compared to the
other approaches and allows engineers to receive additional
information about their developed use cases. If this can be
combined with the good support from PSAL for the design
and the implementation phases, the resulting approach will

provide users with effective tools for rapid prototyping of
smart grid applications. In order to achieve this, the two
approaches need to be aligned and integrated with each other
without loosing any of their own capabilities. In the following
two sections, both PSAL and EMSOnto and their features are
briefly summarized.

B. Overview of PSAL and EMSOnto Approaches

1) Power System Automation Language (PSAL) [11]: It has
been designed to be a formalized Domain Specific Language
(DSL) for SGAM compatible use case design and specification
[6]. This was combined with a main focus towards rapid
development of automation, control, and ICT functions for
smart grid automation applications [20]. Due to this, PSAL
both supports modeling of high-level use case descriptions as
well as more detailed design intended for implementation.

PSAL assists design of SGAM’s layers using a textual lan-
guage. In Fig. 1, a UML representation of PSAL’s metamodel
is shown together with two example implementations. PSAL
was explicitly designed to promote rapid generation of code
and configurations [11].

Device Component

Resource PhysicalInterface

ConnectionSystem

Application

Interface

Attribute Operation

Function

ServiceImplementation

(a)

function VoltVArCtrl at
DSOComputer.VoltVAr {

 requests Field.Controls fieldControls
}
module Field {
 interface Controls {
 attribute float32 powerSetpoint
}}

@Distribution @Operation

device DSOComputer {
 ethernet eth0 {ip = "10.0.0.1"}
 resource SCADA
 resource VoltVAr
}
router StationRouter
connect DSOComputer.eth0 with

StationRouter

(b)

Fig. 1: PSAL overview: (a) UML representation, (b) code [13].

The original version of PSAL mainly focused on how
to describe functions and the communication between them.
Also, the generation of communication configurations such as
IEC 61850 or Modbus is supported.

2) Energy Management System Ontology (EMSOnto) [14]:
This approach (see Fig. 2) is intended to support control engi-
neers during the conception, prototype, and implementation of
Energy Management System (EMS) control applications with
a focus on multi-functional storage systems [21]. It focuses
on the function and information layers of the SGAM model.
A main outcome of EMSOnto is an automatic detection of
inconsistencies at the conception level [14]. To achieve this,
an ontology that models an EMS and its environment is
proposed. This includes the structure of the EMS and the
information exchanged within the EMS. Information used to

inference	
of	knowledge

EMS-ontology,
rules,
queries

report	of
inconsistencies

transformation
rules

transformation
rules

control	engineers

analyse
reports

fill	and	analyse	information

use	repository

define
requirements

IED	and	UC
repository

EMSOnto	expert

customize	
EMSOnto

specification design proof-of-concept

EMSOnto

power	system
model

configuration
file

software	artifacts

requirements

DERs	models

software	artifacts

EMS-dataset
(EMS-templates)

customize	software
artifacts

Fig. 2: Overview of the EMSOnto approach.

populate the ontology is gathered by spreadsheet templates
[22]. Using logical rules, the deduction of new information and
inconsistencies is possible. This ensures an error-free design
before an implementation of the proposed solution can be
carried out. The proof-of-concept and implementation stages
are assisted by an automatic code and text generation which
will be deployed within Integrated Development Environment
(IDE) for controllers (e.g., IEC 61131-3 and IEC 61499),
power system simulators, and other potential platforms.

III. EXAMPLE USE CASE

A Use Case (UC) example is introduced to show the benefits
of using EMSOnto and PSAL together. In the UC, a Battery
Energy Storage System (BESS) needs to be designed and
implemented. It supports two services, a Market Service (MS)
where the main actor—an Energy Market Operator (EMO)—
requires to charge or discharge the battery according to spot
market prices. This is done to maximize monetary benefits.
The second service is a Self-Consumption (SC), which assists
a group of households connected to DER units, enabling them
to minimize the consumption from the electric power utility.
Any excess of generated power needs to be stored within the
BESS. In Fig. 3, an overview of the UC is seen.

Both services (i.e., MS and SC) are deployed within an
EMS that commands the active power fed and retrieved by
the BESS by using the command Pref . The setpoints Psc and
Pms are power values required by the households and the
EMO, respectively. Besides this, the EMS measures the State-
of-Charge (SoC) of the battery.

Σ

BESS
Low	Voltage	Grid

���

��� ����

������

���1 ���
�

hh	n	hh	1	 measured output input

MS

SC

����

EMS

Energy	Market	
Operator

Fig. 3: Use case example representing an EMS with SC and MS services.

IV. INTEGRATED APPROACH WITH PSAL AND EMSONTO

Although PSAL and EMSOnto target different use case
types, they still have some overlaps in the engineering pro-
cess [13]. Both methods offer code generation support, but for
different target systems. In order to benefit from the advantages
of both, this paper proposes an integrated approach. Here, a
design approach is presented where the two methods, PSAL
and EMSOnto, exist in parallel. This will allow users to design
their use cases in either PSAL, EMSOnto, or a combination
of both. To make that possible, a model mapping between
PSAL and EMSOnto is used by a transformation engine,
which allows automatic transformation between descriptions
in the two methods. An illustration of the proposed approach—
applied on the example use case—is depicted in Fig. 4.

Battery

PSAL

EMSOnto
Self-Consumption

PSAL

EMSOnto

Market Service

PSAL

EMSOnto

function MS {…}

function SC {…}

function Battery {…}

HLUC Description

Battery battery model

Initial design Conflict identification
and handling

Conflict Handler

function Handler {…}

HLUC Description

Handler conflict handler

PSAL

EMSOnto

Feedback

MS

SC

HLUC Description

MS market serv…

HLUC Description

SC self-cons…

1

2

3

Code and configuration generation 4

Fig. 4: Integrated engineering approach with PSAL and EMSOnto.

The engineer starts with an initial design of the use case
(i.e., Step 1 in Fig. 4). Two services—a Market Service and a
Self-Consumption—are connected to a Battery. It is up to the
developer if PSAL, EMSOnto, or a mix of the two approaches
is used. Once the initial design is finished, Step 2 uses the
conflict identification capabilities of EMSOnto to identify any
possible controller conflicts in the use case. However, before
this step can be executed, the initial model is harmonized into a
common model. Step 2 also generates handling solutions based
on the identified type of conflict. In the example use case, both
the Market Service and the Self-Consumption service want to
change the active power reference of the Battery. This could
lead to possible conflicts. In order to solve them, a Conflict
Handler service is generated and inserted into the initial model
(i.e., Step 3 in Fig. 4). For the example use case, this results
in the new Conflict Handler which is inserted between the
components involved in the conflict.

Step 1 until Step 3 can be iterated until the user is satisfied
with the resulting design. Once that is the case, any of the
capabilities of both PSAL and EMSOnto can be used to gen-
erate code (i.e., Step 4 in Fig. 4), such as models for Simulink
or the Common Information Model (CIM), IEC 61499 code,
and IEC 61850 configurations.

Details about the different steps in Fig. 4 are now discussed
in more detail in the following sections.

A. Mapping between EMSOnto and PSAL

In order to be able to design a system in both PSAL and
EMSOnto, the two approaches must be unified (i.e., mapped)
with each other. This is done by a transformation engine
which implements the mapping between PSAL and EMSOnto,
illustrated by modelling the example use case using both
approaches. Matching concepts from the two modeling ap-
proaches are discussed and highlighted. The following design
steps are indicated as Step 1 in Fig. 4.

First, the UC example is designed and described by using
EMSOnto templates, see Table II. Hence, System(Sys) con-
tains Application{EMS, BESS}, and the EMS is com-
posed of the High Level Use Cases (HLUC) MS and SC.
Besides this, the Application{BESS} contains a model
that simulates the behaviour of the battery (HLUC{Battery}).
The services MS and SC control the active power of the battery
through the command Control(Pref) which targets the set-
point of the HLUC(Battery), represented by Setpoint(Pref).
Furthermore, the SoC of the battery is measured by the
services MS and SC. Thus, the Status(SoC) is provided
by the battery as shown in Table III.

TABLE II: High level structure of the UC example.

System Appl. HLUC Description Variable

Sys EMS MS market service Pref

Sys EMS SC self consumption Pref

Sys BESS Battery battery model Pref

TABLE III: A non-exhaustive list of variables of the HLUCs: MS, SC and
Battery.

HLUC Var. Description Type hasMax IsAssignedBy

MS Pref active power
required by
MS

Control 80

SC Pref active power
required by
SC

Control 80

Batt. Pref active power Setpoint 100 MS.Pref,
SC.Pref

Batt. SoC state-of-
charge

Status 50

The same use case is modeled using PSAL in Listing 1.
Here, the functions represent the HLUCs in Table II, one
for the market service, one for the self-consumption, and one
function for modeling the battery model.

The variables defined in Table III are modeled with
PSAL using the module Variables. Here, two information
interfaces with attributes are used to model the variables
Pref and SoC. In order to model the limits of the variables, a
constant attribute is used with a post-fix (see Pref_hasMax).

In Listing 1, the information exchange between the
functions is also modeled. The Battery provides a service
based on the interface BatteryPCtrl. The same interface

is also requested by the two other functions using the

1 /* market service */
2 function MS {
3 requests Variables.IPref Pref
4 }
5 /* self consumption */
6 function SC {
7 requests Variables.IPref Pref
8 }
9 /* battery model */

10 function Battery {
11 provides Variables.IPref Pref
12 }
13 connect MS.Pref with Battery.Pref
14 connect SC.Pref with Battery.Pref
15

16 module Variables {
17 interface IPref {
18 /* active power */
19 attribute float32 Pref
20 const float32 Pref_hasMax = 100
21 }
22 interface ISOC {
23 /* state of charge */
24 readonly attribute uint16 SoC
25 const uint16 SoC_hasMax = 100
26 }
27 }

Listing 1: PSAL code for the example use case.

requests expressions. Finally, with the two connect expres-
sions the requested services are connected with the provided
service from the Battery.

Unlike EMSOnto, PSAL does not differentiate between
different types of variables (i.e., Control, Setpoint,
Status). However, it is possible to define an attribute as
readonly, which implies that its value cannot be overwrit-
ten. This can be used to infer the type in EMSOnto. For
example, a readonly attribute that is provided is mapped
to a Status variable type in EMSOnto. An overview of the
resulting mapping between PSAL and EMSOnto is shown in
Table IV. In the integrated approach, this mapping is used by
a transformation algorithm to allow automatic transformation
between descriptions in PSAL and EMSOnto and vice versa.

TABLE IV: Mapping between EMSOnto and PSAL.

EMSOnto PSAL

HLUC(HLUCName) function HLUCName

Variable(VName) interface IVName {
attribute ... VName }

Setpoint(VName),
Status(VName)

provides IVName VName

ControlVName requests IVName VName

B. Reasoning in EMSOnto

After the initial design, the next step is to use the reasoning
capabilities of EMSOnto to find any possible inconsistencies
and conflicts in the model (i.e., Step 2 in Fig. 4). Also, this
step utilizes the mapping described in Section IV-A.

EMSOnto proposes an ontology represented by the de-
scription language SROIQ(D) [23] to describe EMS control
applications. This ontology is automatically populated by

collecting the information provided by the control engineers
in the EMSOnto templates during the design phase. By using
inference techniques on the ontology, it is possible to find
inconsistencies in the planned design.

The inconsistencies that can be detected are classified in
six groups (CI . . .CV I). In the example UC, two types of
conflicts are identified: (i) set-point set by at least two UCs
(CV), and (ii) set-point out of limits (CIII). This is due to
different control variables, originating from MS and SC ser-
vices (Control(Pref)), which intend to command the active
power injected by the battery. Furthermore, the accumulation
of the maximum value of those commands (160 kW) exceeds
the maximum allowed power to be discharged or charged by
the battery (100 kW).

C. Feedback to PSAL/EMSOnto from Reasoner

EMSOnto proposes handling mechanisms to face the ab-
normal operation of the EMS, where conflicts were identified.
Hence, a HLUC(Handling) is generated, This function gathers
conflicted information from the HLUC(MS, SC) in order to
calculate the value to be set within the Setpoint(Pref) of the
HLUC(Battery). This calculation is based on two parameters
that hold the priority of each HLUCs in conflict. The HLUC
with the highest priority is preferred among the others. The
rule for setting the priorities could come from regulatory
frameworks (e.g., energy market regulator, grid codes) in such
a case those rules will be used during the design phase. The
demand from others HLUC can be also treated depending on
the capacity of the battery. The resulted handling function is
handed over to the control engineers in the form of spreadsheet
templates as seen in Table V. This is shown as Step 3 in Fig. 4.

TABLE V: Structure of HLUC(Handling), a function generated by EMSOnto
to face conflicts within the EMS.

HLUC Var. Description Type IsAsignedBy

Handl. Pref ms active power required
by MS

Setpoint MS.Pref

Handl. Pref sc active power required
by SC

Setpoint SC.Pref

Handl. Prt ms priority of MS Setpoint

Handl. Prt sc priority of SC Setpoint

Handl. Pref active power set into
the battery

Control

Based on the HLUC(Handling) shown in Table V, the same
handling solution is generated for PSAL by the transformation
engine (see Listing 2). The transformation follows the same
mapping pattern as presented in Section IV-A. Furthermore,
the priority variables as depicted in Table V are mapped to
consts with assigned priority. The PSAL code presented in
Listing 2 is added to the code shown in Listing 1.

The steps up until now (depicted in Fig. 4) can be repeated
any times until the engineer is satisfied with the design and
all conflicts are handled. There can, for example, be cases
where the user wants to overrule a detected conflict. This might
happen, when the engineer possesses more domain knowledge

than is modeled within the use case. Thus, it is possible for the
engineer to draw conclusions about the conflicts that cannot
be known by the reasoner.

1 /* conflict handler */
2 function Handling {
3 /* active power required by MS */
4 provides HandlingInterfaces.HPref Pref_ms
5 /* active power required by SC */
6 provides HandlingInterfaces.HPref Pref_sc
7 /* active power set into the battery */
8 requests Variables.IPref Pref
9 }

10 connect MS.Pref with Handling.Pref_ms
11 connect SC.Pref with Handling.Pref_sc
12 connect Handling.Pref with Battery.Pref
13

14 /* module for conflic handling */
15 module HandlingInterfaces {
16 interface HPref {
17 attribute float32 Pref
18 const float32 Pref_hasMax = 100
19 /* priority of MS */
20 const uint8 Prt_ms = 1
21 /* priority of SC */
22 const uint8 Prt_sc = 2
23 }
24 }

Listing 2: PSAL code for the example use case.

V. PROOF-OF-CONCEPT AND CODE GENERATION

Once a model is ready—including the initial design together
with added conflict handlers—code and configurations can
be generated based on it. For this step, the code generation
capabilities of both PSAL and EMSOnto can be used. Based
on the example use case from Fig. 3, the following sections
show how the code is generated by both approaches.

A. Proof-of-Concept with Simulation Models

Overall, smart grid applications can be validated using a
diversity of tools such as co-simulation frameworks, commu-
nication network emulators, power system simulators, or IDE
controller emulators. [17]. From one perspective, the selection
of those tools depends on the SGAM layer that is addressed,
for instance using communication emulators (e.g., ns-3) for
tests of the communication layer.

EMSOnto mainly addresses the proof-of-concept of the
function and information layers. Hence, support is offered to
generate code and models from the information collected by
the spreadsheet templates. For simulation, artifacts are gener-
ated for MATLAB/Simulink [14]. Fig. 5 shows the generated
Simulink simulation model of the used example use case. A
solution to address the conflicts identified in the example (CV

and CIII) is proposed as a MATLAB script, see Listing 3.
Manual work is still needed from control engineers to

achieve a full model that is ready to be simulated. This
work is related to the behavior of the services: HLUC(MS,
SC, Battery). Hence, control engineers may use the Simulink
libraries to complete the EMS model. The power required
by the services HLUC(SC, MS) is cut down to respect the
technical limitations of the battery. The reduction of power

1 % Handling solution
2 function Pref = Handling(Pref_ms, Prt_ms, Pref_sc, Prt_sc)
3 P_max = 1000; % Maximum allowed power for the battery
4 if abs(Pref_ms + Pref_sc) > P_max
5 if Prt_ms > Prt_sc
6 Pref_sc = sign(Pref_sc) * (P_max -

abs(Pref_ms));
7 else
8 Pref_ms = sign(Pref_ms) * (P_max -

abs(Pref_sc));
9 end

10 end
11 Pref = Pref_ms + Pref_sc;

Listing 3: MATLAB script of HLUC(Handling)

is done according to the level of priority set by each ser-
vice. Since the HLUC(SC) has a higher priority compared to
HLUC(MS), the power required by the service MS is cut down
from Pms to Pmscut. The setting of priorities is defined
by control engineers considering regulatory frameworks for
energy storage systems when they are operated in multi-use
scenarios. The simulation results in Fig. 6 demonstrate that
the code generated regarding the HLUC(Handling) resolves the
conflicts between the services MS and SC.

B. Implementation with IEC 61499 and IEC 61850

Once a proof-of-concept validation has been made, both
PSAL and EMSOnto provide code generation capabilities that
can be used to generate executable IEC 61499 applications
[11], [13]. Based on the example use case modeled in the
sections above, Fig. 7 shows the resulting IEC 61499 applica-
tion. For each function listed in Listing 1 and Listing 2, an
IEC 61499 Function Block (FB) is generated. Based on the

MS

Pms

SoC

Pref

prt

MS

SC

Psc

SoC

Pref

prt

SC

Handling

Pref_ms

Prt_ms

Pref_sc

Prt_sc

Pref

Handling

Battery
Pref SoC

Battery

Fig. 5: Simulink model of the EMS (HLUC(MS, SC, Handling)) connected to
a BESS, resulted with EMSOnto.

Time [Sec.]
0 100 200 300 400

P
ow

er
[N

or
m

al
iz
ed

]

-1

-0.5

0

0.5

1

Psc

Pms

Pmscut

Fig. 6: Power required and finally set by the HLUC(SC)(Psc) and HLUC(MS)
(Pms).

PSAL code, interfaces for the FBs and connection in between
are also generated [11].

� �
<SCL xmlns="http://www.iec.ch/61850/2003/SCL">
<Header id="" version="3"/>
<Communication> ... </Communication>
<IED name="Battery">
<AccessPoint name="AP1">
<Server>
<LDevice inst="Ctrl">
<LN0 lnClass="LLN0" inst="" lnType="LLN0_0"/>
<LN lnClass="DRCC" inst="1" lnType="DRCC_0"/>

</LDevice> </Server> </AccessPoint> </IED> ... </SCL>� �
Fig. 7: Generated IEC 61499 application with IEC 61850 SCL configuration.

One of the main features of PSAL is that it can generate
communication configurations based on the interfaces de-
fined in the PSAL code [11], [20]. If for example IEC 61850
communication should be used for the communication with
the Battery, it can be done by changing the definition of the
IPref to the following: interface IPref : IEC61850.DRCC.
PSAL comes with predefined definitions of the most common
IEC 61850 Logical Nodes (LN), including the LN DRCC1.
These definitions can be used to specify for which connections
IEC 61850 should be used as communication protocol. If that
is the case, PSAL generates IEC 61850 configuration files
based on the Substation Configuration Language (SCL). An
excerpt of an SCL-file used to configure the communication
to the battery is also shown in Fig. 7.

VI. CONCLUSIONS

Smart grid automation and control solutions tend to increase
in complexity—also from and engineering point-of-view. This
has triggered the introduction of partly new and advanced de-
sign and engineering approaches over the last years. However,
none of them is able to support an automation and control
engineer during all phases of the engineering process. There-
fore, this work analyzed the potential of combining several
approaches to reduce human design errors and at the same
time provide rapid prototyping of smart grid applications. In a
corresponding study the combination of PSAL and EMSOnto
has been introduced and discussed.

An advantage of combining PSAL and EMSOnto is the
availability of profound and formal methods to describe the
different phases accordingly. This can be done by using
spreadsheet templates or a textual language. Furthermore,
the two approaches complement each other, which allows
engineers to cover more aspects when designing smart grid
applications, compared to the alone usage of EMSOnto or
PSAL. An important advantage that EMSOnto brings to PSAL
is the detection of inconsistencies at the conception level. This

1DRCC: DER Supervisory Control [24]

is also supported by the suggestion of solutions to address
the conflicts among services deployed within the control
application under design. Those advantages are demonstrated
by a practical use case example where not only the conception
was supported but also the proof-of-concept and the imple-
mentation phases.

This paper presents one example where the potential of
combining PSAL and EMSOnto is clearly shown. However,
in order to use this combined approach on a broader scale in
different smart grid projects, future work will need to focus
on the refinement of an integrated solution, the development
of improved engineering tools as well as the validation of the
combined approach in a wider range of selected examples to
offer better quantitative comparisons. One domain that could
benefit from the proposed solution is power system protec-
tion for electrical substations since simultaneous operation of
different protection functions must be assured [25]. Further-
more, better integration with existing and already widely used
approaches, such as IntelliGrid or SGAM is also targeted.

ACKNOWLEDGMENT

This work is partly funded by the Austrian Ministry for
Transport, Innovation and Technology (bmvit) and the Aus-
trian Research Promotion Agency (FFG) under the ICT of the
Future Program in the MESSE project (FFG No. 861265).

REFERENCES

[1] EERA Joint Programme on Smart Grids, “Sub-Programme 4: Electrical
Energy Technologies,” 2014.

[2] R. Hollinger, L. M. Diazgranados, F. Braam, T. Erge et al., “Distributed
solar battery systems providing primary control reserve,” IET Renewable
Power Generation, vol. 10, no. 1, pp. 63–70, 2016.

[3] M. Liserre, T. Sauter, and J. Y. Hung, “Future energy systems: Inte-
grating renewable energy sources into the smart power grid through
industrial electronics,” IEEE Industrial Electronics Magazine, vol. 4,
pp. 18–37, 2010.

[4] M. Kazemi, H. Zareipour, N. Amjady, W. D. Rosehart, and M. Ehsan,
“Operation scheduling of battery storage systems in joint energy and
ancillary services markets,” IEEE Transactions on Sustainable Energy,
vol. 8, no. 4, pp. 1726–1735, 2017.

[5] T. Strasser, F. P. Andrén, G. Lauss et al., “Towards holistic power
distribution system validation and testingan overview and discussion of
different possibilities,” e & i Elektrotechnik und Informationstechnik,
vol. 134, no. 1, pp. 71–77, 2017.

[6] M. Uslar, S. Rohjans, C. Neureiter et al., “Applying the smart grid
architecture model for designing and validating system-of-systems in the
power and energy domain: A European perspective,” Energies, vol. 12,
no. 2, 2019.

[7] M. A. Al Faruque and F. Ahourai, “A Model-Based Design of Cyber-
Physical Energy Systems,” in 19th Asia and South Pacific Design
Automation Conference (ASP-DAC), 2014, pp. 97–104.

[8] M. Gottschalk, M. Uslar, and C. Delfs, The Use Case and Smart Grid
Architecture Model Approach: The IEC 62559-2 Use Case Template and
the SGAM applied in various domains. Springer Verlag Heidelberg,
2017.

[9] T. H. Morris, A. K. Srivastava, B. Reaves et al., “Engineering Fu-
ture Cyber-Physical Energy Systems: Challenges, Research Needs, and
Roadmap,” in North American Power Symposium (NAPS), 2009.

[10] C. Neureiter, “A domain-specific, model driven engineering approach
for systems engineering in the smart grid,” Ph.D. dissertation, Carl von
Ossietzky Universität Oldenburg, Computer Science Department, 2017.

[11] F. Pröstl Andrén, T. I. Strasser, and W. Kastner, “Engineering smart
grids: Applying model-driven development from use case design to
deployment,” Energies, vol. 10, no. 3, 2017.

[12] C. Zanabria, “Adaptable engineering support framework for multi-
functional battery energy storage systems,” Ph.D. dissertation, Vienna
University of Technology, Institute of Mechanics and Mechatronics,
2018.

[13] C. Zanabria, F. Pröstl Andrén, and T. I. Strasser, “Comparing specifi-
cation and design approaches for power systems applications,” in 2018
IEEE PES Transmission Distribution Conference and Exhibition - Latin
America (T D-LA), 2018, pp. 1–5.

[14] C. Zanabria, A. Tayyebi, F. Pröstl Andrén, J. Kathan, and T. Strasser,
“Engineering support for handling controller conflicts in energy storage
systems applications,” Energies, vol. 10, no. 10, p. 1595, 2017.

[15] A. Monti and F. Ponci, “Power grids of the future: Why smart means
complex,” in 2010 Complexity in Engineering. IEEE, 2010, pp. 7–11.

[16] V. Gungor, D. Sahin, T. Kocak et al., “Smart Grid Technologies:
Communication Technologies and Standards,” IEEE Transactions on
Industrial Informatics, vol. 7, no. 4, pp. 529–539, 2011.

[17] P. Palensky, E. Widl, and A. Elsheikh, “Simulating cyber-physical energy
systems: Challenges, tools and methods,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 44, no. 3, pp. 318–326, 2013.

[18] X. Yu and Y. Xue, “Smart grids: A cyberphysical systems perspective,”
Proceedings of the IEEE, vol. 104, no. 5, pp. 1058–1070, May 2016.

[19] J. Hughes, “Intelligrid architecture concepts and iec61850,” in
2005/2006 IEEE/PES Transmission and Distribution Conference and
Exhibition, May 2006, pp. 401–404.

[20] F. Pröstl Andrén, T. Strasser, and W. Kastner, “Applying the SGAM
Methodology for Rapid Prototyping of Smart Grid Applications,” in
42nd Annual Conf. of the IEEE Ind. Electronics Society (IECON), 2016.

[21] B. Bletterie, A. Tayyebi, S. Kadam et al., “A novel concept for
combining distribution network and system support services for storage
systems,” in 2017 IEEE Manchester PowerTech. IEEE, 2017, pp. 1–6.

[22] C. Zanabria, F. Andrén, J. Kathan, and T. Strasser, “Rapid prototyping
of multi-functional battery energy storage system applications,” Applied
Sciences, vol. 8, no. 8, p. 1326, 2018.

[23] S. Gaggl, S. Rudolph, and L. Schweizer, “Fixed-domain reasoning
for description logics,” in Proceedings of the Twenty-second European
Conference on Artificial Intelligence. IOS Press, 2016, pp. 819–827.

[24] IEC 61850-7-420: Communication networks and systems for power util-
ity automation - Part 7-420: Basic communication structure - Distributed
energy resources logical nodes. Geneva, Switzerland: International
Electrotechnical Commission (IEC), 2009.

[25] A. Alvarez de Sotomayor, D. Della Giustina, G. Massa et al.,
“IEC 61850-based adaptive protection system for the MV
distribution smart grid,” Sustainable Energy, Grids and Networks,
vol. 15, pp. 26 – 33, 2018, Technologies and Methodologies
in Modern Distribution Grid Automation. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2352467716302077

