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Summary. The concept of a matter object being annihilated when meeting its corre-
sponding anti-matter object is taken over for membranes as objects and anti-membranes
as the corresponding annihilation counterpart in P systems. Natural numbers can be
represented by the corresponding number of membranes with a specific label. Compu-
tational completeness in this setting then can be obtained with using only elementary
membrane division rules, without using objects.

1 Introduction

The basic model of P systems as introduced in [12] can be considered as a dis-
tributed multiset rewriting system, where all objects — if possible — evolve in par-
allel in the membrane regions and may be communicated through the membranes.
Overviews on the field of P systems can be found in the monograph [13] and the
handbook of membrane systems [14]; for actual news and results we refer to the
P systems webpage [16] as well as to the Bulletin of the International Membrane
Computing Society.

Computational completeness (computing any partial recursive relation on non-
negative integers) can be obtained with using cooperative rules or with cat-
alytic rules (possibly) together with non-cooperative rules. We recall that non-
cooperative rules have the form @ — w, where a is a symbol and w is a multiset,
catalytic rules have the form ca — cw, where the symbol c is called the cata-

lyst, and cooperative rules have no restrictions on the form of the left-hand side.
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nly one catalyst is needed, for example, see [6, 8, 9]. In [2, 1], another concept to
void cooperative rules is investigated: for any object a (matter), its anti-object
anti-matter) a~ is considered together with the corresponding annihilation rule
a~ — ), which is assumed to exist in all membrancs; this annihilation rule is
ssumed to be a special non-cooperative rule having priority over all other rules in
he sense of weak priority (e.g., see [3], i.e., other rules then also may be applied if
bjects cannot be bound by some annihilation rule any more). For spiking neural
» systems, the idea of anti-matter has been introduced in [11] with anti-spikes
s anti-matter objects. In [5] the power of anti-matter for solving NP-complete
roblems is exhibited.

Although, as expected (for example, compare with the Geffert normal forms,
ee [15]), the annihilation rules are rather powerful, it is still surprising that using
natter/anti-matter annihilation rules as the only non-cooperative rules, with the
nnihilation rules having weak priority, computational completeness can already
)¢ obtained without using any catalyst, see [2, 1], whercas usually at least onc
atalyst is needed even when using other control mechanisms, for example, see [2].

Natural numbers can be represented by the corresponding number of mem-
rranes with a specific label. Hence, in this paper we take over the idea of anti-
bjects for membranes, i.e., for every membrane | |, we take the anti-membrane
]n- and the membrane / anti-membrane annihilation rule [ |a[ [,-— A. In the
implest case, we only use elementary membranes, but no objects, and elementary
nembrane division, i.e., rules of the form [ ],—{ |n/[ |n~, possibly also allowing
nembrane renaming rules of the form [ ],—[ Jp» or membrane deletion rules of the
orm [ ],— A. In this setting, computational completeness then can be obtained
vith using only elementary membrane division rules, without using objects, to-
rether with anti-membranes and membrane / anti-membrane annihilation rules.

2 Prerequisites «

[he set of integers is denoted by Z, and the set of non-negative integers by N.
Jiven an alphabet V, a finite non-empty set of abstract symbols, the free monoid
renerated by V under the operation of concatenation is denoted by V*. The ele-
nents of V* arc called strings, the empty string is denoted by A, and V*\{A} is
lenoted by V+. For an arbitrary alphabet V = {as, ..., an}, the number of occur-
ences of a symbol a; in a string z is denoted by |z|,,, while the length of a string =
s denoted by |z| = Y-, ¢y |#]a,- The Parikh vector associated with 2 with respect
0 a1,...,0n 18 (|Zlay,- -+ |Z|a,). The Parikh image of an arbitrary language L
wer {ai,...,a,} is the set of all Parikh vectors of strings in L, and is denoted by
Ps(L). For a family of languages FL, the family of Parikh images of languages
n FL is denoted by PsFL, while for families of languages over a one-letter (d-
ctter) alphabet, the corresponding sets of non-ncgative integers (d-vectors with
10n-negative components) are denoted by NFL ( NAFL ).
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(Izlays -+ s [@la,) = (f(@1),...,f(an)). In the following we will not distinguish
between a vector (my,...,my), a.vm‘ull.iseL {(a™,...,al™) or a string x having
(l#dasss553 I:c_]a") = (ma,...,m,). Fixing the sequence of symbols a,, ... , @y, in an
alphabet V in advance, the representation of the multisct {a1™,...,a™) by the

. 7 . . £ Y
string af™ ... a7 is unique. The set of all finite multisets over an alphabet V is

denoted by V°,

The family of regular and recursively enumerable string languages is denoted
by RE’G and RE, respectively. For more details of formal langnage theory the
reader is referred to the monographs and handbooks in this area as (4] and [15)

Register machines

A register machine is a tuple M = (m, B,lo,ln, P), where m is the number of
registers, B is a set of labels, lj € B is the initial label, I, € B is the final
label, and P is the set of instructions bijectively labeled by elements of B. The
instructions of M can be of the following forms:

e [y: (ADD(]),lQ,l;;), with [; € B\{lh}, lg,l3 (S B, 1 <j<m.
Increases the value of register j by one, followed by a non-deterministic jump
to instruction [ or I3. This instruction is usually called increment.

o [i: (SUB(]),lg,l3), with [; € B\{lh}, lo,l3 € B, 1<5<m.
If the value of register j is zero then jump to instruction l3; otherwise, the
value of register j is decreased by one, followed by a jump to instruction ls.
The two cases of this instruction are usually called zero-test and decrement,
respectively.

e U : HALT. Stops the execution of the register machine.

A configuration of a register machine is described by the contents of each register
and by the value of the current label, which indicates the next instruction to be
executed. Computations start by executing the instruction ly of P, and terminate
with reaching the HALT-instruction [,. For useful results on the computational
power of register machines, we refer to [10].

3 P Systems with Active Membranes and Anti-Membranes

For using anti-matter as a frontier of tractability, we refer to [6], where some
stan(.iard definition of P systems with active membranes can be found. We here
consider a special rather restricted model, where no objects are used and inside

the skin membrane only the following types of rules for clementary membranes are
used:

elementary membrane division [ ][ Jn[ |nr

.the elementary membrane [ |, is divided into two membranes, possibly chang-
ine the labhal A af the narent o baere [ 10 4 dosom oo 111 L8 LM £ 471
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changing membrane label [ ]n—[]n
the label A of the elementary membrane [ |, is changed to h’

elementary membrane deletion [ ],— A
the elementary membrane [ |5, is deleted

membrane / anti-membrane annihilation [ ]n[]p-— X
the elementary membrane | |, and its corresponding anti-membrane [ |,- an-
nihilate each other

Formally, a. P system with active membranes and anti-membranes (a PAMS for
short) is a construct II = (H U {0}, ]o, wo, R) where H is the set of membrane
labels used in the membrane rules specified in R, [ ]o denotes the skin membrane
cnclosing the initial set of elementary membranes wy with labels from H, and R
is the set of rules of the forms described above, with the labels of the elementary
membranes taken from H.

In any computation step of /7 a multiset of rules is chosen from the set R in
such a way that no further rule can be added to it so that the obtained multiset
would still be applicable to the existing membranes in the skin membranc. We
emphasize that membrane / anti-membrane annihilation rules have weak priority
over all other rules, i.e., as long as membrane / anti-membrane annihilation rules
may bind some membranes, other rules are not allowed to yct be taken into the
multiset of rules constructed to be maximal.

A configuration of the system can be represented by the membranes inside the
skin membrane. Starting from a given initial configuration and applying evolution
rules as described above, we get transitions among configurations; a sequence of
transitions forms a computation. A computation is halting if it reaches a configu-
ration where no rule can be applied any more.

In the generative case, a halting computation has associated a result, in the
form of the number of membranes with the same labels present in the skin mem-
brane; their numbers represents a vector of natural numbers. In the accepting case,
all (vectors of) non-negative integers are accepted whose input, given as the cor-
responding numbers of membranes in the skin membrane in addition to wy, leads
to a halting computation. The set of non-negative integers and the sct of (Parikh)
vectors of non-negative integers generated/accepted as results of halting computa-
tions in IT are denoted by Ns(II) and Pss(II), respectively, with § € {gen, acc}.
The corresponding families of sets of non-negative integers and the sets of vectors
of non-negative integers generated/accepted by PAMSs are denoted by Ns(PAMS)
and Pss(PAMS), respectively.
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4 Results

As a first result, we observe that rules changing membrane label, i.e., [ |, —{]n/, and
elementary membrane deletion rules, i.e., [ |,— A, are not needed and can be re-
placed by using only elementary membrane division and suitable membrane / anti-
membrane annihilation rules.

Lemma 1. Rules changing membrane label, i.e., [ |n—[ |1/, and elementary mem-
brane deletion rules, i.e., | ln— X, can be simulated by elementary membrane
diwvision and membrane / anti-membrane annihilation rules.

Proof. A rule changing the membrane label, i.e., [ ]a—[ |a/, can be simulated by
the rules [ |p—>[ Jae[ Jnrs [ = 1ol 1=, and [ Jg[ Jg-— A, where h”, g, g™ are new
labels.

An elementary membrane deletion rules, i.c., [ J— A, can be simulated by the
rules [ |,—[ ]g[ |g- and []g[]g- — A, where g, g~ are new labels. O

A PAMS only using elementary membrane division and membrane / anti-
membrane annihilation rules is called a PAMS in normal form. As an immediate
consequence of the preceding lemma we obtain the following normal form theorem:

Theorem 1. For every PAMS IT we can construct a PAMS IT' in normal form
such that Ns(II) = N3(I1'} and Pss(IT) = Pss(II'), with § € {gen, acc}.

We now show that PAMSs characterize the sets NRE and PsRE, respectively.
The main proof idea — as used very often in the area of P systems — is to simulate
(the computations of) register machines, as carried out in a similar way in [1] for
P systems with anti-matter.

Theorem 2. For any Y € {N, Ps} and ¢ € {gen,acc},Ys(PAMS) =Y RE.

Proof. Let M = (m, B, lg, 1, P) be a register machine. We now construct a PAMS
IT which simulates (the computations of) M:

Il = (HU {O}a[ ]O’anR);
H={rr |1<r<m}U{l,l'|l € B}U{#,# } is the set of labels for the
elementary membranes inside the skin membrane;
the label r,1 < r < m, is for the copies of membrane [ ], representing the
contents of register 7; the labels r~ are for the corresponding anti-membranes;
e in the gencrating case, initially the skin membrane contains only the elemen-
tary membrane [ ];,; in the accepting case, suitable copies of membranes for
representing the input vector are to be added;
e R contains the rules described in the following.

The contents of register r is represented by the number of copies of the ele-
mentary membrane [ ], 1 < r < m, and for each membrane | |, we also consider
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o [: (ADD (j),lg,lg), with [, € B\{lh}, lp,lz€ B,1<j7<m.

Simulated by the rules

[l =[1r[ )i @nd []s; =[]r[ ]is-

e [: (SUB (’I’) ,lz,lg), with I, € B \ {lh}, lo,lz€ B, 1<r<m.

As rules common for the simulations of all SUB-instructions, we have

[]’r" 4)[]#7a ISTSTH,
and the annihilation rules
[l =X 1<r<m,and [|#[]p- = A

as well as the trap rules

= = gl g and [ = [gl s

these last two rules lead the system into an infinite computation whenever
a membrane with one of the trap symbols # or #~ is left without being
annihilated.

The zero test for instruction Iy is simulated by the rules

[ = [ [Je- and [Ji = [ T4l -

The membrane labeled by #, generated by the second rule [ ];; — [ ][ ], can
only be eliminated if the anti-membrane [ ],- generated by the first rule [ ],
— [ 1,7 [ |- is not annihilated by [ ],, i.e., only if register r is empty, which
allows for applying the rule [ ],- — [ ]~ and for using the annihilation rule
[l#[]g- — X afterwards in the next derivation step.

The decrement case for instruction /; is simulated by the rule

[T = el 1

The anti-membrane | |- either correctly annihilates one copy of membrane [ |,
thus decrementing the register r, or else traps an incorrect guess by forcing the
anti-membrane [ ],- to evolve to [ |4- and then to [ Ju[ |% in the next two
steps in case register r is empty.

o [, : HALT. Simulated by [];, — A

When the computation in M halts, the membrane [ |;, is removed, and no
further rules can be applied provided the simulation has been carried out correctly,
i.e., if no membranes labeled by trap symbols # are present in this situation. The
remaining membranes in the system represent the result computed by M. O

For § € {gen,acc}, let us denote the families of sets of non-negative integers
and the sets of vectors of non-negative integers generated/accepted by PAMSs in
normal form by Ns(NFPAMS) and Pss(NFPAMS), respectively.

M A s Tiaomntomnme T mtrmenme 1 memned T it ) omren Lt fs 21leo LT et o v warmrena |4 o
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5 Conclusion

In this paper we have taken over the idea of matter and anti-matter objects in
P systems to P systems with active membrancs, now considering membranes and
anti-membranes as the objects interacting with each other in annihilation rules,
which we assume to have weak priority over all other rules. We have investigated a
restricted model of P systems with active membranes, without any objects in the
whole system and instead only elementary membranes in the skin membrane. In
this model, natural numbers are represented as copies of elementary membranes
with a specific label. In such a variant of P systems with active membranes, com-
putations of register machines can be simulated by using only (a special variant of)
elementary membrane division rules and membrane/anti-membrane annihilation
rules.

There are several other interesting variants of P systems allowing for introduc-
ing anti-membranes and membrane / anti-membrane annihilation rules. For exam-
ple, instead of membranes inside the skin membrane, we may consider tissue-like
P systems where the skin is replaced by the environment and the labeled mem-
branes now correspond to labeled cells which may interact with each other in
cell / anti-cell annihilation rules.

On the other hand, in a more gencral model, we need not restrict ourselves to
elementary membranes interacting with each other in membrane / anti-membrane
annihilation rules. In fact, we may consider a variant where in such a reaction
only the outermost membranes of two non-elementary membranes react, emit-
ting the interior membrane structure into the skin membrane. In such a variant,
non-elementary membrane division becomes relevant, as well as rules allowing for
putting a new membrane around a given membrane structure, i.e., rules of the form
[1n = [ [ Jn/]p- Finally, as it is common in P systems with active membranes, in
addition objects may be added and guide the membrane rules (yet still evolution
rules for the objects may be forbidden). Such variants remain to be investigated
in some future papers based on this introductory one.
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Summary. We adjust the most used evolution strategy in membrane systems, namely
that of maximal parallelism, by imposing an additional synchronization between rules.
A rule synchronizing with a set of rules can be applied only if each rule from the set
can be applied at least once. For membrane systems working in the accepting mode, this
synchronization is powerful enough to provide the computational completeness without
any other ingredient (no catalysts, promoters or inhibitors, for instance). The modelling
power of synchronization is described by simulating the basic arithmetic operations (ad-
dition, subtraction, multiplication and division).

1 Introduction

Membrane systems (also known as P systems) are able to model parallel distributed
systems inspired by structure and behaviour of biological cells {18]. A membrane
system can be represented as a hierarchical structure of regions (membranes) con-
tained inside a unique outermost membrane called skin. In this paper we consider
the class of P systems defined in [19] in which the various regions of the membrane
structure contain multisets of objects and sets of evolution rules. Every region has
its own task such that all regions work in parallel to achieve the general task of the
entire system; the specific rules of each region modify its objects. The evolution
of the initial class of P systems is given by the maximal parallelism in applying
the rules [18]. The maximal parallelism ensures that the multiset of applicable
rules chosen in a computation step cannot be further extended by adding further
rules. This feature was preserved in many of the variants defined in the last twenty
ycars, being a useful feature in obtaining computational completeness. Choosing
the rules to be applied in a maximally parallel way is done non-deterministically, by
respecting also some restrictions (e.g., priority relation among rules) or value-based
criteria (e.g., the guards used in adaptive P systems [7] or kernel P systems [17]).
Various results and classes of membrane systems (motivated by different features




