X Contents

NFA-to-DFA Trade-Off for Regular Operations
Galina Jiraskova and Ivana Krajiidkovd

State Complexity of Simple Splicing vvvieinn e on.
Lila Kari and Timothy Ng

Nondeterminism Growth and State Complexity.
Chris Keeler and Kai Salomaa

Descriptional Complexity of Iterated Uniform Finite-State Transducers
Martin Kutrib, Andreas Malcher, Carlo Mereghetti,
and Beatrice Palano

On Classes of Regular Languages Related to Monotone WQOs
Mizuhito Ogawa and Victor Selivanov

State Complexity of GF(2)-Concatenation and GF(2)-Inverse

on Unary Languagest

Alexander Okhotin and Elizaveta Sazhneva

Pushdown Automata and Constant Height: Decidability and Bounds. 260

Giovanni Pighizzini and Luca Prigioniero

On the Decidability of Finding a Positive ILP-Instance in a Regular Set

Of ILP-INStancesot it e e e e e

Petra Wolf

How Does Adiabatic Quantum Computation Fit into Quantum

Tomoyuki Yamakami

Author Indext it e e

A General Framework for Sequential
Grammars with Control Mechanisms

Rudolf Freund ®

Faculty of Informatics, TU Wien, Favoritenstraie 9-11, 1040 Vienna, Austria,
rudi@emcc. at

Abstract. Since more than five decades, many control mechanisms have
been introduced for sequential string grammars, including control graphs,
matrices, permitting and forbidden contexts, and order relations. These
control mechanisms then have been extended to sequential grammars
working on objects different from strings, for example, to array, graph,
and multiset grammars. Many relations between the languages generated
by sequential grammars working on these objects with different control
mechanisms were shown to be similar to the relations already proved
for the string case. Within a general framework for regulated rewriting
based on the applicability of rules in sequential grammars, many rela-
tions between various control mechanisms can be established in a very
general setting without any reference to the underlying objects the rules
are working on. Besides the well-known control mechanisms as control
graphs, matrices, permitting and forbidden rules, partial order on rules,
and priority relations on rules, the new variants of activation of rules as
well as activation and blocking of rules are considered. Special results for
strings and multisets as well as for arrays in the general variant defined
on Cayley grids of finitely presented groups are exhibited based on the
general results. Finally, some general results for cooperating distributed
grammar systems are established.

Keywords: General framework - Regulating rewriting -
Sequential grammars

1 Introduction

Already thirty years ago, a first comprehensive overview on many concepts of reg-
ulated rewriting, especially for the string case, was given the monograph on reg-
ulated rewriting by Dassow and Paun [7]. Yet as it turned out later, many of the
mechanisms considered there for guiding the application of productions/rules can
also be applied to other objects than strings, e.g., to n-dimensional arrays [10].
Even in the field of P systems [22] where mostly multisets are considered, such
regulating mechanisms were used [4]. Using a general model for graph-controlled,
programmed, random-context, and ordered grammars of arbitrary type based on

2 R. Freund

the applicability of rules, many relations between various regulating mechanisms
for sequential grammars can be established in a very general setting without any
reference to the underlying objects the rules are working on, as first exhibited in
[13] in a comprehensive way. In this overview paper, the results elaborated in [13]
are combined with the results obtained in the general framework for sequential
grammars using activation and blocking of rules as introduced in [2,3,11]. We
recall special results for strings and multisets from [3] as well as results obtained
in [11] for array grammars defined on Cayley grids of finitely presented groups.
Finally, we establish some even new general results for cooperating distributed
grammar systems.

In the following section, we recall some notions from formal language and
group theory, especially for Cayley grids of finitely presented groups. In Sect. 3
we recall the main definitions of the general framework for sequential gram-
mars of arbitrary type and the control mechanisms based on the applicability of
rules as initiated in [13] and then continued in [3,11], i.e., for graph-controlled,
programmed, random-context, and ordered grammars, for grammars with a pri-
ority relation on the rules, as well as for sequential grammars with activation
and blocking of rules.

In Sect. 5 we summarize all the general results obtained within the framework
for sequential grammars using the control mechanisms considered in this paper.

Specific results on computational completeness as well as some interesting
complexity results for strings and multisets as underlying objects then are shown
in Sect. 6.

In Sect. 7 we first define arrays and array grammars on Cayley grids of finitely
presented groups. By proving that ordered array grammars using #-context-free
array productions can generate the same language class as array grammars using
arbitrary array productions, we then show that such a result not only holds for
ordered array grammars but also for array grammars on Cayley grids of finitely
presented groups equipped with many other control mechanisms, these results
directly following from the general results summarized in Sect. 5 without needing
any further proofs.

Finally, some general even new results for cooperating distributed grammar
systems are elaborated in Sect. 8.

A summary of the results described in this paper and some future research
topics conclude this overview paper.

2 Preliminaries

The set of integers is denoted by Z, the set of positive integers by N, the set
of non-negative integers by No. An alphabet V is a non-empty set of abstract
symbols. Given V, the free monoid generated by V under the operation of con-
catenation is denoted by V*; the elements of V* are called strings, and the empty
string is denoted by X; V* \ {)} is denoted by V*+. The cardinality of a set M
is denoted by |M]|.

Let {a1,...,an} be an arbitrary alphabet; the number of occurrences of a

A General Framework for Sequential Grammars with Control Mechanisms 3

respect £0 a1y .. is (|, 5.0 |2y,). The Parikh i'rrmyg of a language L.over

@y, @n } 18 the set of all Parikh vectors of strings in _L, z_md we (](?11(':t.e it by
P,«;(L). For a family of languages F'L, the family of Parikh images of languages
in F'L is denoted by PsI'L.

A finite multiset over the finite alphabet V, V = {az,...,a,}, is a mapping

. V — Ny and represented by (f (a1),a1)...(f (an),a,) or by any string
z the Parikh vector of which with respect to a1,...,an is (f (a1), ..., f (an)). In
the following we will not distinguish between a vector (mq,...,my), its repre-
sentation by a multiset (my,a1) ... (Mp,a,) or its representation by a string z
having the Parikh vector (|'.1:l[ll - |x|u") = (my, ..., My). Fixing _the sequence of
symbols @y, ..., a, in the alphabet V in advance, the representation of the Fﬂl:_ll-
tiset (1m1,a1) ... (Mn,ap) by the string ai'*...a] is unique. The set of all finite
multisets over an alphabet V is denoted by V°.

For the basic notions and results of formal language theory the reader is
referred to the monographs and handbooks in this area as [7,25,26], and for
the basics of group theory and group presentations to [16]. The definitions and
examples given in the following subsection are the basis for developing the theory
of array grammars defined on Cayley grids of finitely presented groups in Sect. 7

(see [11]).

2.1 Groups and Group Presentations

Let G = (G’, o) be a group with group operation o. As is well-known, the group
axioms are

— closure: for any a,b € G',aobe G,

— associativity: for any a,b,c € G', (aob)oc=ao (boc),

— identity: there exists a (unique) element e € G’, called the identity, such that
eog=aoeforall a e G, and

— invertibility: for any a € G', there exists a (unique) element a™*, called the

; . -1 _
inverse of a, such that aoa™! =a loa=ce.

In the following, we will not distinguish between G’ and G if the group operation
is obvious from the context. A group is called commutative (Abelian), if for any
a,b € G, aob = boa. For any element b € G’, the order of b is the smallest
number n € N such that b” = e provided such an n exists, and then we write
ord (b) = n; if no such n exists, {b" | n > 1} is an infinite subset of G’ and we
write ord (b) = oo.

For any set B, B~! is defined as the set of symbols representing the inverses
of the elements of B, i.e., B~ = {b’l | be B}. ‘We now consider the strings
in (B UB ’1)* and two strings as different unless their equality follows from
the group axioms, i.e., for any a,b,c € (BUB™)", abb~'c = ac; using thes*e
reductions, we obtain a set of irreducible strings from those in (BUB™!)",
the set of which we denote by I (B). Then the free group generated by B is
F(B) = (I (B),o) with the elements being the irreducible strings over BU B!

]

4 R. Freund

yet, obviously, if we concatenate two elements from I (B), the resulting string
eventually has to be reduced again. The identity in /' (B) is the empty string.

In general, B (not containing the identity) is called a generator of the group
G if every element a from G can be written as a finite product/sum of elements
from B and its inverses from B™', i.e,, a =bi0---0by for by,..., b, € BUB™L.
In this paper, we restrict ourselves to finitely presented groups, i.e., having a
finite presentation (B | R) with B being a finite generator set and moreover,
R being a finite set of relations among the elements of BU B!, In a similar
way as in the definition of the free group generated by B, we here consider the
strings in (B U B~1)* reduced according to the group axioms and the relations
given in R. Informally, the group G = (B | R) is the largest one generated by B
subject only to the group axioms and the relations in R. Formally, we will restrict
ourselves to relations of the form by o---ob,, = ¢ with by, ..., by, c € BUB™1,
which equivalently may be written as by o--- ob,, o c = e; hence, instead of such
relations we may specify R by strings over B U B! yielding the group identity,
i.e., instead of by o--- o by, = ¢! we take by o+ 0 by, o ¢ (these strings then are
called relators).

E:Immpfe 1. The free group F'(B) = (I (B) ,0) can be written as (B | §}) (or even
simpler as (B)) because it has no restricting relations.

Ezample 2. The cyclic group of order n has the presentation ({a} | {a™}) (or,
omitting the set brackets, written as (a | a™)); it is also known as Z,, or as the
quotient group Z/nZ.

Ezample 3. 7 is a special case of an Abelian group generated by (1) and its
inverse (—1), i.e., Z is the free group generated by (1). Z¢ is an Abelian group
generated by the unit vectors (0,...,1,...,0) and their inverses (0,...,—1,...,0).
It is well known that every finitely generated Abelian group is a direct sum of a
torsion group and a free Abelian group where the torsion group may be written
as a direct sum of finitely many groups of the form Z/p*Z for p being a prime,
and the free Abelian group is a direct sum of finitely many copies of Z. '

Remark 4. Given a finite presentation of a group (B | R), in general it is not
even decidable whether the group presented in that way is finite or infinite.
If we consider (infinite) groups where the word equivalence problem u = v is
decidable, or equivalently, there is a decision procedure telling us whether, given
two strings u and v, wv™! = e, then we call (B | R) a recursive or computable
finite group presentation.

2.2 Cayley Graphs

Let G = (B | R) be a finitely presented group with G’ denoting the set of group
elements. Then we define the corresponding Cayley graph (Cayley grid) of G
with respect to the generating set B as the directed graph C(G,B) = (G',E)
with the set of nodes G’ and the set E of directed edges labeled by elements of
:B‘ b%f E = _{.(‘T‘ a,y) | z,y € G’_, a € B,za =y}, ie., from an element z an edge

A General Framework for Sequential Grammars with Control Mechanisms

Example 5. The hexagonal grid is the Cayley graph assigned to the presentation
of the group (a,bye | a®,b%,¢?, (abe)?). As all three generators a,b,c are self-
inverse and the direction of these elements indicates which generator is meant,
b
we obtain a simpler picture for the hexagonal grid by replacing a /" @, &=,
b
and ¢ \,\ ¢ by //, —, and \, respectively. Both representations are depicted in

the following:

c N\ ¢ a v a AN 4
a‘ibirzb a — ab
e N\ ¢ o /S a b e NN\ e N / N
b é e abe b — e abe
a// a ’ e\ e a .,/ a /. AN /
cécb ¢ — cb
e/ e ’ RN % AN

2.3 Register Machines

As a computationally complete model able to generate/accept all sets in PsRE =
Ps (L (ARB)) we use register machines/deterministic register machines:

A register machine is a construct M = (n, Lar, Ry, po, h) where n, n > 1, is
the number of registers, Ly is the set of instruction labels, py is the start label,
h is the halting label (only used for the HALT instruction), and Rjs is a set of
(labeled) instructions being of one of the following forms:

— p: (ADD(r),q, s) increments the value in register r and continues with the

instruction labeled by ¢ or s,
~ p: (SUB(r),q,s) decrements the value in register r and continues the com-

putation with the instruction labeled by ¢ if the register was non-empty,
otherwise it continues with the instruction labeled by s;
— h ; HALT halts the machine.

M is called deterministic if in all ADD-instructions p: (ADD (r),q,) ¢ = s;
in this case we write p : (ADD (), ¢). Deterministic register machines can accept
all recursively enumerable sets of vectors of natural numbers with k components
using exactly k + 2 registers, for instance, see [18].

3 A General Model for Sequential Grammars
and Regulated Rewriting Based on the Applicability

of Rules

In this section we recall the notions for the general model of sequential grammars
equipped with specific control mechanisms based on the applicability of rules as
elaborated in [13] and in [3].

We first recall the main definitions of the general model for sequential gram-
marae ac aectahliched i1 [12] orammare ceneratine a <ot of terminal obiects bv

6 R. Freund

derivations where in each derivation step exactly one rule is applied to exactly

one object. ,
A (sequential) grammar G is & construct (O, Op,w, P,==¢.) where

— O is a set of objects; ‘
— Or C O is a set of terminal abjects;

_ w € O is the aziom (start object);

— P is a finite set of rules;

— ==.C O x O is the derwation relation of Gj.
Each of the rules p € P induces a relation —=5,C O x O with respect to
=>@,- A rule p € P is called applicable to an object 2 € O if and only if
there exists at least one object ¥y € O such that () € =,; we also
write & =, ¥. The derivation relation =—>¢, is the union of all = i.e.
::-(-,;,z Upep =p. The reflexive and transitive closure of =>q, I8 d(—f:;ot.e(i
by =¢,. B

Specific conditions on the rules in P define a special type X of grammars
which then will be called grammars of type X.)

.The language generated by G is the set of all terminal objects that can be
derived from the axiom, i.e.,

L(Gy) :{’UEOT'U}:*>GS v}.

The family of languages generated by grammars of type X is denoted by £ (X).

Let G, = (0,07,w,P,=>¢,) be a (sequential) grammar of type X. If for
every G of type X we have Op = O, then X is called a pure type, otherwise it
is called Ie.?:tended; X is called strictly extended if for any gramma,r G, of type
X, wé Op and for all x € Or, no rule from P can be applied to z.) |

In many cases, the type X of the grammar allows for one or even both of the
following features:

A type X of grammars is called a type with unit rules if for every gram-
mar G, = (0,07, w,P, =¢) of type X there exists a grammar G =
(0,07, w, PU P(+),:>Gg) of type X such that =g, © = and ’

- P = [p™) |pe P,

—forall z € O, pt) is applicable to z if and only if p is applicable to z, and

- for all x € O, if p™*) is applicable to , the application of p(*) to z yields
back again. l

A type X of grammars is called a type with trap rules if for every gram-
nguo(}'s = (O,((z-{,-w, P,=g) of type X there exists a grammar G/, =
(0,0p,w,PUP y==>q) of type X such that =g, © = and

- PO ={pO [pe P}, PO P =y,

~forallz € O, p(” is applicable to x if and only if p is applicable to z, and
- for all z € O, if p{=) is applicable to &, the application of p(~) to z yields an

ahiart) Frrrn et als e et . 5 .

.

A General Frameworlk for Sequential Grammars with Control Mechanisms 7

3.1 Graph-Controlled and Programmed Grammars
A gmph-controlled grammar (with applicability checking) of type X is a con-
struct
Geec = (Gs,9,Hi, Hp,=ce)

where Gs = (0,0r,w, P,=>¢) is a grammar of type X;9=(HEK)isa
labeled graph where H is the set of node labels identifying the nodes of the
graph in a one-to-one manner, E C H x{Y,N} x H is the set of edges labeled
by Y or N, K : H — 27 is a function assigning a subset of P to each node of
g; Hi € H is the set of initial labels, and H; C H is the set of final labels. The
derivation relation =>gc is defined based on =¢, and the control graph g as
follows: For any ¢,j € H and any u,v € O, (u,i) =>cc (v,7) if and only if

~ u ==, bysomerule p € K (i) and (i,Y,) € E (success case), or
_ u=w,nop€ K (i) is applicable to «, and (i,N,j) € E (failure case).

The language generated by Ggc is defined by
L(Gec) ={v € Or | (w,i) =5, (v,7), i € Hi,j € Hy}.

If H; = Hy = H, then Ggc is called a programmed grammar. The families of
languages generated by graph-controlled and programmed grammars of type X
are denoted by £ (X-GCy.) and L (X-P,.), respectively. If the set E contains
no edges of the form (i, N,7j), then the graph-controlled grammar is said to
be without applicability checking; the corresponding families of languages are
denoted by £ (X-GC) and L (X-P), respectively.

As a special variant of graph-controlled grammars we consider those where
all labels are final; the corresponding family of languages generated by graph-
controlled grammars of type X is abbreviated by £ (X-GCglfimel) By defini-
tion, programimed grammars are just a subvariant where in addition all labels
are also initial.

The notions with/without applicability checking in the original definition for
string grammars were introduced as with/without appearance checking because
the appearance of the non-terminal symbol on the left-hand side of a context-
free rule was checked, which coincides with checking for the applicability of this
rule in our general model; in both cases — applicability checking and appearance
checking — we can use the abbreviation ac.

3.2 Matrix Grammars

A matriz grammar (with applicability checking) of type X is a construct Gy =
(Gsy, M, F,==>¢,,) where G, = (O,Op,w, P,=¢) is a grammar of type X, M
is a finite set of sequences of the form (p1,...,pn), n > 1, of rules in P, and
F C P. For w,z € O we write w =>g,, # if there are a matrix (p1,...,pn) in
M and objects w; € O, 1 <1 <n+1, such that w = wy, 2z = wp41, and, for all
1 < 4 < 19 pithar

8 R. Freund

: : T
: Zz jup;_'-:l:";;; i(; not applicable to w;, and p; € F.

L(Gu) = {veOr | w=>g,, f.:} is tlhe language generated I)j',f .GM. The fam-
ily of languages g(-:nera.tetll by matrix grammars of type X is denutﬁtd by
L (X-MATq.). If the set Fis empty, then the grammar is said to be without
applicability checking (without ac for short); the corresponding family of lan-
guages is denoted by £ (X-MAT). We mention that in this paper we choose the
definition where the sequential application of the rules in the final matrix may
stop at any moment.

3.3 Random-Context Grammars

A random-context grammar Grc of type X is a construct (G5, P'y=>G,.)
where
- Gy = (0,07, w, P,=>¢) is a grammar of type X
— P’ is a set of rules of the form (p, R, Q) wherepe P, RUQ C P;
=Gy 18 the derivation relation assigned to Gre such that for any x,y € 0,
T =Gy Y if and only if for some rule (p, R, Q) € P/, 2 =, y and, moreover,
all rules from R are applicable to z as well as no rule from Q is applicable to 2.

A random-context grammar G e = (Gs, P',=>¢pe) of type X is called a
grammar with permitting contexts of type X if for all rules (p, R, @) in P we
have @ = 0, i.e., we only check for the applicability of the rules in R.

A random-context grammar G e = (Gs, P',=q,,..) of type X is called a
grammar with forbidden contexts of type X if for all rules (p, R, @) in P’ we have
R = (), i.e., we only check for the non-applicability of the rules in Q. We write
X-fCy if for every p € P there is only one rule of the form (p,0,Q) in P'.

L(Gre) = {ve Op | w = we U} is the language generated by Gra. The
families of languages generated by random context grammars, grammars with
permitting contexts, and grammars with forbidden contexts of type X are
denoted by £(X-RC), L (X-pC), and L (X-fC) or £ (X-fCy), tespectively.

3.4 Grammars with Priority Relations on the Rules

A grammar with a priority relation on the rules G pri of type X is a construct
(Gs, <,=>Gp,,) where

- G5 = (0,07,w, P,==3) is a grammar of type X;

— < is a priority relation on the rules in P;

~ =>Gp,. 18 the derivation relation assigned to Gp,; such that for any z,y € O,
T =>@p,; Y if and only if for some rule ¢ € P z =>4 ¥ and, moreover, no
rule p from P with ¢ < p is applicable to z.

L(Gpri) ={veOr|w =&, U} is the language generated by Gp,;. The
family of languages generated by grammars with priority relations on the rules

Y o)

A General Framework for Sequential Grammars with Control Mechanisms 9
e

3.5 Ordered Graminars
rdered grammar Go of type X is a grammar (Gy, <, =3¢,) With the pri-
-tol'Ciqéi";] < on the rules which is a partial order, i.e., < fulfills the condition
s relat rtial

0]ll [Yl"or any p,q,7 € P, p<4q and g < r implies p < q. s

t m;rl"e family of languages generated by ordered grammars of type X is denoted

by L (X"O)'

An

3.6 Grammars with Activation and Blocking of Rules

We now recall the definition of sequential grammars with activation and blocking
of rules in a similar way as introduced 111‘[2,3,11].

A grammar with activation and blocking of rules (an AB-grammar) of type

i onstruct

0" GAB:(GsaLafL7AanL0a:>GAB>

where G5 = (0,07, w, P,=>¢) is a grammar of type X, Lisa ﬁnite set of labels
with each label having assigned one rule from P by the function fr, A, B are
finite subsets of L x L x N, and Ly is a finite set of tuples of the form (¢,Q,Q),
g € L, with the elements of Q, Q) being of the form ({,t), wherel € L and t € N,
‘ >1i' derivation in G4 starts with one element (q, Q, Q) from Ly which means
that the rule labeled by ¢ has to be applied to the initial object w in the ﬁrst §tep
and for the following derivation steps the conditions given by Q as .actlva?lc.)ns
of rules and @ as blockings of rules have to be taken into account in addition
to the activations and blockings coming along with the applicatiqn of the rule
labeled by ¢. The role of Ly is to get a derivation started by activating some rule
for the first step(s) although no rule has been applied so far, .but‘ probably also
providing additional activations and blockings for further der1vat%on steps.

A configuration of G4p in general can be described by the object derived so
far and the activations Q and blockings @ for the next steps. In that sense, the
starting tuple (g, @, @) can be interpreted as ({{¢,1)} U@, Q), and we may also
simply write (@', Q) with Q" = {(¢,1)} UQ. We mostly will assume Q and @ to
be non-conflicting, i.e., @NQ = §; otherwise, we interpret (Q’, Q) as QQ’ \Q,Q).

Given a configuration (u, @, @), in one step we can derive (v, R, R) - we also
write (u,Q,Q) ==Gasp (’U,R, R) — if and only if
- u =>¢g v using the rule r such that (¢,1) € @ and (g,7) € fr, i.e., we apply

the rule labeled by ¢ activated for this next derivation step to u; the new sets

of activations and blockings are defined by

R={(z,)]| (z,i+1) € Q, i>0}U{(m,i)|(q,x,i)eB},
Rég(w,g) | (z,i+1) €Q, i>0}U{(z,i) | (q,7,i) € A})
\ {(@,9) | (=,9) € R}

(observe that R and R are made non-conflicting by eliminating rule labels
which are activated and blocked at the same time);

10 R. Freund

— no rule r is activated to be applied in the next derivation step; in this case
we take v = u and continue with (v, R R) constructed as before provided R
is not empty, i.e., there are rules activated in some further derivation steps;
otherwise the derivation stops with yielding object w.

The language generated by G 45 is defined by
L(Gap) ={veOr| (w,Q,Q) =&,, (v, R, R) for some (Q,Q) ¢ Lo}.

The family of languages generated by AB-grammars of type X is denoted by
L(X-AB). If the set B of blocking relations is empty, then the grammar is said
to be a grammar with activation of rules (an A-grammar for short) of type X:
the corresponding family of languages is denoted by £ (X-A).

4 General Results

We now recall the main results and proofs already established in [13] as well

as recently exhibited in [11] and [3] for the control mechanisms defined in the
preceding section.

Theorem 6. For any arbitrary type X,

L(X-MATy.) C £ (X-GCaltinal) C £(X-GC,.) and
L(X-MAT) C L (X-GCmal) C £(X-GC).

Proof. Let Gpr = (G4, M, F, =@,,) be a matrix grammar where

= G, =(0,07,w, P, =>q,) is a grammar of type X and
- M:{(pi,la"-ypi,ni) I 1S'LS’N/} Wlthpz’J EP7 1SJSn,, 1<i<n.

Then we construct the graph-controlled grammar Goo = (Gs,9,Hi, Hf, =)
with g = (H,B,K), H = {(i,j) |1<j <n;,1 <i<n), K (6G,5) = {pig),
1<j<m,1<i<n,
E={((,4),Y,(,5 +1)) |1 <j < n,1 <i<n}
UA((85), N, (6,3 +1)) [1 < j<my,1 i < n,pi; € F}
UA{((m),Y,(5,1) |1 <5 <m1<i<n}
U (&), N, (5,1)) [1<j<m1<i < n,pi; € F}

and H; = {(,1) | 1 <i < n}. As we have assumed that the sequential applica-
tion of the rules of the chosen matrix may stop at any moment, we have to take
H; = H. By this construction it is guaranteed that G simulates a derivation
in Gy correctly by choosing a matrix to be simulated in a non-deterministic
way and then applying the rules from this matrix in the desired sequence; the
application of a rule Pi,; may be skipped if and only if Dij € F. Gge is without
applicability checking if and only if G is without applicability checkine. which

General Framework for Sequential Grammars with Control Mechanisms 11
enera.

A

By definition, we have:

Lemma i7e. 1® (X‘O) cL (X—Pri).

following theorem shows that forbidden contexts With only one set of
bT;sen rules for each rule can simulate any priority relation on the rules:
forbi

Theorem 8. For any arbitrary type X, L(X-Pri) C L(X-fCy).

Let Gs = (0,07, w, P, —>¢) be a grammar of type X. Consider the%
iaidion it:il a priority relation on the rules Gpry = (G5, <, =>Gp,.) ©

ammat W : : k >
& | the corresponding grammar with forbidden contexts Gyoy

ty]Jc X 9 me X AT
(Gs, Preis=6yey) of type X where

Pio, = {0, Q@) |pc P} with Q(p)={qlqePp<d}

u ied i o, if and only if no rule from Q (p) is
A le p € P can be applied in Gyc, 1 if no : !
;p%c;ble which is the same condition as for the applicability of p in Gp;, we
a)

0
infer L(Ggc,) = L(Gpri).

Yet also the reverse inclusion holds, even for partial order relations, provided
the type X allows for trap rules:

Theorem 9. For any type X with trap rules, L(X-fC1) C L (X-0).

Proof. Let G5 = (0, Or,w, P,==>¢) be a grammar of type X andfcg)ns;d;
the grammar with forbidden contexts Gyo, = (Gs,Pfcl,z(;G flcl') o ! ;?I)lmar
with Pre, = {(,%,Q(p)) |p € P}. We now extend ‘Fh.e under yfng g'n‘ e
G, by the trap rules p~ for all rules p in l.D, thus obtalnlpg thefgx‘amm(‘ : v;ith
(O, Or,w,PU P, :?G’s) where, according to the definition of grammau

trap rules,

~ for all z € O, p{~) is applicable to z if and only if pis appltc_z;ble to x, and
— for all z € O, if p{~) is applicable to z, the applica‘Flon of p'=/ to x yields an
object y from which no terminal object can be derived anymore.

As X is a type with trap rules, G/, again is of type X. We now define the grdered
grammar G = (G, <,=—>¢,,) which by definition again is of type X, with the
partial order < on the rules in P U P ag follows:

for any p € P,p < ¢~ forall g € Q(p).

This guarantees that L (Gsc,) = L(Go), as a rqle P ¢ P can be ap(I])'lt;l‘ed in Cf;ci
if and only if no rule from @ (p) is applicable which is the same con 1f10n af or
the applicability of p in Gf¢,. On the other hand, t'he' apph(.:a‘mon of a r}111 e
P(=) can never lead to a terminal result. Moreover, it '15' 0bv1o(u_s) to see that S
is a partial order, because < C P x P() and, by definition, P(-) N P = 0.

12 R. Freund

Corollary 10. For any type X with trap rules,
L(X-0)=L(X-Pri)=L(X-fC1) C L(X-fC).

Matrix grammars (with applicability checking) can simulate random context
grammars for any arbitrary type X with unit rules and trap rules:

Theorem 11. For any arbitrary type X with unit rules and trap rules,
L(X-RC) C L(X-MAT,,).

Proof. Consider a random-context grammar Grc = (Gs, Pro, =>@) Where
G; = (0,07, w,P,=>¢) is a grammar of a type X with unit rules and
trap rules; then we define the matriz grammar with appearance checking
Gu = (G§, M, Fy==y) of type X as follows: for each rule (p,R,Q) € Pgg,
R ={ri|1<i<m}, Q@ = {g; |1<j<n}, mn > 0, we take the matrix
(r§+),...,rﬁ),qfﬂl,..., (_),p) into M.

In that way we obtain G, = (O7 Or,w, P, :>G2) where
PP=PU {r(+),q(—) |7 €R,qeQ for some (p,R,Q) € PRC}

and F' = {q(_) | ¢ € Q for some (p,R,Q) € PRC}. As X is a type with unit
rules and trap rules, all the elements of G, are well defined. Obviously, for all
z,y € O we have 1 =, g) ¥ if and only if z == r D) P) y

without trapping y, which implies L (Gpr) = L (Gro)-
As a technical detail we mention that when the application of rules in
the sequence of the matrix r,('H, e ,rf,'f'),qi") A..,q,(,__’,;o stops belore hav-

)
ing reached the end with applying p, either the underlying object has not yet
changed as long as only the unit rules have been applied or else has already been
trapped by the application of one of the trap rules, hence, no additional terminal
results can arise from such situations. ad

Omitting the forbidden rules and applicability checking, respectively, from
the (proof of the) preceding theorem we immediately obtain the following result:

Corollary 12. For any arbitrary type X with unit rules,
L(XpC)C L(X-MAT).

Already in [13] graph-controlled grammars have been shown to be the most
powerful control mechanism, and they can also simulate AB-grammars with the
underlying grammar being of any arbitrary type X, see [3].

Theorem 13. For any type X, L(X-AB) C L(X-GCy,).

A General Framework for Sequential Grammars with Control Mechanisms 13

Let Gap = (G,L,fr,AB,Ly,=>¢g,) be an AB-grammar with the
Reeol: a gr‘anunar G = (0,0r,w, P,=>¢) being of any type X. Then we
DE-_ grap]1~c.011t1'olled grammar Gao = (G, g,‘Hi,H fy=>qc) with the
i anderlying grammar G. The simulation power is calptum(l‘ by tf}w: struc-
- v f the control graph g = (H, E, K). The node labels in H, identifying the
tu:: g of t.IJmI graph in a one-to-one manner, are obtained from G ap as all pos-
n_oi@ triples of the forms (¢,@Q,Q) or (g, Q,Q) with g € L and the elements of
b be?ng of the form (r,t), » € L and ¢t € N such that ¢t does not exceed the
Q‘Qimum time occurring in the relations in A and B, hence, this in fotal :a, a
g fed number. We also need a special node labeled 0, where a computation
!ml(]‘l'li(: ends in any case when this node is reached. All nodes can be chosen to
E] EI(I:II e, Hf =H. H; = Lo is the set of initial labels, i.e., we start with one
o?t.he il‘lit.'lal conditions as in the AB:grammar. ' . ’ .

The idea behind the node (q, @; Q) is to describe the situation of a (:onhgu-
ration derived in the AB-grammar where ¢ is the label uf. the rule t.fr b(-:‘ ﬂp[}hti'd‘
and @, Q describe the activated and blocked rules fo; 1:11(—: further derivation s.t@p.s
in the AB-grammar. lEJI"encrL:)i as already in the definition of an AB-grammar, we

refore assume Q N Q = 0. :
thelNe::'(‘let g(l) denote the rule r assigned to label I,ie, {I,r) € fr. TheI.17 the
set of rules assigned to (¢,Q, Q) is taken to be {g(¢)}. The set of rules assigned
is taken to be . B

& mAlss i?will become clear later in the proof why, the nodes (7, @, Q) are assi.gned
the set of rules {g(!) | (I,1) € Q, I # q}; we only take those nodes where this set
. ng:f}?;llptl})’eing in node (g,Q,Q), we have to distinguish between two
possibilities:

underlyin
construct

— If g(q) is applicable to the object derived so far, a Y-edge has to go to every
node which describes a situation corresponding to what would have been the
next configuration in the AB-grammar. We then compute

z,i) | (z,i+1) €Q, i >0} U{(x,i)]| (¢,7,1) € B},
({{((%g) |((~’C’i+1_) €Q, i >0}U{(z,i) | (¢,2,%) € A})
\ {(=9)

| (z,4) € R}
(observe that R and R are made non-conflicting) as well as — if i‘t ex.ists -
to := min{t | (x,t) € R}, i.e., the next time step when the derivation in the
AB-grammar could continue. Hence, we take a Y-edge to every node (p, P, P)
where p € {z | (z,t0) € R} and

R
R

P={(x9)|(z,i+to—1) €R, i >0},
P ={(z,i) | (z,i+tg— 1) € R}.

If to := min{t | (x,t) € R} does not exist, this means that R is empty and
we have to make a Y-edge to the node 0.
— Tf g(g) is not applicable to the object derived so far, we first have to check

14 R. Freund

i.e., we check for the applicability of the rules in the set of rules

U:={g()| (1,1) €Q, | #q}

by going to the node ((j, Q, Q) with a N-edge; from there no Y-edge leaves, as
this would indicate the unwanted case of the applicability of one of the rules
in U, but with a N-edge we continue the computation in any node (p, P, P)
with p, P, P computed as above in the first case. We observe that in case R
is empty, we can omit the path through the node ((j, Q,Q) and directly go
to the nodes (p, P,]5) which are obtained as follows: we first check whether
to := man{t | (z,t) € Q, t > 1} exists or not; if not, then the computation
has to end with a N-edge to node §. Otherwise, a N-edge goes to every node
(v, P,P) with p € {z | (z.t0) € Q} and

P={(z,i)| (z,i+to—1) €@, i >0},
P={(z,i) | (z,i+to—1) €Q}.

where the simulation may continue.

In this way, every computation in the AB-grammar can be simulated by the
graph-controlled grammar with taking a correct path through the control graph
and finally ending in node @; due to this fact, we could also choose the node 0
to be the only final node, i.e., Hy = {0}. On the other hand, if we have made
a wrong choice and wanted to apply a rule which is not applicable, although
another rule activated at the same moment would have been applicable, we
get stuck, but the derivation simulated in this way still is a valid one in the
AB-grammar, although in most standard types X, which usually are strictly
extended ones, such a derivation does not yield a terminal object. Having taken
H; = {0}, such paths would not even lead to successful computations in Ggc.

In any case, we conclude that the graph-controlled grammar Ggc generates
the same language as the AB-grammar G 4p, which observation concludes the
proof. O

We remark that in the construction of the graph-controlled grammar given
in the preceding proof, all labels could be chosen to be final.

In the case of graph-controlled grammars with all labels being final, for any
strictly extended type X with trap rules we can show that the power of rule
activation is already sufficient and that the additional power of blocking is not
needed.

Theorem 14. For any strictly extended lype X with trap rules,
L (X—GC’gélfi"al) CL(X-A).

Proof. Let Gac = (Gs, g, H;, Hp, =>@c) be a graph-controlled grammar where
Gs = (0,0r,w, P,)=>¢) is a strictly extended grammar of type X with trap
rules; g = (H,E,K), E C H x {Y,N} x H is the set of edges labeled by Y or

A General Framework for Sequential Grammars with Control Mechanisms 15

is the set of initial labels, and Hy is the set of final labels coinciding with the
whole set H, i.e., Hy = H. _

Then we construct an equivalent A-grammar G4 = (G, L, fr, A, Ly, = ¢ ,)
as follows: the underlying grammar G is obtained from Gy by adding all trap
cules, i.e., G = (0,07, w, P',=>q) with P' = PUPY), P = {p~ | pe P},
pPEINP = (). G, again is strictly extended and w ¢ Op, hence, also in G4 rules
have to be applied before terminal objects are obtained. For any node in g
labeled by 1 with the assigned set of rules F; we assume it to be described by
P={mill15is ng}. For all ¢ € P we take the labels ;- into L as well as
(-, 47) into Jr- iy . .

We now sketch how the transitions from a node in ¢ labeled by [with the
assigned set of rules Py can be simulated. The assumption that all nodes are
final is crucial for this construction. Arriving in some node, one of the following

situations is given:

1. the underlying object is terminal and therefore no rule from P is applicable
any more, as X is a strictly extended type; hence, we may stop in this node
and extract the underlying object as a terminal result of the derivation, as
all nodes are final;

2. the underlying object is not terminal, but no rule from |J,c,; P is applica-
ble any more; hence, even when continuing the derivation following a path
through the control graph only using N-edges, the derivation cannot yield a
terminal object any more; therefore, in such a case, we need not continue the
derivation;

3. the underlying object is not terminal, no rule p;; in P, 1 < i <y, is appli-
cable, but there is still some node k reachable from node [following a path
through the control graph only using N-edges that contains an applicable
rule;

4. the underlying object is not terminal, but there is some rule p;; in P, 1 <
1 < my, which is applicable.

For the simulation of these situations by the A-grammar, we therefore can
restrict ourselves to the cases where when applying a rule we follow a path
starting with a Y-edge and continuing with only N-edges until we reach a node
containing a probably applicable rule; observe that such a path can only consist
of the Y-edge, too.

In order to simulate a rule p;; in P, 1 <14 < ny, we take all activations into
A which allow us to simulate the application of p; ; and to guess with which Dk,j
probably to continue afterwards. Hence, we consider all paths without loops
ho =1—hy —+— h, = k in the control graph g which start with a Y-
edge and continue with only N-edges. For any such path we introduce labels
((h4), k1, ..., (k,5)) in L and ((I,4), hy,..., (K, 7)) : s in fr; the set of all labels
describing such paths from node ! to any node k is denoted by L; ;. Moreover,
we use the following activations in A:

= (L), hay ooy () {l= 1 2 € Uy<icrg Pr.}, 1) is used to check in the next

16 R. Freund

that fc_>r n = 1 the set Ulgign_l Py, is empty and the whole activation cay
be omitted:;
— in the second next step only the designated rule py ; can be applied, ie., we

take ((L,7),hy, ..., (k, 7)), Ly ;,2) into A; as with every label in Ly ; the rule.

Dk,; 1s assigned, the intended continuation is prepared.

How can a derivation in the A-grammar be started? As w ¢ Or, at least one
rule must be applied to obtain a terminal object; hence, we check all possibilities
that a rule in an initial node in H; or along a path in g following only N-edges
from such an initial node can be applied (observe that there are only finitely
many paths without loops of that kind through the control graph); for each such
rule p;; in node [we take all labels from Ly ; into Ly. As by construction D1 is
applicable it is guaranteed that any continuation of the computation will follow
a Y-edge in g and thus the simulation in ¢ 4 will follow the simulation of an
applicable rule as described above.

In total, the construction given above guarantees that the simulation of g
computation in Ggc by a computation in G4 starts correctly and continues
until no rule can be applied any more. As we have assumed all nodes in g to
be final and X to be a strictly extended type, i.e., no rules can be applied to
a terminal object any more, the only condition to get a result is to obtain a
terminal object at the end of a computation. This observation completes our
proof. 0

As programmed grammars are just a special case of graph-controlled gram-
mars with all labels being final, we immediately infer the following result:

Corollary 15. For any strictly extended type X with trap rules,
‘C(X'Pac) - L:(X'A) .

Combining (@;he proofs of) Theorems13 and 14, we infer the following
equality:

Corollary 16. For any strictly extended type X with trap rules,
L(X-Gegifinaly — £(X-4).

5 Summary of General Results

The main results elaborated for the relations between the specific regulating
mechanisms in [13] and in [3] are depicted in the following diagram.

Theorem 17. The inclusions indicated by vectors as depicted in Fig. 1 hold.
Most of the relations indicated by vectors even hold for arbitrary types X; addi-
tionally needed features of being a strictly extended type or being a type with unit
and/or trap rules are indicated by se, u, and t, respectively, aside the vector:

1 Framework for Sequential Grammars with Control Mechanisms 17
A General

L(X-GClc)

/

L(X-AB)

R

L£(X-A)

7

e,t

r (X_(';C‘c]tit‘!a'md)

N

\

L(XPac) L(X-MATuc)
E(X_Gcallfinal) N’t)
L(X-RC
/ T
£(X-P) L(X-MAT) L(X-fO)
1 i
L(X-Pri) |t
f
L(X-O)
L(X)

Fig. 1. Hierarchy of control mechanisms for grammars of type X.

6 Results for Strings and Multisets

As specific types of objects for the general model of a sequential grammar as
introduced in Sect. 3 we now consider strings and multisets. We refer to [13]' where
some examples for string and multiset grammars of specific types illustrating the
expressive power of this general framework are given.

18 R. Freund

6.1 String Grammars

In the general model, Gg = (NUT)",T* w, P, ==p) is called a string gram.
mar; N is the alphabet of non-terminal symbols, T' is the alphabet of terminagg
symbols, NNT =, w € (N UTJ+, P is a finite set of rules of the form
w— v with w € V' and v € V*, where V := N U T the derivation relation for
u — v € P is defined by wuy =, avy for all 2,y € V*, thus yielding the
well-known derivation relation == ¢, for the string grammar Gs. We mention
that the common notation for a string grammar is Gg = (N, T,w, P), and usy-
ally the axiom w is supposed to be a non-terminal symbol, i.e., w € V\T', which
then is called the start symbol.

As special types of string grammars we consider string grammars with arbi-
trary rules and context-free rules of the form A — v with A € N and v ¢ Ve,
The corresponding types of grammars are denoted by ARB and C'F, thus yield-
ing the families of languages £ (ARB), i.e., the family of recursively enumerable
languages (also denoted by RE), as well as £ (CF), i.e., the family of context-
free languages, respectively. Observe that the types ARB and C'F are types with
unit rules and trap rules (for p = w — v € P, we can take p™) = w — w and
P~ =w — F where F ¢ T is a new symbol — the trap symbol).

6.2 Multiset Grammars

Gm =((NUT)°,T°,w, P, =@,) is called a multiset grammar; N is the alpha-
bet of non-terminal symbols, T is the alphabet of terminal symbols, NNT = 0,
w is a non-empty multiset over V., V := N UT, and P is a finite set of multiset
rules yielding a derivation relation =3¢, on the multisets over V' the applica-
tion of the rule v — v to a multiset = has the effect of replacing the multiset u
contained in x by the multiset ». For the multiset grammar Gy, the common
notation is (N, T, w, P,=>¢,,).

As special types of multiset grammars we consider multiset grammars with
arbitrary rules as well as context-free (non-cooperative) rules of the form A — v
with A € N and v € V°; the corresponding types X of multiset grammars are
denoted by mARB and mCF, thus vielding the families of multiset languages
L(X). Observe that mARB and mCF are types with unit rules and trap rules
(for p=w — v € P, we can take p'") = w — wand p~) = w — F where F is
a new symbol — the trap symbol). Even with arbitrary multiset rules, it is not
possible to get Ps (L (ARB)) [17):

L(mCF) = Ps(L(CF)) S L(mARB) S Ps(L(ARB)).
6.3 Results for String and Multiset Grammars

It is well-known, for example see [7], that

L(CF-RC) = L (CF-P,.) = L (ARB) = RE.

1 Framework for Sequential Grammars with Control Mechanisms 19
enera :

NE

d on Theorem 17, we immediately infer the following results:
e ! _
5 m 18. For any Y € {RC, MAT,., GCYfnel GO, Pye, A, AB},
heore :
L(CFY)=L(ARB)=RE.

the case of multisets the structural information contained in the
t be used, arbitrary multiset rules are not sufficient

T

As in

F symbols canno]

seqUGH;?n?IE: }:lll sets in Ps (L (ARB)). Yet we can easily show the following:
o

2r cig ; all final

Theorem 19. For any Y € {O,Pm,fCl,fC’, RC, M AT, ., GC¥ , GCypq,
e

A, AB},

PsRE = Ps(L(ARB)) = L (mARB-Y).

f, PsRE = Ps (L(ARB)) = £ (mARB-O) was shown in [13], hence, the
jg:‘)c(;ﬁlent immediately follows from Theorem 17. 0

But also non-cooperative multiset rules are suflicient with many control

mechanisms:

Theorem 20. For any Y € {]VIATGC, GC’g‘yﬁ"al, GC’aC,A,AB},
PsRE = Ps(L(ARB)) = L (mCF-Y).

Proof. PsRE = Ps(L(ARB)) = L (mCF-MAT,.) was shown in [17], hence,
the statement immediately follows from Theorem 17. Iy

6.4 Computational Completeness for Context-Free AB-Grammars
with Two Non-terminal Symbols

In this subsection, we recall complexity results for context-free string and mul-
tiset grammars as shown in [3], showing that computational COIypletgness can
already be obtained with two non-terminal symbols, which result is optimal with
respect to the number of non-terminal symbols.

Theorem 21. Any recursively enumerable set of strings can be generated by a
context-free AB-grammar using only two non-terminal symbols.

Proof (Sketch). The main technical details of how to use only two non—terminal
symbols A and B for generating a given recursively enumerable language. follow
the construction given in [13] for graph-controlled grammars. The most impor-
tant to be shown here is how to simulate the ADD- and SUB-instructions of
a deterministic register machine with the contents of the two working registers
being given by the number of symbols A and B; only at the end, both numbers
are zero, whereas in between, during the whole computation, at least one symbol
A or B is present. The initial string is A, and one A is also the last symbol to
be erased at the end in order to obtain a terminal string.

In the following, we use X to specify one of the two non-terminal symbols
A and B, and Y then stands for the other one. For any label p of the register
machine we use two labels p and p’. To simplify notations, we write (p,q,t)u
instead of (p,q,t) € U for U € {4, B}.

20 R. Freund

- p:(ADD(X),q) is simulated by p: X — XX and p’: Y — Y X with
(p,plv 1)B as well as (p7 q, 2)A7 (pa (1'; 3)/17 and (pl) q, 1)A7 (p,7q/7 2)14;

- p: (SUB(X),q,s) is simulated by p: X — XAand p’ : Y — Y with
(.7, 1) as well as (p,q,2) 4, (p,¢',3)a, and (p,5,1) 4, (¥, 8',2) 4;

in both cases, the application of the rule labeled by p blocks the rule labeleq
by p’; in any case, for the next rule labeled r to be simulated, both r and 7/ are
activated, again 7’ following 7 one step later.

For the halting label h, only the labeled rule i : A —)\ is to be activated.

This result is optimal with respect to the number of non-terminal symbols:
as it has been shown in [9], even for graph-controlled context-free grammars one
non-terminal symbol is not enough, hence, the statement immediately follows
from Theorem 13. A similar optimal result holds for multiset grammars.

Theorem 22. Any recursively enumerable set of multisets can be generated by
an AB-grammar using contezt-free multiset rules and only two non-terminal
symbols.

Proof. Given a recursively enumerable set of multisets I over the terminal alpha-
bet T' = {ay,...,axr}, we can construct a register machine My, generating L in
the following way: instead of speaking of a number 7 in register r we use the nota-
tion a,", i.e., a configuration of M is represented as a string over the alphabet
V =T U{ak1,ar2} with the two non-terminal symbols Gt 1, Oy 2-

We start with one a4 1 and first generate an arbitrary multiset over 7' step
by step adding one element a,, from 7" and at the same time multiply the number
of symbols a1 by pr,, where p, is the m-th prime number. At the end of this
procedure, for the multiset ;™" ...a;™ we have obtained a,," in each register
m, 1 <m <k, and ag,”"" " in register k+1. As for example, already shown
in [18], only using registers & + 1 and k + 2, a deterministic register machine M},
simulating any number of registers by this prime number encoding can compute
starting with app”""P"* and halt if and only if a3™ ... ap"™ € L. Only with
halting, all registers of M} ave cleared to zero, i.e., we end up with only one a4
in M, when this deterministic register machine M} has reached its halting label
h. So the last step of My, before halting is just to eliminate this last a1 During
the whole computation of M, the sum of symbols ay 1 and a4 is greater than
zero. Hence, it only remains to show how to simulate the instructions of a register
machine, which is done in a similar way as in the preceding proof; we use X to
specily one of the two non-terminal symbols axyy and ax49, and ¥ then stands
for the other one, ie., X, Y ¢ {ak+1,ak42}. For any label p of the register
machine we use two labels p and p’. The simulations in the AB-grammar work
as follows:

a non-deterministic ADD-instruction p : (ADD(X),q,s) is simulated by
branching into two deterministic ADD-instructions even twice:
p:X - Xandp Y - Y with (p,p/,1)p as well as (p, (P, X,9),2) .

YOV S 7.0 NP I Y A T N s e N

N

L - Sequential Gramimars with Control Mechanisms 21
-] Framework for
A Genera
imulation, we already know whether X is present or else we have to use
g 31{“” d)\"&' E‘EIUWS us to simulate the four deterministic ADD-insbructions
Y; l.]l;;] Ilr‘(flf)p()k’}- ﬁ)‘ a & {X-Y}: ﬁ € {-‘:},S}, ina Si“'ll)il?,l' way |)y “siug
(p, @ P)

the rules

(py @ g):a— {lIX .
and the activations

¢ ‘.1]/1: ((Pe o, ﬁ)-ﬁ;‘QJA»)) ‘
b ?A@l:ﬁx) q) is simulated by p : X — XX and p’ : ¥ — Y X with
=D : Js

oo, 1)p as well as (2.0,2)4, (,¢',8)a, and (9,0, D) a, (0, 4,2)a5
(p-JS"UB(X),q, s) is simulated by p: X — A and p Y — Y with (p,p',1)p
i .p-sveil as (p.lq‘ 4, (0,4',3) 4, and (p',5,1)4, (p',8',2) 45 in both cases, the
- lication of the rule labeled by p blocks the rule labeled by 7 in any case,
?cly)rpthe next rule labeled 7 to be simulated, both r and r’ are activated, again
f ine one step later;
L Tforfﬁig\?;l%iug label h, only the labeled rule i : a,4, — A is to be activated.

When the final rule @ ar 1 — A is applied, no further rule is activated, thus
the derivation ends yielding the multiset ay™ ...ax™ € L as terminal result. O

7 Arrays and Array Grammars on Cayley Grids

As a natural extension of string languages (e.g., see [25,26]), arrays on the d-
dimensional grid Z¢ have been introduced and investigated since more than
four decades, for example, see [5]. Applications of array grammars and array
automata especially can be found in the area of pattern and picture recognition,
for instance, see [23,24,27].

Following some ideas of Erzsébet Csuhaj-Varji and Victor Mitrana, ‘Fhe inves-
tigation of array grammars and array automata on Cayley grids of finitely pre-
sented groups was started in [14] and then continued in more detail in [15]. As a
first example of arrays on a Cayley grid of a non-Abelian group we refer to [1],
where arrays on the hexagonal grid were considered.

In this section, first the notions and definitions for arrays defined on Cayley
grids of finitely presented groups as well as for array grammanrs generating sets
of such arrays are recalled from [15]. Following the general results collected in
Sect. 5, we immediately obtain many results for array grammars defined on Cay-
ley grids of finitely presented groups equipped with these control mechanisms.
When using #-context-free array productions in the underlying array gram-
mars, together with most of these control mechanisms considered previously in
this paper, the same computational power as with arbitrary array productions
can be obtained, see [11].

7.1 Arrays on Cayley Grids

In this subsection we generalize the concept of d-dimensional arrays to arrays

P SR S s | T T = IR =N R = LU Y L R Y S Y I 1

22 R. Freund

B = {ey,...,en} and G’ denoting the set of group elements; moreover, let C'
be the Cayley graph of G with respect to B. Throughout the rest of the p
we will assume that B~ C B, i.e., B contains all inverses of its elements.
paths in the Cayley graph this means that for each path v = wy — ... — w, = w
in C'(G) from v to w also its inverse w = wy, — ... — wy = v is a path in C {G)

A finite array A over an alphabet V on G’ is a function A : G’ — V U { |
where shape(A) = {v € G' | A(v) # #7} is finite and # ¢ V is called thy
background or blank symbol, i.e., the nodes of C (G} get assigned eclements of
VU {#}. We usually will write A = {(v, A(v)) |v € shape(A)}.

By V¢ we denote the set of arrays over V on G'; any subset of VC is calleq
an array language over V on G. With respect to the finite presentation of G by
C(G), instead of V< we also write VC(@) to emphasize that.

The empty array in VC has empty shape and is denoted by Ag. Ordering
the generators in B in a specific way as ¢; < - < €m, for each array A4 =
{(v;A(v)) | v € shape(A)} in V& \ {Ag} we get a canonical representation as
alist ((v1,A(v1)), .., (Vn, A (vy))) such that {v; |1 <i < n} = shape (A) ang
Uy < Vg1, 1 < @ < n, with respect to the length-plus-lexicographic ordering
of strings with the elements of G written as sums of the elements in B (the
length-plus-lexicographic ordering ~ is a well-ordering, where for two strings
and v, u < v if either |u| < [v| or |u| = |v|, u = zay, v = zby, and a < b),
In terms of C'(G) this means that the elements of the array are listed in the
length-plus-lexicographic ordering of the paths in C (G) seen from the origin
(the identity).

(G)
apey
Fop

Example 23. Consider the hexagonal grid from Example 5. Then the *position™

abe can also be reached by taking the path cba from the “origin” (the identity

e). Hence, with taking the ordering @ < b < ¢, the canonical representation of
2 2

the array A = {(ab, X), (abe,Y) | v € shape(A)} € {X, Y}C(<a’b’cla2’b i (abe)?))

is ((ab, X), (abc, Y)).

Ezample 2{. A d-dimensional array is an array over the free group Z%. If we
take the unit vectors ex = (0,...,1,...,0) and their inverses (0,...,—1,...,0), the
resulting Cayley graph is the well-known d-dimensional grid.

For any v € G’, the translation 7, : G' — G’ is defined by 7y(w) = wou
for all w € G', and for any array A € V@) we define 7,(A), the corresponding
array translated by v, by (7, (A)) (w) = A (w ov™!) for all w € G'.

An array A €VC(9) s called k-connected if for any two elements v and w in
shape (A) there is a path v = wy — -+ — w, = w in C(G) with {wy,...,w,} C
shape (A) such that for the distance in ¢ (G) between w; and w;_1, d (w;, w;— 1)
we have d (wy,w;_y) < k for all 1 < i < n; the distance d(x,y) between two
nodes z and y in C(G) is defined as the length of the shortest path between x
and y in C (G). The subset of k-connected arrays in V(@ is denoted by VC(@k.

Ezample 25. Consider the set of one-dimensional arrays over the alphabet {a},
1 [nlC«(l)’(*l))) . N S D . T] . PR B

| Framework for Sequential Grammars with Control Mechanisms 23
eneral I'T

A G

L . -~

8 . {((0),a), (k) @)} € {a}Z is m-connected, ie., in {a}” ™,
1-dimensiona

if and only if m Z k.

5 Array Grammars on Cayley Grids
i : sented group G = (B | R) with the set of elements G, we define
Fora ﬁmtei:\ff rf,;g';m pover V and G as a triple (W, Ay, Ap), where W C G
an -m?u‘!{ pwtu,;ml A, and A, are mappings from W to V U {#} such that
o & inuw)si ﬂ; where again the shape is defined to exactly contain the non-
psare (Al-'t'mns: ie., shape(A;) = {v e W | A(v) # #}. We say that the
oo\ pos VC(C) is directly derivable from the array C; € V() by the array
ey C‘z_ 3 (W, Ay Aj) if and only if there exists a v € G’ such that, for all
;pgoduct;wﬂ (V‘[f), ,C, (w) = Cz(w), as well as, for all w € 7, (W), C1 (w) =
we < \;;BJ and Ca (w) = Ag (7_y (w)), i.e., the sub-array of C; corresponding
- (L'u-(*'eﬂacecl by As, thus yielding Co; we also write € =, Ca. _
i lb; Lll‘(—“r'l.(.{}' see from the definitions of an array production, the condi-
{ Asjb‘: 3.:1 ainp]icatiou to an array B and the result of an'a]:.ap!ication to B, an
B roduction (W, Ay, Az) is a representative for the infinite set of equn::;—
:;:ﬁr ::,rmy productions of the form (7, (W), 7y (A1), 70 (.Agl)) x]vit.l_l_l'u f G. -
Hence, without loss of generality, we can assume e E‘W (e is the 1; E!rll',lt%l" n;
G) as well as A, (e) # #. Moreover, we Oftel.l will omit the set W', JE!(-n:l.llﬁf‘ l-l-
is uniquely reconstructible from the (l&"ﬁl’.‘.[‘lptl()llt of the two n?appmgs A, anc
AQ by A = {(v,A (W) |veW} for 1 < i < 2. Thl:tS‘, in the EoilowEn_g,
we represent the array production (W, Ay, Ag) also by v:rnFmg Ay — A, l‘;.,l
{(v, A1 (v)) | v € W} — {(v,Az (v)) |ve WL If |W| = 2, ie., W = {e,v} for
some v € G, then, for {(e, Ay (€)), (v, A; (v))} — {(e, Ag(e_)},('{;,.A-; (v))} we
will only write Ay (e) vAy (v) — Az (e) A2 (v). If W] =1, ie,, W = {e}, we
simply write A, () — Az (e).
G4 = ((N U T)C(G) ,TCG) Ay, P, ::>GA> is called an array grammar over

C (G), where N is the alphabet of non-terminal symbols, T' is the alphabe.t of
terminal symbols, N N'T" = §; P is a finite non-empty set of array productions
over V, where V.= N UT; Ay € V() is the initial array (a.x1om)z and =@,
denotes the derivation relation induced by the array productions in P. In the
following, we may omit =>¢, in the description of the array grammars.

In a more common notation, we also write an array grammar (over C (G))

as a septuple
GA = (C(G))N7T7#7P1A07:>GA);

also specifying the background symbol # ¢ N UT, and, as usually done in the
literature, we shall assume Ay = {(vo,S)}, where vo € G’ is the start node,
and S € N is the start symbol.

We say that the array By ¢ V(@) is directly derivable from the array
By € V(G in G 4, denoted By =, B2, if and only if there exists an array pro-
duction p = (W, A;, Ay) in P such that B; =, By. Let ==>¢, be the reflexive
transitive closure of == ¢, . The array language generated by the array grammar

24 R. Freund

An array production p = (W, Ay, A3) in P is called #-context-free (of type
#-CFA), if |shape (A1)| = 1, i.e., shape (A1) = {e}, and A; (e) € N.

For X € {ARBA,#-CF' A}, an array grammar G is called to be of type X, if
every array production in P is of the corresponding type, where ARBA means
that there are no restrictions on the form of the array productions. The family of
k-connected array languages generated by array grammars on C (G) of type X
is denoted by Ly (C (G)-X); the family of arbitrary array languages generated
by array grammars on C (G) of type X is denoted by £ (C (G)-X).

For arbitrary and #-context-free array grammars the condition to only con-
sider languages of k-connected arrays corresponds to intersecting the generated
array language with V(@) which can be carried out by arbitrary array gram-
mars by themselves (as, for example, proved in [11]), but is a condition imposed
from “outside” when dealing with #-context-free array grammars. Yet as later we
are going to show that some #-context-free array grammars equipped with spe-
cific control mechanisms can simulate any arbitrary array grammar this makes
no difference any more in these cases.

Ezxample 26. Let G = (B | R) be a finitely presented group and x € G with
ord(z) = co. Let by o... 0 b be the canonical representation of z in (B | R);
then ({z" | n € Z},0) is an infinite subgroup of G, and z" # z™ for n # m.
Hence, along this “infinite line” we can argue many results obtained for Z!, e.g.,
how to embed simulations of Turing machine computations.

Remark 27. The possibility to compute along such infinite lines is also impot-
tant if we want to (describe how to) simulate computations of a Turing machine
— or similar computationally complete mechanisms (for strings) — using spe-
cific variants of (controlled) array grammars on Cayley graphs. For instance, for
any computable finite group presentation of a group (B | R}, we can effectively
construct an encoding of any array language in £ (C (G)-ARBA) given by an
(arbitrary) array grammar and vice versa. The finite group presentation of the
group (B | R) being computable is crucial for this result.

For simulating array grammars of type C (G)-ARBA, a special normal form
we call marked normal form is very helpful; it has already been described for 1-
dimensional array grammars in [12] as a special variant of the Chomsky normal
form for array grammars, shown, for example, in [10], and exhibited for the
general case of array grammars on Cayley grids in [11].

Lemma 28 (marked normal form). For every array grammar of type C (G) -
ARBA

GA . (C(G) 7N7Ta#’Pv{('UOvS)}7jGA))
we can effectively construct an equivalent array grammar of type C (G)-ARBA
GA = (O(G) 7N/aT7#)Pl7 {(UC')S)} 7$C’A) ’

where N C N’ and all array productions in P' are of one of the following forms:

A General Framework for Sequential Grammars with Control Mechanisms 25

2 #—#
e the final array production # — #+ is applied, any intermediate array

?{i{gwd from the initial array {(v0,8)} contains exactly one barred symbol.

For applying the general results on the relations between different control
echanisms as elaborated in the rest of this section to array grammars of the
SH1E . ! : : .
:1;p(,q C(G)-ARBA and C (G)-#-CF A, the following feature of these types is
(;:ssential in some cases:

Lemma 29. The types C(G)-ARBA and C (G) #-CFA - for o Cayley grid
C(G) - are strictly extended types with unit rules and trap rules.

Proof. We first remark that, without loss of generali?\y (e.g., see [11]), we
may always assume that any array production contains at least one |1911-
terininal symbol in the array on its left-hand side, i.e., in any array production
{(v, A1 (v)) |ve W} — {(v,Az (v)) | ve W} we find at least one v; € W such
that A1 (v1) € N; hence, C (G)-ARBA can be assumed to be a strictly extended
type for the succeeding proofs; C (G) -#-CF A is a strictly extended type already
by definition. Now let

Ga = (C(G)’N,T>#)P7{<U0’S)}?:>GA)

be an array grammar of type C' (G)-ARBA or C (G)-#-CFA.

Then for every array production p = (W, A;, A3) the corresponding unit rule
is pt = (W, A1, A1), which, when being applied, obviously does not change the
underlying array.

Moreover, for the trap rules, take a new non-terminal symbol F', the trap
symbol, which never can be erased any more, and for every array production
p = (W, Ay, Az) we then define the corresponding trap rule p~ = (W, Ay, Fw)
with Fi (v) = F' for all v € W, which, when being applied, prohibits the derived
array to become terminal no matter how the derivation proceeds.

In sum, we conclude that both C' (G)-ARBA and C (G)-#-CF A are strictly
extended types with unit rules and trap rules. 0

7.3 Results for Array Grammars on Cayley Grids

In many papers on control mechanisms for string grammars, the proof for show-
ing that when using arbitrary productions any new control mechanism can be
simulated is omitted, often simply citing the Church-Turing thesis, which usu-
ally is a legitimate claim as any formal proof would be tedious although bringing
no new insights. In case of array grammars on Cayley graphs the situation is
more delicate: as long as the underlying group presentation is computable, one
might still easily argue with the Church-Turing thesis as long as — for infinite
groups — there is also an infinite path in the Cayley graph, which is obvious if
there is a group element of infinite order — see Example 26 as well as Remark 27.

26 R. Freund

we refer to [15]), in a nondeterministic way, we can find lines of arbitrary length
for the necessary computations, as by definition the out-degree of every node ig
bounded, hence, by Ké&nig’s infinity lemma such a path must exist; it is impor.
tant to observe that these paths need not always be computable. Therefore, in
the general case of Cayley grids we need an algorithm that works directly with
the power inherent to arbitrary array productions. As, according to Theorem 17,
GC,. is the “strongest” control mechanism, only the following result is needed
(for a proof, we refer to [11]):

Lemma 30. £ (C(G)-ARBA-GC,.;) C L(C(G)-ARBA).

In connection with the results depicted in Theorem 17, from Lemma 30 we
immediately infer the following:

Theorem 31. £ (C(G)-ARBA-Y) = L(C(G)-ARBA) for any control mech-
anism Y in {O, Pri, fC1, fC, RC, M AT,., GCfmal \GC, ., GColfinal \GC 4
AB,pC,MAT,P,F,.}.

Already an order relation on the rules is sufficient as a control mechanism to
obtain £ {C (G)-ARBA) with #-free array productions (see [11]):

Theorem 32. £ (C(G)-ARBA) C L(C(G) -#-CFA-O).

Proof. et G = (B | R) be a finitely presented group and L be an array lan-
guage on C (G) given by an array grammar G4 in marked normal form, see
Lemma 28. Moreover, let G/, = (C(G) ,N,T’,#,P,{(UO,S’)},:>G14) be the
array grammar on C (GQ) with T" = {X,, | a € T}, i.e., we replace every terminal
symbol a € T from G4 by a corresponding non-terminal symbol X, in all the
array productions of G4. We now construct an equivalent ordered array gram-
mar Go = (G, <,=¢,) first simulating the derivations in G’ corresponding
to derivations in G4 with the only difference that instead of the terminal sym-
bols a € T we have the corresponding non-terminal symbols X, and at the end
these symbols X, are transformed into the terminal symbols a € T'.

The main idea is to first generate a workspace of non-terrhinal symbols X4
representing the blank symbol surrounded with a border of symbols X'# also
representing #; symbols X4, X still occurring in the derived array at the end of
a simulation of a derivation in G, finally will be erased as to be described later in
the proof. Moreover, at the very beginning, we generate a control symbol at some
place, chosen in a non-deterministic way, not interfering with the workspace, but
needed for the simulations of the application of rules in G’;. The main task then
is to show how a marked array production AvB — CD, where A4,B,C,D € N,
can be simulated by using a suitable order relation on the rules in Go.

We first sketch how to obtain the control symbol and the workspace: Instead
of starting with {(vo, S)} in G4 we start with the initial array {(vo, S")} in G4.
Using any of the rules S'v# — S”H, for any v € B and then rules of the
form Hau# — #H, for any v € B, the initial control symbol H4 can move
to any position (node) in the Cayley graph. Using the rule H4 — Hg ends this

A Gen eral Framework for Sequential Grammars with Control Mechanisms 27

1o rules in H™\ {Ho = F}, ie., 8" = § < pforall p € H™\ {Hy — F},
2oy {X = F'| X € Vip} and Vjy denotes the set of all variants of the
ble H like H4 at the beginning.

by =
where H™ =

control varia
Notation: In the following, the set of all trap rules “dominating” a rule p will be
itten as P(p <), e, P(p=)={q|p=< q}‘. . _
wrll. encral, the idea with the variants of the control variable H is to guide
u)g}lit:ation of another rule p by, instead of checking for the presence of the
the E:{lu{ variant Hy of H, ensuring the absence of all other variants of H, using
zﬁzcﬂ:le relations p < ¢ for all g € {X — F' | X € Vg \ {Ha}}; hence, we also
wri.l'.t’. Plp=)= {X = F| X €Vu\ {Hat}
The next task is to generate sufficient workspace of symbols Xy surrounded
by a layer of symbols Xy on the border to the remaining environment of blank
We start with

gymbols:
po = {(&,S}U{(v,# | v e B} = {(e, 5} U{(v, Xy | v € B},
P(po <) ={X = F| X € Vg \ {Ho}}-

Iteratively, now a new “layer” of symbols X is added by first generating symbols
,\"# from the symbols X, then renaming the symbols X4 to X4 and finally
renaming the symbols X#_ to Xy, which is accomplished by the following rules

p and the corresponding “dominating” set of rules P (p <):

1. Hy — Hy, P(Ho — H1 <) ={S — F};
9. for all v € B, ~ R
pt = {(e, Xp), (v,)} = {(&; Xg), (v, Xg)}, Ploy <) ={X > F| X €V
{Hi}} Hy — Ha, P(Hy — Ha <) ={p, |v€E B}, where pl~ is the trap rule
corresponding to the rule pl, i.e., pl™ = {(e, X3), (v, #)} — {(e, F), (v, F)};
3. for all v € B,
2= Xp - Xy, PO <) = {X = F | X € Vg \{Hz}}, Ho — Hs,
P(H, — Hy <) ={p) |ve B}
4. for all v € B,
pg:X#_)X#’P(pg <):{*X_>F|*XEVJLI\{I-I3}}vI-I3_>I_Il’
P(H3 — Hy <) = {p3~ | v € B}; the iteration can start again with 2.
5. In order to stop the iteration, instead of Hz — Hy we use the rule
Hy — H, P(Hs — H <) = {p}~ | v € B}.

For the simulation in Go we assume the marked array productions in G 4 to
be labeled, i.e., we write p : A,u,Bp — CpDyp.

1. We start the simulation of the application of p : Apvap — CpD, with
indicating the intention to do that by the rule H — HI} for the control
symbol,

2. we continue with marking exactly one symbol B, as B, by
P1=B, — B, P(p <) ={X = F| X € (Vu \ {H}}) U{B}}},

H} — H2, P(H} — H> <) = Pp, Pp = {Xvf# - FF | X e NU{Xg}v e

B},

28 R. Freund

3. we now make a “#-hole” inside the workspace in such a way that the o,
non-terminal symbol having “access” to this blank position should be Ap -

22 =B, i Plpz <) = {X > F | X € (Vig \ {H2})},

Hy = B, PURE — 12 <) = Po\ {u,h s P,

4. the “#-hole” made in the previous step now is filled correctly by

P3 = Ap'f"p# i Cpr; P(ps3 “{) = {X —5 0 I X e (VN \ {}.fg})}r

Hf, — H, P(H;f — H <) = Pp.

Using the sequence of rule§ as described_ above, we finally have simulatg,
the application of the rule P AyupB, — CpDy and reached the control Symb,
H again, which allows us to continue with simulating the next rule. At som,
moment we have to check whether we can switch to the terminal procedyy,
eliminating all non-terminal symbols from Xy, X, #: X4 and transforming eve
non-terminal symbol X, ¢ ¢ T, into the corresponding terminal symbol q:

1. We start with H — H,, o
P(H = Hy <) ={X > F | X e (V\ ({X, la € TYU{Xy, Xy, Xy)
2. forall X { X4 Xy, Xy}, we take

Px =X — #, P(px <):{X—>F]X€(VH\{Ht})};
3. for all a € T, we take

Po = Xq — a, Plpy <) = {(X—>F|Xe Ve \ {H:})};
4. finally the control symbol H, can be erased with

Hy — #, P(H, 2 #)={X-F|Xe (V\{H})}.

Based on the construction of Go and the explanations given above we con.

clude L(Gp) = L. 0

Looking at the general results collected in Theorem 17 we immediately infer

the following results:
Corollary 33. For any Y & {O,Pm’,fC’l,fC', RC, J\JATGC,G’Cgélfm"'l,GCac,
A, AB},
L(C(G) -ARBA) C £ (C (G) -#-CFA-Y).
A similar result can be shown for programmed array grafmmars by proving
the following equality (for a proof, see [11]):
Lemma 34. £ (C (@) -H#-CFA-PC,.) = [(C’ (@) —#—CFA—GCgélfmal).

Combining all the general results depicted in this section, we obtain the main

theorem for sequential array grammars on Cayley graphs of finitely presented
groups with control mechanisms:

Theorem 35. For anyY {O, Pri, fC1, fC, RC, MAT, ., GCollfinal GC,., A,
AB, Py},
L(C(G) -#-CFAY)=L(C (G)-ARBA).
Similar results hold for languages of k-connected arrays:

Theorem 36. Foranyy e {O,Pri,fCl,fC', RC, MAT,., GColtfinal GCyp, A,
AB, Pac};

A Faar # amas

29

ork for Sequential Grammars with Control Mechanisms
A -al Framew
A Genet

ting Distributed Gramrmar Systems

a

Cooper o ebiiliasbiad yramImaL
8 senerating power of hybrid cooperating dista 1|.)ut.(.([l f,rtm.nr nlv
& tlwl{?fﬂv;l by Mitrana [19] and by Péun [21]; a genera 1()\ (C’\ l.(-’fl
eftab‘ulﬁla’l.lgu.age theory is given in the monograph by Csuhj-Varju,
. i qrea of formal 1d -
on this &

. (v 1 G s e a . .
DassoV: Kelemeg dﬁltlrjl II: afﬁ»cl-)] be a grammar of type X; for the basic derivation
P (0} W 4 =76

Basic results
sst,el ns were

B={xthU{<k,=k=>k|k=1}

any objects U,V e O we define

and . — sure of =>¢;
X lenote the usual reflexive and transitive ‘c_lmmg‘ o t("
Bu=gv ¢ if 4 =>¢ v and no rule from P is applicable to v;

= . " © ¥ -] el t !\- (-,’Xd(,t-ly
— -":;‘?:: (4] ii al l(l (¢ l‘ll Ii U = 1 at maost 1

. :p(' U U, (s e) G

e Fy (& ¥ ¥

oy -ivation steps.
- J: derivation step
k., at least .
) hubrid cooperating distributed grammar system (ECDG fintjr:Z for S/ g)
g X working in the derivation modes from B" C B
degree n and type
Gropa of

is a construct

Guepe = (Gaplv"'7pn7f1)"'?fn7:>GHCDG)

> I rs G and
C Pand f; € B for 1 <i <n, UL, P; = P, and the %1'111]1:‘11315“\’1u0“
e 5 1, P, I::-p), 1 < i < n, are grammars of type X, the derive 2
o oy o restriction i e she corresponc
o i ol] ?;;IG the restrictions of = only induced by the u)‘lfespo] g
relations =>¢, being ine 4 =@, ope v if and only if u =34, v
ts P:. For any u,v € O, we define ¢« = a0 pa ; e eramman i
g 'pl <3 <‘1z We remark that the component F;, i.e., the g '(.'-t'u- way,
Fﬂl'(i?::: e's:t“p of Hl_c- derivation in G yope is chosen in Iﬂ u;m:(i?t;: ;;1111:]1‘:1 n.lm “;
Bk cleo s th same ¢ 1ent may be taken several time
i near at even the same componen
which also means that eve
N 3 m for short) Gopa of
A cooperating distributed gmmm;zr Zyst.emti(o iD?gojgsj'e i [); . =
pe X king in the derwva { .
g e istri -ammar system where all deriva-
i i ‘ati listributed grammar sy
cial case of a hybrid coo[’)emtmg § D B . B e
i les f; equal f, i.e., a construct Gepea ; : —+Gano)
e 1 ‘<< n, U, P = P, and the grammars 8
e P C P for 1 2 m UL 5 = i e
i g 1 < i < n, are grammars of type X. For any u,v € O,
e f‘ £y forsomei, 1 <i<n.
i v if and only if u ==, 1 ed, 1 <4< ‘
we define u =3¢, v if and only ll j 1--1(“5('3 system Gyepe Is defined by
L R ‘:)* e ’;I‘lw t’;u'nilv of languages generated by
e {1' il b =:;'G.'.ur:l.u(: “'}glof tVi)l-" X ;'.rorking in derivation modes
hybrid grammar systems of degree n anc v ; | e
/ HCDG,, (B")), the family of languages g
bttt o s f ty : X workil;g in the derivation mode
by grammar systems of degree n a.nd o :-Mie‘ i yEnhE , bye i e congidhs
[is denoted by £ (X-CDG,, (f)); in both cases \

g oy degrecs ; — [y =1.>1 U
Ac g cnopial aihant ~f dermvation modes we consider Bao L%, >

30 R. Freund

Theorem 37. For any type X, any B’ C By, and any n > 1,
L(X)=L(X-HCDG, (B)).

Proof. Consider any HCDG system

Grepg = (G, PL,....Py fy, ...

where the underlying grammar is G = (O, Or,w, P, =>a), P, C P and Ji€n
forl1 <é<n, U P, =P, and the grammars G and G; = (O, O, w, B, =)

» frs :>GHCDG)

1<i<n, using n steps can also be obtained by using n times the derivatig
mode = 1 with grammar G, which holds for every derivation mode fi from BO-'
On the other hand, every derivation mode fi from By allows for making op]
one derivation step before changing to any grammar G;,1<j<n,

As UL\ P, = P, we obtain L(G) = L(Grepe) for any such hybrid coopep
ating distributed grammar system G yope over the set of derivation modes By,
which observation concludes the proof. [

Theorem 38. For any strictly extended type X, [(X)=L(X-CDG, (t)

Proof. Consider a CDG system Gepe = (G, Pt, =Gope) With G =
(O,0p,w, P, =>¢) being the underlying grammar of type X. As X is a strictly

extended type, any derivation in G leading to a terminal object w is maxirnal,'

e, we L (Gepe), hence, L (GYcCL (Gepe). On the other hand, as in Gepa
we only have one component using exactly the same rules as in G, we alsg

have L (Gepg) C L (@), hence, we conclude L(G)=1L (Gepe), and therefore
L(X) = L(X-CDG (1)) o

The equality relation established in the preceding theorem between £ (X)

and L(X-CDG, (t)) need not be true for pure types, as the following simple
example shows:

-

Example 39. Consider the grammar G = ({a}+ ; {a}'l' sa, P, :-\G) with the set
of rules P = {a — 42,4 — A} to constitute the simple pure type X,.

Obviously, L (G) = {a}", hence, we get £(X,) = {{a}"}.

The only CDG (t) system of type Xy is Gepg = (G, Pyt, =>Gepe), bub
L(Geope) = {A}, because every terminating derivation in Gepe must end in .
Hence, £ (X;-CDG, () = {{\}}.

Thus, we obtain £ (X;) = {Ha}'} # {{\}} = L(X1-CDG, (t)).

Again, the computational power of HCDG systems can be captured by GCle.
as control mechanism, which according to Theorem 17 is the “strongest” one.

Lemma 40. Let X pe any strictly extended type X,B"CB,n> 1, and

CGyeper =(G. P, p £ R .

ork for Sequential Grammars with Control Mechanisms 31
ew

A Gen eral Fram

where G = o, Py ==¢) is the underlying
oo HODG system, where G = (O, Op,w, P, . : -
je an arbitrary H g*‘r) 5 é P, fie B for1<i<n, U,P, =P, and the ym:lrn.
Imrr't-ﬂm?' of w'”f)' ;I: }7-.:>(1), 1 <i < mn, are grammars of type X...The;r. u::

24 ril? . g ‘ ey
fﬁm‘ 5Gi = (O T:r wivalent graph-controlled grammar (with apph.ca.lmff.f,y é!‘?f’(')
caﬂ, corastm:c;ﬂ'?;;é = (G, 9‘1 H; Hy, —>qe) such that L(GH.C%(:;) = I(Gae).
ing) of t?{f’f t ¢ B".[then applicability checking is not needed in Gac.
M_orcoﬂﬁh !

- on the HCDG system G'yope and its underlying gramn?ar (E, -\\?lflf
Broo. C1veR - rammar of the graph-controlled grainmar Gae, too, (;1 -f(:t(;:
is the m,der]yl“&i ecify the control graph g = (H,E, K) as well as “?'_ 'SQJI
we only have wc 3{ Jof initial and final labels, respectively. T%‘“‘ can be a"l'“""“.
H; C Hon H{ waphs of g, which are constructed using dlff'erent graphs f]m‘
by defining suber “EGL f € B; for every 1 < i < n, the nodes in the subgrap 8
each derimmfl:lp]lt;(])lo;ving then have assigned the set of rules P; by K, whatever

described in ying fi € B may be. The nodes in the graphs are of one of the
the correspol

following types:
normal node node label n € H: n O

initial node node label n € H;: n ®

.]] los
In the whole control graph, there is only one fma}l1 no.de \{Vil.lch (l)l;),sd ;.?V;; ;}n
! i i ly one in H¢. The simulation
" and its label is the only o ¥ simu -
assfnefn t](3)’,now can be described as follows (for the derivation modes * and <
Hl: a:ume that at least one derivation step is made):
w

: Y
derivation mode =1 or < 1: @ =

Y
derivation mode x or > 1:' Y C®——E

1 k
derivation mode < k, k > 2: Y oo
‘Y Y
E E
k

1
derivation mode = k, k > 2: .__Y_> . Ol, E
1 k v
derivation mode > k, k > 2: v (—_>._Y_, O_.. E
derivation mode t: Y (‘_"ﬁ, E

Putting together the subgraphs for the components
Gi = (OvOTava’Lv:#Gi),l <3 <n,

i g int-
we obtain the complete control graph g = (H, £, K) by letting every edge poi

carntha ac xrall aa + Fha 1Al
1 M 1t el v dmea AF A1 £ThA a1t a
MEe ta B Tam A o b dhen 21t

32 R. Freund

We finally observe that only in the construction of the subgraph for g},
derivation mode ¢ an edge labeled by N is needed, i.e., only in this case applic
cability checking is needed, which observation completes the proof. q

As an immediate consequence of the preceding result, we obtain the following:-
Theorem 41. For any strictly extended type X, any B' C B, and any n > 1,
L(X-HCDG, (B)) C L(X-GC,,).
Ift ¢ B', then we even have £L(X-HCDG,, (B')) C L. (X-GC)y.

9 Summary and Future Research

The formal framework for sequential grammars with regulated rewriting baseq
on the applicability of rules has first been presented in a comprehensive way
in [13] and recently extended in several papers, especially with the new concept,
of activation and blocking of rules, see (3,11].

Based on the general results obtained within this framework, many com-
putational completeness results for sequential grammars working on strings or
multisets, but also for sequential array grammars on Cayley grids can be shown,

There are still many other control mechanisms which might perfectly fit
to be considered within this framework, for example, regular control or other
derivation modes known from the area of grammar systems. Investigations how
to include further control mechanisms as well as to prove relations between
them and the control mechanisms considered so far thus remain as a challenge
for future research.

Acknowledgements. I am very grateful to my colleagues and co-authors for many
fruitful discussions as well as for their contributions to the topics described in this
overview paper: First parts for the concept of the general framework were already dis-
cussed and elaborated during my stay in Magdeburg with Jiirgen Dassow nearly thirty
years ago. Afterwards, partial results were used in several papers; for example, with
Henning Fernau, Markus Holzer, and Gheorghe Paun. The first comprehensive collec-
tion of results in [13] then was elaborated with my colleagues in Vienna, Marion Oswald
and Marian Kogler. Recent results, especially for sequential grammars with activation

and blocking of rules (see [2,3]), were elaborated together with Artiom Alhazov and
Sergiu Ivanov.,

References

1. Aizawa, K., Nakamura, A.: Grammars on the hexagonal array. In: Wang, P.S.P.
{ed.) Array Grammars, Patterns and Recognizers, Series in Computer Science,
vol. 18, pp. 144-152. World Scientific, Singapore (1989). https://doi.org/10.1142/
S0218001489000358

2. Alhazov, A., Freund, R., Ivanov, S.: P systems with activation and blocking of
rules. In: Stepney, S., Verlan, S. (eds.) UCNC 2018 TNCS val 10R67 i 1 4%

3.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A General

Framework for Sequential Grammars with Control Mechanisms 33
ra

nov, S. S ial grammars with activation and
. Freund, R., Ivanov, S.: Sequential g mars ;
Alhazo¥s .?‘]‘.ul(sq In: Durand-Loese and Verlan [8], pp. 51-68. https://doi.org/10.
king © "

bloc 078-3-319-92402-1.3 R bt e G
1007/.' M., Freund, R., Oswald, M., Sburlan, D.: Multiset random contex ghE
Cavam:f;cke:s, and transducers. Theor. Comput. Sei. 372(2-3), 136-151 (2007).
mm-si c d'oi‘m.g},!|U.].Ul(ijj.tcs.2006"l 1.022) ‘ o
https:/ /. R.., Wang, P.S.P.: A Chomsky hierarchy of isotonic array grammars anc

i ;e's Comput. Graphies Image Process. 8, 144-152 (1978). https://doi.org/
]a,,gua e . oy 90

46-664X(78)80022-7 . ‘
2 1}?1‘?/\!:'3&2}1%6]; ‘Da.(ssow J., Kelemen, J., Paun, Gh,: Grammar Systems: A Gram-
Csuhaj-Vatjil, = ;

tical Approach to Distribution and Cooperation. Gordon and Breach Science
matice

publishers (1 004)

Bassows J Piaun, Gh.: Regulated Rewriting in Formal Language Theory. EATCS
ASS0Wy vV 3

" Monographs in Theoretical Computer Science, vol. 18. Springer, Heidelberg (1989)
or

1d-Lose, J., Verlan, S. (eds.): MCU 2018. LNCS, vol. 10881. Springer, Cham
DN https.//doi.org/10.1007/978-3-310-92402-1
{-'20]8)‘ ;t]' IPE?.!'EU)'ICL R., Oswald, M., Reinhardt, K.: Refining the nonterminal com-
bcm’atlrl’of E]‘aph-coﬁtro.llecl., programmed, and matrix grammars. J. Autom. Lang.
Gls::llb‘ 12(1-2), 117-138 (2007). https:ff(loi‘m'g{l(),2-"59fifja1c~.20.0?- 1 %TP? &
Freund, R.: Control mechanisms on #-context-free array grammars. In: 'am\li; Jlli
(ed.) Mathematical Aspects of Natural and Formal Lallgllages, pp: .97_ 137. Worlc
Scientific, Singapore (1994). https://doi.org/10.1 J42/9r898]d:l.-’l?t'.id_(J(}E{lGD —
Freund, R.: Control mechanisms for array grammars on Cayley grids. In.r uran
Lose and Verlan [8], pp. 1-33. https://doi.org/lQ1007/978—3—319.—9240‘2—1_1 -
Freund, R., Ivanov, S., Oswald, M., Subramanian, KG One-dimensional array
grammars and P systems with array insertion and deletion rules. In: Neary and
Cook [20], pp. 62-75. https://doi.org/10.4204/EPTCS.128 o
Freund, R., Kogler, M., Oswald, M.: A general framework for 1‘e'gulated rewriting
based on the applicability of rules. In: Kelemen, J., Kelemenova., A. (eds:) Com-
putation, Cooperation, and Life. LNCS, vol. 65018,7p15). 35-53. Springer, Heidelberg

:/ [doi.org/10.1007/978-3-642-20000-7_

ggiﬁh,}ﬁt?gi\/\rz\l‘hfﬁf/ Array a/utonmta on Cayley grids. In: Neary and Cook [20],

-28. s://doi.org/10.4204 /EPTCS.128
E‘FéuQI:/d,Z]?{.,hétszfa{é, M. Er/ray gran'{mars and automata on Cayley grids. J. Autom.
Lang. Comb. 19(1-4), 67-80 (2014). https://doi.org/10.2559§/jalc—2014-0f57
Holt, D.F., Eick, B., O’Brien, E.A.: Handbook of Computational Group Theory.
CRC Press, Boca Raton (2005)
Kudlek, M., Martin-Vide, C., Pdun, Gh.: Toward a formal macroset theory. In:
Calude77 C.S., PAun, G., Rozenberg, Gi., Salomaa, A. (eds.) WMC 2000. LNCS,
vol. 2235, pp. 123-133. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-45523-X 7 . '
Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffs (1967)
Mitrana, V.: On the generative capacity of hybrid CD grammar systems. Comput.
Artif. Intell. 12(1), 231-244 (1993
Neary, "[?Ei CoolE,)M. (eds.): I(V[CU)2018. LNCS, vol. 128. Springer, Cham (2013).
https://doi.org/10.4204/EPTCS.128
P&un, Gh.: Hybrid cooperating/distributed grammar systems. J. Inform. Process.

Cybernet. EIK 30(4), 231-244 1994)
Pgll:, (‘?}1 Rn'n:nh(pr)r; fal .Qalan\aa A The Ovfard Handbanle of Membrane (o

34

23.
24.

25.

26.
27.

R. Freund

Rosenfeld, A.: Picture Languages. Academic Press, Reading (1979)

Rosenfeld, A.; Siromoney, R.: Picture languages - a survey. Lang. Des. 1(3), 294
245 (1993). http://dl.acm.org/citation.cfm?id=198440.198442)
Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, 3 volumeg
Springer, Heidelberg (1997) i
Salomaa, A.: Formal Languages. Academic Press, New York (1973)

Wang, P.8.P.: An application of array grammanrs to clustering analysis for Syntac,
tic patterns. Pattern Recogn. 17, 441-451 (1984). https://doi.org/10.1016/0031.
3203(84)90073-6

Low-Complexity Tilings of the Plane

Jarkko Kari(®D

artment of Mathematics and Statistics, University of Turku, Turku, Finland
Dep jkariOutu.fi

Abstract. A two-dimensional configuration is a coloring of the infi-
nite grid 72 with finitely many colors. For a finite subset D of Z*, the
D-patterns of a configuration are the colored patterns of shape D that
appear in the configuration. The number of distinct D-patterns of a
configuration is a natural measure of its complexity, A configuration is
considered having low complexity with respect to shape D if the number
of distinct D-patterns is at most |D|, the size of the shape. This extended
abstract is a short review of an algebraic method to study periodicity of
such low complexity configurations.

Keywords: Pattern complexity - Periodicity - Nivat’s conjecture -
Low complexity configurations - Low complexity subshifts -
Commutative algebra - Algebraic subshifts - Domino problem

1 Introduction

Commutative algebra provides powerful tools to analyze low complexity config-
urations, that is, colorings of the two-dimensional grid that have sufficiently low
number of different local patterns. If the colors are represented as numbers, the
low complexity assumption implies that the configuration is a linear combina-
tion of its translated copies. This condition can be expressed as an annihilation
property under the multiplication of a power series representation of the config-
uration by a non-zero two-variate polynomial, leading to the study of the ideal of
all annihilating polynomials. It turns out that the ideal of annihilators is essen-
tially a principal ideal generated by a product of so-called line polynomials, i.e.,
univariate polynomials of two-variate monomials. This opens up the possibility
to obtain results on global structures of the configuration, such as its periodicity.
We first proposed this approach in [9,10] to study Nivat’s conjecture. It led to a
number of subsequent, results [6-8,14]. In this presentation we review the main
results without proofs — the given references can be consulted for more details.
We start by briefly recalling the notations and basic concepts.

J. Kari—Research supported by the Academy of Finland grant 296018.

