Hydrodynamic lubrication in porous journal bearings: comparison between experimental and simulation data

Ioana Adina Neacșu,
Bernhard Scheichl, Alfred Kluwick
Outline

Introduction

Experimental investigations - GKN

Comparison to simulation

Additional findings

Conclusions and questions to be answered
Outline

Introduction

Experimental investigations - GKN

Comparison to simulation

Additional findings

Conclusions and questions to be answered
Remember the problem?
Remember the problem?

- prediction of cavitation
Remember the problem?

- prediction of cavitation
- pressure in the lubrication gap
Remember the problem?

- prediction of cavitation
- pressure in the lubrication gap
- coefficient of friction
Remember why sintered bearings?
Remember why sintered bearings?

- reliable products
Remember why sintered bearings?

- reliable products
- expanding manufacturing area
 - highest raw material utilisation
 - lowest energy requirement

Wide range of applications: automotive, aerospace applications, household appliances.
Remember why sintered bearings?

- reliable products
- expanding manufacturing area
 - highest raw material utilisation
 - lowest energy requirement
- wide range of applications
 - automotive, aerospace applications, household appliances
Outline

Introduction

Experimental investigations - GKN

Comparison to simulation

Additional findings

Conclusions and questions to be answered
Test parameters

- spherical iron bearings, \(\varnothing 8 \) mm
- porosities of 20\%, 25\%
- radial loads of 0.5 N/mm\(^2\), 1.5 N/mm\(^2\)
- 3 Ionic Liquids (IL) as lubricants
 - IL1 - VG32
 - IL2 - VG150
 - IL3 - VG220
- test rig configuration settings
 - 5 hours running-in at 3000rpm
 - 3 x Striebeck tests
Results - temperatures

- thermo-couple mounted on the side of the bearing

running in

Striebeck tests
Results - friction number for IL1, IL2, IL3

Porosity

20% 25%

Applied load
0.5 N/mm²
1.5 N/mm²

μ [·]

ω [rpm]
Results - running surfaces (1)
Results - running surfaces (2)
Outline

Introduction

Experimental investigations - GKN

Comparison to simulation

Additional findings

Conclusions and questions to be answered
Comparison to simulation - concepts

- Strubeck measurements
 - hydrodynamic branch
Comparison to simulation - concepts

- Striebeck measurements
 - hydrodynamic branch
- load varied by the control parameter ε
 - numerical interpolation required
Comparison to simulation - concepts

- Striebeck measurements
 - hydrodynamic branch
- load varied by the control parameter ε
 - numerical interpolation required
- $\eta(T)$ included in the code by Ubbelohde-Walther relation:

\[
\lg \lg (\eta + a) = k - m \lg T
\]

$a, k, m \ldots$ empirical constants
Comparison to simulation - concepts

- Strubeck measurements
 ▲ hydrodynamic branch
- load varied by the control parameter ε
 ▲ numerical interpolation required
- $\eta(T)$ included in the code by Ubbelohde-Walther relation:

$$\lg \lg (\eta + a) = k - m \lg T$$

$a, k, m \ldots$ empirical constants

- value of the measured permeabilities included in the code
Comparison to simulation - low viscosities

20% porosity

IL1

25% porosity

IL2

IL1

IL2

Comparison to simulation - low viscosities

20% porosity

IL1

25% porosity

IL2
Comparison to simulation - high viscosity

20% porosity

IL3

25% porosity
Outline

Introduction

Experimental investigations - GKN

Comparison to simulation

Additional findings

Conclusions and questions to be answered
Density distribution

\[\varepsilon = 0.2 \]

\[\varepsilon = 0.5 \]

\[\rho \]

Grid oscillations in circumferential coordinate \(\theta \) inevitably a density jump (spontaneous recondensation)
Density distribution

\[\varepsilon = 0.2 \]

\[\varepsilon = 0.5 \]

\(\rho \) grid oscillations in circumferential coordinate \(\theta \)
Density distribution

\[\varepsilon = 0.2 \]

\[\varepsilon = 0.5 \]

- grid oscillations in circumferential coordinate \(\theta \)
- inevitably a density jump (spontaneous recondensation)
Density jump

- assumptions
 - massive bearing
 - cavitation symmetric w.r.t. $\theta = \pi$
 - $H(\theta) \rho(\theta, z) = f(z)$
Density jump

- assumptions
 - massive bearing
 - cavitation symmetric w.r.t. $\theta = \pi$
 - $H(\theta)\rho(\theta, z) = f(z)$

2D case

- infinitely long bearing
- Reynolds equation

$$P'_F(\theta) = \frac{H(\theta) - \bar{H}}{H(\theta)^3}$$
Density jump

- assumptions
 - massive bearing
 - cavitation symmetric w.r.t. $\theta = \pi$
 - $H(\theta)\rho(\theta, z) = f(z)$

2D case

- infintinely long bearing
- Reynolds equation

$$P'_F(\theta) = \frac{H(\theta) - \bar{H}}{H(\theta)^3}$$

- $P_F = P_C$ at some $\theta = \pi \pm \varphi\pi$
 - impossible!
Density jump, cont’d

full 3D case

assumptions

\[P_F(\theta, z) = P_{\text{symm}} + P_{\text{asymm}} \]

\(P_{\text{symm}} \rightarrow \) homogeneous elliptic equation, homogeneous BCs

\(P_{\text{asymm}} \rightarrow \) r.h.s. of Reynolds equation
Density jump, cont’d

Full 3D case

- assumptions
 - \(P_F(\theta, z) = P_{symm} + P_{asymm} \)
 - \(P_{symm} \rightarrow \) homogeneous elliptic equation, homogeneous BCs
 - \(P_{asymm} \rightarrow \) r.h.s. of Reynolds equation

- also no solution as shown by
 - mass conservation
 - extremal properties of \(P_{symm} \)
Density jump, cont’d

full 3D case

- assumptions
 - \(P_F(\theta, z) = P_{\text{symm}} + P_{\text{asymm}} \)
 - \(P_{\text{symm}} \rightarrow \) homogeneous elliptic equation, homogeneous BCs
 - \(P_{\text{asymm}} \rightarrow \) r.h.s. of Reynolds equation

- also no solution as shown by
 - mass conservation
 - extremal properties of \(P_{\text{symm}} \)

- cavitation is shifted in \(\theta \) direction \(\rightarrow \) density jump
Coefficient of friction

\[\varepsilon_{\text{crit}} = 0.55 \]

No solutions for extreme values of \(\varepsilon \)!
Outline

Introduction

Experimental investigations - GKN

Comparison to simulation

Additional findings

Conclusions and questions to be answered
Conclusions

- experiments
 - best correlation for low viscosity lubricants and high loads
Conclusions

- experiments
 - best correlation for low viscosity lubricants and high loads
 - discrepancy for high viscosity lubricants → non-Newtonian effects?
Conclusions

- experiments
 - best correlation for low viscosity lubricants and high loads
 - discrepancy for high viscosity lubricants \rightarrow non-Newtonian effects?

- simulations
 - thorough numerical investigation of whether a threshold, $\varepsilon_{\text{crit}}$ exists
Conclusions

- experiments
 - best correlation for low viscosity lubricants and high loads
 - discrepancy for high viscosity lubricants → non-Newtonian effects?

- simulations
 - thorough numerical investigation of whether a threshold, $\varepsilon_{\text{crit}}$ exists
 - validity of Darcy’s law and coupling term by homogenisation
Thank you for listening!