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Kurzfassung

Die Bodenverdichtung stellt bei der Herstellung verschiedenster Ingenieurbauwerke
eine entscheidende und gleichzeitig kritische Bauphase dar. Denn die Qualität von
Auffüllungen im Zuge von Gründungsarbeiten im Hallen- und Industriebau sowie bei
der Herstellung von Bodenauswechslungen, Dämmen und Tragschichten im Straßen-,
Eisenbahn- und Flughafenbau hängt vom Verfüllmaterial und insbesondere vom Ein-
bauvorgang ab. Dynamische Walzen sind mittlerweile zum bevorzugten Gerät für die
oberflächennahe Verdichtung geworden, um zukünftige Schäden an Bauwerken, die mit
einem lageweisen hergestellten Erdbauwerk verbunden bzw. darauf gegründet sind,
steigende Instandhaltungskosten und eine geringere Lebensdauer des jeweiligen Bau-
werks zu vermeiden. Während die Verdichtungswirkung einer statischen Walze im We-
sentlichen vom Eigengewicht der Maschine und gegebenenfalls von der Bandagengeo-
metrie und -oberfläche bestimmt wird, lässt sich bei dynamischen Walzen die Effizienz
der Untergrundverdichtung durch die dynamische Anregung der Bandage erhöhen.

In Abhängigkeit von der Art der Bandagenanregung lassen sich grundsätzlich zwei
Typen von dynamischen Walzen unterscheiden, nämlich Vibrations- und Oszillations-
walzen. In einer Vibrationsbandage erzeugt eine Unwuchtmasse, die in der Bandagen-
achse angeordnet und mit einer festgelegten Frequenz um die Achse rotiert, eine schnell
wechselnde Aufwärts-Abwärts-Bewegung. Der Untergrund wird durch die von der Ban-
dage ausgeübten, vorwiegend vertikal gerichteten Schläge verdichtet. In einer Oszillati-
onsbandage, die Gegenstand der vorliegenden Arbeit ist, sind zwei Unwuchtmassen mit
derselben Größe und Exzentrizität punktsymmetrisch zur Bandagenachse angeordnet,
die synchron in die gleiche Richtung drehen. Die daraus resultierende wechselnde hoch-
frequente Vorwärts-Rückwärts-Rotation der Bandage (rotatorische Schwingung) wird
der Fahrbewegung (rollende Bandage unter der statischen Achslast) überlagert. Infolge
Reibung in der Kontaktfläche zwischen Bandage und Untergrund werden hauptsächlich
dynamische Schubkräfte in den Boden übertragen, wodurch die Untergrundsteifigkeit
erhöht wird.

Das Fehlen von Echtzeit-Informationen über den Verdichtungszustand kann so-
wohl zu einer Unter- als auch zu einer Überverdichtung und darüber hinaus zu einem
erhöhten Verschleiß der Bandage von Oszillationswalzen führen. Daher ist eine sofor-
tige Kontrolle der erzielten Verdichtung von besonderer Bedeutung. Ein umfassendes
Qualitätsmanagementsystem erfordert eine kontinuierliche Kontrolle der Verdichtungs-
qualität im gesamten verdichteten Bereich, die nur durch arbeitsintegrierte Verfahren
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erreicht werden kann. Die Überwachung der Bandagenschwingung wird seit über 40
Jahren bei der Walzenverdichtung eingesetzt, um eine sogenannte Flächendeckende
Dynamische Verdichtungskontrolle (FDVK) zu realisieren. Die FDVK ist mittlerwei-
le zur Standardtechnologie für die arbeitsintegrierte und kontinuierliche Beurteilung
der mittels Vibrationswalzen erzielten Verdichtung geworden. Für Oszillationswalzen
gab es jedoch bis vor kurzem kein ausgereiftes FDVK-System, obwohl bereits vor fast
vier Jahrzehnten erste diesbezügliche Entwicklungsansätze erfolgten. Das vor wenigen
Jahren vorwiegend auf Basis von Feldversuchen vorgeschlagene FDVK-System wurde
weder durch analytische noch durch numerische Untersuchungen verifiziert. Die vor-
liegende Dissertation zielt daher darauf ab, diese Forschungslücke zu schließen, wobei
zwei Modellierungsstrategien verfolgt werden, nämlich mechanische Modellierung und
Finite-Elemente-Modellierung.

Das mechanische Modell des dynamischen Interaktionssystems Oszillationswalze-
Untergrund ermöglicht die Simulation der Schwingungsantwort einer Oszillationsban-
dage mit geringem numerischen Aufwand. Der Verdichtungsprozess selbst wird nicht
modelliert, es werden aber unterschiedliche Verdichtungsgrade durch Variation der Bo-
densteifigkeit berücksichtigt. Die Walze wird durch die Oszillationsbandage und ihre
viskoelastische Verbindung zum Rahmen (Gummipuffer) repräsentiert. In der gewähl-
ten Modellierungsstrategie wird die Krümmung der Bodenoberfläche unterhalb der
Bandage vorgegeben. Auf diese Weise kann auch die vertikale Bandagenschwingung si-
muliert werden. Das diskrete viskoelastische Untergrundmodell besteht aus einem ver-
tikalen und einem horizontalen Kelvin-Voigt Element. Der Kontakt zwischen Bandage
und Untergrund wird mittels Coulomb’schen Reibungsgesetz beschrieben. Somit kann
die Haftgleitbewegung der Bandage simuliert werden. Die hochgradig nichtlinearen Be-
wegungsgleichungen dieses Drei-Freiheitsgrade-Modells werden getrennt für die Haft-
phase und die Gleitphase der Bewegung hergeleitet. Die detaillierte Untersuchung des
Bewegungsverhaltens für einen ausgewählten Walzentyp zeigt, dass das vorgeschlage-
ne Modell die in Feldversuchen gemessene Antwortcharakteristik einer mit dem Unter-
grund interagierenden Oszillationsbandage grundsätzlich widerspiegelt. Die Ergebnisse
einer umfassenden Parameterstudie mit vier verschiedenen Oszillationswalzen bestäti-
gen im Wesentlichen den Verdichtungsindikator für die betrachteten Oszillationswalzen
in einer weiten Bandbreite der Bodensteifigkeit. Die ermittelten Anwendungsgrenzen
dieses Wertes werden von den Geräteparametern und der Betriebsfrequenz deutlich
beeinflusst.

Das vorgeschlagene Finite-Elemente-Modell ermöglicht erstmals die gleichzeitige
numerische Berechnung des Bewegungsverhaltens und der Verdichtungswirkung einer
Oszillationswalze im Zuge der oberflächennahen Verdichtung von nichtbindigen Böden.
Im entwickelten zweidimensionalen Modell erfasst das hypoplastische Stoffgesetz mit
intergranularen Dehnungen das nichtlineare Verhalten des Bodens unterhalb der Ban-
dage. Auf die freie Bodenoberfläche wird eine “Schutzfolie” aufgebracht, um die numeri-
sche Stabilität der mittels der Finite-Elemente-Software ABAQUS/Standard durchge-
führten Simulationen zu gewährleisten. Die berechneten Spannungen, Dehnungen und
Änderungen der Porenziffer im potentiellen Verdichtungsbereich, die repräsentativ für
die Verdichtungswirkung ist, sowie das Bewegungsverhalten der Bandage werden im
Detail analysiert. Darüber hinaus werden berechnete dynamische Spannungskompo-
nenten im Boden und Beschleunigungen im Bandagenzentrum mit Daten aus Feldver-
suchen verglichen. Es wird gezeigt, dass das entwickelte Finite-Elemente-Modell quali-
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tativ und teilweise auch quantitativ die grundlegenden, in Feldversuchen beobachteten
Antwortcharakteristika des Interaktionssystems Oszillationswalze-Untergrund vorher-
sagt. Die Ergebnisse einer umfassenden Sensitivitätsstudie bestätigen, dass die aus
dem Bewegungsverhalten der Bandage abgeleiteten Größen grundsätzlich als Indika-
toren für die FDVK mit Oszillationswalzen geeignet sind. Darüber hinaus zeigen die
Ergebnisse eindrucksvoll, dass die Fahrgeschwindigkeit der Walze sowohl das Bewe-
gungsverhalten der Bandage als auch die erzielbare Bodenverdichtung signifikant be-
einflusst.





Abstract

Soil compaction is a fundamental and critical construction phase of a wide variety of
engineering structures, since the quality of fills in foundation work of hall and industrial
facilities, soil replacements, dam and base layers in road, railway and airport construc-
tion depends on the built-in material and in particular on the realization of earthwork.
Dynamic roller compaction has become the common method for proper near-surface
compaction to prevent future damage of constructions connected to layered earth struc-
tures, failure of long-term pavement performances and increasing maintenance costs.
While a static roller uses only its weight to compact filled layers, a dynamic roller
enhances the efficiency of subsurface compaction through dynamic excitation of the
drum.

Depending on the drum excitation, two basic types of dynamic rollers do exist, i.e.
vibratory rollers and oscillation rollers. In a vibrating drum a single unbalance mass,
which is attached concentrically to the drum axis, generates a rapidly alternating
upward-downward motion of the drum. The subgrade is compacted by the dynamic
pressure applied by the drum. The drum of an oscillation roller, as considered in the
present thesis, is equipped with two offset eccentric masses, which rotate synchronously
in the same direction. The resulting alternating high-frequency forward-backward
motion of the drum (oscillatory drum motion) is superposed with the translational
roller motion (moving drum under the static axle load). Due to the frictional contact
between drum and subsoil mainly dynamic shear forces are transmitted to the soil,
which in turn increase the subgrade density, also known as shear force compaction.

The lack of real-time compaction information may lead to both under- and over-
compaction and, moreover, to an increased wear of the drum of oscillation rollers.
Thus, instant compaction control is of particular importance. A high-leveled quality
management requires continuous control of the soil compaction in the entire com-
pacted area, which can be achieved only by work-integrated methods. Roller vibration
monitoring has been used for over 40 years during soil compaction to provide what is
referred to as Continuous Compaction Control (CCC). CCC has become the standard
technology for assessing work-integrated and continuously the achieved compaction by
vibratory rollers. For oscillation rollers, however, until recently no mature CCC system
did exist, although initial approaches to a CCC system were already proposed almost
four decades ago. The recently developed CCC technique has neither been verified by
analytical nor by numerical studies. The present doctoral thesis therefore aims to fill
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this gap by pursuing two modelling strategies, lumped parameter modeling and Finite
Element modeling.

The proposed lumped parameter model of the interacting oscillation roller-subsoil
system facilitates the response simulation of an oscillation drum with the least nu-
merical effort. The compaction process itself is not captured, but different degrees of
compaction are considered by varying the soil stiffness. The roller is represented by
the oscillation drum and its viscoelastic connection to the roller frame. In the cho-
sen modeling strategy, the curvature of the soil surface below the drum is prescribed.
In this way, also the vertical drum acceleration can be computed. The discrete vis-
coelastic subsoil model consists of a vertical and a horizontal Kelvin-Voigt element.
Contact between drum and soil surface is described by means of dry friction according
to Coulomb’s law. As such, the stick-slip motion of the drum can be simulated. The
highly nonlinear equations of motion of this three degrees-of-freedom model are derived
separately for the stick and the slip phase of the motion. A detailed response study of
one selected roller type shows that this model captures the fundamental response char-
acteristics of the drum-subsoil interaction system observed in the field. The results of
a comprehensive parametric study based on four different oscillation rollers essentially
confirm the compaction indicator for the considered oscillation rollers in a wide range
of soil stiffness. The found application limits of this value are clearly influenced by the
device parameters and the operating oscillation frequency.

The presented Finite Element model allows for the first time the numerical pre-
diction of both the dynamic response acceleration and the compaction effect of an
oscillation roller during near-surface compaction of non-cohesive soils. In the devel-
oped plane-strain model, the intergranular strain enhanced hypoplastic constitutive
model captures the nonlinear behavior of the soil below the drum. A “protective foil”
is applied to the soil surface to ensure the numerical stability of the model solved with
the Finite Element software suite ABAQUS/Standard. The derived stresses, strains,
and change of the void ratio in the subsoil representative for the compaction effect as
well as the dynamic response of the drum center are analyzed in detail. In addition,
computed dynamic stress components in the soil and drum accelerations are compared
with data recorded in field tests. It is shown that the developed model qualitatively
and partially also quantitatively predicts the fundamental response characteristics of
the interacting oscillation-subsoil system observed in field tests. The outcomes of a
comprehensive sensitivity study confirm that the quantities derived from the drum re-
sponse are basically suitable as indicators for CCC with oscillation rollers. Moreover,
the results impressively demonstrate that the roller speed has a significant effect on
both drum response and achievable soil compaction.
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Chapter 1
Introduction

1.1 Soil compaction with dynamic rollers
The quality of layered earth structures, such as dams and embankments for roads,
railways, and airfields, depends on the built-in material and in particular on the con-
struction work. The layers must be compacted properly in order to prevent future
damage of the structure connected to the earth structure, failure of long-term pave-
ment performances and increasing maintenance costs. Therefore, soil compaction is
a very important and critical step in the construction process of various civil struc-
tures. Dynamic roller compaction has become the common method for near-surface
compaction, since it is much more efficient compared to compaction using static rollers.

A roller, also often referred to as roller-compactor, is a heavy piece of equipment
used for near-surface compaction of soil and asphalt layers in the construction of various
civil structures. A static roller uses only its weight to compact the layer, whereas
a dynamic roller enhances the efficiency of subsurface compaction through dynamic
excitation of the drum. Depending on the drum excitation, two basic types of dynamic
rollers exist, i.e. vibratory rollers and oscillation rollers. They differ in design, mode
of operation, and how the medium to be compacted is loaded.

In a vibrating drum a single unbalance mass, which is attached concentrically to
the drum axis, generates a rapidly alternating upward-downward motion of the drum.
The subgrade is compacted by the dynamic pressure applied by the drum. The concept
of vibratory excitation for drums was implemented for the first time in 1958 [Kappel,
2012] and has become the commonly used type of excitation for dynamic drums.

The drum of an oscillation roller is equipped with two offset eccentric masses, which
rotate synchronously in the same direction (see Fig. 11). The resulting alternating
high-frequency forward-backward motion of the drum (oscillatory drum motion), is
superposed with the translational roller motion (moving drum under the static axle
load). Due to the friction in the contact area between drum and soil mainly dynamic
shear forces are transmitted to the soil, which in turn increase the subgrade density.
Thus, compaction is achieved by “massaging” [Kearney, 2006] the soil, also known as
shear force compaction [Thurner and Sandström, 2000]. Unlike with vibrating drums,
the compaction force acts continuously on the subsoil because the drum remains in
constant contact with the soil at all times. Therefore, the drum does not bounce like
a conventional vibratory roller drum. Moreover, an oscillation drum reduces subsoil
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2 Chapter 1. Introduction

Figure 11: Principal components of an oscillation roller compactor with smooth drum

vibrations significantly compared to a vibratory roller and can therefore ideally be used
in sensitive areas, such on construction sites in urban areas.

The first oscillation roller was developed by the Swedish company Geodynamik AB
in the early 1980s ([Geodynamik AB, 1982], [Sandström, 1993]), i.e. the first shearing
force roller [Geodynamik AB, 2018]. Today the only producer of this type of roller is
the German company HAMM ([HAMM AG, 2018a], [Adam and Pistrol, 2016]).

1.2 Roller-integrated compaction control
The lack of real-time compaction information may lead to both over- and undercom-
paction. Moreover, the inappropriate use of oscillation rollers, i.e. continuing the
compaction work despite reaching the state of maximum compaction, results in an
increased wear of the oscillating drum [Pistrol, 2016]. Thus, instant compaction con-
trol is of particular importance. An extensive quality management requires continuous
control of the soil compaction in the entire compacted area, which can be achieved only
by work-integrated methods. Roller vibration monitoring has been used for over 40
years now during soil compaction to provide what is referred to as Continuous Com-
paction Control (CCC) ([Forssblad, 1980], [Thurner and Sandström, 1980], [Adam,
1996], [Kopf, 1999]). Real-time monitoring of the compaction quality during the com-
paction process yields the target compaction uniformly and continuously and results in
time and cost savings. This control technique is based on the dynamic response of the
interacting drum-subsurface system recorded during the roller pass, and thus, allows
an instant continuous assessment of the compaction quality. In this method, the roller
is used as compaction device as well as measuring device at the same time. During
operation, CCC links one or more compaction indicators derived from the response
of the roller (in the literature also referred to as roller measured value (RMV) [Imran
et al, 2017], roller-measured soil property [Mooney and Rinehart, 2009] or CCC-value
([Adam, 1996], [Kopf, 1999])) to the degree of compaction of the soil. The parameters
that influence the motion behavior of the drum also have an influence on the CCC indi-
cators. Therefore, the first premise for a CCC technique is to keep the roller parameters
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of the compaction process such as roller speed, excitation frequency and excitation am-
plitude constant during the CCC measurements. Secondly, the motion of the drum
needs to be recorded in terms of accelerations, velocities or displacements. Assuming
constant parameters during the compaction process, a CCC technique assesses reliably
the actual soil compaction, based on an analysis of the motion of the dynamically ex-
cited drum. The CCC indicators are relative values, which represent the evolution of
the material stiffness in the compacted area. These indicators are calibrated to relate
them to traditional compaction parameters such as deformation modulus of static and
dynamic plate load tests defined in provisions and standards [Adam and Pistrol, 2016].
Thus, CCC overcomes the disadvantages of spot like compaction testing methods.

The concept of CCC for vibratory rollers was first investigated by H. Thurner of the
Swedish Road Administration in 1974 by relating drum harmonics to soil compaction
properties [White and Vennapusa, 2010]. In 1975, H. Thurner and Å. Sandström
founded the company Geodynamik AB to continue research and development on CCC
[White and Vennapusa, 2010]. In 1976, the Compactometer device based on the com-
paction indicator referred to as Compaction Meter Value (CMV) was developed by
Geodynamik AB in cooperation with the Dynapac Research Department [White and
Vennapusa, 2010]. Numerous studies by other researchers ([Adam, 1996], [Kopf, 1999])
and numerous research projects on CCC with vibrating rollers have been carried out
since then, resulting in optimized vibrating rollers and other developments such as
feedback controlled rollers and systems for CCC. While in the early years of CCC,
roller-based measures of soil compaction were heuristically determined relative indices
[Mooney and Rinehart, 2009] (e.g. the CMV value), more recently, roller vibration data
has been used to extract continuous measurement of the actual soil stiffness ([Kröber
et al, 2001], [Anderegg and Kaufmann, 2004], [Mooney and Adam, 2007], [Mooney and
Rinehart, 2007], [National Academies of Sciences, Engineering, and Medicine, 2010]).
Currently, there are three leading CCC systems for vibratory rollers on the market,
the Compactometer, the Terrameter and the ACE system, which differ in their mea-
surement principle and theoretical background [Pistrol, 2016]. Consequently, CCC has
become the standard technology for assessing work-integrated and continuously the
achieved compaction by means of vibratory rollers.

For oscillation rollers, however, no mature CCC system has been developed yet, al-
though initial approaches to a CCC system were already proposed almost four decades
ago [Thurner and Sandström, 2000]. The Oscillometer, introduced by the Swedish
company Geodynamik AB in 1997 [Adam and Pistrol, 2016], is based on the so-called
Oscillometer Value (OMV), i.e. a dimensionless value obtained from the amplitude of
the horizontal acceleration of the drum. The OMV value reflects the horizontal force
transferred from the drum to the soil [Thurner and Sandström, 2000]. The complica-
tion due to slip between drum and soil is considered by the built-in signal analysis of
the Oscillometer using a special algorithm [Sandström, 1993]. HAMM AG adopted
the OMV measurement technology [Thurner and Sandström, 2000] for the use on their
smooth drum oscillation rollers. Kopf [1999] investigated the reliability of the OMV
value by analyzing measurement data and performing parametric studies based on
a single-degree-of-freedom lumped parameter model that considers frictional contact
between drum and soil. He found that the Oscillometer does not reliably predict
the soil stiffness compared to the results of CCC systems for vibratory rollers [Kopf,
1999]. Therefore, the CCC system using the OMV value was never used in engineering
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practice. Kopf [1999] also showed that an imbalanced drum causes motion patterns
that repeat with every full rotation of the drum. This behavior is called periodicity
of a drum [Kopf, 1999]. As this periodicity of a drum usually can also be observed in
CCC values, it reduces their significance. Moreover, the investigations of the motion
behavior of an oscillation drum in terms of horizontal drum accelerations considering
Coulomb friction in the contact area between drum and soil, revealed that an oscillation
roller exhibits two operating modes: i.e. the operating mode stick and the operating
mode slip [Kopf, 1999]. Depending on the speed of the drum, the soil stiffness, and
the friction between drum and soil the following modes of response may be observed:
one-sided slip, asymmetric slip, and symmetric slip [Kopf, 1999]. Furthermore, Kopf
[1999] showed that the vertical acceleration component of the oscillation drum center
plotted against its horizontal counterpart, measured during compaction of granular
soil, yields a figure in the shape of a “recumbent eight”. Based on the findings of
Kopf, a comprehensive research project on the compaction with oscillation rollers was
launched by the German roller manufacturer HAMM AG in 2011 in cooperation with
the Institute of Geotechnics at TU Wien. The aims of the project, which ended in
September 2016, were to obtain a better understanding of the motion behavior of an
oscillating drum and its impact on the compacted soil as well as the development of a
reliable CCC method for oscillation rollers and, moreover, the indication of wear of the
drum during operation. Within this project large-scale in-situ tests were performed
with a HAMM HD+ 90 VO tandem roller [HAMM AG, 2011] possessing an oscilla-
tion drum and a vibrating drum in a gravel pit near Vienna International Airport.
Analyzing the measurement data, Pistrol [2016] found that the area enclosed in the
“recumbent eight” can be used as a characteristic quantity for the compaction degree of
the subsoil, which increases with increasing soil stiffness, and thus, may serve as a CCC
indicator. The reason for the formation of this figure is the vertical drum acceleration,
which contains in addition to the excitation frequency also its double frequency as a
result of the roller motion in the settlement trough and the development of a bow and
a rear wave in the soil during compaction [Pistrol, 2016]. As a final outcome, based on
the area of this response representation, in [Pistrol and Adam, 2018] a working roller
integrated compaction control method was proposed also for oscillation rollers.

1.3 Motivation
Since experiments provide only a narrow insight into the response behavior of the
entire parameter space, a complete picture of the drum response and its parameter
interdependency can only be gained from the outcomes of comprehensive parametric
numerical studies. In the meanwhile, only some attempts have been made to confirm
the proposed CCC technique, which was mostly found empirically, supported by a few
semi-analytical (e.g. [Pistrol, 2016]) and numerical studies (e.g. [Capraru et al, 2014]).

The literature on mechanical modeling of roller-compactors for numerical response
simulation is quite scarce. Basically, it can be distinguished between lumped param-
eter models (e.g. [Wolf, 1994], [Beainy et al, 2013], [Li et al, 2018], [van Susante and
Mooney, 2008]) and Finite Element (FE) models (e.g. [Cao et al, 2013], [Kenneally
et al, 2015]) of the dynamic interacting roller-subsurface system. The focus of most FE
models is to predict the subsurface compaction, and depending on the degree of sophis-
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tication, they allow only selective insight into the system response, like experimental
studies. On the contrary, lumped parameter models are often used to predict the re-
sponse of the compaction device for predefined subsurface condition or (over)simplified
soil compaction models.

A first modeling attempt of the oscillation drum-soil system was presented in
[Zuwang et al, 1997], where a single degree-of-freedom (SDOF) lumped parameter model
captures slip between drum and subsurface, considering the suspension elements be-
tween drum and frame. This paper also explains the basic principle of oscillation
compaction and some basic response phenomena such as “peak cut” of the horizontal
drum acceleration. In a similar approach, Kopf [1999] studied the influence of the slip
motion on the horizontal drum accelerations, using also a SDOF lumped parameter
model. A few years ago, Pistrol [2016] presented a three degrees-of-freedom (3DOF)
lumped parameter model for the drum in pure rolling motion, i.e. rolling without
slipping, that delivers the horizontal and also the vertical acceleration response of the
drum. An approach to solve this 3DOF model is presented in [Pistrol, 2016] for the
operating mode stick. Lately, in [Li et al, 2018] the amplitude frequency characteristics
of a tandem oscillation roller have been studied based on a 5DOF model in pure rolling
motion. From this brief literature survey it can be concluded that, so far, no reliable
lumped parameter model that predicts both realistically and efficiently the dynamic
response of an oscillation drum operating at stick-slip motion is available.

There is an extensive body of literature available for the Finite Element modeling
of dynamic soil compaction by means of vibrating rollers (e.g. [Yoo and T. Selig,
1977], [Yoo and T. Selig, 1979], [Pietzsch and Poppy, 1992], [Kelm, 2004], [Erdmann
and Adam, 2014]) including CCC application (e.g. [Grabe, 1993], Anderegg and Kauf-
mann [2004], [Kenneally et al, 2015], [Adam and Pistrol, 2016]). However, literature
on numerical modeling of the interacting system composed of oscillation roller and
underlying soil is quite rare. Capraru et al [2014], for instance, used the modified
Drucker-Prager cap plasticity model to simulate the compaction of a sandy soil layer
resting on a gravel-like linear elastic subsoil. In their study, the inelastic volume
change of the soil due to the oscillation drum serves as an indicator for soil com-
paction, provided that the soil compaction is related to the plastic strains. Based on
this plane-strain FE model, the tribological behavior of an oscillation drum was inves-
tigated by Pistrol [2016]. On the other hand, a plasticity constitutive model can at
best only indirectly simulate soil compaction. Alternatively, an anelastic constitutive
model such as a hypoplastic constitutive law provides a direct measure of soil density.
For example, in hypoplastic constitutive laws (e.g. [Gudehus and Kolymbas, 1979],
[von Wolffersdorff, 1996], [Niemunis and Herle, 1997], [Mašín, 2019b]) the void ratio
of the soil serves as an indicator of the predicted density, i.e. a reduction in the void
ratio relative to the initial void ratio is referred to as soil compaction. Kelm [2004] was
the first to use a hypoplastic constitutive model to predict the compaction effect of a
vibratory roller. Soil compaction using vibratory and oscillation rollers equipped with
different exciters was numerically investigated by Erdmann and Adam [2014]. In their
FE model, a hypoplastic constitutive law with intergranular strain was implemented
to simulate the soil compaction with parameters of Schlabendorf sand. Selected results
for both a vibrating and an oscillation roller are presented in terms of contour plots of
vertical soil displacements, stresses, and void ratios, respectively, and are qualitatively
compared with the outcomes of a static roller. However, the compaction effect and
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the dynamic response of the drum are not addressed. From this brief literature survey
it becomes clear that no reliable numerical model has yet been developed to predict
the dynamic response of the complete highly nonlinear oscillation roller-soil interaction
system, which covers both the actual compaction of non-cohesive soils and the response
of the drum.

Thus, the novel CCC technique for oscillation rollers proposed by Pistrol [2016] has
neither been verified by analytical nor by numerical studies. In order to fill this gap, the
present dissertation aims to develop both a lumped parameter model that facilitates
the response simulation of an oscillation drum with the least numerical effort capturing
the observed stick-slip motion of the drum, and a FE model of the oscillation roller-
subsoil system in an effort to predict and to assess for the first time simultaneously the
soil compaction and the dynamic roller response with respect to the mentioned CCC
indicator.

1.4 Modeling strategies
In the present work, two modeling strategies are pursued. On the one hand, lumped
parameter modeling is applied with focus on the motion behavior of the drum in depen-
dence of a priori defined soil parameters. On the other hand, Finite Element modeling
is used with focus on simultaneous investigation of compaction effect and drum mo-
tion behavior. In both cases, parametric and sensitivity studies are performed with
respect to the capabilities of the aforementioned CCC indicator. To support the pro-
posed models, computed results are compared with corresponding experimental results
based on measurement data recorded during in-situ field tests [Pistrol, 2016].

In the chosen lumped parameter modeling strategy, a curved dent, which approxi-
mates the settlement trough of the subsoil below the drum, is prescribed, supported by
a discrete spring-damper soil model [Pistrol, 2016]. This curved dent that allows the
simulation of the vertical motion of the drum is modeled as translatory movable, rigid
track with asymmetric shape as observed in field tests [Pistrol, 2016]. The smooth
drum is idealized as circular rigid body with spring-damper elements attached to its
center, which represent the viscoelastic connection to the roller frame (suspension, also
referred to as “rubber buffers”) installed to decouple dynamically the drum from the
remaining roller components. Modeling of frictional contact between drum and set-
tlement trough, enables one to also consider the operating mode slip. Additionally to
the sinusoidal excitation torque induced by the unbalance masses, a constant driving
torque is imposed to the drum. As such, the effect of the translational motion of
the roller on the response can be captured. The numerically obtained results of this
3DOF model in terms of drum center accelerations are evaluated for four oscillation
rollers of the German roller manufacturer HAMM in an effort to explain the dynamic
response of the interacting oscillation drum-soil system, and ultimately to validate the
novel compaction measurement method for oscillation rollers taking into account the
stick-slip motion of the oscillation drum.

In the chosen Finite Element modeling strategy, a two-dimensional (2D) model
of the oscillation roller-subsoil system is developed for performing numerical simula-
tions with the FE software suite ABAQUS/Standard, whereas the intergranular strain
enhanced hypoplastic constitutive model is implemented to describe the complex non-
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linear and inelastic material behavior of the granular soil. The numerically predicted
change in void ratio serves as an indicator of the compaction effect achieved by the
tandem roller type HAMM HD+ 90 VO under consideration. Only those parts of the
roller that are essential for soil compaction are modeled. These are the oscillating
drum, the viscoelastic suspension, and the static and dynamic forces applied to the
drum. Based on this plan-strain FE model, it is aimed to investigate the sensitivity of
the predicted soil compaction to several parameter variations (soil, machine and oper-
ating parameters), the parameter dependency of the drum response, and consequently
of the CCC indicator proposed in [Pistrol, 2016], considering the actual compaction
state.

1.5 Fundamentals and content
This doctoral thesis is based on the following publications that were developed in the
context of the current research project:
(1) “Analytical modelling of the motion of an oscillating roller during soil compaction

assuming pure rolling contact”, co-authored by I. Paulmichl, C. Adam, D. Adam,
and W. Völkel, published in D. Adam and S. Larsson (eds.), Proc. Anniver-
sary Symposium “40 Years of Roller Integrated Continuous Compaction Control
(CCC)”, November 29th, Vienna, Mitteilungen des Institutes für Geotechnik, Heft
4, S. 121-124, Vienna, 2018 (“paper 1”)

(2) “Analytical modeling of the stick-slip motion of an oscillation drum”, co-authored
by I. Paulmichl, C. Adam, and D. Adam, published in Acta Mechanica, 230(9):3103-
3126, doi:10.1007/s00707-019-02454-3, 2019 (“paper 2”)

(3) “Simulation of the stick-slip motion of an oscillatory roller”, co-authored by I.
Paulmichl, C. Adam, and D. Adam, published as OnlineOpen in Proceedings
in Applied Mathematics and Mechanics (PAMM), doi:10.1002/pamm.201900245,
2019 (“paper 3”)

(4) “Assessment of a compaction indicator for oscillation rollers with a lumped param-
eter model”, co-authored by I. Paulmichl, C. Adam, D. Adam, and W. Völkel, sub-
mitted for publication to ICE - Geotechnical Engineering for the Roller integrated
continuous compaction control themed issue, tracking number: GE-D-19-00204,
08/2019 (“paper 4”)

(5) “Numerical simulation of the compaction effect and the dynamic response of an
oscillation roller based on a hypoplastic soil model”, co-authored by I. Paulmichl,
T. Furtmüller, C. Adam, and D. Adam, submitted for publication to Soil Dynamics
and Earthquake Engineering, 09/2019 (“paper 5”)

(6) “Parametric study of the compaction effect and the response of an oscillation
roller”, co-authored by I. Paulmichl, C. Adam, and D. Adam, submitted for
publication to ICE - Geotechnical Engineering for the Roller integrated continu-
ous compaction control themed issue, tracking number: GE-D-19-00209, 09/2019
(“paper 6”)

The present thesis is structured as follows. Chapter 2 describes the lumped parame-
ter modeling of the oscillation roller-soil system based on papers 1, 2, 3 and 4. The
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considered types of oscillation rollers are outlined in Section 2.1. After a brief expla-
nation of the basic components and the basic principles of an oscillation roller (Sec-
tion 2.2.1), the proposed drum-subsoil interacting model (Section 2.2.2) and excitation
model (Section 2.2.3) is presented. Based on the kinematic relations (Section 2.3.1), in
a substructure approach (Section 2.3.2) the equations of motion of this 3DOF model
are derived in Section 2.3.3 separately for the response mode stick and the response
mode slip for an asymmetric (spiral-shaped) settlement trough. The numerical solu-
tion of these highly nonlinear equations is discussed in Section 2.3.4. Once the model
has been established, the impact of the contact condition between drum and soil (pure
rolling vs. stick-slip motion), soil stiffness, and driving torque on the response of the
oscillation drum of a HAMM HD+ 90 VO tandem roller is investigated in detail (Sec-
tion 2.4). Moreover, the frequency content of selected computed results and drum
accelerations recorded during in-situ field tests [Pistrol, 2016] is examined to support
the proposed analytical model (Section 2.4). Subsequently, a comprehensive parametric
study considering three additional types of HAMM oscillation rollers, i.e. a H7i VIO,
HD13i VIO and HD+ 140i VO roller, is performed (Section 2.5). The impact of the
slip phases (Section 2.5.1), the soil stiffness (Section 2.5.2), the excitation frequency
(Section 2.5.3), the suspension properties (Section 2.5.3), and the coefficient of friction
between drum and soil surface (Section 2.5.4) on the drum response is investigated in
detail.

Chapter 3 describes the Finite Element modeling of the dynamic interacting os-
cillation roller-soil system based on papers 5 and 6. After a brief description of the
considered oscillation roller (Section 3.1), the developed numerical model of the oscilla-
tion roller-soil interaction system is explained in Section 3.2. An approach to increase
the numerical stability related to the implemented hypoplastic constitutive law (Sec-
tion 3.2.7) is presented in Section 3.2.8. Once a numerically stable and reliable model
has been established (Section 3.3.1), predicted soil stress and strain components at
selected depths are visualized and compared with the ones induced by a static roller.
The aim is to reveal the soil depth-dependent compaction behavior of the considered
oscillation roller (Section 3.3.2). Subsequently, the impact of selected soil properties,
the coefficient of friction, the static axle load, and the roller speed on both the com-
paction effect (Section 3.3.3) and the drum response (Section 3.3.4) is investigated
in detail. Selected computed results (stress components in the soil and drum center
accelerations) are compared with corresponding experimental results based on in-situ
field tests [Pistrol, 2016] to support and validate the proposed numerical model (Sec-
tions 3.3.2 and 3.3.4).

Finally, Chapter 4 summarizes the main findings and outcomes of the presented
numerical simulations of the interacting oscillation roller-soil system and gives a brief
outlook on open research questions of the considered “contact problem”.



Chapter 2
Lumped parameter modeling

2.1 Considered oscillation rollers
For the subsequent lumped parameter modeling, four oscillation rollers of the German
roller manufacturer HAMM are considered:
(1) HD+ 90 VO (“roller 1”)
(2) H7i VIO (“roller 2”)
(3) HD13i VIO (“roller 3”)
(4) HD+ 140i VO (“roller 4”)

Rollers 1 and 4 are both articulated tandem rollers each with a vibratory drum
(“V”) in the front and an oscillation drum (“O”) in the rear. While roller 1 possesses
an operating weight of about 9 tons, roller 4 has an operating weight of around 14 tons.
Rollers 2 and 3 are both compactors with a “VIO” smooth drum. The unbalance
system of these rollers combines two compaction methods in a single drum allowing
compaction either with vibration (“V”) or with oscillation (“O”). The operating weight
of roller 2 is around 6 tons, while the operating weight of roller 3 is about 13 tons, and
thus, more than twice as large. The main parameters of these rollers and the operating
frequency of each roller are listed in Table 21. For further details see [Pistrol, 2016].

Roller 1, i.e. the HD+ 90 VO tandem roller, is used to create the subsequently
proposed 3DOF model in Section 2.4 in the framework of a detailed investigation of
the drum motion because for this device acceleration response data of the drum center
have been recorded in field tests [Pistrol, 2016]. The outcomes of these investigations
are summarized in the papers 1, 2 and 3, see Section 1.5. Based on this detailed
response study, in Section 2.5 the response of rollers 2, 3 and 4 is investigated in the
same manner. The results of this parametric study are summarized in paper 4 (see
Section 1.5).

9



10 Chapter 2. Lumped parameter modeling

T
yp

e
of

os
ci

lla
ti

on
ro

lle
r

H
D

+
90

V
O

H
7i

V
IO

H
13

iV
IO

H
D

+
14

0i
V

O
Pa

ra
m

et
er

Sy
m

bo
l

D
im

en
si

on
(r

ol
le

r
1)

(r
ol

le
r

2)
(r

ol
le

r
3)

(r
ol

le
r

4)

R
ad

iu
s

of
th

e
dr

um
r

m
0.

60
0

0.
60

3
0.

75
2

0.
70

0
W

id
th

of
th

e
dr

um
b

m
1.

68
1.

68
2.

14
2.

14
M

as
s

of
th

e
dr

um
m

kg
18

51
18

18
34

99
29

07
M

as
s

m
om

en
t

of
in

er
ti

a
of

th
e

dr
um

I
kg

m
2

41
2

47
2

12
90

86
3

St
at

ic
ax

le
lo

ad
P

0
N

45
,2

24
36

,9
35

73
,5

75
64

,3
05

St
at

ic
ax

le
lo

ad
m

in
us

dr
um

w
ei

gh
t

F
z

N
27

,0
66

19
,1

00
39

,2
50

35
,7

87
E

xc
it

at
io

n
fr

eq
ue

nc
y

f̄
H

z
39

36
33

36
A

m
pl

it
ud

e
of

th
e

os
ci

lla
ti

on
m

om
en

t
M

(0
)

M
u

N
m

54
,9

47
46

,3
90

12
5,

55
0

91
,9

04
Su

sp
en

si
on

dr
um

/f
ra

m
e

-
st

iff
ne

ss
k

d
N

/m
4.

0×
10

6
2.

8×
10

6
5.

8×
10

6
5.

3×
10

6

Su
sp

en
si

on
dr

um
/f

ra
m

e
-

da
m

pi
ng

c d
N

s/
m

3×
10

2
3×

10
2

3×
10

2
3×

10
2

Ta
bl

e
21

:
R

ol
le

r
pa

ra
m

et
er

s
[P

is
tr

ol
,2

01
6]

an
d

su
sp

en
si

on
pr

op
er

ti
es

([
H

A
M

M
A

G
,2

01
7]

,[
H

A
M

M
A

G
,2

01
8b

])



2.2. Mechanical model 11

2.2 Mechanical model

2.2.1 Basic structure and operation mode of an oscillation roller

The main components of an oscillation roller shown in Fig. 11 are the rigid drum
(at the front) equipped with two rotating unbalances (also referred to as unbalanced
masses or eccentric masses), the driving wheels, the front and the rear frame, and the
driver’s cabin including processing, display and storing unit. Drum and front frame
are separated by suspension elements (rubber buffers) to prevent the transmission of
vibrations from the drum to the frame. A hinged connection between the front frame
and the rear frame improves the maneuverability of the roller. To protect the driver
from vibration, the cabin is detached from the rear frame by isolation mounts.

In the oscillation drum, two opposite eccentric masses, whose shafts are arranged
excentrically to the drum axis, rotate synchronously in the same direction (see Fig. 11),
driven by a toothed belt. Because these unbalance masses are offset by 180◦ relative
to each other, the out-of-balance forces cancel out. The remaining spinning couple of
forces induces a torsional moment around the drum axis, which changes its sign during
the rotation of the eccentric masses. It causes the drum to rapidly move in a alter-
nating forward-backward motion. This rotational motion and the translational motion
of the roller moving with constant speed are superposed. The dynamic (alternating)
tangential (shear) forces, imposed through friction in the contact area between drum
and surface of the compacted medium, induce mainly shear waves in the subsurface,
and compaction is achieved by “massaging” the material [Kearney, 2006], also referred
to as shear force compaction [Thurner and Sandström, 2000]. Unlike in a vibrating
drum, which may bounce during compaction ([Beainy et al, 2013], [van Susante and
Mooney, 2008]), the compaction forces strain continuously the subsoil because oscilla-
tion drum and soil remain in permanent contact. An oscillation drum performs either
a pure rolling motion or a stick-slip motion. As such, an oscillation roller continuously
compacts the subsurface both dynamically by alternating (primarily) horizontal shear
loading and statically by its weight in a vertical direction. During the forward mo-
tion, the static weight of the drum deforms the soil surface asymmetrically as shown
in Fig. 11, subsequently referred to as “settlement trough”. This curved contact zone
between drum and subsoil is the reason why the oscillation drum also responds in a
vertical direction.

2.2.2 Representation of roller and subsoil

The main objective of the roller-soil model to be developed is to allow for a com-
prehensive parametric study of the response behavior of the drum for a given subsoil
condition (i.e. the compaction process in the soil is not simulated). Consequently, in
the desired computationally efficient model all parts of the roller with minor effects
on the dynamic drum response are omitted. During operation, both the horizontal
and vertical vibrations of the rear and front frame are negligible because drum and
front frame are dynamically decoupled by the deeply tuned rubber buffers. For further
details see Appendix A. Based on this observation, it is reasonable to reduce the whole
roller to the oscillation drum that is connected through spring-damper elements to
the static frame, taking into account the dead weight of the front frame. The drum
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is assumed to be a planar rigid smooth circular body of radius r with mass m and
mass moment of inertia I (with respect to the drum center M). One vertical and one
horizontal spring-damper element attached to the drum center, both of same stiffness
(kd) and viscous damping (cd) properties, capture the effect of the suspension (rubber
buffers), as shown in Fig. 21.

In the utilized modeling strategy, the shape of the soil surface below the drum,
which has a significant impact on the roller response, and the soil parameters depend-
ing on the degree of soil compaction need to be a priori defined (see, for instance,
[Kopf, 1999], [Pistrol, 2016]). The settlement trough is prescribed as an asymmetric
rigid curved track according to a logarithmic spiral. At the bottom of the settlement
trough (point A in Fig. 21), in a common approach the effect of the elastic continu-
ous halfspace (subsoil) is captured simplified through two discrete Kelvin-Voigt bodies,
one arranged in vertical (subscript sv) and one in horizontal (subscript sh) direction.
This simplified viscoelastic soil model, first introduced by Lysmer and Richart [1966],
is commonly used to model soil behavior in foundation vibrations ([Gazetas, 1983],
[Wolf, 1994]) as well as in roller-soil interaction modeling ([Yoo and T. Selig, 1979],
[Pietzsch and Poppy, 1992], [Grabe, 1993], [Adam, 1996], [Facas et al, 2010], [Beainy
et al, 2013]). The settlement trough exhibits a translational motion in both horizontal
and vertical direction, its rotation is, however, constrained. In [Gazetas, 1991] and
[Wolf, 1994], the reduction of the elastic soil halfspace to spring-dashpot damper ele-
ments in parallel is discussed in detail, and thus, not repeated here. The expressions for
soil spring coefficients ksh and ksv, and soil damping parameters csh and csv are listed
in Appendix B. In the current roller-soil model, the soil mass is not considered because
its effect is negligible if Poisson’s ratio ν of the soil is less than 1/3 [Wolf, 1994]. This
is the case in the current study where only non-cohesive soils are considered. For larger
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Figure 21: 3DOF lumped parameter model of the interaction system oscillation
roller-subsoil (spiral-shaped settlement trough)



2.2. Mechanical model 13

Poisson’s ratio, a trapped soil mass is added to the vertical spring-dashpot damper
elements, as explained in [Wolf, 1994].

The contact between drum and subsoil is described by means of dry friction ac-
cording to Coulomb’s law with constant coefficient of friction μ. As such, both the
stick phase and slip phase between drum and soil can be simulated by the roller-soil
interaction model shown in Fig. 21, which has 3DOF.

2.2.3 Modeling of excitation and loading
The two rotating eccentric shafts inside the drum with each two imbalances (see Fig. 11)
can be each represented by two equal eccentric lumped masses, mu1 = mu2 = 2mu,
with distance eu from the center of rotation (see Fig. 22). The amplitude Fu of the
centripetal force generated by each unbalanced shaft rotating with constant angular
velocity ν̄ is

Fu1 = Fu2 = Fu = 2mueuν̄2 (2.1)

where ν̄ is 2π times the excitation frequency f̄ . Decomposition of the centripetal force
at time t into component Fu‖ in parallel and component Fu⊥ perpendicular to the line
that connects the center of rotation (denoted as RC in Fig. 22) and the drum center
M yields

Fu‖ = Fu cos(ν̄t) , Fu⊥ = Fu sin(ν̄t) (2.2)

Since the unbalance masses mu1 and mu2 are offset by 180◦ relative to each other and
the shafts rotate in the same direction, the components of the corresponding unbalance
forces

#»

F u‖1 = −Fu‖ #»e ‖ ,
#»

F u⊥1 = −Fu⊥ #»e ⊥ (2.3)

#»

F u‖2 = Fu,‖ #»e ‖ ,
#»

F u⊥2 = Fu⊥ #»e ⊥ (2.4)

cancel out. In the above equations, #»e ‖ and #»e ⊥ denote the unit vectors depicted in

�

Figure 22: Drum with unbalanced shafts (left), and circular motion of one unbalance
mass with constant circular frequency ν̄ (right)
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Fig. 22. The counteracting normal forces #»

F u⊥1 and #»

F u⊥2 with distance 2ew result in
the sinusoidal torque MMu(t) around the drum axis with the amplitude M

(0)
Mu,

MMu(t) = M
(0)
Mu sin(ν̄t) , M

(0)
Mu = 4mueuewν̄2 (2.5)

In Fig. 23, the relation between the excitation torque MMu(t) and the location of the
rotating unbalanced shafts is depicted for discrete time instants visualizing the basic
principle of an oscillation drum.

The total drum excitation applied at the drum center is composed of the unbalanced
shaft moment MMu(t) and the constant driving torque MMd imposed by the roller
engine,

MM (t) = MMu(t)+MMd (2.6)

Application of the constant torque MMd allows to control the location of the drum in
the settlement trough. Since the oscillation drum motion is superposed to the trans-
lational motion of the drum with constant roller velocity, the drum does not oscillate
around the bottom of the settlement trough but on its slope in driving direction. In
addition, the vertical load Fz, i.e. the static axle load P0 of the frame minus drum
weight mg,

Fz = P0 −mg (2.7)

is applied to the drum center. Variable g denotes the acceleration of gravity.
In contrast to a simpler roller model presented in [Pistrol, 2016], the model pro-

posed here allows to simulate the stick-slip motion of the drum, to take into account
the suspension between drum and roller, to consider the effect of driving velocity by
application of a constant driving torque, and to study the motion of the oscillation
drum in its asymmetric settlement trough.

Figure 23: Excitation torque MMu(t) in an oscillation drum and corresponding loca-
tion of the unbalance at discrete time instants, based on Zuwang et al [1997]
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2.3 Governing equations
2.3.1 Kinematics
Before the equations of motion are derived, the kinematic relations for the drum motion
and soil-drum interaction need to established. The distance R from the origin of the
logarithmic spiral (point 0) describing the settlement trough to the contact point C at
time t reads as [Weisstein, 2018]

R(t) = aexp[kϕ̄(t)] , ϕ̄(t) = ϕ̄0 − δ(t) (2.8)

with spiral parameters a and k calibrated to the actual shape of the soil surface.
Angle ϕ̄0 = π − α represents the inclination of the connection line between 0 and C
at time t = 0, α = arctan(1/k) is the angle between the tangent and radial line at
point (R0,ϕ̄0), and δ(t) defines the position of the drum in the settlement trough at
time t (see Fig. 21). It is assumed that at time t = 0 the drum is at the bottom of
the rigid settlement trough, as indicated by dashed lines in Fig. 21. This position
(R0,ϕ̄0) is defined by the radius R0 = aexp(kϕ̄0) and angle ϕ̄0. For k → 0, α → π/2,
the spiral approaches a circle with radius a (see Fig C1 in Appendix C.2). Thus,
the proposed model allows the simulation of both a symmetric semicircular and an
asymmetric spiral-shaped settlement trough.

In the stick phase of the drum, the following three independent coordinates are
chosen to describe the motion of 3DOF model shown in Fig. 21, i.e. the displacement
components xA(t) and sA(t) of support point A, and the position angle δ(t). In this
phase, continuous rolling contact can be assumed, and the relative velocity between
drum surface and settlement trough is zero. Consequently, the arc length LAC along
the settlement trough (between support point A and the contact point C, see Fig. 21),

LAC =
√

1+k2

k
R0 [1− exp(−kδ)] (2.9)

and the arc length LBC along the drum surface (between contact point C and point
B on the drum, see Fig. 21),

LBC = (ϕ+ δ)r (2.10)

are equal, LAC = LBC . In Eq. 2.10, ϕ(t) denotes the total rotation angle of the drum
[Marguerre, 1968]. Rewriting this rolling condition yields for the stick phase the rela-
tionship between the drum rotation angle ϕ and the position angle δ,

ϕ =
√

1+k2

kr
R0
[
1− exp(−kδ)

]
− δ (2.11)

The first and the second time derivative read

ϕ̇ = f5δ̇ , ϕ̈ = f5δ̈ +f6δ̇2 (2.12)

The functions f5 and f6, which depend on the angle δ(t), the spiral parameters R0 and
k, and the drum radius r are listed in Appendix C.1.

Slip of the drum on the soil surface results in a relative motion between drum and
soil. Thus, in the slip phase lengths LAC (Eq. 2.9) and LBC (Eq. 2.10) are dissimilar.
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Differentiation of the difference LAC −LBC with respect to time t results in the relative
velocity vrel between drum and subsoil (slip velocity),

vrel = δ̇f5r − ϕ̇r (2.13)

Since in the slip phase vrel �= 0, the angles δ(t) and ϕ(t) become independent variables.
However, the tangential friction contact according to Coulomb’s law at point C couples
in this phase the variables xA and sA, which are, therefore, no independent variables,
as it is seen later.

For deriving the equations of motion, it is convenient to express the horizontal and
vertical displacement components xM and zM , respectively, of the drum center M at
time t as a function of the coordinates xA(t), sA(t), and δ(t),

xM = x
(roll)
M +xA , zM = z

(roll)
M +sA (2.14)

x
(roll)
M = −R0 exp(−kδ)cos(α + δ)− r sinδ +R0 cosα (2.15)

z
(roll)
M = R0 exp(−kδ)sin(α + δ)− r cosδ − (R0 sinα − r) (2.16)

where x
(roll)
M and z

(roll)
M are the corresponding displacement components of M relative

to the settlement trough, which are superposed to the displacement components of the
settlement trough, xA and sA, respectively. Differentiation of Eqs 2.14 with respect to
time t yields the components of the drum center velocity,

ẋM = f1δ̇ + ẋA , żM = f3δ̇ + ṡA (2.17)

and repeated differentiation the acceleration components,

ẍM = f1δ̈ +f2δ̇2 + ẍA , z̈M = f3δ̈ +f4δ̇2 + s̈A (2.18)

in terms of xA(t), sA(t), and δ(t). The functions f1, f2, f3, and f4, which depend on
the angle δ(t), the spiral parameters a, k, α, R0, and the drum radius r, are specified
in Appendix C.1.

2.3.2 Dynamic substructuring
To derive efficiently the equations of motion, the model of Fig. 21 is separated into the
subsystem drum (“I”) and the subsystem soil (“II”) including the settlement trough.
At contact point C, the normal component N and the tangential component T of the
interface force are applied as external forces, as shown in Fig. 24.

Subsystem I: Drum
Two equations are obtained by application of conservation of momentum [Ziegler, 1995]
to the subsystem drum in horizontal (x) and vertical direction (z), compare with
Fig. 24 (I),

T cosδ −N sinδ − cdẋM −kdxM = mẍM (2.19)

(mg +Fz)−T sinδ −N cosδ − cdżM −kdzM = mz̈M (2.20)
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Solving this coupled system of equations for N and T yields,

N =
[
(mg +Fz)− (mz̈M + cdżM +kdzM )

]
cosδ

− (mẍM + cdẋM +kdxM )sinδ (2.21)

T =
[
(mg +Fz)− (mz̈M + cdżM +kdzM )

]
sinδ

+(mẍM + cdẋM +kdxM )cosδ (2.22)

A third equation is obtained by application of the conservation of angular momentum
[Ziegler, 1995] with respect to the drum center M ,

Iϕ̈ = MM (t)−Tr (2.23)

where ϕ denotes the total rotation angle [Marguerre, 1968] of the drum (see Fig. 24).

Subsystem II: Subsoil
Conservation of momentum in horizontal (x) and vertical (z) direction to the soil
subsystem shown in Fig. 24 (II) leads to

N sinδ −T cosδ = kshxA + cshẋA (2.24)

N cosδ +T sinδ = ksvsA + csv ṡA (2.25)

This set of equations is solved for N ,

N = (kshxA + cshẋA)sinδ +(ksvsA + csv ṡA)cosδ (2.26)

Coupling of the subsystems
The compatibility conditions at contact point C between both subsystems depend on
the motion phase (stick or slip) of the drum. In the stick phase, where kinematic
relations Eqs 2.11 and 2.12 are applicable, the sliding friction force Tf between drum
and soil according to Coulomb’s law of dry friction [Steiner, 2014]

Tf = −μNsign(vrel) (2.27)

is not exceeded at any time,

|T | ≤ |Tf | = μN (vrel = 0) (2.28)

It is assumed, that the coefficient of kinetic friction μk is approximately equal to the
coefficient of static friction μs [Popov, 2017] and, thus, μ = μk ≈ μs.

If |T | = μN and there is a relative motion between drum and subsoil with relative
velocity vrel according to Eq. 2.13, the motion switches from the stick to the slip
phase. In the slip phase, where vrel �= 0, the tangential contact force T corresponds to
Coulomb’s force of friction Tf , depending on the sign of vrel,

T = |Tf | > 0 (vrel ≤ 0−) , T = −|Tf | < 0 (vrel ≥ 0+) (2.29)
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Figure 24: Subsystem I (oscillation drum with suspension) and subsystem II (subsoil
with settlement trough)
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2.3.3 Equations of motion
Stick phase
Adding up Eq. 2.19 and Eq. 2.24, and replacing xM and its first and second derivative
by the independent coordinates δ and xA and their derivatives through Eqs. 2.14, 2.17,
and 2.18, leads to the first equation of motion in terms of δ and xA,

f1mδ̈ + mẍA + f2mδ̇2 + f1cdδ̇ + (csh + cd) ẋA + (ksh +kd)xA + kdx
(roll)
M = 0 (2.30)

Similarly, Eqs 2.20 and 2.25 are added up, and zM and its derivatives are expressed by
δ and sA through Eqs 2.14, 2.17, and 2.18, respectively, yielding the second equation
of motion,

f3mδ̈ +ms̈A +f4mδ̇2 +f3cdδ̇ +(csv + cd) ṡA

+(ksv +kd)sA +kdz
(roll)
M = mg +Fz (2.31)

To obtain the third equation of motion in terms of the independent coordinates δ, xA

and sA, in Eq. 2.23, T is substituted with Eq. 2.22 and ϕ̈ with Eq. 2.12. Then, xM

and zM and their time derivatives are replaced by the relations of Eqs 2.14, 2.17, and
2.18, resulting after some algebra in

(
f5

I

mr
+ f̃1

)
mδ̈ +mẍA cosδ −ms̈A sinδ +

(
f6

I

mr
+ f̃2

)
mδ̇2

+ cd

[
f̃1δ̇ + ẋA cosδ − ṡA sinδ

]
+kd

[(
x

(roll)
M +xA

)
cosδ

−
(
z

(roll)
M +sA

)
sinδ

]
=

MM (t)
r

− (mg +Fz)sinδ (2.32)

with
f̃1 = f1 cosδ −f3 sinδ , f̃2 = f2 cosδ −f4 sinδ (2.33)

Eqs 2.30, 2.31 and 2.32 represent three coupled second order nonlinear ordinary differ-
ential equations (ODEs), which describe the motion of the 3DOF roller-soil interaction
model in the stick phase and for pure rolling. For efficient numerical solution, this cou-
pled set of equations is written in the state space, as described in Appendix D.1.

Note that for an immovable semicircular settlement trough (i.e. k = 0, ksh → ∞
and ksv → ∞), the presented 3DOF lumped parameter model simplifies to a SDOF
lumped parameter model with “fixed settlement trough” (see Fig. C2 in Appendix C.3).
In this case, Eq. 2.32 approaches to the solution presented in [Ziegler, 1995] (example
A7.2, pp 461-462), i.e. Eq. C.44 as derived in Appendix C.3. On the other hand, if the
settlement trough becomes horizontal (i.e. R → ∞), Eq. 2.32 reduces to the equation
of motion of a model proposed by Kopf [1999].

Slip phase
To derive the first equation of motion of the 3DOF model in the slip phase, in Eqs 2.19
and 2.20 the tangential force component T is replaced by the expression of Eq. 2.27,
representing the friction force Tf . These equations are combined by eliminating the
normal force component N . Then, xM and zM and their time derivatives are expressed
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by means of the coordinates δ, xA, sA and their time derivatives according to Eqs 2.14,
2.17, and 2.18, leading to

(f1fμ1 −f3fμ2)mδ̈ +fμ1mẍA −fμ2ms̈A +(f2fμ1 −f4fμ2)mδ̇2

+ cd

[
(f1fμ1 −f3fμ2) δ̇ +fμ1ẋA −fμ2ṡA

]
+kd

[
fμ1
(
x

(roll)
M +xA

)
−fμ2

(
z

(roll)
M +sA

)]
= −fμ2(mg +Fz) (2.34)

with
fμ1 = cosδ − sign(vrel)μsinδ , fμ2 = sinδ +sign(vrel)μcosδ (2.35)

The second equation of motion is based on Eq. 2.23 derived by conservation of angular
momentum, where T is likewise replaced by Tf according to Eq. 2.27, and N is substi-
tuted with Eq. 2.21. In the resulting relation, xM and zM and their time derivatives
are substituted as before, with the outcome

sign(vrel)μm(f̃3δ̈ + ẍA sinδ + s̈A cosδ)+
I

r
ϕ̈− sign(vrel)μ

{
(mg +Fz)cosδ

− f̃4mδ̇2 − f̃3cdδ̇ − cd (sinδẋA +cosδṡA)−kd

[(
x

(roll)
M +xA

)
sinδ

+
(
z

(roll)
M +sA

)
cosδ

]}
=

MM (t)
r

(2.36)

with
f̃3 = f1 sinδ +f3 cosδ , f̃4 = f2 sinδ +f4 cosδ (2.37)

The third equation of motion results from coupling of the two subsystems. To this end,
Eqs 2.21 and 2.26 are combined through N . Considering Eq. 2.37, also this equation
of motion is written in terms of the kinematic variables δ, xA, sA, and their time
derivatives,

mf̃3δ̈ +mẍA sinδ +ms̈A cosδ + cdf̃3δ̇ +(csh + cd) ẋA sinδ +(csv + cd) ṡA cosδ

+mf̃4δ̇2 +(ksh +kd)xA sinδ +(ksv +kd)sA cosδ

+kd

[
x

(roll)
M sinδ +z

(roll)
M cosδ

]
= (mg +Fz)cosδ (2.38)

Eqs 2.34, 2.36, and 2.38 of the 3DOF system express the motion in the slip phase in
terms of the four coordinates xA, sA, δ and ϕ. Thus, a forth equation, which captures
coupling between xA and sA due to tangential friction contact at point C, needs to
be established. To this end, Eqs 2.24 and 2.25, where T has been replaced by Tf

(Eq. 2.27), are combined by eliminating the normal force component N , which leads
after some algebra to

fμ1 (cshẋA +kshxA) = fμ2 (csv ṡA +ksvsA) (2.39)

The set of nonlinear ODEs 2.34, 2.36, 2.38, and 2.39 describes the motion of the
interacting roller-soil model in the slip phase. The state space representation of these
equations for efficient numerical solution is introduced in Appendix D.1.
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2.3.4 Procedure of solution

The response is obtained numerically by switching between the set of the first order
ODEs for the stick phase (Eq. D.2) and the set of ODEs for the slip phase (Eq. D.11),
basically as described in [Leine et al, 1998]. In the stick phase, the outcomes of Eq. D.2
(i.e. xA, sA, δ, ẋA, ṡA, δ̇), are substituted into the original equations of motion 2.30,
2.31 and 2.32, which are solved for the accelerations ẍA, s̈A, and δ̈ (see Appendix D.1).
Accelerations ẍA, s̈A, δ̈, ϕ̈ of the slip phase given in Appendix D.1 are obtained by
rearranging of Eqs 2.34, 2.36, 2.38, and D.9, where the outcomes of Eq. D.11 (i.e. xA,
sA, δ, ϕ, ẋA, ṡA, δ̇, and ϕ̇) have been inserted. In both phases of the stick-slip motion,
the desired acceleration components ẍM and z̈M of the drum center M are obtained
by evaluation of Eqs 2.18. This analysis continues until the steady state response is
reached.

2.4 Detailed response study for a specific roller

The subsequent studies are based on the machine properties of the HD+ 90 VO tandem
roller [HAMM AG, 2011] listed in Table 21 (roller 1) because for this device acceleration
response data of the drum center M recorded in field tests are available [Pistrol, 2016].
Note that in contrast to the parameters specified in Table 21 the subsequent investi-
gations are based on a viscous suspension damping of cd = 3×103 Ns/m [HAMM AG,
2017], i.e. then times the value given in Table 21. However, the studies in Section 2.5,
where the suspension properties are varied, show that this has no significant effect on
the results. It is assumed that all considered non-cohesive soil conditions exhibit a
Poisson’s ratio ν of 0.3 and a density ρ of 1900 kg/m3. The shear modulus G of the
soil is varied in steps of 5 MN/m2 between 5 and 70 MN/m2. The soil parameters
(shear modulus G, density ρ, Poisson’s ratio ν), and the corresponding half contact
length a0 (see Fig. B1) between drum of the four considered oscillation rollers and soil
are listed in Table B1 in Appendix B. The resulting coefficients ksh and ksv (Eq. B.2),
and damping parameters csh and csv (Eq. B.4) are listed in Table B2, see Appendix B.
Note that csh and csv do not change with increasing soil stiffness because Poisson’s
ratio ν and soil density ρ are assumed to be constant, compare with Eq. B.4 given
in Appendix B. In the base case, a semicircular shaped settlement trough with radius
R = 0.606 m is assumed, which is slightly larger than the drum radius r = 0.60 m. The
corresponding spiral parameters representing a semicircle are k = 0 and a = R (see
Appendix C.2).

In the following, the steady state acceleration components of the drum center M ,
ẍM and z̈M , and thereof derived characteristic response quantities (e.g. plot z̈M over
ẍM ) are presented and analyzed because they serve as basis of a novel CCC method-
ology [Pistrol, 2016], as discussed in the introduction. The area inside the plot z̈M -ẍM

is calculated using the Matlab function inploygon [Mathworks, 2018] assuming a sam-
ple size of at least 1×105. The results are verified by application of Green’s theorem
[Nykamp, 2018].
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Figure 25: Time history of the (a) horizontal and (b) vertical acceleration in the
drum center; soft soil G = 5 MN/m2; MMd = 0; pure rolling motion; symmetric vs.
asymmetric settlement trough

2.4.1 Pure rolling (stick) motion of the drum

At first, the influence of the geometry of the settlement trough on the predicted ac-
celerations of a drum in pure rolling motion is investigated. That is, it is assumed
that the tangential contact force T does not exceed the sliding friction Tf at any time.
To this end, a semicircular settlement through (k = 0, a = R = 0.603 m) as well as
an asymmetric settlement trough with the shape of a logarithmic spiral (k = 0.002,
a = 0.601 m) are considered. In this study, no driving torque is applied, i.e. MMd = 0.
As an example, Fig. 25 shows for soil stiffness G = 5 MN/m2 the steady state accel-
eration components ẍM and z̈M with respect to time t during two excitation periods
for both settlement troughs. In Fig. 26 (a), the time history of the corresponding
position angle δ is displayed, and in Fig. 26 (b) z̈M is plotted against ẍM . The vertical
acceleration (z̈M ) is a result of the up- and downward motion of the drum in the settle-
ment trough during each period of excitation. Due to the nonlinear motion, the period
of z̈M is half of the excitation period, i.e. two excitation periods correspond to four
periods of vertical acceleration z̈M . If the settlement trough is of semicircular shape
(solid lines in black), both the horizontal and vertical acceleration components of M
are symmetric with respect to the horizontal axis. The plot z̈M vs. ẍM , represented in
Fig. 26 (b) by a solid black line, has the shape of “recumbent eight”, and is symmetric
with respect to the vertical and horizontal axes. An asymmetric settlement trough
results in a slightly asymmetric pattern of the position angle δ (see Fig. 26 (a), red
line with circular markers), i.e. the amplitudes in the positive domain are larger than
in the negative domain. Consequently, also the peak values of the vertical acceleration
z̈M become slightly larger (see Fig. 25 (b)). The horizontal acceleration ẍM , which
has the same period as the excitation period, remains virtually unaffected from the
shape of the settlement trough (see Fig. 25 (a)). Thus, the plot ẍM -z̈M shown by a red
line with circular markers becomes slightly asymmetric, as seen in Fig. 26 (b). Since
these and further results not presented here have revealed that the asymmetry of the
settlement trough has only a very small effect on the response, subsequently, the drum
acceleration is examined based on a semicircular settlement trough (i.e. k = 0 and
a = R, see Fig. C1 in Appendix C.2).
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Figure 26: Time history of (a) position angle δ and (b) plot z̈M vs. ẍM ; soft soil
G = 5 MN/m2; MMd = 0; pure rolling motion; symmetric vs. asymmetric settlement
trough

Next, the influence of the radius R of a semicircular settlement trough on the
drum center acceleration is investigated for all considered soil shear moduli G, for
MMd = 0. Fig. 27 shows the peak acceleration components, (a) ẍMmax and (b) z̈Mmax,
respectively, as a function of G for four selected radii R ranging from 0.603 m to
0.65 m. As observed, the horizontal peak acceleration ẍMmax increases continuously
from about 25−28 m/s2 (G = 5 MN/m2) to about 56 m/s2 at G = 40 MN/m2, where
the maximum is attained, and then slightly descends to 50 m/s2 at G = 70 MN/m2,
almost unaffected by the radius R (Fig. 27 (a)). The vertical accelerations z̈Mmax
also increase with increasing stiffness G, however, they reach their maximum at lower
stiffness of G = 15 − 20 MN/m2, and then, decrease with increasing soil stiffness with
a steep gradient (see Fig. 27 (b)). In contrast to ẍMmax, the magnitudes of z̈Mmaxx are
sensitive to the radius R of the settlement trough, i.e. the closer R is to the drum radius
r, the larger z̈Mmax becomes. In general, the vertical peak acceleration components
are smaller than the corresponding horizontal ones. As observed, the ratio z̈Mmax to
ẍMmax decreases from 0.21 at R = 0.603 m to about 0.01 at R = 0.65 m. If R = 0.606 m,
z̈Mmax is about 10% of ẍMmax. The following studies are based on a settlement trough
radius of R = 0.606 m, i.e. one percent larger than the drum radius r.

Fig. 28 illustrates that also the phase lag between the harmonic excitation torque
MMu(t) and the drum rotation ϕ (=R−r

r δ) (see Eq. C.12 in Appendix C.2) strongly
depends on the soil stiffness G. Fig. 28 (a) shows one period of the harmonic excitation
torque MMu(t) (dashed line) and the corresponding drum rotation ϕ for four values of
the soil stiffness G, as specified in the legend. In this representation, the effect of G
on both the phase lag and the amplitude of ϕ becomes apparent. The maximum value
of the phase lag occurs at G = 50 MN/m2 (Fig. 28 (b)). At the lowest considered soil
stiffness, G = 5 MN/m2, the phase lag is −0.84π. For G → 0 (lifted drum), the phase
lag converges towards −π. That is, an oscillation drum without soil contact conducts
a pure forward-backward rotation with a phase lag −π between MMu(t) and ϕ.

The steady state acceleration components ẍM and z̈M (see Fig. 29 (a) and (b),
respectively) of the drum center M demonstrate the effect of the soil stiffness on the
peak response and phase lag, exemplarily shown for four selected shear moduli G and
two excitation periods. While the maximum of ẍM is about the same for G = 25, 50
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and 70 MN/m2, the peak value of z̈M related to G = 25 MN/m2 is about 3.3 and 8.4,
respectively, times larger than for G = 50 and 70 MN/m2. Another observation is that
the period of z̈M is only half of the period of ẍM , which corresponds to the excitation
period. Additionally, in Fig. 210 the phase lag between ẍM and z̈M is depicted. As
observed, the predicted phase lag is about 0.11 rad for the lowest shear modulus, the
maximum of 0.64 is obtained at G = 25 MN/m2, and with increasing soil stiffness
it subsequently decreases. For stiff soils with G ≥ 60 MN/m2 the phase is negative.
Note that a positive phase lag indicates that z̈M lags behind ẍM . Plotting the vertical
component z̈M against its horizontal counterpart ẍM results in another meaningful
response representation, shown in Fig. 211 (a). The result is a so-called Lissajous
curve (e.g. [Klotter, 1981], [Ferréol, 2017b]) (see Appendix E), whose shape is either
similar to the lemniscate of Gerono [Lawrence, 1972], i.e. the eight curve [Lawrence,
1972] (for G = 5, 50 and 70 MN/m2), or similar to a general besace [Ferréol, 2017a]
(for G = 25 MN/m2). In the latter case (G = 25 MN/m2), the node of the resulting
figure is shifted considerably along the vertical axis in the positive domain. This is a
result of the phase lag between ẍM and z̈M , which has its maximum at G = 25 MN/m2

(see Fig. 210). All figures are symmetric with respect to the vertical axis because the
driving torque is zero, i.e. MMd = 0.

The response in the frequency domain for four selected subsoils (Figs 212 and 213)
reveals that the frequency content (f) of the vertical accelerations z̈M is two-times the
excitation frequency f̄ if MMd = 0 (Fig. 212 (b)). In Figs 212 and 213 the frequency
f is normalized by the excitation frequency f̄ . In contrast, ẍM is governed by f̄ , see
Fig. 212 (a). Since the dominating frequency content of z̈M and ẍM differs by a factor
of two, the z̈M -ẍM plot results in the Lissajous curves shown in the previous figure
(see also Appendix E).

When additionally a constant driving torque of MMd = 0.05M
(0)
Mu is applied to the

drum, the spectrum of the vertical accelerations z̈M contains now two frequencies, one
at f = 2f̄ (as for MMd = 0) and one at f = f̄ (see Fig. 213 (b)). The spectral amplitudes
of z̈M are largest for f/f̄ = 1, except for the softest subsoil (G = 5 MN/m2). The ratio of
the amplitude at f = 2f̄ to the amplitude at operating frequency f̄ decreases from 1.11

Figure 27: Peak of the (a) horizontal and (b) vertical acceleration in the drum center
as a function of soil shear modulus G for selected radii R of a semicircular settlement
trough; MMd = 0; pure rolling motion
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Figure 28: Phase lag between excitation torque MMu(t) (dashed line) and drum
rotation ϕ - (a) time histories for four selected soil shear moduli G, and (b) phase lag
for the entire range of G; MMd = 0; pure rolling motion

Figure 29: Steady state (a) horizontal and (b) vertical acceleration in the drum center
for four selected soil shear moduli G; MMd = 0; pure rolling motion

(G = 5 MN/m2) to 0.24 (G = 70 MN/m2). The amplitudes at f/f̄ = 2 are virtually the
same as for MMd = 0 (compare Fig. 212 (b) with Fig. 213 (b)). The frequency spectrum
of the horizontal accelerations ẍM is, however, virtually not affected by the driving
torque MMd (compare Fig. 212 (a) with Fig. 213 (a)). Thus, the application of the
driving torque MMd, which captures the effect of the translational drum motion with
the roller driving speed, changes the shape of the z̈M -ẍM plot, as seen in Fig. 211 (b).
The Lissajous curves become asymmetric and distorted, depending on the soil stiffness
and the ratio of the amplitude at f = 2f̄ to the amplitude at operating frequency f̄ .
For large soil stiffness, the asymmetric Lissajous similar curves degenerate into curves
without node.

Another important response quantity is the area inside the z̈M over ẍM figure.
Recent experimental studies have revealed that this area increases with increasing
shear modulus G, and thus, has been proposed as performance indicator of the actual
soil compaction [Pistrol, 2016]. For zero driving torque, i.e. MMd = 0, the area inside
the z̈M -ẍM figure is equal to the product of two times the amplitudes of ẍM and twice
the amplitude of z̈M , i.e. 4 |ẌM (f̄)||Z̈M (2f̄)|, multiplied by a reduction factor that
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depends on the phase lag between ẍM and z̈M (for further details see Appendix E). In
Fig. 214, this area is plotted against shear modulus G, both for simulations without
driving torque (black line with “+” markers) and with driving torque (red line with
circular markers). It is seen that for zero driving torque the maximum area is obtained
at a quite low stiffness between G = 20 MN/m2 and G = 25 MN/m2. As such, this area
would be an appropriate performance indicator only for soil compaction up to a soil
stiffness of about G = 25 MN/m2. However, in the more realistic modeling scenario,
the driving torque MMd = 0.05M

(0)
Mu shifts the maximum of the area to a stiffer subsoil

with G = 40 MN/m2. Thus, the applicability of the area as compaction control value
is extended to a larger soil range.

2.4.2 Stick-slip motion of the drum

The following studies on the stick-slip motion are based on a coefficient of friction of
μ = 0.50 between drum and soil. Figs 215 and 216 show for two excitation periods the
steady state time histories of ẍM and z̈M for four soil stiffness parameters G specified
in the legend, and an excitation torque of MMd = 0 (Fig. 215) and MMd = 0.05M

(0)
Mu

(Fig. 216), respectively. These results illustrate the grave effect of slip between drum
and soil surface on the response. In general, in stick-slip motion the amplitudes of
ẍM and z̈M are significantly smaller compared to pure rolling of the drum, compare
Fig. 215 with Fig. 29. In the slip phase, both the positive and negative peaks of the
horizontal drum center acceleration are cut (see Fig. 215 (a)). A kink in the time
history of ẍM indicates the transition from the stick into the slip phase and vice versa.
During the slip phase, both the horizontal and vertical acceleration component in the
drum center decrease. Fig. 215 (a) also shows that the slope of ẍM in the slip phase
is larger the lower the soil stiffness. In contrast to ẍM , the component z̈M decreases
significantly with increasing soil shear modulus (see Fig. 215 (b)).

The horizontal response without excitation torque (i.e. MMd = 0) is almost sym-
metric with respect to the time axis, while for an excitation torque of MMd = 0.05M

(0)
Mu

the slip phase in the negative horizontal acceleration range is only about the half of
the one in the positive range (compare Fig. 215 (a) with Fig. 216 (a)). Also, the

Figure 210: Phase lag between ẍM and z̈M as a function of shear modulus G;
MMd = 0; pure rolling motion
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Figure 211: Plot z̈M over ẍM ; (a) MMd = 0 vs. (b) MMd = 0.05M
(0)
Mu; pure rolling

motion

Figure 212: Frequency spectrum of the (a) horizontal and (b) vertical acceleration
in the drum center for four selected shear moduli G; pure rolling motion; MMd = 0

Figure 213: Frequency spectrum of the (a) horizontal and (b) vertical acceleration in
the drum center for four selected shear moduli G; pure rolling motion; MMd = 0.05M

(0)
Mu
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Figure 214: Area inside the z̈M -ẍM figure as a function of soil shear modulus G; pure
rolling motion; MMd = 0 and MMd = 0.05M

(0)
Mu, respectively

negative response amplitude is larger than the positive one. Another observation is
that horizontal steady state stick-slip acceleration ẍM is only slightly affected by the
soil stiffness parameter, and concerns the duration of the slip phase, which increases
slightly with increasing soil stiffness. In contrast, both signature and amplitude of the
vertical component z̈M depends strongly on the subsoil properties (see Fig. 216 (b)).
The acceleration components z̈M look different in the positive and negative range,
both for MMd = 0 and MMd = 0.05M

(0)
Mu. For MMd = 0, the lowest shear modulus

G = 5 MN/m2 yields the largest vertical acceleration amplitude (see Fig. 215 (b)).
Applying a driving torque of MMd = 0.05M

(0)
Mu, yields the positive amplitudes of z̈M

between 2 (for G = 5 MN/m2) and 7.6 (for G = 70 MN/m2) times larger than for
MMd = 0 (see Fig. 216 (b)). In the negative range, no characteristic response pattern
is observed, i.e. the pattern depends strongly on the soil shear modulus G.

Figs 217 and 218 represent (a) ẍM and (b) z̈M in the frequency domain both
for MMd = 0 (Fig. 217) and MMd = 0.05M

(0)
Mu (Fig. 218). First, the spectral response

without driving torque (MMd = 0) is discussed. Fig. 217 (a), representing the horizontal
drum accelerations ẍM , contains only odd harmonics because in the slip phase the
response is cut symmetrically. The overtones at uneven multiples of the excitation
frequency (f/f̄ = 3, 5, 7, ...) indicate that the drum motion includes slip phases,
compare with the spectrum for pure rolling motion (see Fig. 212 (a)). The largest
amplitude belongs to the operating frequency f̄ (i.e. f/f̄ = 1). The spectrum of z̈M

for MMd = 0 (Fig. 217 (b)) contains only even harmonics (f/f̄ = 2, 4, 6, ...), with the
largest amplitude at f=2f̄ . The larger the soil stiffness the more pronounced become
the higher harmonics in the response, both for ẍM and z̈M . While with increasing shear
modulus G the amplitudes in the frequency spectrum of ẍM increase, the amplitudes
in the frequency spectrum of z̈M decrease.

When applying a driving torque of MMd = 0.05M
(0)
Mu to the drum, the spectra

for ẍM and z̈M contain both odd and even harmonics (see Fig. 218). They are both
dominated by the operating frequency f̄ , except for the stiffest subsoil G = 70 MN/m2.
The additional uneven harmonics in the spectrum of z̈M (f/f̄ = 1, 3, 5, ...) result from
the response asymmetry due to driving torque MMd, whereas the new even harmonics
(f/f̄ = 4, 6, 8, etc.) come from the slip phase of the motion (see Fig. 218 (b)). In
the same spectrum, the ratio of the amplitude at f=2f̄ to the amplitude at operating
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Figure 215: Steady state (a) horizontal and (b) vertical acceleration in the drum
center for four selected soil shear moduli G; stick-slip motion (μ = 0.50); MMd = 0

Figure 216: Steady state (a) horizontal and (b) vertical acceleration in the drum
center for four selected soil shear moduli G; stick-slip motion (μ = 0.50); MMd =
0.05M

(0)
Mu

frequency f̄ decreases from 0.65 (G = 5 MN/m2) to 0.38 (G = 25 MN/m2) and then
increases up to about 1.03 (G = 70 MN/m2).

Comparing the z̈M -ẍM plot for stick-slip motion and zero driving torque (see
Fig. 219 (a)) with the corresponding plot for pure rolling motion (see Fig. 211 (a))
shows that the slip phase causes “peak cut” and distortion of the Lissajous similar
curves, however, the symmetry with respect to the vertical axis is preserved. The re-
sulting shape is similar to a “bow tie” (see Fig. 219 (a)). The effect of a driving torque
of MMd = 0.05M

(0)
Mu on the z̈M -ẍM plot is visualized in Fig. 219 (b). The resulting

curves are twisted and the symmetry gets lost. Moreover, with increasing soil stiffness
the node in the curve moves to the right, and disappears completely for G = 50 and
70 MN/m2. This behavior has already been observed in pure rolling motion, as shown
in Fig. 211 (b).

Since in the stick-slip motion the amplitudes of the drum accelerations are smaller
than for pure rolling motion, also the area inside the z̈M -ẍM curves decreases. In
Fig. 220 this area is depicted as a function of the underlying soil shear stiffness G.
When the drum oscillates at the bottom of the settlement trough (MMd = 0), this
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Figure 217: Frequency spectrum of the (a) horizontal and (b) vertical acceleration in
the drum center for four selected shear moduli G; stick-slip motion (μ = 0.50); MMd = 0

Figure 218: Frequency spectrum of the (a) horizontal and (b) vertical acceleration
in the drum center for four selected shear moduli G; stick-slip motion (μ = 0.50);
MMd = 0.05M

(0)
Mu

area shown by a black line with “+” markers decreases continuously with increasing
soil stiffness (see Fig. 220). This result is in contradiction to outcomes of field tests
presented in [Pistrol, 2016]. A driving torque of MMd = 0.05M

(0)
Mu increases the area

in the whole considered soil parameter range compared to MMd = 0, as seen in this
figure. The red line with circular markers representing this area exhibits a minimum
at G = 20 MN/m2 and a maximum at G = 45 MN/m2. For pure rolling motion the
maximum occurs at slightly smaller soil stiffness of G = 40 MN/m2 (see Fig. 214).
However, the minimum only appears in the stick-slip motion.

To support the proposed analytical model, the frequency content of the computed
results and of selected drum accelerations recorded during in situ field tests [Pistrol,
2016] is examined. Fig. 221 shows frequency spectra of (a) ẍM and (b) z̈M for a dense
gravel, i.e. G = 25 MN/m2. As observed, up to the third harmonic the computed
and the recorded response are in good agreement. In the horizontal accelerations, the
overtone at the second multiple of the excitation frequency is overestimated by the
analytical model (see Fig. 221 (a)). In the frequency range f/f̄ > 3, the normalized
amplitudes of the computed accelerations are larger than the ones of the measured
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Figure 219: Vertical (z̈M ) over horizontal (ẍM ) acceleration in the drum center;
stick-slip motion (μ = 0.50); (a) MMd = 0 and (b) MMd = 0.05M

(0)
Mu

Figure 220: Area inside the z̈M -ẍM figure as a function of soil shear modulus G;
stick slip motion (μ = 0.50); MMd = 0 and MMd = 0.05M

(0)
Mu, respectively

response. This is due to the fact that in the measured response the transition from
the stick to slip phases is smoother than in the analytical model, consequently, the
“peak cut” of the horizontal drum accelerations is less pronounced. One reason is the
coefficient of friction between drum and subsoil, which is assumed to be constant in
the analytical model. In the presented study, a constant value of μ = 0.50 has been
assumed, in reality, however, this parameter varies within a certain range. Neverthe-
less, the analytical model is capable of predicting the overall response behavior of the
drum observed in the field.

The presented 3DOF lumped parameter model was validated based on a two-
dimensional FE model that allows the simulation of the response of the drum oscillating
in a defined semi-circular notch on the surface of a linear elastic soil halfspace. To this
end, in Appendix F the frequency content of ẍM and z̈M is set in contrast. The evalua-
tions demonstrate that the computed drum responses of the lumped parameter model
and the FE model based on linear elastic soil behavior are in good agreement if the
contact length 2a0 resulting from the FE simulations is used when calculating the pa-
rameters of the discrete springs and dampers (ksv, ksh, csv, csh), which represent the
elastic soil halfspace.
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2.5 Parametric studies
Based on the investigations of the tandem roller HD+ 90 VO (roller 1) presented in
Section 2.4, in the following the response of three additional types of oscillation rollers,
i.e. a H7i VIO (roller 2), HD13i VIO (roller 3) and HD+ 140i VO (roller 4) roller, is
studied in the same way.

The parameters of the considered rollers are summarized in Table 21. Rollers 1
and 2 have virtually the same drum geometry with the same unbalance configuration.
However, the drum weight of roller 1 is about 2 % and the operating weight (and
therefore the static axle load) is 22 % higher. In addition, the operating frequency of
roller 1 is slightly larger. Consequently, the amplitude of the oscillation moment of
roller 1 is about 18 %) larger than the one of roller 2. In contrast, the drum width of
rollers 3 and 4 is 27 % larger, and the drum radius is about 17 % (roller 4) and 25 %
(roller 3), respectively, larger. Compared to roller 2, the drum weight of roller 4 is
almost 60 % and of roller 3 almost 93 % larger. The static axle load of roller 4 is about
74 % and of roller 3 about 99 % higher. Moreover, the different unbalance configuration
in combination with the standard operating frequency (which is the lowest for roller 4)
leads to an almost 2 (roller 4) and 2.7 (roller 3), respectively, times larger amplitude
of the oscillation moment compared to roller 2.

As in Section 2.4, the considered subsoil conditions differ only by the shear modulus
G in the range between 5 and 70 MN/m2 in steps of 5 MN/m2, while Poisson’s ratio
ν = 0.3 and density ρ = 1900 kg/m3 are the same for all soils. For each considered
roller, the half contact length a0 between drum and subsoil according to Eq. B.1 is
given in Table B1 in Appendix B. The corresponding discrete soil stiffness coefficients
ksh and ksv (Eq. B.2) and damping parameters csh and csv (Eq. B.3) are listed in
Table B2, see Appendix B. The damping parameters csh and csv are the same for all
subsoil conditions, since Poisson’s ratio ν and soil density ρ are the same, and shear
stiffness G cancels when in Eqs B.3 variable a0 is replaced by Eq. B.1. According
with Section 2.4, it is assumed that the radius R of the semicircular shaped settlement
trough is 1.01 times the drum radius r, i.e. R/r = 1.01. Moreover, the constant torque
MMd applied to simulate that the drum oscillates on the slope of the settlement trough

Figure 221: Frequency spectrum of the (a) horizontal and (b) vertical acceleration in
the drum center; computed (G = 25 MN/m2; μ = 0.50; MMd = 0.05M

(0)
Mu) vs. recorded

(in field tests, dense gravel, based on Pistrol [2016]) accelerations
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is assumed to be 5 % of the oscillation moment amplitude M
(0)
Mu, i.e. MMd/M

(0)
Mu = 0.05

(see Section 2.4). The default value of the coefficient of friction between drum and soil
is μ = 0.50. Additionally, the response is also analyzed for a lower coefficient of friction
of μ = 0.30.

In the following, the steady state acceleration components of the drum center M ,
ẍM and z̈M , and characteristic response quantities derived from ẍM and z̈M are pre-
sented and discussed because they serve as the basis for the compaction indicator of
the CCC technique presented in [Pistrol, 2016], as explained in the introduction.

2.5.1 Influence of slip phases on the drum motion
First, for roller 1 on soft soil (G = 5 MN/m2) the effect of slip phases on the computed
drum response is discussed. To this end, additionally to the steady state drum center
acceleration components of roller 1 in stick-slip motion also the corresponding response
of the roller in pure rolling motion are presented. However, in the field a pure rolling
motion is very unlikely because it is assumed the shear force at the interface between
drum and soil may grow unbounded. Fig. 222 shows the steady state drum center ac-
celeration components (a) ẍM and (b) z̈M of roller 1 in pure rolling motion (black lines
with “+” markers) and stick-slip motion, respectively, during two excitation periods.
The stick-slip response prediction is depicted for coefficients of friction of μ = 0.50 (blue
line with “*” markers) and μ = 0.30 (red line with circular markers). These results
illustrate the grave effect of slip between drum and soil surface on the response. In
general, in stick-slip motion the peak values of ẍM and z̈M are significantly smaller
compared to pure drum rolling. It is also observed that a smaller coefficient of friction
μ reduces both ẍM and z̈M . The horizontal acceleration component ẍM shows the
typical “peak cut” in the slip phase, in both positive and negative directions. A kink
in ẍM indicates the transition from the stick into the slip phase and vice versa. Due to
the application of the constant torque MMd, the negative response amplitude of ẍM is
larger than the positive one. Thus, the duration of the slip phase in the negative hor-
izontal acceleration range is only about half of the one in the positive range. Another
observation is that a smaller coefficient of friction μ prolongs the duration of the slip
phase in the positive horizontal acceleration range, and simultaneously reduces this
duration in the negative range.

To gain a deeper insight into the drum response characteristic, Fig. 223 shows
the drum accelerations in the frequency domain normalized to a peak value of one
and plotted against the ratio of frequency f over excitation frequency f̄ . It is readily
seen that the frequency spectra of the stick-slip motion contain both odd and even
harmonics. In the case of a pure rolling motion, the frequency spectra of ẍM contains
only one amplitude at f̄ and the frequency spectra of z̈M a second amplitude at f/f̄ = 2.
For the considered low soil stiffness, the corresponding frequency content of z̈M is
dominated by a frequency that is two-times the excitation frequency f̄ . The detailed
study based on roller 1 (Section 2.4) has, however, shown that for larger soil stiffness
the response is mostly dominated by f̄ . If slipping is admitted between drum and
subsoil, in the spectra of ẍM additional harmonics appear at f/f̄ = 2, 3, 4, ..., with
amplitudes much smaller than those at f/f̄ = 1. These harmonics are a result of the
“peak cut” in the response. According to Pistrol [2016], the normalized amplitude
at the third harmonic (|ẌM (3f̄)|/|ẌM (f̄)|) can be taken as a slip indicator. In the
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Figure 222: (a) Horizontal and (b) vertical acceleration in the drum center with
respect to time; roller 1; soft soil; pure rolling motion vs. stick-slip motion

considered case study, the amplitude at f/f̄ = 3 is about 0.114 times the amplitude
at f/f̄ = 1 for μ = 0.50, while the corresponding ratio is about 0.135 for μ = 0.30.
Thus, the normalized amplitude |ẌM (3f̄)|/|ẌM (f̄)| increases by almost 20 % when the
coefficient of friction μ is reduced from 0.50 to 0.30. The drum operates on the slope
of the settlement trough, and thus, the z̈M -spectra are dominated by the excitation
frequency f̄ . The second harmonic in the z̈M -spectra, i.e. |Z̈M (2f̄)|, results from
the up- and downward motion of the drum in the curved contact zone between drum
and subsoil (“settlement trough”). The additional harmonics in the spectra of z̈M at
f/f̄ = 3, 4, 5, ..., reflect the slip phases of the drum.

Plotting the vertical drum acceleration z̈M against its horizontal counterpart ẍM ,
as shown in Fig. 224, results in another meaningful response representation that is
fundamental to the CCC technique described in [Pistrol, 2016]. The result is a so-called
Lissajous curve [Klotter, 1981] with one node and an asymmetric pattern resembling
a recumbent eight, if the drum performs a pure rolling motion (black line with “+”
markers in Fig. 224). Its shape is strongly influenced by the stiffness and damping of
the subsoil as shown in Section 2.4. This will be discussed in detail in Section 2.5.2.
Comparison of the z̈M -ẍM plots for the stick-slip motion with the corresponding plot
for pure rolling motion shows that the slip phases cause a “peak cut” of the Lissajous
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Figure 223: Frequency spectrum of the (a) horizontal and (b) vertical acceleration
in the drum center; roller 1; soft soil; pure rolling motion vs. stick-slip motion

similar curve (see Fig. 224). This “cut” is more pronounced the lower the coefficient
of friction μ is. The resulting shape is similar to a rotated, asymmetric “bow tie”
whose enclosed area becomes smaller with decreasing μ (compare the blue line with
“*” markers in Fig. 224 with the red line with circular markers).

2.5.2 Influence of subsoil on the drum motion

Next, the influence of the subsoil, characterized by the shear modulus G, on the stick-
slip motion of the drum is discussed for the four rollers listed in Table 21. To this end,
the stick-slip response in the drum center in terms of the z̈M over ẍM representation
and frequency spectra are examined for the whole range of considered subsoil stiffness
G. The underlying coefficient of friction is μ = 0.50. Since the compaction indicator
of the CCC methodology described in [Pistrol, 2016] is based on the z̈M over ẍM plot,
Figs 225 (roller 2) and 226 (roller 4) show this response representation for four selected
values of G. As it can be observed at first glance, the shape of the z̈M -ẍM plots is
strongly influenced by the subsoil characterized by G. For instance, the “peak cut”
due to the slip phases is clearly illustrated. Moreover, with increasing soil stiffness the
node observed in the curve for G = 5 MN/m2 (black line with “+” markers in Figs 225
and 226) moves to the right (at G = 35 MN/m2 for roller 4, see blue line with circular
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Figure 224: Plot vertical over horizontal acceleration in the drum center; roller 1;
soft soil; pure rolling motion vs. stick-slip motion

markers in Fig. 226), and disappears completely for G = 35 MN/m2 (roller 2) and
50 MN/m2 (roller 4), respectively. Thus, the resulting shape is similar to a rotated,
asymmetric “bow tie” for G = 5 MN/m2, while for stiffer subsoils degenerated curves
without node are observed that do not resemble a Lissajous curve. Notably, the area
inside the z̈M -ẍM figures becomes larger with increasing G. For roller 4, the increase
of the area is apparently larger than for roller 2, e.g. compare the red lines with “*”
markers in Figs 225 and 226. The influence of G on this area depending on the machine
and operating parameters will be discussed in detail in Section 2.5.3.

As the shape of the z̈M over ẍM plot and consequently the enclosed area are strongly
affected by the frequency content and amplitudes of the drum response (as shown in
Section 2.4), ẍM and z̈M are subsequently analysed in the frequency domain up to a
frequency ratio f/f̄ = 3. Figs 227 and 230 show the response amplitudes at excitation
frequency f̄ (i.e |ẌM (f̄)| and |Z̈M (f̄)|) as a function of the soil stiffness G for the
considered rollers. Black lines with “+” markers represent the response of roller 1,

Figure 225: Plot vertical over horizontal acceleration in the drum center; roller 2
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blue lines with circular markers of roller 2, red lines with “*” markers of roller 3, and
green lines with triangular markers of roller 4. Note that this color and line style
selection is retained for all of the following representations. It is readily seen that the
amplitudes of the horizontal drum accelerations |ẌM (f̄)| become continuously larger
with increasing G for all rollers. The simulations based on the parameters of roller 1
yield the largest values of |ẌM (f̄)| in the whole range of G with an increase of about
27 % from 11.5 m/s2 (G = 5 MN/m2) to 14.6 m/s2 (G = 70 MN/m2). The smallest
values result from the simulations with the parameters of roller 2, except for G = 5
and 10 MN/m2, showing an increase of 23 % from 9.9 m/s2 (G = 5 MN/m2) to 12.2 m/s2

(G = 70 MN/m2). The values of |ẌM (f̄)| for roller 3 are virtually in the same order of
magnitude, increasing from 9.4 m/s2 (G = 5 MN/m2) to 12.3 m/s2 (G = 70 MN/m2),
i.e. an increase of about 31 %. The values for roller 4 are in between, increasing
from 10.3 m/s2 (G = 5 MN/m2) to 13.1 m/s2 (G = 70 MN/m2) and thus, showing the
same increase as predicted for roller 1. In contrast, the amplitudes of the vertical
drum accelerations at excitation frequency f̄ |Z̈M (f̄)| decrease with increasing G for
all rollers, however, not continuously because in the medium stiffness range the curves
show a plateau (see Fig. 230). This range with virtually constant |Z̈M (f̄)| is smallest
for roller 2 (G = 15-25 MN/m2) and largest for roller 4 (G = 15-35 MN/m2). Before
the plateau is attained, a decrease of |Z̈M (f̄)| of about 5 % (roller 2) to 7 % (rollers 1
and 3) is observed. The decrease |Z̈M (f̄)| with respect to G is similar for rollers 1
and 2 and more pronounced than for rollers 3 and 4. The total decrease of |Z̈M (f̄)|
between G = 5 MN/m2 and G = 70 MN/m2 is about 50 % for rollers 3 and 4 and 64 %
for roller 2. Similar to the horizontal amplitude |ẌM (f̄)|, the largest values of the
vertical amplitude |Z̈M (f̄)| are induced by roller 1 and the smallest ones by roller 2.
Comparison of Figs 227 and 230 shows that the amplitudes |Z̈M (f̄)| are only about
0.15 times the amplitudes |ẌM (f̄)| at G = 5 MN/m2 and approximately 0.05 times
the amplitudes |ẌM (f̄)| at G = 70 MN/m2, respectively.

Fig. 228 shows the response amplitudes |ẌM (2f̄)| at the double excitation frequency
2f̄ normalized by the amplitudes |ẌM (f̄)| at the excitation frequency f̄ as a function of
G. As can be observed at first glance, the normalized amplitudes |ẌM (2f̄)|/|ẌM (f̄)|

Figure 226: Plot vertical over horizontal acceleration in the drum center; roller 4
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Figure 227: Amplitude of the horizontal drum accelerations at the excitation fre-
quency as a function of soil stiffness

Figure 228: Amplitude of the second harmonic of the horizontal acceleration nor-
malized by the amplitude at the excitation frequency as a function of soil stiffness

Figure 229: Amplitude of the third harmonic of the horizontal acceleration normal-
ized by the amplitude at the excitation frequency as a function of soil stiffness
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Figure 230: Amplitude of the vertical drum accelerations at the excitation frequency
as a function of soil stiffness

Figure 231: Amplitude of the second harmonic of the vertical acceleration normalized
by the amplitude at the excitation frequency as a function of soil stiffness

Figure 232: Amplitude of the third harmonic of the vertical acceleration normalized
by the amplitude at the excitation frequency as a function of soil stiffness
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are only slightly influenced by the soil stiffness G. Their values vary between 0.30
and 0.33 (rollers 1, 2 and 4) and 0.34 and 0.38 (roller 3), respectively. The outcomes
based on rollers 1, 3 and 4 are qualitatively very similar, whereas the results due to
rollers 1 and 4 match also quantitatively. The amplitudes |ẌM (2f̄)|/|ẌM (f̄)| become
smaller up to G = 30 MN/m2 (i.e. a decrease of about 10 %) and start to continuously
increase at G ≥ 35 MN/m2 (increase of approximately 7 %). In contrast, for roller 2
the amplitudes |ẌM (2f̄)|/|ẌM (f̄)| decrease up to G = 20 MN/m2 by about 3 % before
becoming larger in the range G = 25-50 MN/m2 (increase of approximately 8 %) and
show a local maximum G ≥ 50 MN/m2.

In Fig. 229 the third harmonic horizontal response amplitude |ẌM (3f̄)| normalized
by corresponding first harmonic |ẌM (f̄)| is plotted against soil shear modulus G. It can
be readily seen that the normalized amplitudes |ẌM (3f̄)|/|ẌM (f̄)| are strongly influ-
enced by the subsoil in the stiffness range up to G = 25-35 MN/m2. While in this stiff-
ness range ratio |ẌM (3f̄)|/|ẌM (f̄)| increases by 40 % (roller 2) to 83 % (roller 4), the
numerically predicted decrease in the range G > 25-35 MN/m2 is only between ≈ 7 %
(rollers 1, 2 and 4) and 10 % (roller 4). Similar to the previously discussed amplitude
ratio |ẌM (2f̄)|/|ẌM (f̄)|, rollers 1, 3 and 4 yield amplitude ratios |ẌM (3f̄)|/|ẌM (f̄)| of
the same order of magnitude. In particular, the curves for rollers 1 and 4 are virtually
identical. The peak values of |ẌM (3f̄)|/|ẌM (f̄)| vary between 0.14 (roller 3) and 0.17
(rollers 1 and 4), respectively.

Next, the influence of G on the vertical drum response (z̈M ) in the frequency domain
is examined in the same way, based on the normalized amplitudes |Z̈M (2f̄)|/|Z̈M (f̄)|
(see Fig. 231) and |Z̈M (3f̄)|/|Z̈M (f̄)| (see Fig. 232). Fig. 231 shows that the ampli-
tude ratios |Z̈M (2f̄)|/|Z̈M (f̄)| are strongly affected by G. The response curves as a
function of G are similar for all considered rollers, i.e. in the range G = 20-30 MN/m2

these curves show a minimum. At G = 5 MN/m2 ratio |Z̈M (2f̄)|/|Z̈M (f̄)| is about
0.60-0.65, and the minimum ratio is approximately 0.37-0.38. The largest amplitude
ratio |Z̈M (2f̄)|/|Z̈M (f̄)| occurs at the largest considered soil stiffness G = 70 MN/m2.
Notably, the ratio |Z̈M (2f̄)|/|Z̈M (f̄)| due to roller 2 exceeds in the stiffness range
G > 55 MN/m2 the value of 1 with its maximum of 1.36 at G = 70 MN/m2. Thus, for
G > 55 MN/m2 the frequency spectrum of the vertical drum response resulting from
roller 2 is dominated by the second harmonic. In contrast, for the remaining rollers
the corresponding peak ratio is less or equal than 1, i.e. the vertical drum response
z̈M is dominated by the excitation f̄ .

Fig. 232 illustrates that also the normalized amplitudes |Z̈M (3f̄)|/|Z̈M (f̄)| at three-
times the excitation frequency strongly depend on G and they vary between 0.24 and
0.50. The global trend of this response quantity is the same for all rollers. The curves
show a local maximum at G = 10 MN/m2 and a global minimum at at G = 35-
50 MN/m2. At the largest considered value of the soil stiffness G = 70 MN/m2, for
roller 3 the ratio |Z̈M (3f̄)|/|Z̈M (f̄)| is 0.32 and for roller 2 about 0.50.

2.5.3 Influence of the device parameters on the compaction
indicator

Recent experimental studies have revealed that the area inside the z̈M over ẍM figure
becomes larger with increasing G, and thus, has been proposed as CCC indicator of
the actual soil compaction [Pistrol, 2016]. In Fig. 233, this CCC response parameter
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(i.e. the “area”) is plotted against the shear modulus G for all considered types of
oscillation rollers. It is readily seen that the all curves representing different oscilla-
tion rollers are qualitatively very similar. In particular, the results due to rollers 3
and 4 are virtually the same. As can be observed, up to a soil stiffness of G = 15-
20 MN/m2, the compaction indicator slightly decreases (rollers 1, 2 and 3) or is almost
constant (roller 4). Subsequently, this response quantity becomes continuously larger
with increasing G, reaches a maximum at G = 35-40 MN/m2 (roller 2), G = 45 MN/m2

(roller 1), G = 45-50 MN/m2 (roller 3) and G = 50 MN/m2 (roller 4), respectively, and
then decreases with increasing G. The simulations based on the parameters of roller 1
yield the largest compaction indicators in the whole range of G with a maximum value
of about 53 m2/s4. The smallest values result from the simulations with the parameters
of roller 2 showing a maximum of ≈ 39 m2/s4. The compaction indicators resulting
from rollers 3 and 4 are in the same order of magnitude with a maximum of about 42
and 44 m2/s4, respectively. Notably, for rollers 1 and 2 the compaction indicator at
the largest soil stiffness (G = 70 MN/m2) is smaller than the corresponding value for
soft soil (G = 5 MN/m2).

Normalizing the compaction indicators by the corresponding compaction indicator
for soft soil (G = 5 MN/m2) results in the graphs shown in Fig. 234. This illustration
clearly shows that the largest increase of the compaction indicator is observed for
rollers 3 and 4, with a maximum increase of 45 %. The normalized compaction indicator
due to roller 1 increases only by 30 % and due to roller 2 by almost 34 %. However,
the gradient of the increase and the subsequent decrease is the strongest for roller 2.
Thus, the resulting compaction indicator at G = 70 MN/m2 is 26 % smaller than the
corresponding value at G = 5 MN/m2.

Next, the influence of operating frequency f̄ on the considered compaction indi-
cator is discussed based on rollers 1 and 4. To this end, the default value of f̄ , as
listed in Table 21, is reduced and increased by 3 Hz, respectively. The corresponding
normalized compaction indicators are depicted in Figs 235 (roller 1) and 236 (roller 4).
As can be observed, a reduction of f̄ results in a considerable decrease of the normal-
ized compaction indicator in the entire range of soil stiffness G, while an increase of
f̄ also increases this indicator. Moreover, the maximum point of the curves is shifted
to the right when the operating frequency f̄ is increased. Thus, the maximum of
normalized compaction indicator occurs at a larger soil stiffness. The computations
based on roller 1 operated at a reduced excitation frequency of f̄ = 36 Hz yield a
maximum normalized compaction indicator of only 1.03 at a lower soil stiffness of
G = 35-40 MN/m2. This corresponds to a decrease in normalized compaction indi-
cator of about 20 % compared to the operation with standard frequency f̄ = 39 Hz.
In comparison, the simulations based on the same roller but operated at the larger
frequency f̄ = 42 Hz lead to a maximum normalized compaction indicator of about 1.6
at a considerably larger value of the soil stiffness G = 50-55 MN/m2, i.e. an increase
of almost 25 % compared to the standard operating frequency. The change of the exci-
tation frequency of roller 4 results in a change of the normalized compaction indicator
that is quantitatively and qualitatively similar.

Additionally, the effect of suspension parameters kd and cd (which represent the
suspension between drum and frame) on the normalized compaction indicator is stud-
ied exemplarily on roller 1. As shown in Fig. 237, the increase of stiffness kd from
its default value of 4 MN/m to 8 MN/m results in an increase of the normalized com-
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Figure 233: Compaction indicator as a function of soil stiffness

Figure 234: Normalized compaction indicator as a function of soil stiffness

Figure 235: Normalized compaction indicator as a function of soil stiffness; variation
of operating frequency for roller 1
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Figure 236: Normalized compaction indicator as a function of soil stiffness; variation
of operating frequency for roller 4

paction indicator, and the decrease of the default value 4 MN/m to 2 MN/m reduces
this indicator. The peak value of this indicator occurs for all values of kd at the same
soil stiffness G. The effect resulting from the variation of the damping parameter cd is
illustrated by Fig. 238. Simulations based on a suspension damping coefficient cd that
is 20 times larger than the default value listed in Table 1 show virtually no affect on
the normalized compaction indicator. In the unrealistic case that cd is 100 times higher
than the default value, the maximum value of the normalized compaction indicator is
reduced by about 9 % and shifted from G = 45 MN/m2 to a slightly higher soil stiffness
range of G = 45-50 MN/m2, see Fig. 238.

2.5.4 Influence of the coefficient of friction on the compaction
indicator

The influence of the coefficient of friction between drum and subsoil on the normalized
compaction indicator is illustrated by comparing Fig. 239 (μ = 0.30) with Fig. 234
(μ = 0.50). The reduction in μ to 0.30 has virtually no effect on that soil stiffness G,
where the maximum value of the normalized compaction indicator occurs. However, a
reduction of μ increases the normalized compaction indicator for all rollers. Rollers 3
and 4 yield the largest maximum normalized compaction indicator. The smallest
increase is observed for roller 2 with a maximum normalized compaction indicator
of 1.53. Notably, this value is in the same order of magnitude as the value resulting
from roller 1. In contrast to the outcomes based on μ = 0.50, the minimum value
of the normalized compaction indicator occurs both at the lowest and at the largest
considered value of the soil stiffness. That is, at G = 70 MN/m2 the indicator does not
drop below the value at G = 5 MN/m2.



44 Chapter 2. Lumped parameter modeling

Figure 237: Normalized compaction indicator as a function of soil stiffness; variation
of the suspension stiffness of roller 1

Figure 238: Normalized compaction indicator as a function of soil stiffness; variation
of the suspension damping of roller 1

Figure 239: Normalized compaction indicator as a function of soil stiffness; standard
operating frequency; coefficient of friction μ = 0.30



Chapter 3
Finite Element modeling

3.1 Considered oscillation roller

For the Finite Element modeling of the dynamic interacting oscillation roller-soil sys-
tem, roller 1 (i.e. the HD+ 90 VO tandem roller) is used because for this device ac-
celeration response data of the drum center as well as dynamic soil stress components
have been recorded in field tests [Pistrol, 2016]. The default machine and operating
parameters are listed in Table 31. Note that in contrast to the parameters specified
in Table 21 the subsequent numerical investigations are based on a static axle load of
P0 = 44,130 N [Pistrol, 2016], which is about 2.5 % smaller than the value of P0 given
in Table 21. However, the studies in Section 3.3.3, where the static axle load is varied,
show that this has no significant effect on the results. The outcomes of the numerical
study summarized in this chapter are based on papers 5 and 6, see Section 1.5.

Table 31: HD+ 90 VO tandem roller parameters (based on Pistrol [2016])

Default parameters Value Dimension

Radius of the drum r 0.60 m
Width of the drum b 1.68 m
Mass of the drum m 1851 kg
Mass moment of inertia of the drum I 412 kgm2

Static axle load P0 44,130 N
Excitation frequency f̄ 39 Hz
Amplitude of the oscillation moment M

(0)
Mu 54,947 Nm

Suspension drum/frame - stiffness kd 4×106 N/m
Suspension drum/frame - damping cd 3×102 Ns/m
Roller speed v0 1.11 m/s

45
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3.2 Numerical model with hypoplastic soil behavior
3.2.1 General modeling strategy
The drum and the front frame are dynamically decoupled by a deeply tuned suspension
system (rubber buffers), and thus, both the horizontal and vertical vibrations of the
rear and front frame are negligible during operation, as discussed in Section 2.2.2 (for
further details see Appendix A). Based on this observation, the entire roller illustrated
in Fig. 11 is reduced to the stiff oscillation drum connected through spring-damper
elements to the quasi-static frame, which is moving horizontally at speed v0. The
spring-damper elements represent the viscoelastic properties of the rubber buffers.
The static axle load P0 applied to the center of the drum consists of the dead weight
of the front frame and the drum weight. The effect of two eccentric and (with respect
to the drum center) point-symmetric shafts inside the drum, each with two equal
imbalances (same mass and same eccentricity) rotating in the same direction with
constant angular velocity ν̄, is captured by the resulting sinusoidal torque around
the drum axis according to Eq. 2.6. The resulting amplitude M

(0)
Mu of the sinusoidal

excitation moment is listed in Table 31. Based on the relation between the excitation
torque MMu(t) and the location of the rotating unbalanced shafts visualized in Fig. 23,
it is assumed that the drum runs at constant speed and performs an alternating high-
frequency forward-backward motion.

The considered vertical soil section is a rectangular plain strain domain discretized
by Finite Elements (FE), which is embedded in infinite elements. The plane-strain
thickness of the vertical soil section corresponds to the thickness of the drum. To
the soil section, the hypoplastic constitutive law with the extension for intergranular
strain as proposed by Niemunis and Herle [1997] is assigned. For a brief overview see
Appendix G. This constitutive model allows a realistic description of soil compaction.

In summary, the plane-strain FE model created in ABAQUS/CAE and shown
in Fig. 31 consists of three subsystems, i.e., the soil, the oscillation drum, and the
spring-damper elements between the drum and the roller frame. The origin O of the
x (horizontal) and y (vertical) coordinates describing the planar model geometry is
located in the center of the free undeformed soil surface, as illustrated in Fig. 31.
Note that the coordinate system as defined in ABAQUS/CAE is used throughout the
subsequently described study. Thus, the vertical axis, unlike in Chapter 2, is defined
positively upwards and is subsequently referred to as y.
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3.2.2 Spatial and temporal discretization

The soil subsystem subjected to compaction is a rectangular finite domain of the di-
mension 16 m x 5.5 m, and at its boundaries to the surrounding halfspace, which is not
significantly affected by the roller, infinite elements with a length of 5.5 m capture the
effects of radiation damping both horizontally and vertically (see Fig. 31). The infinite
elements (CINPE4) emulate the halfspace by introducing velocity-proportional damp-
ing at the boundaries, and consequently, the impinging compression and shear waves
at the model boundaries are not reflected [Smith, 2015]. In the horizontal range −3 m
≤ x ≤ 3 m the subsoil surface (i.e. vertical coordinate y = 0) is defined as the contact
area between drum and soil, and thus, represents for the drum the “motion zone”
and for the soil layer the “compaction zone”. The soil domain is spatially discretized
by four-node bilinear plane-strain quadrilateral elements (CPE4). In the horizontal
range of −2.5 m ≤ x ≤ 2.5 m the mesh of the contact and compaction zones consists
of elements with the dimension 0.02 m x 0.02 m. The element size of the mesh in the
domains −5.5 m ≤ x ≤ −2.5 m, 2.5 m ≤ x ≤ 5.5 m, and −5.5 m ≤ y ≤ −1.0 m increases
to 0.1 m x 0.1 m at the semi-infinite boundaries. The model was refined stepwise in the
soil domain of potential compaction during its development. The resulting mesh used
in this study consists of 37,569 elements including the infinite elements. Additionally,
convergence studies were performed with a coarse mesh consisting of 11,795 elements
and an even more refined mesh consisting of 46,326 elements and a minimum element
size of 0.01 m x 0.01 m.

The drum is modeled as an elastic circular steel ring with the outer radius of 0.60 m,
thickness of 0.02 m, density ρ = 7850 kg/m3, Young’s modulus E = 210×109 N/m2, and
Poisson’s ratio ν = 0.3. The FE model of the drum model consists of radially uniformly
distributed 376 four-node bilinear plane-strain quadrilateral elements (CPE4). Four
dummy elements (see Fig. 32) with the same material properties are added to the
quarter points on the inner ring surface to support response visualization. These
elements are of dimension 0.01 m x 0.03 m, whereas all other elements have a size of
approximately 0.01 m x 0.02 m. The total mass of this model is 993.6 kg and its mass
moment of inertia is 344.4 kgm2. Since according to the manufacturer the actual mass
of the drum is larger (see Table 31), a lumped mass of 857.4 kg and an rotary inertia
(I33) of 67.4 kgm2 is added to this model to the reference point at center of the drum
(“RPM ”). The reference node RPM (referred to as “M”) and the nodes of the inner
drum surface are coupled by defining kinematic coupling constraints for all affected
degrees of freedom (nodal degree of freedom in the x-direction “U1”, in the y-direction
“U2”, and in the rotation about z-axis “UR3”).

As agreed upon with the manufacturer, the mechanical properties of the suspension
elements between the drum and roller frame are described by three lumped parameter
spring-dashpot elements (Kelvin-Voigt bodies), arranged as shown in Fig. 32. The
spring and dashpot elements are defined between the reference point RPM (drum
center M) and the reference nodes RPfl, RPfr, RPft, respectively, which belong to
the quasi-static roller frame. The spring stiffness and the dashpot coefficients as listed
in Table 31 are assigned to the vertical Kelvin-Voigt body. The stiffness and the
dashpot parameters of the horizontal elements only have half of these values, resulting
in the same vertical and horizontal global stiffness and dashpot coefficients as used in
the lumped parameter modeling in Chapter 2.
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Figure 32: Sketch of the drum and the suspension model

In the course of the model optimization it was found that the maximum time incre-
ment Δt = 0.0002 s maintains the required high resolution accuracy of the predicted
response accelerations. The total computation time for simulating one roller pass from
the initial drum position at x = −2.5 m to the final position at x = 2.3 m (time frame
of motion 4.5 s) varies from at least one day to about one week (computer with seven
processor cores each with a clock rate of 3 GHz).

By employing the FE simulation software ABAQUS/Standard (version R2016x),
the Hilber-Hughes-Taylor (HHT) [Smith, 2015] implicit integrator is used to solve the
present dynamic boundary value problem. The HHT-parameter α, which provides the
maximum numerical damping, is set to −1/3. The nohalf option specifies that the
half-increment residual is not checked.

3.2.3 Contact between soil and drum
The contact formulation implemented in ABAQUS/Standard [Smith, 2015] is used to
model the contact interaction between the outer surface of the drum (master surface)
and the surface of the soil (y = 0) in the range −3 m ≤ x ≤ 3 m (slave surface), which
represent a so-called “contact pair”. Since the actual behavior of drum-soil contact
has never been experimentally investigated in detail, it is assumed that the properties
of drum-soil contact can be described sufficiently accurately by the classical isotropic
Coulomb friction model. In this friction model, the two contact surfaces can carry
shear stresses up to a certain limit value (stick state) before mutual sliding is initiated
(slip phase) [Smith, 2015]. The subsequent simulations are performed with a constant
coefficient of friction μ = 0.50 (default value).

3.2.4 Initial conditions
Initially, the drum is located at (x,y) = (−2.5,0.1) m, i.e. there is a gap of 0.1 m
between the drum surface and the top of the subsoil (initial uplifted drum position).
In the soil domain, an initial stress field is imposed by specifying vertical stresses on
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the top and the bottom of the subsoil subdomain. In addition, the first coefficient of
lateral earth pressure (x-direction) is set to 0.429. In the hypoplastic soil domain, initial
values of solution-dependent state variables (SDVs) are specified. In all simulations,
the SDVs are set to zero except for the initial void ratio e0 (SDV7).

3.2.5 Analysis steps
In analysis step 1, the gravitational acceleration g = 9.81 m/s2 is applied to the soil
domain in negative y-direction to establish equilibrium with the imposed initial soil
stresses (“geostatic step”). Then, in a second static analysis step, the raised drum is
lowered and pressed 0.005 m into the soil to establish contact between the drum and the
soil (analysis step 2, or “displacement step”). In static simulation step 3, the drum is
loaded by applying the static axle load P0 to the reference node RPM (“vertical loading
step”). In dynamic analysis step 4, at the reference nodes RPfl, RPfr, RPft (shown
in Fig. 32) the velocity v(t) = v0 sin2(2πt/Δtacc) is prescribed, with 0 ≤ t ≤ Δtacc. The
time period Δtacc of the “acceleration step” to accelerate the statically loaded drum
from v = 0 up to the target roller speed v0 is assumed with 0.5 s. Thus, the drum covers
a distance of about 0.3 m during the acceleration phase. In the last dynamic analysis
step 5 (“compaction step”), the oscillation moment MMu(t) is applied to the reference
node at the center of the drum, thereby exciting harmonically the statically loaded
drum moving at constant speed v0, as described in the subsequent Section 3.2.6.

Some test simulations were performed where analysis steps 3 and 4 were combined,
i.e. acceleration and harmonic excitation of the drum were applied simultaneously.
Depending on the soil parameters (especially on void ratio e0), this combination may
lead to such a large soil deflection that the drum need to be driven up afterwards,
which yields unrealistic initial conditions for the compaction step.

3.2.6 Loading, movement, and excitation of the oscillation drum
The concentrated static axle load P0 specified in Table 31 is applied to reference node
RPM , which represents the drum center M . The motion of the drum at constant roller
speed is modeled by defining boundary conditions in terms of velocity at the reference
nodes RPfl, RPfr, RPft (see Fig. 32) and the frictional contact between drum and
soil. The concentrated periodic moment MMu(t) according to Eq. 2.5 is applied to the
drum center M (reference node RPM ). Due to the alternating high-frequency forward-
backward motion of the drum, which is superimposed on the translational roller motion
at constant speed v0 = 1.11 m/s, the soil is exposed to about 35 oscillations per meter
traveled.

3.2.7 Constitutive soil model and numerical implementation
To describe soil compaction, the so-called intergranular strain enhanced extended hy-
poplastic constitutive model (e.g. [von Wolffersdorff, 1996], [Niemunis and Herle, 1997])
was implemented in ABAQUS/Standard via a user-defined subroutine (UMAT), as de-
scribed in [Gudehus et al, 2008], [Mašín, 2019a]. According to Heiniger [2018], who
tested the implementation of this UMAT, the present simulations are based on the
constitutive parameters of the so-called Hochstetten Sand [Herle, 1997] listed in Ta-
ble 32 (basic hypoplastic model) and Table 33 (additional parameters of the extended
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hypoplastic model). The initial void ratio e0 is varied in the range of 0.90 (very loose
soil) to 0.60 (dense soil). The corresponding soil density is calculated assuming a grain
density of ρs = 2650 kg/m3. For an overview on this constitutive soil model see Ap-
pendix G. Details on the implementation of this UMAT can be found in Appendix H.

In the hypoplastic soil domain, material damping is considered in terms of Rayleigh
damping. The Rayleigh parameter α is set to 34.3, providing a mass proportional
damping of about 7 % at frequency f = f̄ .

According to Smith [2015], in dynamic analyses the material response in the infinite
elements is assumed to be isotropic. In the present simulations the elastic constitutive
parameters assigned to the infinite elements are: density ρ = 2200 kg/m3, Young’s
modulus E = 250×106 N/m2, Poisson’s ratio ν = 0.3.

Table 32: Material parameters of “Hochstetten Sand” for basic hypoplasticity [Herle,
1997]

ϕc

[◦]
hs

[N/m2]
n ed0 ec0 ei0 α β

33 1.5×109 0.28 0.55 0.95 1.05 0.25 1.50

Table 33: Additional parameters for hypoplasticity with intergranular strain [Niemunis
and Herle, 1997]

R mR mT βr χ

1×10−4 5 2 0.5 6

3.2.8 Modeling approach to maintain numerical stability
In a hypoplastic constitutive law near-surface tensile strains may lead to positive effec-
tive normal stresses, and, as a result, to an abortion of the calculation due to the loss of
material stiffness in the hypoplastic constitutive model. The implemented hypoplastic
constitutive model can handle only small tensile stresses depending on the assigned
“apparent cohesion” pt. The default value of pt is 1 kN/m2 [Gudehus et al, 2008].
Preliminary studies have shown that cyclic compression and expansion of the soil may
lead to large displacements in the soil area close to the oscillation drum, which may
impede stable numerical simulation. Thus, an “additional measure” must be applied
to the stress-free surface, which turned out to be the most challenging problem of the
presented modeling approach.

One option to avoid inadmissible tensile effective stresses and ensure better numer-
ical stability known from the literature (e.g. [Chrisopoulos et al, 2016]) is to apply a
constant distributed load to the soil surface (hereinafter referred to as “surface pres-
sure”). In preliminary studies the effect of surface protection measures was tested with
different values of pt and additional surface pressure psurf. Neither with an assumed ap-
parent cohesion pt of 10 kN/m2 nor with an applied surface pressure psurf of 20 kN/m2

a whole roller pass could be simulated. The application of an initial static surface
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pressure larger than 20 kN/m2 proved to be unfeasible, because the initial soil stiffness
increases, and consequently, the prediction of the drum motion and the compaction
effect is incorrect.

Therefore, in a second approach the modeling attempt according to Heiniger [2018]
has been tested. To this end, the stress-free surface is loaded by dynamically effective
nodal forces only, achieved by application of viscous dampers to the nodes of the free
surface. By defining additional dashpot dampers (“surface dampers”) that connect
the nodes of the free soil surface to ground [Smith, 2015], both in horizontal and verti-
cal direction, the numerical difficulties related with the hypoplastic soil behavior were
overcome. The damping coefficients cx (horizontal) and cy (vertical) of the surface
dampers were found by trial and error (for further details see Appendix I.2 and Ap-
pendix I.4). This modeling approach has already been proven by Heiniger [2018], who
was able to run a first stable FE simulation using surface dampers with cx = 560 Ns/m
and cy = 1680 Ns/m. Note that he used a larger value for cy than for cx, because the
instabilities are related to the vertical soil response, where node velocities are lower
than in horizontal direction. Preliminary studies based on the presented model (see
Section 3.2.2) have shown that damper coefficients cx = cy = 750 Ns/m in addition to
an apparent cohesion of pt = 5 kN/m2 proved to be a useful combination (e0 = 0.90)
to simulate one oscillatory roller pass only. These values allow for a stable numerical
analysis, however, they do affect the system response considerably, as shown by the
results in Appendix I.4.

Thus, in the present dissertation another novel modeling attempt is pursued to
increase the numerical stability associated with the hypoplastic constitutive law. It is
proposed to “seal” the free soil surface with an elastic “protective foil” to prevent indi-
vidual nodes from lifting off so strongly causing the analysis to be aborted. The “pro-
tective foil” is realized by assigning a linear elastic isotropic constitutive law to the ele-
ments of the first row of the soil mesh with a low Young’s modulus E = 50×106 N/m2

(found by trial and error) and pt is set to 5 kN/m2, see Fig. 32. Rayleigh damping is
assigned to this elastic layer. By setting the Rayleigh parameter α and β to 28.6 and
9.52×10−5, respectively, a material damping of about 7 % is provided at frequency
f = f̄ and f = 5f̄ , whereas in between about 5 % damping is achieved. Also a hy-
poplastic “protective foil” with parameters pt = 500 kN/m2 and e0 = 0.60 allows for a
stable calculation and provides a comparable change of the void ratio. However, this
approach affects the predicted drum accelerations to an unacceptable extent, and the
computation time increases significantly.

3.3 Results and discussion
In the following, the response of the described model after the first pass of a HAMM
HD+ 90 VO tandem roller (see Table 31), is presented and evaluated. In the first
study, an initially very loose soil with an initial void ratio of e0 = 0.90 is considered for
compaction. The results for the dynamic roller pass (stresses, strains and compaction
effect) are compared with the outcomes of a “static” roller run due to the moving drum
under the static vertical load P0 without oscillation (MMu(t) = 0).

Next, the influence of the variation of different model and operating parameters
on both compaction effect and response prediction, and in further consequence, on
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the CCC indicator proposed by Pistrol [2016] is studied. The influence of the initial
void ratio e0 on compaction effect and response prediction is assessed for three further
initial void ratios in addition to the standard value of e0 = 0.90 by considering the
default value of μ = 0.50. To investigate how the choice of the coefficient of friction
μ, which controls the slip phase of the drum, affects the response prediction, and con-
sequently the CCC indicator, in addition to the default value of μ = 0.50, simulations
with μ = 0.30 are performed. The effect of the apparent cohesion pt applied in the
numerical model to the “subsoil” domain is analyzed by considering both the default
value pt = 5 kN/m2 and the twofold value pt = 10 kN/m2. The corresponding sim-
ulations are both conducted for an initially very loose soil with an initial void ratio
e0 = 0.90 (standard subsoil) and an initially medium dense soil with e0 = 0.70. In
another study, the default value of the static axle load P0 of the considered roller is
varied by ±20 % and ±50 %, respectively. In order to clarify the significance of the
roller speed for the effect of the oscillation drum, four additional speeds are considered
in addition to the standard roller speed v0 = 1.11 m/s. For the largest value of v0, a
second roller pass is simulated.

3.3.1 First observations
Fig. 33 shows the predicted distribution of the void ratio e in the upper soil layer of
1 m thickness after 2 s of compaction (a) with and (b) without oscillation. In the red
areas the void ratio e is equal to the initial void ratio e0. The compaction, i.e. a
reduction of the initial void ratio e0, is indicated by a color in the range from orange
to deep blue depending on the predicted value of e. The color gray shows soil domains
with loosening (i.e. e > e0). This figure confirms that the oscillating roller has a much
larger compaction effect on the subsoil than the static roller.

It is readily seen that the so-called bow wave ([Grabe, 1993], [Mooney and Rinehart,
2009], [Pistrol, 2016]) develops in front of both the static and dynamic drum, as it
was observed in the field, because in this domain the soil is subjected to a vertical
(y-direction) expansion and horizontal (x-direction) compression. The bow wave is
a result of the roller motion at speed v0, and in the case of the dynamic roller it
is amplified by the shear waves induced by the oscillating unbalances. Thus, the
oscillation drum results in a much larger bow wave and a much larger settlement
trough than a static roller, compare the plots (a) and (b) of this figure. Due to the
bow wave, the drum center lags behind the center of the contact area between drum
and soil, and the distance between these centers becomes larger the larger the bow
wave is. In the rear part of the bow wave vertex, the void ratio e decreases to a depth
of about 0.7 m below the oscillating drum, whereas in the front of the vertex the soil is
affected by the dynamic roller only to a depth of about 0.3 m. In a static roller pass,
the soil below the bow wave surface is loosened, as can be seen in Fig. 33 (a). The
influence of the settlement trough and the bow wave on the predicted change of the
void ratio e will be discussed later in more detail (see Sections 3.3.2 and 3.3.3).

3.3.2 Stress and strain components in the soil
Now the predicted stresses and strains in representative elements at soil depths of
0.15 m, 0.25 m and 0.50 m, respectively, are considered. These elements, also subse-
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Figure 33: Distribution of void ratio e in the upper soil layer of 1 m thickness during
compaction (a) without and (b) with oscillation

quently referred to as “observation points”, are on top of each other in the section x = 0,
as depicted in Fig. 31 by red circular markers. Figs 34, 35 and 36 show the stress and
strain components at these observation points during the run of an oscillation roller
and a static roller, respectively. In these figures, the abscissa represents the horizontal
distance xM of the drum center (moving at speed v0) from the observation points.
As the roller moves from left to right, a decrease of −xM indicates that the drum is
approaching the element. At xM = 0 the drum center is directly above the observation
points, and with increasing xM > 0 the drum moves away from the observation points.
In the left plot of these figures, the Cauchy stress components “S11” (σxx), “S22” (σyy)
and “S12” (σxy) are depicted. The right plot shows the logarithmic strains “LE11”
(εxx), “LE22” (εyy) and “LE12” (εxy) according to the ABAQUS ’ convention, where
“LE12” represents the engineering shear strain γ [Smith, 2015]. Positive stress and
strain values represent tension and expansion, respectively. Blue lines show σxx and
εxx, σyy and εyy are plotted in green, and σxy and εxy are depicted by red lines. Solid
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lines refer to the response quantities induced by the dynamic roller, whereas the out-
comes of the static roller are indicated by dashed lines and the corresponding response
variables by superscript “s”.

The left plots of these figures show that the vertical normal stress component σ
(s)
yy

due to the static roller pass has a pulse shape (compression), the horizontal stress
component σ

(s)
xx the shape of a double pulse (also compression), and the shear stress

σ
(s)
xy the shape of a double pulse with a sign reversal in the vertical and horizontal planes,

similar to the outcomes found in [Brown, 1996]. The absolute value of maximum σ
(s)
xy

before sign reversal is slightly smaller than the absolute value of minimum σ
(s)
xy after

sign reversal. That is, the peak shear stress is larger when the drum approaches the
considered element. At xM , where σ

(s)
xy is zero, σ

(s)
yy is minimum and σ

(s)
xx has a local

maximum. The corresponding location of the drum is in the negative x-range, but
close to the observation points, i.e. xM ≈ −0.05 m to −0.08 m.

Notably, the stresses induced by the dynamic roller are of the order of magnitude
of the stresses from a static roller pass. The observed high-frequency stress oscillations
with small amplitudes superimposed on the quasi-static stress regime of σxx, σyy, and
σxy are due to the oscillatory excitation moment. The high-frequency stress oscillations
σxx and σyy mostly oscillate in phase, as can be seen in field tests [Kopf, 1999].

Moreover, the general trend of the quasi-static parts of the components σyy, σxy and
the corresponding static roller-induced stress components σ

(s)
yy , σ

(s)
xy is the same, but

with a slight shift to the left that increases with soil depth. Therefore, the minimum
of σyy also occurs during compaction with the dynamic roller before the drum passes
the observation point, but at a greater distance to the left depending on the soil depth,
i.e. xM ≈ −0.15 m (y = −0.15 m) to −0.27 m (y = −0.50 m). Compared to σ

(s)
xy , the

asymmetry of σxy with respect to the axis y = 0 is more pronounced for the dynamic
roller at a soil depth ≤ 0.25 m. In particular, minimum σxy is much smaller than
minimum σ

(s)
xy , and both minimum and maximum σ

(s)
yy are shifted to the left.

The difference between the quasi-static part of the normal stress σxx (oscillation
roller) and the stress component σ

(s)
xx (static roller) is more pronounced than in the

previously discussed stress components. In particular at the depth of y = −0.15 m,
in the positive x-range the quasi-static part of σxx is almost zero, while |σ(s)

xx | has a
maximum. Moreover, at xM < −0.4 m, maximum |σxx| is much smaller than maximum
|σ(s)

xx |. However, with increasing soil depth the difference between |σxx| and |σ(s)
xx |

diminishes. This numerically observed difference in σxx was also found in field tests
[Kopf, 1999] and can be attributed to the loosening of the soil [Kopf, 1999] and the
release of residual (“locked in”) stresses (evident in the static roller pass) [Mooney and
Rinehart, 2009] by the oscillating drum.

In field tests ([Pistrol, 2016], [Kopf, 1999]), the dynamic vertical normal stress
was recorded during compaction by an oscillation roller. As example, Fig. 310 (based
on Pistrol [2016]) shows the dynamic soil stresses at the depth of y = −0.50 m in
a soil medium compacted by the oscillation roller HAMM HD+ 90 VO considered
in this numerical study. To compare the computed soil stresses with the stresses
recorded in the field tests, the dynamic parts of the stress components, σ

(d)
xx , σ

(d)
yy , and

σ
(d)
xy , respectively, are extracted by subtracting the quasi-static portions from the total

stresses σxx, σyy, and σxy, respectively. The extracted stress quantities are depicted
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Figure 34: (a) Stress and (b) strain components at x = 0 due to an oscillatory (solid
lines) and static roller pass (dashed lines), respectively; depth y = −0.15 m

Figure 35: (a) Stress and (b) strain components at x = 0 due to an oscillatory (solid
lines) and static roller pass (dashed lines), respectively; depth y = −0.25 m

Figure 36: (a) Stress and (b) strain components at x = 0 due to an oscillatory (solid
lines) and static roller pass (dashed lines), respectively; depth y = −0.50 m
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in Figs 37 (σ(d)
xx ), 38 (σ(d)

yy ), and 39 (σ(d)
xy ) for two selected depths, i.e. y = −0.15 m

(left plots) and y = −0.50 m (right plots). These figures show that the frequency
content of σ

(d)
xx , σ

(d)
yy and σ

(d)
xy is primarily dominated by the excitation frequency f̄ . At

xM ≈ −0.2 m in the depth y = −0.15 m, the evolution of σ
(d)
xx with respect to xM has

a “node” that indicates the presence of the second harmonic of f̄ (see Fig. 37 (a)). In
the larger depth of y = −0.50 m, a node appears at xM ≈ −0.27 m (see Fig. 38 (b)).
In the normal stress component σ

(d)
xx a node at xM ≈ −0.23 m, which is more obvious

at larger depth, also indicates the presence of the second harmonic of f̄ . The dynamic
shear stress component σ

(d)
xy shows two distinct nodes, one when the drum approaches

xM = 0 and one when the drum moves away from the origin. Comparing the left plots
of Figs 37 and 39 reveals that at y = −0.15 m the maximum amplitude of σ

(d)
xy of about

8 kN/m2 occurs at the same xM (≈ 0.2 m) where the amplitude of σ
(d)
xx is about zero

(node). The dynamic horizontal normal stress σ
(d)
xx is approximately zero when the

center of the contact zone and the observation point at y = −0.15 m are on top of
each other, while the dynamic shear stress σ

(d)
xy reaches its maximum. The maximum

amplitudes of σ
(d)
xx are about 8.5 kN/m2 (y = −0.15 m) and 3.4 kN/m2 (y = −0.50 m),

respectively, and thus, in the same order of magnitude as the peak amplitudes of σ
(d)
xy .

The peak amplitudes of the vertical stress component σ
(d)
yy are almost twice as high

these values, i.e. 15 kN/m2 (y = −0.15 m) and 6.5 kN/m2 (y = −0.50 m), respectively.
Comparison of the vertical dynamic stress components σ

(d)
yy at depth y = −0.50 m

(Fig. 38 (b)) with the experimentally found soil stress at the same depth (Fig. 310,
based on Pistrol [2016]) shows that computed and measured stresses are in good qual-
itative and quantitative agreement. The peak amplitudes differ from each other only
by about 7 %. However, the recorded peak stress amplitude occurs in the negative
x-domain, while in the computed counterparts at xM > 0. The latter result, however,
corresponds with the observations from earlier field tests documented in [Kopf, 1999].

Now the computed soil strains εxx, εyy and εxy depicted in the right plots of Figs 34,
35 and 36 are addressed. As can be observed at first glance, the strains induced by the
oscillation roller are magnitudes larger than the strains due to the static roller, in con-
trast to the stresses. As the drum approaches the considered element, the soil at depth
y = −0.15 m is exposed to increasing vertical expansion (εyy > 0) and longitudinal com-
pression (εxx < 0). This can be attributed to the bow wave and the settlement trough,
which develop during compaction. The peak values of both quantities, max εyy = 0.11
and min εxx = −0.19, which are reached at xM ≈ −0.33 m, are about ten times larger
than those resulting from a static roller pass. At about xM = −0.15 m, εxx turns into
the extension regime, while εyy turns into the compression regime. Local peak values
equal to the first peak values are reached at xM ≈ 0. In the range of moving away, at
about xM = 0.4 m the strain εxx turns back into compression.

As the depth increases, in the approaching zone −0.9 m ≤ xM ≤ −0.4 m the im-
pact of the bow wave and the settlement trough on these strain components dimin-
ishes, and thus, εxx and εyy are small and negative (compression). At medium depth
y = −0.25 m, at xM ≥ −0.4 m the strain εxx increases and becomes positive. Its max-
imum max εxx = 0.3 is reached at xM ≈ 0.05 m. A further increase of xM yields εxx

almost constant. Remarkably, at this depth max εxx is about 2.7 times larger than
its maximum at the depth closer to the surface y = −0.15 m (compare Figs 35 (b)
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Figure 37: Dynamic part of the horizontal stress σ
(d)
xx at x = 0 and a depth of

(a) 0.15 m and (b) 0.50 m

Figure 38: Dynamic part of the vertical stress σ
(d)
yy at x = 0 and a depth of (a) 0.15 m

and (b) 0.50 m

Figure 39: Dynamic part of the shear stress σ
(d)
xy at x = 0 and a depth of (a) 0.15 m

and (b) 0.50 m
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Figure 310: Dynamic part of the vertical stress at a depth of 0.5 m; recorded in field
tests on gravel [Pistrol, 2016]

and 34 (b)). The strain component εyy remains in the compressive regime in the entire
considered range of xM . It decreases significantly in the range −0.40 m ≤ xM ≤ 0.25 m.
The maximum compressive strain min εyy = −0.36 at xM ≈ 0.25 m is 2.3 times larger
than that at depth y = −0.15 m. The observed reduction of εxx with further increasing
xM is insignificant. At the largest considered depth y = −0.50 m, compressive and
expansion strains are still observed that are about ten or 13 times larger than those
caused by a static roller (see Fig. 36 (b)). However, they are much smaller than the
ones at depth y = −0.25 m.

It is also noteworthy that the shear strains are larger than the normal strain
components in the entire considered soil domain subjected to oscillatory loading.
While at depth y = −0.15 m the maximum shear strain max εxy = 0.8 is reached
at xM ≈ −0.13 m, at depth y = −0.25 m max εxy = 0.65 is predicted at xM ≈ −0.16 m.
In the depth y = − 0.50 m, the maximum shear strain max εxy = 0.06 is shifted even
further in the negative x-range to xM ≈ −0.25 m.

At the shallow depth of y = −0.15 m the residual shear strain of approximately 0.7
(xM = 0.9 m) is about six times larger than |εyy| and eleven times larger than |εxx|.
At depth y = 0.25 m, the residual shear strain decreases to 0.36 and is therefore only
12 % larger than the residual vertical normal strain εyy (compression), but 56 % larger
than the residual horizontal normal strain εxx (extension). The residual compressive
strain εyy of about −0.08 at depth y = 0.50 m is still 73 % of the residual counterpart at
y = −0.15 m. The numerical results, thus, indicate that one pass of oscillatory loading
on loose soil with an initial void ratio e0 = 0.90 results in plastic strains of considerable
size to a depth of at least 0.50 m.

3.3.3 Compaction effect in terms of void ratio change

Next, the effect of different parameters in the numerical model on the predicted soil
compaction due to the oscillatory load is examined in terms of the void ratio e, which is
normalized to its initial value e0, i.e. e/e0. The soil section considered is the potential
“compaction zone” at depth 0 to 1 m and horizontal extent −0.5 m ≤ x ≤ 0.5 m, also
referred to as “observation zone” in Fig. 31.
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Static vs. dynamic roller pass
First, the void ratio e normalized to its initial value e0 = 0.90 , i.e. e/e0, at two
different observation points in the soil (x = 0,y = −0.15 m and x = 0,y = −0.50 m)
during the roller motion is considered, similarly to the discussion of soil stress and
strain components in the previous Section 3.3.2. Fig. 311 shows the ratio e/e0 with
respect to the horizontal distance xM of the drum center from the observation points
resulting from the oscillatory roller (red line with circular markers) and the static roller
(black line), respectively. As can be readily seen, the static roller begins to compact the
subsoil when the drum center is at a distance of −0.3 m to −0.4 m from the observation
points. Interestingly, at the greater depth of y = −0.50 m compaction is initiated earlier
than at the lesser depth of y = −0.15 m. The largest compaction is achieved when the
drum center is directly above the observation point, i.e. xM = 0. When the static roller
moves away, a slight soil loosening is observed (i.e. ratio e/e0 increases slightly), but
this is insignificant. At the near-surface observation point, the single static roller pass
provides a void ratio reduction (i.e. compaction) of only 4 %, which is approximately
four times the predicted reduction at the larger depth of 0.50 m.

In contrast, an oscillating drum reduces the void ratio by 30 % at y = −0.15 m
and by 13 % at y = −0.50 m. While in the deeper observation point the compaction
is virtually complete when the oscillating drum is directly above, at the near-surface
point more than half of the compaction is achieved after the drum has passed the
points at x = 0. In contrast to the lower observation spot, soil compaction at the
near-surface point does not increase continuously during the dynamic roller pass. At
a distance xM ≈ −0.45 m, a local minimum of the ratio e/e0 is observed. As the drum
continues to approach the observation point, the ratio e/e0 becomes larger, up to 7 %
at x = 0, i.e. the soil is loosened in the range as result of the bow wave developing
at the surface. In the subsequent zone xM > 0, the soil is increasingly compacted
again. Obviously, the void ratio in the near-surface point was already reduced before
the approaching dynamic drum reaches the observation area at xM = −0.9 m, and
additional compaction is still achieved after the roller has left the considered area at
xM = 0.9 m. That is, the reach of the oscillation roller is at least 1.5 times the drum
radius r. In the deeper observation point, the predicted horizontal expansion of the
compaction zone is bounded by the drum radius r, i.e. −r < xM < r.

Figure 311: Normalized void ratio e/e0 at section x = 0 at soil depths of (a) 0.15 m
and (b) 0.50 m during a static and oscillatory roller pass
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Figure 312: Distribution of void ratio e in the upper soil layer of 1 m thickness after
a (a) static and (b) oscillatory roller pass, and (c) corresponding normalized void ratio
profile at x = 0

After having assessed the void ratio evolution at two selected observation spots, the
compaction effect in the entire range of the potential “compaction zone” is investigated.
To this end, Fig. 312 shows the distribution of e in the upper soil layer with 1 m
thickness in the range −0.75 m ≤ x ≤ 0.75 m after a single static roller run (plot (a))
and a single oscillatory roller pass (plot (b)). Red domains indicate a void ratio very
close to its initial value e0 = 0.90. The color range from orange to deep blue refers
to increased compaction, as specified in the legend. The darker the soil domain is
colorized, the more compacted the soil is. In gray domains the soil is loosened, i.e.
e > e0. These contour plots illustrate that a single static roller pass reduces e to a depth
of about 0.3 m by less than 4 %. In contrast, the oscillation roller reduces e by about
0.8-0.9 m below surface. The largest reduction of e is achieved in the upper soil layer
of about 0.2 m. For better readability, Fig. 312 (c) shows for both rollers a profile of
the ratio e over e0 at x = 0 with respect to the soil depth. These profiles, subsequently
referred to as “normalized void ratio profiles”, represent the mean of e/e0 in the soil
region −0.5 m ≤ x ≤ 0.5 m analyzed in steps of 0.05 m. A ratio e/e0 < 1 indicates soil
compaction. This figure illustrates the superiority of an oscillation roller over a static
roller in terms of compaction efficiency. While the oscillation roller in the upper soil
layer of 0.2 m reduces the void ratio by 33 %, a decrease of 13 % (i.e. e/e0 = 0.87 ) at
the depth y = −0.45 m is still observed. At a depth of about 0.9 m the effect of the
oscillation roller diminishes completely.

Variation of the initial void ratio
In the following, the influence of the initial void ratio e0 on the compaction effect
is discussed. To this end, additional computations with e0 = 0.80, 0.70, and 0.60,
respectively, were performed, indicating initially loose, medium dense, and dense soil,
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Figure 313: Distribution of normalized void ratio e/e0 in the upper soil layer of 1 m
thickness after an oscillatory roller pass for an initial void ratio e0 of (a) 0.90, (b) 0.80,
(c) 0.70, and (d) 0.60

respectively. Figs 313 illustrate the distribution of the normalized void ratio e/e0 in
the same subsurface area after an oscillatory roller pass on initially (a) very loose
(e0 = 0.90), (b) loose (e0 = 0.80), (c) medium dense (e0 = 0.70), and (d) dense soil
(e0 = 0.60). As expected, the relative compaction (i.e. e/e0) decreases with decreasing
initial void ratio e0. The corresponding normalized void ratio profiles e/e0 at x = 0
plotted in Fig. 314 make the effect of e0 on the compaction achieved more visible. As
previously discussed, for the very loose soil with e0 = 0.90 a maximum soil compaction,
i.e. 1 − min(e/e0), of 33 % is predicted, while in an initially dense soil (e0 = 0.60) the
maximum compaction is about 10 % only. The corresponding compaction value for
e0 = 0.80 is about 26 % and for e0 = 0.70 it is 17 %. For e0 = 0.70 to e0 = 0.90, the
maximum compaction is achieved about 0.1 m below the surface. For e0 = 0.60, in
contrast, the maximum void ratio reduction is observed at a depth of about 0.3 m.

The 105 % value of min(e/e0), which is considered as indicator of uniform high
compaction, is observed at depths of ≈ 0.15 m (initially very loose soil) and ≈ 0.2 m
(loose soil). In a medium dense soil, the depth range of uniformly high compaction
increases to ≈ 0.3 m. This depth increases further for the initially dense soil to ≈ 0.5 m.
The mean value of e/e0 in this depth range (dotted lines in Fig. 314) varies between
0.68 (e0 = 0.90) and 0.91 (e0 = 0.60), i.e. an average compaction of approximately
32 % and 9 %, respectively. These results confirm the assumption that with increasing
initial soil density, the maximum compaction to be achieved becomes smaller, but the
uniformity of compaction increases over the depth. At depth y ≈ −0.45 m the profiles
for e0 = 0.90, 0.80, and 0.70 show a local maximum with a corresponding void ratio
reduction of about 13 % (e0 = 0.90) to 6 % (e0 = 0.70). In contrast, no local maximum
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Figure 314: Normalized void ratio profile e/e0 at x = 0 for four different initial void
ratios e0, based on Fig. 313

in the profile is observed for the dense soil at this depth. While for e0 = 0.90, 0.80,
and 0.70 the depth effect of the oscillation roller on the void ratio is about 0.95 m, the
depth effect in the dense soil is reduced to 0.8 m.

Variation of the coefficient of friction
Next, the influence of the coefficient of friction μ, which governs in the numerical model
the contact between the drum and the soil surface, is addressed. To this end, Fig. 315
shows the distribution of the normalized void ratio e/e0 in the compaction zone after a
single oscillatory roller pass on initially very loose (e0 = 0.90) (plots a,b) and medium
dense (e0 = 0.70) (plots c,d) soil, both for the default value μ = 0.50 (plots a,c) and
the reduced value μ = 0.30 (plots b,d). The areas highlighted in red correspond to
non-compacted or weakly compacted areas, i.e. e is equal or slightly smaller than its
initial value e0. The largest compaction is achieved in the blue area. In grey areas
the soil is loosened, i.e. e > e0. Note that the colour scale that distinguishes the
achieved e/e0-value is the same for all subsequent representations. Fig. 316 shows the
corresponding profiles of the normalized void ratio e/e0 over the soil depth −y for (a)
e0 = 0.90 and (b) e0 = 0.70. These profiles in turn represent the mean of e/e0 in the soil
region −0.5 m ≤ x ≤ 0.5 m. Comparison of Figs 315 (a) and (b) reveals that the model
with smaller coefficient of friction predicts a slightly lower compaction of an initially
very loose soil in the depth range 0.3 m ≤ −y ≤ 0.7 m, while the other soil zones remain
virtually unaffected by the choice of μ. This result is confirmed by the corresponding
profile e/e0 vs. depth shown in Fig. 316 (a). In the depth range 0.3 m ≤ −y ≤ 0.7 m,
the compaction effect is at most about 3 % lower for μ = 0.30. The maximum predicted
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soil compaction, i.e. 1 − min(e/e0), is almost 33 % for both μ = 0.50 and μ = 0.30.
Moreover, the 105 % value of min(e/e0), which is considered as an indicator of uniform
high compaction, is observed at same the depth of ≈ 0.15 m. The depth, where the
subsoil remains virtually unaffected by the oscillation roller (e/e0 ≈ 1), referred to as
“depth effect”, is about 0.95 m for both coefficients of friction.

In contrast, in the case of an initially medium dense soil (e0 = 0.70) the smaller
coefficient of friction has a greater impact on the compaction effect. For μ = 0.30, e/e0
is over the whole considered soil depth smaller compared to the outcomes based on
μ = 0.50 (compare Figs 315 (c) and (d)). Thus, the maximum predicted soil compaction
is smaller for the lower μ-value, as illustrated in Fig. 316 (b).

Comparison of Figs 316 (a) and (b) also shows the expected result that with in-
creasing initial soil density characterized by e0 the maximum achieved compaction
decreases. The uniformity of compaction, however, increases over the depth, and the
105 % value of min(e/e0) is reached at a depth of approximately 0.3 m for both μ = 0.50
and μ = 0.30 if e0 = 0.70.

Variation of the apparent cohesion
Next, the influence of the apparent cohesion pt on the predicted compaction effect is dis-
cussed. To this end, the predicted normalized void ratio e/e0 is evaluated in the same
manner for two different values of pt (default value pt = 5 kN/m2 and increased value
pt = 10 kN/m2), and two initial void ratios (e0 = 0.90 and e0 = 0.70). The resulting
normalized void ratios e/e0 are shown in Figs 317 (contour plot) and 318 (corre-
sponding profiles). As can be observed at first glance, the larger apparent cohesion of
10 kN/m2 predicts a lower ratio e/e0 to a depth of 0.45 m (very loose soil) and 0.75 m
(medium dense soil), respectively, by almost 10 % at most. Thus, in the near-surface
soil domain the predicted soil compaction is higher if a larger apparent compaction
is assigned to the numerical model. In the initially very loose soil (e0 = 0.90), the
maximum predicted soil compaction is about 37 % for the higher value pt = 10 kN/m2,
and about 33 % for the default value pt = 5 kN/m2. A roller pass on initially medium
dense soil causes a void ratio reduction of about 22 % at most for pt = 10 kN/m2, and
18 % for pt = 5 kN/m2. The depth, where the 105 % value of min(e/e0) is observed,
increases slightly from 0.15 m to 0.20 m in a very loose soil (e0 = 0.90), while it is
virtually unaffected in a medium dense soil (e0 = 0.70) if the simulation is performed
with the larger value of pt. The depth effect of the oscillation roller on the void ratio is
about 0.95 m for both very loose and medium dense soil, and thus, almost not affected
by the increase of the apparent cohesion.

Variation of the static axle load
Subsequently, the static axle load P0 of the drum is varied to reveal the effect of this
quantity on the compaction effect. In particular, the default value of P0, as listed in
Table 31, is varied by ±20 % and ±50 %, respectively. For this study, compaction of
a very loose soil characterized by the initial void ratio e0 = 0.90 is considered. The
predicted normalized void ratio e/e0, evaluated in the same way as before, is depicted
in Figs 319 (distribution in the observation zone) and 320 (corresponding profiles).
Comparison of Figs 319 (a), (b), (c) and (d) reveals that with increasing axle load
P0 the depth effect of the oscillation roller becomes larger. The maximum achievable
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e/e0

μ = 0.50 μ = 0.30

μ = 0.50 μ = 0.30e0 = 0.90

e0 = 0.70

Figure 315: Normalized void ratio after one oscillatory roller pass; initial void ratio
(a,b) e0 = 0.90 and (c,d) e0 = 0.70; coefficient of friction (a,c) μ = 0.50 and (b,d)
μ = 0.30

Figure 316: Normalized mean void ratio profile for two values of the coefficient of
friction μ; initial void ratio (a) e0 = 0.90 and (b) e0 = 0.70, based on Fig. 315
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e/e0

e/e0

pt = 5 kN/m2 pt = 10 kN/m2

pt = 5 kN/m2 pt = 10 kN/m2e0 = 0.90

e0 = 0.70

Figure 317: Normalized void ratio after one oscillatory roller pass; initial void ratio
(a,b) e0 = 0.90 and (c,d) e0 = 0.70; (a,c) pt = 5 kN/m2 and (b,d) pt = 10 kN/m2

Figure 318: Normalized mean void ratio profile for two values of the apparent cohe-
sion pt; initial void ratio (a) e0 = 0.90 and (b) e0 = 0.70, based on Fig. 317
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void ratio reduction of around 33 % is, however, virtually not affected by the considered
variation of P0. The depth range 0.4 m ≤ −y ≤ 0.9 m is influenced most by the increased
axle load, as shown in Figs 320 (a) and (b). Comparison of Figs 320 (a) and (b) reveals
that a reduction of the default static axle load has a significantly stronger impact on
the void ratio decrease in the aforementioned depth range than an increase of P0 by the
same amount. Notably, in the soil zone above 0.4 m the normalized void ratios based
on the reduced axle load are continuously slightly lower than the ones based on the
larger value of P0, i.e. from the lower axle load results numerically a slightly larger soil
compaction, as clearly shown by Fig. 320 (b). The 105 % value of min(e/e0) is observed
at a depth of about 0.18 m for both reduced and increased axle load by ±20 %, and is,
thus, slightly larger compared to the default value of P0. In the case of the variation
of P0 by ±50 %, the 105 % value of min(e/e0) is observed at a depth of about 0.16 m
for the reduced and at around 0.13 m for the increased axle load. Mean e/e0 up to
this depth is the lowest for the reduced axle load, and the largest for the increased
axle load. Thus, the considered lower values of P0 lead to a slightly higher and more
uniform high compaction compared to the outcomes based on the larger values of P0,
as illustrated by Figs 320 (a) and (b). These results demonstrate that the variation
of the axle load in the applied range does not significantly affect the predicted soil
compaction up to a depth of about 0.3 m.

Variation of the roller speed
The influence of the roller speed v0 on the predicted void ratio e of an initially very
loose soil (e0 = 0.90) is discussed next. In addition to the default speed v0 = 1.11 m/s
as listed in Table 31, four additional roller speeds are considered, two below (0.55 m/s
and 0.75 m/s) and two above (1.39 m/s and 2.22 m/s) the default value. The results in
terms of the normalized void ratio e/e0 found for the five roller speeds are illustrated
in Figs 321 (distribution in the observation zone) and 322 (corresponding profiles).
At first glance it can be clearly seen that the roller speed considerably affects the
compaction effect of the oscillation drum. Both the maximum predicted void ratio
reduction and the soil zone with uniform high compaction, i.e. the zone to the depth
corresponding to the 105 % value of min(e/e0), increase the lower the roller speed v0
is. The smallest predicted normalized void ratio min(e/e0) decreases from 0.77 for
the highest speed (v0 = 2.22 m/s) to 0.61 for the lowest speed (v0 = 0.55 m/s). This
corresponds to a reduction of the void ratio e of 23 % at the highest speed and 39 %
at the lowest speed (see Fig. 322). Notably, the maximum predicted soil compaction
is virtually the same for the default speed and the lower speed of v0 = 0.75 m/s.
However, the depth of uniform soil compaction becomes significantly larger if the roller
speed v0 is lower than the default value (0.15 m for v0 = 1.11 m/s and 0.35 m for
v0 = 0.55 m/s). Moreover, the depth effect increases from 0.95 m (v0 = 1.11 m/s) to
about 1.3 m (v0 = 0.55 m/s).

Effect of a second roller pass
So far, soil compaction has been considered after the first oscillatory roller pass only.
Therefore, in the next study the effect of a second roller pass of an oscillation roller
with the speed v0 = 2.22 m/s on the predicted compaction of initially very loose soil
(e0 = 0.90) assuming two selected values of the apparent cohesion pt is addressed. The
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e/e0

e0 = 0.90

e0 = 0.90

0.8P0

1.2P0 1.5P0

0.5P0

Figure 319: Normalized void ratio up to a soil depth of 1 m after one oscillatory roller
pass with (a) 0.5 Fz, (b) 0.8 Fz, (c) 1.2 Fz, and (d) 1.5 Fz; e0 = 0.90

Figure 320: Normalized mean void ratio profile for three different axle loads P0;
variation of P0 by (a) ±20 % and (b) ±50 %, based on Fig. 319
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e/e0

v0 = 0.75 m/s v0 = 1.11 m/s

v0 = 2.22 m/sv0 = 1.39 m/s

e0 = 0.90

v0= 0.55 m/s

Figure 321: Normalized void ratio after one oscillatory roller pass; roller speed (a)
v0 = 0.55 m/s, (b) v0 = 0.75 m/s, (c) v0 = 1.11 m/s, (d) v0 = 1.39 m/s, and (e)
v0 = 2.22 m/s

Figure 322: Normalized mean void ratio profile after one oscillatory roller pass at
five different speeds v0 on initially very loose soil, based on Fig. 321
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resultant normalized void ratio e/e0 distribution in the observation zone after the first
(Fig. 323 (a,b)) and second pass (Fig. 323 (b,d)) illustrate that the second roller run
significantly increases the depth effect of the roller for both pt = 5 kN/m2 (default
value) and pt = 10 kN/m2. In the case of the default subsoil conditions, the maximum
amount of soil compaction (i.e. the largest reduction of e) predicted after the first pass
is, however, not further increased, as can be seen in the corresponding e/e0-profiles
in Fig. 324 (a). That is, the predicted smallest normalized void ratio min(e/e0) is
about 0.77 after both first and second roller pass, which corresponds to a void ratio
reduction of about 23 %. The depth associated with the 105 % value of min(e/e0) is
0.14 m (after the first pass) and 0.21 m (after the second pass) below the surface. Thus,
with the second crossing the compaction is homogenized over a greater depth. In the
case of the considered larger value of pt, the predicted smallest normalized void ratio
min(e/e0) of about 0.73 after the first pass becomes 14 % smaller due to a subsequent
second roller pass resulting in a predicted void ratio reduction of 34 %. The second
pass yields also a deeper homogenized soil zone as the depth corresponding to the
105 % value of min(e/e0) is increased to about 0.24 m. Moreover, the depth effect
increases from about 1 m (after the first pass) to about 1.15 m (after the second pass).
These outcomes qualitatively correspond to the results based on a simplified FE model
in which a hypoplastic soil layer with a thickness of 0.25 m covers a linear elastic
subsoil. By application of viscous “surface dampers“, as explained in Section 3.2.8,
four subsequent roller passes could be simulated. The predicted void ratios show a
significant increase in compaction from the first to the second roller run, while passes
three and four cause only a slight further compaction, as shown by Figs I3 and I4 in
Appendix I.2.

In general, the presented results on compaction effect and influence depth of the
oscillation roller confirm qualitatively the observations from field tests and on-site ap-
plications. However, it seems that the model with the “protective foil” overestimates
slightly the amount of compaction achieved after one oscillatory roller pass (see Ap-
pendix I.3).

3.3.4 Drum response
In the following, the dynamic response of the drum during compaction is investigated.
In particular, the numerically predicted acceleration components ẍM (horizontal) and
ÿM (vertical) of the drum center M (reference node RPM ) are depicted and evaluated
both in the time and frequency domain. Parameters based on the drum center response
are also evaluated because they form the basis of the novel CCC methodology for
oscillation rollers [Pistrol, 2016] described in the introduction.

Effect of the initial void ratio
Figs 325, 326, and 327 show the horizontal (ẍM , left plot) and the vertical acceleration
component (ÿM , right plot) for three different initial void ratios (e0 = 0.90, 0.70, and
0.60) in a time frame of one second. As observed, the horizontal response ẍM varies
only slightly with time. Its amplitude is, however, affected by e0. This means that
with increasing initial soil density the amplitude also increases in the range of about
−9.3 m/s2 (e0 = 0.90) until about −12.2 m/s2 (e0 = 0.60). It is also seen that the re-
sponse ẍM is asymmetrical to the baseline, i.e. the amplitudes in the negative response
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e/e0

v0 = 2.22 m/s

e0 = 0.90

pt = 5 kN/m2

pt = 10 kN/m2

Figure 323: Normalized void ratio after the (a,c) first and (b,d) second roller pass;
(a,b) pt = 5 kN/m2 and (c,d) pt = 10 kN/m2

Figure 324: Normalized mean void ratio profile after two subsequent oscillatory roller
passes; (a) pt = 5 kN/m2 and (b) pt = 10 kN/m2, based on Fig. 323
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range are larger than those in the positive range. This asymmetry, however, decreases
with decreasing e0 (i.e. with increasing initial soil density). The same behavior was
predicted in Section 2.4.2, where a simple lumped parameter model of the drum-subsoil
interacting is used to study the response of an oscillating drum. It was shown that ẍM

is asymmetric when the drum operates on the slope of the settlement trough (above
its bottom) behind the bow wave (see Section 2.4.2).

The vertical response ÿM , which essentially results from the up- and downward
motion of the drum in the curved contact zone (“settlement trough”) during each period
of excitation (see Section 2.4), shows a more transient behavior. The mean amplitudes
of ÿM lie between −1.3 m/s2 and 1.3 m/s2 (e0 = 0.70), and between −1.8 m/s2 and
2.3 m/s2 (e0 = 0.90). The predicted vertical acceleration amplitudes are therefore only
one fifth to one tenth of the horizontal amplitudes. Interestingly, the medium initial
soil density (e0 = 0.70) yields the smallest vertical peak accelerations, while the largest
vertical response amplitudes occur at the largest soil density e0 = 0.60. For e0 = 0.90
and e0 = 0.70, the amplitudes in the positive response regime of ÿM are larger than
the negative ones. The initial void ratio e0 = 0.60 yields these amplitudes equal. This
result also corresponds to the outcomes of the lumped parameter modeling discussed
in Section 2.4.2. Another observation is that due to the nonlinearity of the interacting
system, the governing period of ÿM is half the excitation period, i.e. one excitation
period corresponds to two periods of ÿM . This harmonic depends strongly on the bow
wave and the settlement trough, and thus, the response pattern of ÿM becomes more
transient. A more detailed discussion on the frequency content of the drum response
follows later.

A time frame of two periods depicted in Fig. 328 exemplary for e0 = 0.70 reveals
that the positive amplitudes of the horizontal acceleration ẍM have a “peak cut”, which
results from the stick-slip motion of the drum. This behavior was also observed in the
study based on the proposed lumped parameter model (see Section 2.4.2).

Plotting the vertical component ÿM against the horizontal one ẍM , subsequently
referred to as “ÿM -ẍM plot”, results in a response representation that is fundamental
to the CCC methodology described in [Pistrol, 2016]. In Figs 329, this response rep-
resentation is depicted by gray lines for the time histories shown in Figs 325, 326, and
327. That is, diagram (a) corresponds to the initial void ratio e0 = 0.90, diagram (b) to
e0 = 0.80, diagram (c) to e0 = 0.70, and diagram (d) to e0 = 0.60. For two “representa-
tive” excitation periods in this time frame the response is shown in green. The result
is a so-called Lissajous curve [Klotter, 1981] with an asymmetric pattern, whose shape
depends on the initial void ratio. The denser the initial soil, the less asymmetric the
response becomes. It can also be seen that the Lissajous figures rotate clockwise with
decreasing e0. For the dense soil (e0 = 0.60) the figure resembles a recumbent eight.
Such a response behavior has recently been discovered in the analysis of field test data
[Pistrol, 2016]. As an example, Fig. 330 shows this response representation using the
drum acceleration components recorded in a field test described by Pistrol [2016]. It
can be seen that the numerically derived drum acceleration qualitatively reproduces
the response behavior observed in the field.

Another representative response parameter of the previously discussed CCC method-
ology is the “area” enclosed in the ÿM over ẍM figure. This CCC parameter (i.e. the
“area”) is determined consecutively (in time) for two subsequent periods. In Fig. 331
discrete markers represent this parameter in a window of two seconds with respect to
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Figure 325: Time history of the (a) horizontal and (b) vertical acceleration in the
drum center M during an oscillatory roller pass on initially very loose soil (e0 = 0.90)

Figure 326: Time history of the (a) horizontal and (b) vertical acceleration in
the drum center M during an oscillatory roller pass on initially medium dense soil
(e0 = 0.70)

Figure 327: Time history of the (a) horizontal and (b) vertical acceleration in the
drum center M during an oscillatory roller pass on initially dense soil (e0 = 0.60)
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Figure 328: Two periods of the horizontal drum center acceleration for an initial void
ratio e0 = 0.70

time. The outcomes shown in green refer to an initially very loose soil (e0 = 0.90),
the results for the dense soil (e0 = 0.60) are depicted in red. The imagined connection
line between the markers shows a quite large scatter, which is primarily a result of the
strong amplitude fluctuation of the vertical accelerations. Therefore, the upper and
lower envelopes of this parameter are depicted in this figure, in addition to the mean
shown by bold lines. For e0 = 0.90 the mean CCC parameter, based on the “area”
enclosed by the “representative” Lissajous curve depicted in green in Fig. 329 (a), of
about 24 m2/s4 is in very good agreement with the CCC value of about 25 m2/s4, which
results from one on-site roller pass on a very loose soil, as documented in [Pistrol, 2016].
It is evident that the lower initial void ratio of e0 = 0.60 leads to a more pronounced
CCC parameter scatter. For the initially dense soil (i.e. e0 = 0.60), the mean CCC
parameter of about 35 m2/s4 is larger. The increase in this parameter by almost 60 %
is mainly due to the increase of the horizontal acceleration amplitudes as the initial
subsoil becomes denser. This result is consistent with the findings based on the lumped
parameter model of the roller-soil system presented in Section 2.4.2.

To gain a deeper insight into the drum response characteristic, the drum accelera-
tions shown in Figs 325, 326, and 327 are transformed into the frequency domain. The
resulting frequency response, normalized to a peak value of one, is plotted against the
ratio of frequency f over excitation frequency f̄ , as illustrated in Figs 332, 333, and
334. It is readily seen that the frequency spectra contain both odd and even harmonics,
but in most cases they are dominated by the excitation frequency f̄ . The additional
harmonics in the spectra of the horizontal drum accelerations (ẍM -spectra) at f/f̄ =
2, 3, 4, ..., with amplitudes much smaller than those at f/f̄ = 1, can be traced back
to “peak cut” in the response in the slip phases of the drum motion. As the observed
“peak cut” is not that significant (see Figs 328), the third harmonic (f/f̄ = 3) is for
all investigated initial void ratios about 0.03 times the amplitude at the dominating
frequency (f/f̄ = 1). The drum operates on the slope of the settlement trough, and
thus, the vertical acceleration spectra (ÿM -spectra) are in most cases dominated by the
excitation frequency. The second harmonic in the ÿM -spectra results from the up- and
downward motion of the drum in the curved contact zone between drum and subsoil
(“settlement trough”). For the initially very loose soil (e0 = 0.90), the amplitude at
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Figure 329: Plot ÿM over ẍM for an initial void ratio e0 of (a) 0.90, (b) 0.80, (c) 0.70
and (d) 0.60 for a time window of 1 s (grey lines) and two representative oscillating
cycles (green lines)

Figure 330: Plot ÿM over ẍM for two oscillating cycles based on acceleration data
recorded in field tests (described by Pistrol [2016])

the second harmonic (f/f̄ = 2) of the vertical accelerations is about 44% smaller than
the amplitude at the dominating frequency (f/f̄ = 1), for the dense soil (e0 = 0.60)
it is 35% only (see Figs 332 (b) and 334 (b)). In contrast, an initial void ratio of
e0 = 0.70 yields the amplitude at the second harmonic about 10% larger than the am-
plitude at the excitation frequency (see Figs 333 (b)). These outcomes correspond with
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Figure 331: CCC indicator (i.e. area inside the plot ÿM over ẍM ) during one oscilla-
tory roller pass at v0 = 1.11 m/s for an initially very loose (e0 = 0.90) and an initially
dense soil (e0 = 0.60)

findings presented in Section 2.4.2, where an increase in the response amplitude ratio
Ÿ (2f̄)/Ÿ (f̄) with increasing soil stiffness was observed. Comparison of Figs 332 (b)
and 333 (b) shows that both the third and fourth harmonic of the normalized vertical
response amplitudes increase with decreasing initial void ratio.

For comparison purposes, Figs 335 and 336 show the frequency response recorded
during oscillation compaction of sandy gravel with the HD+ 90 VO roller, whose ma-
chine parameters are used for the presented numerical simulations. The overtones in
the measured data are also found in the numerically simulated data, and the corre-
sponding amplitudes are of the same magnitude. The only exception is the normalized
amplitude at the third harmonic of the vertical accelerations (f/f̄ = 3), which is 0.45,
and thus, about three times larger than the corresponding computed amplitude (com-
pare Figs 332 (b) and 335 (b)). In particular, the presented numerical model predicts
the relative increase of the second harmonic in ÿM (with respect to the first normal-
ized harmonic) with increasing soil compaction, as can be seen from the field data.
The examination of the normalized frequency response reveals that the frequency con-
tent of the computed drum accelerations and the accelerations measured in field tests
described in [Pistrol, 2016] is in good agreement.

Effect of the coefficient of friction, apparent cohesion and roller speed
The effect of the coefficient of friction μ for Coulomb’s law of friction between soil
and drum and soil surface is studied for an initially very loose soil (e0 = 0.90) and an
initially medium dense soil (e0 = 0.70) to be compacted. As before, in two subsequent
simulations to the numerical model two coefficient of frictions are assigned, i.e. the
default value μ = 0.50 and the smaller value μ = 0.30. Figs 337 (a) and (c) (e0 = 0.90)
and Figs 337 (b) and (d) (e0 = 0.70) show ẍM (plots a,b) and ÿM (plots c,d) in a time
frame of two excitation periods. The stick-slip response prediction based on μ = 0.50
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Figure 332: Normalized frequency spectrum of the (a) horizontal and (b) vertical
acceleration in the drum center for one second of an oscillatory roller pass; initially
very loose soil (e0 = 0.90)

Figure 333: Normalized frequency spectrum of the (a) horizontal and (b) vertical
acceleration in the drum center for one second of an oscillatory roller pass; initially
medium dense soil (e0 = 0.70)

Figure 334: Normalized frequency spectrum of the (a) horizontal and (b) vertical
acceleration in the drum center for one second of an oscillatory roller pass; initially
dense soil (e0 = 0.60)
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Figure 335: Normalized frequency spectrum of recorded horizontal (a) and vertical
(b) accelerations in the drum center during field tests; roller pass no. 2 on gravel
(based on Pistrol [2016])

Figure 336: Normalized frequency spectrum of recorded horizontal (a) and vertical
(b) accelerations in the drum center during field tests; roller pass no. 11 on gravel
(based on Pistrol [2016])

is presented by a black line and “*” markers, and the one based on μ = 0.30 by a red
line and circular markers. These results illustrate the grave effect of slip between the
drum and the soil surface on the drum response. As can be observed at first glance,
the smaller coefficient of friction μ leads to smaller drum center response components
ẍM and ÿM for both subsoil conditions.

It is also seen that the smaller coefficient of friction μ = 0.30 causes the typical
“peak cut” of the horizontal response ẍM in the slip phase, in both positive and negative
directions, which is more pronounced for the initially medium dense soil (e0 = 0.70).
A kink in the time history of the horizontal acceleration component ẍM indicates the
transition from the stick into the slip phase and vice versa. Another observation is that
the smaller coefficient of friction μ elongates the duration of the slip phase in both the
negative and positive horizontal acceleration range. The amplitudes of the horizontal
acceleration component ẍM in the negative response range are larger than those in the
positive range, because the drum operates at the slope of the “settlement trough” in
driving direction. Therefore, the slip phase in the negative horizontal acceleration range
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Figure 337: Time history of the (a,b) horizontal and (c,d) vertical acceleration in the
drum center for two selected coefficients of friction; initial void ratio (a,c) e0 = 0.90
and (b,d) e0 = 0.70

is smaller than the one in the positive range. For μ = 0.50, the horizontal response
ẍM is bounded by −9 m/s2 (e0 = 0.90) and −12.5 m/s2 (e0 = 0.70) in the negative
range, and by 8 m/s2 (e0 = 0.90) and 11 m/s2 (e0 = 0.70) in the positive range. That
is, compaction of the initially medium dense soil induces larger horizontal response
amplitudes, compare Figs 337 (a) and (b). The corresponding response amplitudes
for the lower coefficient of friction μ = 0.30 are smaller, and in-between −8 m/s2 and
7 m/s2, both for e0 = 0.90 and e0 = 0.70.

The vertical response component of the drum center ÿM , which essentially results
from the up- and down movement of the drum in the curved contact zone (“settlement
trough”) during each excitation period (see Section 2.4) shows, as already observed in
the section before, a more transient behavior, as illustrated in Figs 337 (c) and (d).
For μ = 0.50, ÿM is in the range between −1.1 m/s2 and 2.8 m/s2 (e0 = 0.90), and
−1.2 m/s2 and 2 m/s2 (e0 = 0.70), respectively. In contrast to ẍM , the compaction of
the initially medium dense soil leads to 30-40 % smaller vertical response amplitudes in
the positive response range. The smaller coefficient of friction μ = 0.30 further reduces
the positive amplitudes of ÿM , which are at most 1.9 m/s2 (e0 = 0.90) and 1 m/s2

(e0 = 0.70), respectively. The predicted vertical acceleration amplitudes are therefore
only one third to one tenth of the horizontal amplitudes.

To gain a deeper insight into the drum response characteristics, Fig. 338 shows the
drum acceleration components of a time frame of one second in the frequency domain.
In these figures, the frequency f is normalized with respect to the excitation frequency
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Figure 338: Frequency spectrum of the (a,b) horizontal and (c,d) vertical accelera-
tion in the drum center for two selected coefficients of friction; initial void ratio (a,c)
e0 = 0.90 and (b,d) e0 = 0.70

f̄ . It is readily seen that the absolute values of the frequency spectra of ẍM (|ẌM (f)|)
and ÿM (|ŸM (f)|) contain both odd and even harmonics. An interesting observation is
that the frequency content of the response components for all parameter combinations,
except |ŸM | for e0 = 0.70 and μ = 0.50, is dominated by the excitation frequency f̄ . In
the latter case, the spectral acceleration is largest at f = 2f̄ . The additional harmonics
in the spectra of the horizontal response |ẌM | at f/f̄ = 2, 3, 4, ..., with amplitudes
much smaller than those at f/f̄ = 1, can be traced back to aforementioned “peak cut”
due to the slip phases of the drum motion. The second harmonic in the spectra of the
vertical response ÿM (i.e. |ŸM (2f̄)|) reflects the up- and down motion of the drum in
the “settlement trough”. The additional harmonics at f/f̄ = 3, 4, 5, ..., are a result of
the slip phases of the drum.

In the case of an initially very loose soil (e0 = 0.90), the horizontal spectral accel-
eration at the excitation frequency f̄ (|ẌM (f̄)|) is 8.9 m/s2 (μ = 0.50) and 8.1 m/s2

(μ = 0.30), respectively (see Fig. 338 (a)). The amplitudes at the second (|ẌM (2f̄)|)
and at the third harmonic (|ẌM (3f̄)|) are only about 0.449 m/s2 and 0.512 m/s2

(μ = 0.50) and 0.292 m/s2 and 0.529 m/s2 (μ = 0.30), respectively. These results
show that the use of the smaller coefficient of friction (μ = 0.30) reduces the horizontal
spectral acceleration at the excitation frequency |ẌM (f̄)| by about 9 %, while the am-
plitudes of the second and third harmonics, |ẌM (2f̄)| and |ẌM (3f̄)|, increase by 14 %
and 81 %, respectively. Therefore, the amplitude ratio |ẌM (3f̄)|/|ẌM (f̄)| increases by
almost 100 % if μ = 0.30. This outcome confirms that the normalized amplitude at the
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third harmonic |ẌM (3f̄)|/|ẌM (f̄)| may be considered as an indicator of the extent of
the slip phase in the drum response [Pistrol, 2016].

For the initially medium dense soil (e0 = 0.70), the difference between the results
for μ = 0.50 and for μ = 0.30 is larger, as observed from see Fig. 338 (b). Therefore,
it is confirmed that at this soil condition the reduction of the coefficient of friction μ
has a greater effect on the horizontal drum response due to the more pronounced slip
phases.

A closer inspection of the vertical frequency domain response for an initially very
loose soil (e0 = 0.90) reveals that spectral acceleration at the excitation frequency f̄
(|ŸM (f̄)|) is 1.44 m/s2 (μ = 0.50) and 1.04 m/s2 (μ = 0.30), respectively (see Fig. 338 (c)).
For μ = 0.50, at the second harmonic (|ŸM (2f̄)|) the spectral acceleration is 0.81 m/s2

(i.e. 0.56 times |ŸM (2f̄)|), at the third harmonic (|ŸM (3f̄)|) 0.145 m/s2, and at the
fourth harmonic (|ŸM (4f̄)|) 0.048 m/s2. For μ = 0.30, |ŸM (2f̄)| = 0.72 m/s2, which is
0.69 times |ŸM (2f̄)|, |ŸM (3f̄)| = 0.149 m/s2, and |ŸM (4f̄)| = 0.103 m/s2. Hence, the
smaller coefficient of friction reduces |ŸM (f̄)| by about 28 % and |ŸM (2f̄)| by about
12 %, |ŸM (3f̄)| is virtually not affected, and |ŸM (4f̄)| increases by 115 %.

In the simulation of the compaction of initially medium dense soil (e0 = 0.70),
the coefficient of friction has a very different effect on the general characteristics of
the vertical drum response in the frequency domain. As observed, for μ = 0.30 the
vertical spectral acceleration at the excitation frequency |ŸM (f̄)| is slightly larger than
for μ = 0.50, while |ŸM (2f̄)| drops significantly by about 50 % (Fig. 338 (d)). The
vertical response at the third harmonics is virtually unaffected by μ, similarly to the
case with e0 = 0.90. At the fourth harmonics μ = 0.30 even yields a larger spectral
acceleration than for μ = 0.50.

In order to validate the numerically predicted drum response with experimental
data, the frequency spectra for the lower coefficient of friction μ = 0.30, shown in
Fig. 338 in red colour, are normalized to the maximum value of one. In Fig. 339, these
spectra are compared with the drum acceleration in the frequency domain recorded dur-
ing oscillation compaction of sandy gravel [Pistrol, 2016] with the HAMM HD+ 90 VO
roller, whose machine parameters are used for the presented numerical simulations. It
is readily seen that the overtones in the measured data are also found in the numer-
ically simulated data. Moreover, the corresponding normalized amplitudes are of the
same magnitude. The only exceptions are the normalized amplitudes of the vertical
accelerations at the third harmonic f/f̄ = 3 (about three times larger than the cor-
responding computed amplitudes), and at the fourth harmonic f/f̄ = 4 (about three
times smaller than the corresponding computed amplitude).

The effect of the roller speed v0 is studied for an initially very loose soil (e0 = 0.90)
and a coefficient of friction of μ = 0.50. Fig. 340 shows the (a) horizontal (ẍM ) and (c)
vertical acceleration component (ÿM ) for three different roller speeds (v0 = 0.55 m/s,
1.11 m/s, 2.22 m/s) in a time frame of one second during the first roller pass. It is
readily seen that both the horizontal and vertical response, i.e. ẍM and ÿM , are
strongly influenced by the roller speed v0. The amplitudes of ÿM increase with de-
creasing speed v0 from about −1÷1.5 m/s2 (v0 = 2.22 m/s) until about −4÷4 m/s2

(v0 = 0.55 m/s). Thus, the asymmetry of ÿM with respect to the baseline (i.e. the am-
plitudes in the positive response range are larger than those in the negative range, as
observed for v0 = 1.11 m/s and v0 = 2.22 m/s), vanishes for the lowest considered speed
of v0 = 0.55 m/s. The amplitudes of the horizontal response ẍM also become larger
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Figure 339: Normalized frequency spectrum of the (a) horizontal and (b) vertical
acceleration in the drum center; computed and recorded (based on Pistrol [2016])
response

with decreasing roller speed v0. At the largest considered value of v0, the predicted
amplitudes of ẍM are in the range of about −8÷7 m/s2 (v0 = 2.22 m/s), while the ac-
celerations in the drum center of a roller operating at the lowest speed of v0 = 0.55 m/s
vary between −15 m/s2 and 12 m/s2. Thus, the amplitudes in the negative response
range are in absolute larger than those in the positive range. In contrast to the be-
havior of ÿM , the observed asymmetry of the horizontal response ẍM decreases with
increasing v0.

Figs 340 (b) and (d) show the drum acceleration components of a time frame of one
second, as discussed above, in the frequency domain. In these figures, the frequency
f is normalized with respect to the excitation frequency f̄ . At first glance it can be
observed that the absolute values of both the frequency spectra of ẍM (|ẌM (f)|) and
ÿM (|ŸM (f)|) are dominated by the excitation frequency f̄ for all three roller speeds v0.
Moreover, the amplitudes at the excitation frequency f̄ of both ẍM (|ẌM (f̄)|) and ÿM

(|ŸM (f̄)|) become larger with decreasing v0. Fig. 340 (c) shows that |ẌM (f̄)| is 7.7 m/s2

(v0 = 2.22 m/s), 8.9 m/s2 (v0 = 1.11 m/s) and 13.5 m/s2 (v0 = 0.55 m/s). The ampli-
tudes at the second harmonic (|ẌM (2f̄)|) are only about 0.39 m/s2 (v0 = 2.22 m/s),
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0.45 m/s2 (v0 = 1.11 m/s) and around 1 m/s2 (v0 = 0.55 m/s). The amplitudes at the
third (|ẌM (3f̄)|) and fourth harmonic (|ẌM (4f̄)|) are about 0.92 m/s2 and 0.48 m/s2

(v0 = 0.55 m/s), respectively. In the case of v0 = 1.11 m/s, |ẌM (3f̄)| is about 0.29 m/s2,
while |ẌM (4f̄)| is not observed. In the case of the highest considered roller speed
(v0 = 2.22 m/s), both |ẌM (3f̄)| and |ẌM (4f̄)| are not observed in the computed drum
response. These results show that the amplitudes of the harmonics of ẍM become
larger with decreasing v0 due to more pronounced slip phases. For instance, the ampli-
tude ratio |ẌM (3f̄)|/|ẌM (f̄)| increases from about 0.03 (v0 = 1.11 m/s) to almost 0.07
(v0 = 0.55 m/s), i.e. the ratio more than doubles when the standard operating speed
is halved. Thus, the normalized amplitude at the third harmonic (|ẌM (3f̄)|/|ẌM (f̄)|)
can be taken as a slip indicator as already discussed in Section 2.5.1.

A closer inspection of the vertical frequency domain response reveals that spectral
acceleration at the excitation frequency f̄ (|ŸM (f̄)|) increases from about 0.7 m/s2

(v0 = 2.22 m/s) to 4 m/s2 (v0 = 0.55 m/s). At the second harmonic (|ŸM (2f̄)|) the
spectral acceleration is about 0.5 m/s2 for v0 = 2.22 m/s and around 0.8 m/s2 for both
v0 = 0.55 m/s and v0 = 1.11 m/s. |ŸM (2f̄)| is therefore about 0.7 times |ŸM (f̄)| for the
largest speed of v0 = 2.22 m/s and only around 0.2 times |ŸM (f̄)| for the lowest speed of
v0 = 0.55 m/s. Thus, the ratio |ŸM (2f̄)|/|ŸM (f̄)| becomes larger with increasing roller
speed v0. The amplitudes of the third and fourth harmonics of ÿM are only about
0.38 m/s2 and 0.19 m/s2 for v0 = 0.55 m/s and become even smaller with increasing v0.
For instance, in the case of v0 = 1.11 m/s, |ŸM (3f̄)| is about 0.14 m/s2, while |ŸM (4f̄)|
is not observed.

The effect of a second roller pass is studied for the considered oscillation roller
operating at speed v0 = 2.22 m/s on initially very loose soil (e0 = 0.90) and an apparent
cohesion of pt = 10 kN/m2 assuming a coefficient of friction of μ = 0.50. Fig. 341
shows the (a) horizontal (ẍM ) and (c) vertical acceleration component (ÿM ) in a time
frame of one second during the first and a subsequent roller pass. As can readily be
observed, the amplitudes of both ẍM and ÿM increase when a subsequent roller pass is
performed. This is clearly illustrated by the frequency spectra depicted in Figs 341 (b)
and (d). The amplitude at the excitation frequency f̄ of ẍM (|ẌM (f̄)|) increases from
about 10.2 m/s2 (first pass) to 13.2 m/s2 (second pass). The amplitude at the second
harmonic (|ẌM (2f̄)|) is only about 0.51 m/s2 (first pass) and 0.44 m/s2 (second pass)
and thus, virtually not affected by a subsequent roller pass. However, the amplitude
at the third harmonic (|ẌM (3f̄)|), which is not observed during the first pass, is about
0.8 m/s2 after the second pass, i.e. about 0.06 times |ẌM (f̄)|. This result reflects the
occurrence of slip phases during the second roller pass due to increased soil stiffness.
The amplitude at the excitation frequency f̄ of the vertical response ÿM (|ŸM (f̄)|)
increases more significantly from about 0.8 m/s2 (first pass) to 1.4 m/s2 (second pass).
|ŸM (2f̄)|, however, shows only a slight increase from about 0.25 m/s2 (first pass) to
0.32 m/s2 (second pass). Consequently, the ratio |ŸM (2f̄)|/|ŸM (f̄)| decreases from
about 0.31 (first pass) to 0.23 (second pass).

Plotting the vertical component ÿM against the horizontal counterpart ẍM results
in a response representation that is fundamental to the CCC methodology described
in [Pistrol, 2016]. In Fig. 342, grey graphs show this response representation for drum
acceleration considering a coefficient of friction of μ = 0.30 derived numerically in the
context of the present study. Plot (a) depicts the response when compacting initially
very loose soil (e0 = 0.90), and plot (b) refers to the response when compacting initially
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Figure 340: Time history and frequency spectrum of the (a,b) horizontal and (c,d)
vertical acceleration in the drum center for three roller speeds; initially very loose soil

medium dense soil (e0 = 0.70). For two “representative” excitation periods in this time
frame the response is shown in plot (a) in green, and in plot (b) in green and red. For
the initially very loose soil (e0 = 0.90), a figure forms similar to a so-called Lissajous
curve [Klotter, 1981] with one node and an asymmetric pattern, as the green lines in
Fig. 342 (a) illustrate, which resemble a recumbent eight. The “area” enclosed in this
Lissajous-like curve “representative” for e0 = 0.90 is about 15.5 m2/s4. For comparison,
Fig. 343 shows this response representation for drum acceleration components recorded
in a field test described by Pistrol [2016]. It can be seen that the numerically derived
drum acceleration qualitatively reproduces the drum response observed in the field.
The amplitude of the horizontal acceleration component is approximately as large as
in the field, while the vertical accelerations are underestimated by numerical analysis.

The effect of an initially larger soil density (e0 = 0.70) on the ÿM -ẍM plot is clearly
illustrated in Fig. 342 (b). As it can be observed at first glance, the shape of the
resulting figure is strongly influenced by the “peak cut” due to the slip phases. In some
cases the shape of this figure is now similar to an asymmetric “bow tie” (figure depicted
in green), and in other cases degenerated curves without nodes are observed (figure
depicted in red with dotted line). This result is consistent with the findings based on
the lumped parameter model of the roller-soil system presented in Section 2.4.2. The
area enclosed in the figure depicted in green is about 9.6 m2/s4, the one enclosed in the
figure depicted by red dotted lines is 23.3 m2/s4. This outcome is another confirmation
that the area enclosed in the ÿM -ẍM plot is also affected by the initial void ratio e0.
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Figure 341: Time history and frequency spectrum of the (a,b) horizontal and (c,d)
vertical acceleration in the drum center for two subsequent roller passes on initially
very loose soil; pt = 10 kN/m2; v0 = 2.22 m/s

The effect of the roller speed v0 on the ÿM -ẍM plot is illustrated in Fig. 344.
That is, diagram (a) corresponds to the roller speed v0 = 0.55 m/s, diagram (b) to
v0 = 0.75 m/s, diagram (c) to v0 = 1.11 m/s, and diagram (d) to v0 = 2.22 m/s. For
two “representative” excitation periods in the depicted time frame of one second (grey
lines) the response is shown in green. At first glace it can be seen that the shape of these
figures strongly depends on the roller speed and that the area enclosed by these figures
decreases with increasing roller speed. For all investigated values of v0 the result of
this response representation is a so-called Lissajous curve [Klotter, 1981] with one node
and an asymmetric pattern. At the lowest considered speed, the right “lobe” of the
eight-shaped figure is almost missing because in this case the ratio |ŸM (2f̄)|/|ŸM (f̄)|
is the smallest. With increasing speed the ratio |ŸM (2f̄)|/|ŸM (f̄)| becomes larger and
consequently, the right “lobe” increases, resulting in a more pronounced and eight-
shape. Moreover, the predicted Lissajous-like curves rotate clockwise with increasing
roller speed v0.

The effect of a second roller pass on the ÿM -ẍM plot is visualized in Fig. 345a. It
is readily seen that the “area” enclosed by the depicted figure evaluated for the second
pass is much larger than the one resulting from the first pass. Moreover, the node
observed in the ÿM over ẍM figure during the first pass is no longer present in the
figure that represents the CCC indicator during the second pass. Consequently, the
resulting shape resembles that of an ellipse.
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Figure 342: Plot ÿM over ẍM for a time window of 1 s (grey lines) and two repre-
sentative oscillating cycles (green and red lines); μ = 0.30; initial void ratio e0 of (a)
0.90 and (b) 0.70

Figure 343: Plot ÿM over ẍM based on drum center accelerations recorded in field
tests (described in [Pistrol, 2016]); two oscillation cycles
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Figure 344: Plot ÿM over ẍM for roller speed v0 of (a) 0.55 m/s, (b) 0.75 m/s, (c)
1.11 m/s and (d) 2.22 m/s for a time window of 1 s (grey lines) and two representative
oscillating cycles (green lines); initially very loose soil (e0 = 0.90); pt = 5 kN/m2

(a) Plot ÿM over ẍM for two subsequent roller passes on initially very loose soil (e0 = 0.90);
pt = 10 kN/m2; v0 = 2.22 m/s
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During the analysis of field test data, Pistrol [2016] recently identified the “area”
enclosed in the ÿM -ẍM response presentation as an indicator for CCC (in the liter-
ature also referred to as CCC-value) with oscillation rollers, which becomes larger
with increasing soil stiffness. In Fig. 346, this CCC indicator (i.e. the aforementioned
“area”) resulting from one roller pass is plotted as a function of the distance x from
the origin of the system of coordinates used to describe the geometry of the numerical
model (see Fig 31). In accordance with Pistrol [2016], the compaction parameter is
determined consecutively (in time) for five subsequent excitation periods, shown in this
figure by discrete markers. The results of this figure are based on various parameter
combinations, varying the initial subsoil conditions (e0 = 0.90 and 0.70, respectively),
the coefficient of friction (μ = 0.50 and 0.30, respectively), and the apparent cohesion
(pt = 5 kN/m2 and 10 kN/m2, respectively). The scatter of the compaction indicator
with respect to x is primarily a result of the strong amplitude fluctuation of the vertical
accelerations.

For the initially loose soil (e0 = 0.90) and the “default parameter set” (μ = 0.50
and pt = 5kN/m2), the mean compaction indicator, which varies between 21.5 and
31.4 m2/s4, is about 26.8 m2/s4. This value is in very good agreement with the CCC
value of about 25 m2/s4, which results from one on-site roller pass on a very loose
soil, as documented in [Pistrol, 2016]. For e0 = 0.70 the mean CCC indicator is about
30 m2/s4 and thus, 12 % larger compared to the initially very loose soil. Therefore,
this indicator captures the increase of stiffness associated with soil compaction if the
standard parameter set is used.

As expected, the reduction of μ reduces the amount of the compaction indicator in
the range of 12.6-24.6 m2/s4 (e0 = 0.90) and 15.0-27.7 m2/s4 (e0 = 0.70), respectively.
The maximum value for e0 = 0.70 is about 13 % larger than for e0 = 0.90, while the
mean value (of approximately 20 m2/s4) is virtually the same for both e0 = 0.70 and
e0 = 0.90. Thus, for an initially medium dense soil the increase of the simulated
stiffness is not that pronounced if the smaller value of μ is assigned to the model.

Using an apparent cohesion pt that is two times the default value, significantly in-
creases the amount of the compaction indicator. The resultant “area“ varies between
35.8 and 70.7 m2/s4 (e0 = 0.90) and between 59.8 and 81.1 m2/s4 (e0 = 0.70), respec-
tively. In this case, the mean compaction indicator for the initially medium dense soil
of 73.2 m2/s4 is about 45 % larger than for the initially very loose soil (50.5 m2/s4).
Therefore, the compaction indicator most clearly reflects the higher soil stiffness with
a larger apparent cohesion pt.

Fig. 347 shows the CCC indicator during one oscillatory roller pass on initially
very loose soil (e0 = 0.90) for four selected roller speeds v0 considered already in
Section 3.3.3. In the numerical analyses a coefficient of friction of μ = 0.50 has been
used. As before, one marker represents the area in the ÿM -ẍM figure determined
consecutively (in time) for five subsequent excitation periods. Blue circular markers
refer to the results for the default roller speed of v0 = 1.11 m/s, and black “x” markers
represent the results for v0 = 0.55 m/s. Outcomes based on v0 = 1.39 m/s are indicated
by red “*” markers. Green “+” markers represent the performance indicator for the
roller at twice the default speed (v0 = 2.22 m/s). As can be observed at first glance, the
simulations based on the highest speed v0 = 2.22 m/s, where the soil is exposed to only
about 18 oscillations per meter driven, yield the lowest mean compaction indicator of
about 17.5 m2/s4 with a scatter in the range of 14.1-21.2 m2/s4. Notably, the CCC
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Figure 346: Compaction indicator during the first roller pass; variation of v0

Figure 347: Compaction indicator during the first roller pass; variation of v0

Figure 348: Compaction indicator during two subsequent roller passes on initially
very loose soil; pt = 10 kN/m2; v0 = 2.22 m/s
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indicator based on the lowest roller speed, where the subsoil is subjected to about
70 oscillations per meter driven, shows the largest scatter with a variation between
31.9 and 57.5 m2/s4. The corresponding mean value is 42.1 m2/s4. The mean values
induced by rollers with speeds v0 = 1.11 m/s and v0 = 1.39 m/s are in the same order
of magnitude, i.e. 26.8 m2/s4 and 25.2 m2/s4, respectively. These results essentially
show that the considered CCC parameter decreases with increasing roller speed, and
thus, with decreasing number of oscillations per meter driven.

The effect of a subsequent second roller pass on the CCC indicator is clearly illus-
trated in Fig. 348. It can readily be seen that the second pass of an oscillation roller
operating at v0 = 2.22 m/s on initially very loose soil (e0 = 0.90) yields a significantly
larger CCC value over the whole traveled length. The corresponding “area” varies be-
tween 56.8 and 79.6 m2/s4. The mean compaction indicator after the second roller pass
is about 70 m2/s4 and thus, about three times larger than the mean CCC indicator
after the first pass, which is about 23 m2/s4.



Chapter 4
Summary, conclusions, and outlook

4.1 Summary and conclusions
In the present work, two modeling strategies have been pursued. On the one hand,
lumped parameter modeling was applied to investigate the motion behavior of the drum
in dependence of a priori defined soil parameters. On the other hand, Finite Element
modeling was used to assess the compaction effect and the drum motion behavior
simultaneously.

4.1.1 Lumped parameter modeling

In the chosen lumped parameter modeling strategy, a three degrees-of-freedom model
of the interacting oscillation roller-subsoil system has been proposed. The governing
highly nonlinear equations of this model have been derived for an asymmetric shape
of the underlying soil (“settlement trough”) separately for the stick and the slip phase
of the drum motion.

The presented results of the detailed response study based on the HD+ 90 VO
tandem roller demonstrate that the proposed model predicts the main outcomes found
in previous in-situ tests. The maximum amplitude in the frequency spectrum of the
horizontal drum acceleration occurs at the operating frequency f̄ . The observed over-
tones at odd multiples of the excitation frequency (f/f̄ = 3, 5, 7, ...) result from the
slip phase of the drum motion. In the frequency spectrum of the vertical drum accel-
erations the harmonics at even multiples of the excitation frequency (f/f̄ = 4, 6, 8, ...)
indicate slip between drum and soil. In the case of a drum oscillating at the bottom
of the settlement trough, the maximum amplitude in the frequency spectrum of the
vertical drum response occurs at f/f̄ = 2, reflecting the up- and down motion of the
drum in the settlement trough. If the drum operates on the slope of the settlement
trough (above its bottom) by application of a constant driving torque, for most subsoil
conditions the dominating frequency of the vertical drum response also corresponds to
the excitation frequency f̄ , and additional harmonics at f/f̄ = 3, 5, 7, ... are observed.
It was confirmed that the plot vertical drum accelerations over horizontal drum ac-
celerations yields a Lissajous curve with one node (“recumbent eight”), and the area
enclosed in this figure depends on the soil stiffness (and thus, on the compaction de-
gree) if the drum conducts a pure rolling motion, i.e. the drum sticks on the underlying
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soil. Application of a constant driving torque, which simulates the effect of the trans-
lation motion of the roller speed, yields a distorted and rotated “recumbent eight”,
as it is observed from accelerations recorded in field tests. In stick-slip drum motion,
the observed eight-shaped figure distorted (shape of a twisted “bow tie”) because the
maximum horizontal accelerations are confined in the slip phase. The results indicate
that relations between the compaction degree of soil layers and the area inside the
response representation of vertical drum acceleration vs. horizontal drum acceleration
can be established also for stick-slip motion of the drum. If a certain driving torque
is applied, the “area” (i.e. the compaction indicator) becomes larger with increasing
shear modulus, reaches a maximum and then decreases with further increase of the
soil stiffness.

The outcomes of the parametric studies based on four different types of oscillation
rollers demonstrate that the compaction indicator for continuous compaction control
(CCC) with oscillation rollers proposed by Pistrol [2016] is basically suitable for all
considered roller types. The observed increase of the CCC indicator with increasing soil
stiffness is mainly due to the amplitudes in the frequency domain of the horizontal drum
accelerations at the oscillation frequency f̄ , which increase continuously with increasing
shear modulus for all rollers. In addition, the amplitudes in the frequency domain
of the vertical drum accelerations at frequencies 2f̄ and 3f̄ affect the area because
these harmonics have a strong impact on the shape of the response representation
of vertical drum acceleration vs. horizontal drum acceleration. For the standard
equipment and operating parameters, the shear modulus, which corresponds to the
maximum area increase and thus, represents the application limit of the assessed CCC
indicator, is largest for the rollers HD13i VIO and HD+ 140i VO and lowest for the
H7i VIO roller. Therefore, the rollers HD13i VIO and HD+ 140i VO are best suited
for the proposed CCC application. The conducted sensitivity studies demonstrate that
the application limit of this value is positively influenced by an increased operating
frequency. Moreover, the suspension stiffness has an impact on the level of increase
of the compaction indicator but not on its application limit, while the impact of the
suspension damping is negligible. Similarly, the reduction of the coefficient of friction
between the drum and the soil surface has virtually no effect on that soil stiffness,
where the maximum normalized compaction indicator occurs.

In summary it can be concluded that the developed analytical model facilitates the
response simulation of an oscillation drum with the least numerical effort capturing the
observed stick-slip motion of the drum. The predicted response matches qualitatively,
and partially also quantitatively, the drum response observed in the field during near-
surface compaction of non-cohesive soils.

4.1.2 Finite Element modeling
In the chosen Finite Element modeling strategy, a plane-strain model of the oscillation
roller-soil interaction system during the near-surface compaction of a granular soil was
presented. With this FE model, the compaction effect of the roller can be predicted,
since the mechanical behavior of the subsoil is described by the intergranular strain
enhanced hypoplastic constitutive model. As a novelty, a protective layer, i.e. a thin
elastic layer, is applied to the soil surface to improve the numerical stability due to
issues related to the hypoplastic law. This model reproduces the bow wave developing
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in front of the drum as observed in the field. Its influence on the soil compaction
and near-surface soil loosening as well as the sensitivity of both the soil compaction
achieved with a HD+ 90 VO roller and the drum response to the variation of different
model and operating parameters was assessed in detail.

The visualization of the soil stress and strain components has provided novel in-
sight into the soil depth-dependent compaction behavior of oscillation rollers. It could
be shown that the quasi-static stresses induced by a single oscillatory roller pass on
initially very loose soil are of similar shape and magnitude as the stresses resulting
from a static roller with a certain offset. In contrast, the subgrade stain components
induced by the oscillatory roller are much larger than those of the static roller. From
this it can be concluded that the high-frequency dynamic stresses due to the oscillatory
moment impose both considerable shear and compressive deformation in the subsoil
although their amplitudes are much smaller than those of the quasi-static stresses.
It has been confirmed that not only the dynamic shear stresses but also the normal
stresses transferred by the oscillation roller into the subsoil lead to a compaction of
the subgrade. Another observation is that the moving oscillation roller has the largest
impact on the stress-strain state in the soil when the drum is at a horizontal distance of
about xM = −0.6÷0.9 m from a selected observation point in the subsoil. This means
that the range of influence can be related to the drum radius r of the considered roller
as −r ≤ xM ≤ 1.5r.

The study of the effect of differently packed soil conditions on the change of the
void ratio revealed the extent of the achieved compaction with an oscillation roller in
terms of soil depth and horizontal distance of the drum from a selected observation
spot in the subsoil. Naturally, the largest compaction effect was achieved when the
subsoil was initially very loose. Another finding is that the compaction over the depth
is more uniform in initially dense subsoils. For all initial soil densities considered,
the depth effect of the oscillation roller operating at standard speed was about the
same, i.e. nearly one meter. The results of comprehensive studies confirm that a
single pass with the considered oscillation roller running at standard speed uniformly
reduces the void ratio of the investigated sandy soil up to a depth of 0.15-0.50 m
thickness, with the lower limit for an initially very loose soil and the upper limit for
a dense soil. This compaction depth is virtually not influenced by the choice of the
friction coefficient between the drum, which controls the slip phase in the contact
zone between the drum and the soil surface, and the apparent cohesion of the subsoil.
Reducing the roller speed results in an increase of this depth as well as the maximum
predicted void ratio reduction. With a second roller pass, the maximum compaction
remains the same as after the first pass, but the compaction depth is increased. The
variation of the static axle load by ±20 % has no significant effect on the achieved
soil compaction. Increasing the apparent cohesion of the soil up to 10 kN/m2, yields a
larger void ratio reduction, which is even further increased by a subsequent roller pass,
without influencing the depth effect significantly. The presented findings with respect
to the compaction effect correspond to the observations from on-site applications of
oscillation rollers. However, it seems that the proposed numerical model overestimates
the degree of achieved compaction by one dynamic roller pass.

The amplitude of the computed horizontal acceleration component is of the same
magnitude as observed in the field. The vertical accelerations are, however, underpre-
dicted by the numerical analysis. The frequency content of the numerically analyzed
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accelerations of the drum center during compaction is very similar to that of field test
data. The overtones in the measured data are also found in the numerically simulated
data. Moreover, the corresponding normalized amplitudes are of the same magnitude.
By reducing the coefficient of friction, the slip phases of the drum are extended and
the amplitudes of the horizontal accelerations of the drum center are reduced. As
a result, the higher harmonics are more pronounced in the corresponding frequency
spectra. The presented outcomes confirm that the amplitude at the third harmonic
of the horizontal drum response normalized by amplitude at the excitation frequency
may be considered as an indicator of the extent of the slip phase in the drum response.

When the computed vertical acceleration component of the drum center is plotted
against the corresponding horizontal component, a so-called Lissajous curve with one
node and an asymmetric pattern is obtained that resembles a recumbent eight, similar
to outcomes based on the proposed lumped parameter model. Thus, the response
behavior recently discovered in the analysis of field test data is also supported by this
numerical model. Pronounced slip phases by reduction of the coefficient of friction
modify the shape of the figure, which now resembles more an asymmetric “bow tie”,
or the nodes disappear at all. The presented results of the conducted sensitivity study
confirm that the shape and area of representation of the vertical over the horizontal
drum center acceleration strongly depend on the subsoil stiffness, characterized by the
initial void ratio, the apparent cohesion, the coefficient of friction between drum and
subsoil, and the roller speed. Simulations of a subsequent second roller pass on initially
very loose soil at the same speed revealed a significant increase of the CCC indicator
(i.e. the “area”) over the whole covered length. Thus, these outcomes confirm that
quantities derived from this drum response representation are appropriate as indicators
for work-integrated continuous compaction control with oscillation rollers.

In summary it can be concluded that the developed numerical model predicts qual-
itatively, and partially also quantitatively, the drum response and the compaction
effect of an oscillation roller observed in the field during near-surface compaction of
non-cohesive soils.

4.2 Outlook
The more recently developed CCC technique for oscillation rollers, as described in the
introduction, has been verified by the presented results of the detailed response study
of one specific roller type and the outcomes of a comprehensive parametric study
based on three additional oscillation rollers. Thus, the proposed lumped parameter
model predicts both realistically and efficiently the dynamic response of an oscillation
drum interacting with the underlying soil during roller compaction. For additional
research investigations, the model can be extended in a straightforward manner. For
instance, non-linearity of the subsoil and, if necessary, the trapped soil mass can easily
be considered. In addition, the model allows the investigation of unbalanced drums by
appropriate modeling of the corresponding excitation. Moreover, a modified coefficient
of friction can be taken into account, which, for example, is modeled as a function of
the slip velocity between drum and soil.

The developed numerical model has provided novel insight into the soil depth-
dependent compaction behavior and the resulting compaction effect of oscillation rollers.



4.2. Outlook 95

Simultaneously, also the capability of oscillation rollers for work-integrated compaction
control was verified. The presented findings motivate a series of further numerical stud-
ies. For instance, the developed model allows the machine and operating parameters
of existing oscillation rollers to be optimized with a view to achieving the best possible
compaction result. In addition, the measuring depth of oscillation rollers can be stud-
ied by investigating the compaction of layers of varying thickness and stiffness resting
on a very stiff and on a very soft subsoil, respectively, and evaluating the predicted
drum center accelerations in terms of the assessed CCC indicator. Since this com-
paction indicator is a relative value, investigations should be carried out focusing on
a possible relationship between the area enclosed by the Lissajous figure, which repre-
sents the drum response in terms of drum center accelerations, and the corresponding
soil stiffness. For instance, the simulation of conventional spot like compaction testing
methods, such as static and dynamic plate load tests, can be used to compute soil stiff-
ness values corresponding to the determined respective relative CCC indicator. Since
the present investigations are based on a sandy soil, supplementary simulations based
on a gravelly soil model should tackle the sensitivity of the soil compaction as well
as of the drum response to the type of granular subsoil. Future studies should also
address the influence of the “protective foil” on the response prediction of the interact-
ing oscillatory-roller system, and alternative measures (such as application of viscous
“surface dampers”, extension of the user defined material subroutine) for improving
the numerical stability should be tested and optimized, respectively.





Appendix A
Dynamic decoupling

The dynamic decoupling of drum and roller frame (including the cabin), realized by
rubber buffers (suspension), is subsequently analyzed for the HAMM HD+ 90 VO tan-
dem roller (roller 1) considered in Section 2.4 using a simplified model. The suspension
is idealized as a Kelvin-Voigt model consisting of a spring and dashpot damper (stiff-
ness kd and damping parameter cd). The frame (including the cabin) is modeled as a
lumped mass, yielding in combination with the aforementioned Kelvin-Voigt suspen-
sion model a SDOF system (see Fig. A1). The lumped mass mf , identified from the
static axle load P0, represents the effective mass of the roller with respect to the front
axle.

t = 0t = 0

“t”“t”

kd

Figure A1: SDOF-model of the front frame supported by the drum suspension

The absolute displacement transmissibility Tp of this SDOF system is assessed
according to the subsequent well-known equation [Clough and Penzien, 1993]:

Tp =
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For the considered roller 1 with the parameters listed in Table 21, the natural circular
frequency ω is 38.1 rad/s, the damping ratio ζ is 0.014 (cd = 3×103 Ns/m) and 0.0014
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Figure A2: Absolute displacement transmissibility Tp

(cd = 3×102 Ns/m), respectively, and the excitation frequency ν̄ of base excitation zM

is 245 rad/s. Since the ratio ν̄/ω = 6.4 is 4.5 times larger than
√

2, the absolute dis-
placement transmissibility Tp is much less than 1. In particular, evaluation of Eq. A.1
yields Tp ≈ 0.025 for both values of cd (see Fig. A2). That is, the amplitude of the
frame displacement zf is maximum only about 2.5 % of the amplitude of the displace-
ment zM imposed at the frame base (according to the model in Fig. A1). Thus, it is
confirmed that drum and front frame are dynamically decoupled by the deeply tuned
rubber buffers (as desired by the manufacturer and proofed during roller operation
on-site).



Appendix B
Coefficients of the discrete soil

model

Based on Pistrol [2016], the contact length 2a0 is assumed to be four times the contact
length according to Hertzian theory [Popov, 2017] for non-adhesive elastic contact,

2a0 = 4

⎛
⎝2

√
2rP0 (1−ν)

πGb0

⎞
⎠ (B.1)

In this equation, r represents the drum radius, P0 denotes the static (vertical) axle
load of the roller, b0 is the half drum width and a0 denotes the half contact length
between drum and soil surface (see Fig. B1), G and ν are the shear modulus and the
Poisson’s ratio of the halfspace, respectively.

2a0

2b0

A0

drum

soil

Figure B1: Geometry of the contact area between drum and soil [Pistrol, 2016]

Based on the translational cone models (e.g. [Wolf, 1994]) as shown in Fig. B2,
the elastic continuous soil halfspace can be reduced to two spring-dashpot damper
elements, as illustrated in Fig. 21, which represent the considered non-cohesive subsoil
conditions, i.e. ν ≤ 1/3. The corresponding dynamic soil spring coefficients, ksh and
ksv, do not depend on the excitation frequency (because ν ≤ 1/3), and thus, represent
the “frequency-independent coefficients of an ordinary spring (the static stiffness)”, as
discussed in [Wolf, 1994]. Instead, the spring coefficients ksh and ksv, which represent
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ρ,G, ν

2a0

dz

z

u0

2a0

dz

z

ρ,G, ν

u0

Figure B2: Translational cone for (a) vertical and (b) horizontal motion, based on
Wolf [1994]

the subsoil stiffness, depend on the half contact length a0 between drum and soil as
follows ([Pais and Kausel, 1988], [Wolf, 1994]),

ksh =
Ga0
2−ν

[
6.8
(

b0
a0

)0.65
+0.8

(
b0
a0

)
+1.6

]

ksv =
Ga0
1−ν

[
3.1
(

b0
a0

)0.75
+1.6

] (B.2)

The soil damping coefficients csh and csv do also not depend on the excitation frequency,
and thus, represent “frequency-independent coefficients of an ordinary dashpot” [Wolf,
1994]. The coefficients csh and csv, which represent the geometric damping of the
subsoil, are two times the coefficients proposed by Wolf [1994],

csh = 2c
(Wolf)
sh = 2ρ

√
G

ρ
4a0b0

csv = 2c(Wolf)
sv =

√
2−2ν

1−2ν
csh

(B.3)

as discussed in [Kopf, 1999]. Variable ρ is the soil density. Substituting for a0 the
expression of Eq. B.1 yields

csh = 32

√
2ρrb0P0 (1−ν)

π

csv = 64(1−ν)
√

ρrb0P0
(1−2ν)π

(B.4)

According to Wolf [1994] both the dynamic stiffness coefficients and the damping
coefficients of the translational cone models are “very accurate in the inter-mediate-
and higher-frequency ranges, whereas in the lower-frequency range (ā0 < 2) and for
ν ≤ 1/3 [. . . ] the spring-damper soil model overestimates (radiation) damping to a
certain extent, especially in the vertical motion”. Note that ā0 is the non-dimensional
frequency parameter defined by Wolf [1994],

ā0 =
ν̄r0
cs

(B.5)
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with the excitation frequency ν̄, the equivalent radius r0,

r0 =

√
A0
π

=

√
4a0b0

π
(B.6)

and the shear wave velocity cs,

cs =

√
G

ρ
(B.7)

In the present case, where four selected HAMM rollers with an operating frequency
f̄ between 33 and 39 Hz are considered (see Table 21), the non-dimensional frequency
ā0 varies between 0.28-0.35 (G = 70 MN/m2) and 2.0-2.5 (G = 5 MN/m2). For G =
10 MN/m2, ā0 ≈ 1.2-1.5. Thus, ā0 < 2 except the lowest value of G. The problem is,
hence, mostly in the “lower-frequency range”, as defined by Wolf [1994].
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Appendix C
Abbreviations

C.1 Spiral-shaped settlement trough
The functions f1, f2, f3, f4, f5, and f6 in the equations of motion of the proposed
lumped parameter model (see Section 2.2), which depend on spiral parameters a, k,
α, R0, drum radius r, and angle δ(t), read as

f1 = R0 exp(−kδ)
[
k cos(α + δ)+sin(α + δ)

]
− r cosδ (C.1)

f2 = R0 exp(−kδ)
[
(1−k2)cos(α + δ)−2k sin(α + δ)

]
+ r sinδ (C.2)

f3 = −R0 exp(−kδ)
[
k sin(α + δ)− cos(α + δ)

]
+ r sinδ (C.3)

f4 = −R0 exp(−kδ)
[
(1−k2)sin(α + δ)+2k cos(α + δ)

]
+ r cosδ (C.4)

f5 =
√

1+k2 exp(−kδ)
R0
r

−1 (C.5)

f6 = −k
√

1+k2 exp(−kδ)
R0
r

(C.6)

C.2 Semi-circular settlement trough
If the logarithmic spiral approaches a semi-circle (see Fig. C1), the first spiral parameter
k becomes zero, the second parameter a corresponds to the radius R of the semi-circular
curved track, and the angle α becomes π/2:

k = 0 , a = R0 = R , α = π/2 (C.7)

Thus, inserting in the relations of Appendix C.1 k = 0 and α = π/2, and replacing a and
R0 by R yields the corresponding expressions for the functions fi and f̃i representing
a semi-circular settlement trough,

f1 = −f4 = lcosδ , f2 = f3 = −l sinδ , f5 =
l

r
, f6 = 0

f̃1 = l , f̃2 = 0 , f̃3 = 0 , f̃4 = −l
(C.8)
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with
l = R − r (C.9)

Then, the response of the drum center (xM , zM ) is related to the independent coordi-
nates of motion as

xM = l sinδ +xA , zM = l
(
cosδ −1

)
+sA (C.10)

The second derivative of Eqs C.10 with respect to time t yields the acceleration com-
ponents ẍM and z̈M ,

ẍM = l
(
cosδδ̈ − sinδδ̇2

)
+ ẍA , z̈M = −l

(
sinδδ̈ +cosδδ̇2

)
+ s̈A (C.11)

The rolling condition according to Eq. 2.11, i.e. the relationship between the drum
rotation angle ϕ and the position angle δ in the stick phase, simplifies to

Rδ = r (δ +ϕ) (C.12)

The first and the second time derivative of Eq. C.12 read as

ϕ̇ =
l

r
δ̇ , ϕ̈ =

l

r
δ̈ (C.13)

Based on Eqs C.7 and C.8, the governing equations for the spiral-shaped settlement
trough given in Section 3.2.3 can be rewritten for a semi-circular settlement trough,
which are subsequently presented.

MM (t)MM (t)

FzFz

δ(t)δ(t)

δ(t)δ(t)

ϕ(t)ϕ(t)

MM

AA

ksvksv
csvcsv

cshcsh

kshksh

kdkd

cdcd

xA(t)xA(t)

sA(t)sA(t)

“t”“t”

CC
μμ

xx

zz

kdkd cdcd

BB

A = B = CA = B = C

t = 0t = 0

xM (t)xM (t)zM (t)zM (t)

settlement trough

soil

suspension

drum

Figure C1: Lumped parameter model of the interaction system oscillation roller-soil
with a semi-circular settlement trough
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Stick phase
In the stick phase, the equations for the three independent coordinates of motion, i.e.
the horizontal (xA) and the vertical (sA) displacement of the point A of the curved
track and position angle δ (see Fig. C1), read as

mlcosδδ̈ +mẍA −ml sinδδ̇2 + cdlcosδδ̇ +(csh + cd) ẋA

+(ksh +kd)xA +kdl sinδ = 0 (C.14)

−ml sinδδ̈ +ms̈A −mlcosδδ̇2 − cdl sinδδ̇ +(csv + cd) ṡA

+(ksv +kd)sA +kdl (cosδ −1) = mg +Fz (C.15)

(
1+

I

mr2

)
mlδ̈ +mẍA cosδ −ms̈A sinδ + cd

[
lδ̇ + ẋA cosδ − ṡA sinδ

]

+kd

[
xA cosδ − (sA − l)sinδ

]
=

MM (t)
r

− (mg +Fz)sinδ (C.16)

To solve these coupled set of second order nonlinear ordinary differential equations
(ODEs), it is written in the state space (see Appendix D.2).

Slip phase
In the slip phase, the three equations of motion of the 3DOF lumped parameter model
in terms of the four coordinates xA, sA, δ and ϕ read as

mlδ̈ +fμ1mẍA −fμ2ms̈A +sign(vrel)μmlδ̇2 + cd

(
lδ̇ +fμ1ẋA −fμ2ṡA

)
+kd

[
− sign(vrel)μl +fμ1xA −fμ2 (sA − l)

]
= −fμ2(mg +Fz) (C.17)

sign(vrel)μm
(
ẍA sinδ + s̈A cosδ

)
+

I

r
ϕ̈− sign(vrel)μ

{
(mg +Fz)cosδ +mlδ̇2

− cd (ẋA sinδ + ṡA cosδ)−kd

[
xA sinδ +sA cosδ + l (1− cosδ)

]}
=

MM (t)
r

(C.18)

mẍA sinδ +ms̈A cosδ +(csh + cd) ẋA sinδ +(csv + cd) ṡA cosδ −mlδ̇2

+(ksh +kd)xA sinδ +(ksv +kd)sA cosδ +kdl (1− cosδ) = (mg +Fz)cosδ (C.19)

While the angles δ(t) and ϕ(t) become independent variables in the slip phase (vrel �= 0),
the variables xA and sA are coupled in this phase due to the tangential friction contact
according to Coulomb’s law at contact point C, yielding a fourth equation,

fμ1 (cshẋA +kshxA) = fμ2 (csv ṡA +ksvsA) (C.20)

The functions fμ1 and fμ2 in these equations read as,

fμ1 = cosδ − sign(vrel)μsinδ

fμ2 = sinδ +sign(vrel)μcosδ
(C.21)

The state space representation of these nonlinear equations of motion given in Ap-
pendix D.2 is solved numerically as described in Section 3.2.4.



108 Appendix C. Abbreviations

C.3 Semi-circular fixed settlement trough
If the horizontal and vertical translation of the settlement trough, i.e. the degrees of
freedom of support point A in horizontal (x) and vertical (z) direction, are constrained,

xA = 0 , sA = 0 (C.22)

the 3DOF lumped parameter model presented in Section 2.2 simplifies to a SDOF
system. The corresponding model, subsequently referred to as SDOF lumped param-
eter model with “fixed settlement trough”, is depicted in Fig. C2. In the following, a
method is presented to derive efficiently the equation of motion of this SDOF model
for the stick phase. To this end, in accordance with Williams [2000] the instant center,
i.e. the contact point between drum and fixed settlement trough (point C), is used
as reference point in the angular momentum theorem [Ziegler, 1995]. The equation of
conservation of angular momentum [Ziegler, 1995] with respect to the contact point
C between the rolling drum and the semic-circular bearing surface, i.e. the instant
center, reads as

d �DC

dt
+m�rM ×�aC = �MC (C.23)

where �DC denotes the relative angular momentum (or moment of momentum) [Ziegler,
1995] with respect to the contact point C, �MC is the moment (with respect to C) of
all external forces acting on the rigid drum with mass m,

�MC =
[
(mg +Fz)r sinδ −MM (t)

]
�ey (C.24)

�rM = �rMC is the position vector representing the position of point M in space in
relation to the reference origin C (i.e. the directed line segment from C to M),

�rM = �rMC = −r (sinδ�ex +cosδ�ez) (C.25)

and �aC denotes the acceleration of point C.

MM (t)MM (t)

FzFz

δ(t)δ(t)

δ(t)δ(t)

ϕ(t)ϕ(t)

MM

“t”“t”

xx

zz

BB

t = 0t = 0 r

r

MC

C

A

C

Figure C2: SDOF lumped parameter model of the interaction system oscillation
roller-subsoil; pure rolling motion; without suspension; fixed semi-circular settlement
trough
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The relative angular momentum �DC with respect to the contact point C is defined
as follows [Ziegler, 1995]:

�DC = �DM +�rMC ×m�vMC (C.26)

where �DM is the relative angular momentum with respect to the drum center M that
is determined with the mass moment of inertia I of the drum (with respect to M) and
the angular velocity ϕ̇ of the drum according to Eq. C.13(1) as follows [Ziegler, 1995]

�DM = −Iϕ̇�ey (C.27)

and �vMC denotes the relative velocity.
When determining the acceleration of point C and the relative velocity �vMC , it is

important to distinguish whether C is a point on the drum or a point on the settlement
trough [Williams, 2000]. This is illustrated in the following for the example of a drum
with radius r rolling without slipping on the inside of a semi-circular bearing surface,
i.e. the fixed settlement trough, with radius R.

Contact point C is a point on the drum
The acceleration of point C reads as [Ziegler, 1995]

�aC = �aM +
d�ω

dt
×�rCM −ω2�rCM (C.28)

where �aM is the acceleration of the drum center M ,

�aM = ẍM�ex + z̈M�ez (C.29)

�ω denotes the angular velocity vector,

�ω = −ϕ̇�ey (C.30)

and �rCM is the directed line segment from M to C,

�rCM = −�rMC = r (sinδ�ex +cosδ�ez) (C.31)

Inserting Eq. C.22 into Eq. C.11 yields the acceleration components ẍM and z̈M for
the case of a fixed settlement trough,

ẍM = l
(
cosδδ̈ − sinδδ̇2

)
, z̈M = −l

(
sinδδ̈ +cosδδ̇2

)
(C.32)

Inserting Eqs C.29, C.30 and C.31 into Eq. C.28, replacing ẍM and z̈M by the cor-
responding expressions according to Eqs C.32 and considering the rolling condition
(Eq. C.13) yields after some algebra

�aC = −ϕ̇2r
R

l
(sinδ�ex +cosδ�ez) (C.33)

with
|�aC | = ϕ̇2r

R

l
= Rϕ̇δ̇ (C.34)
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The relative velocity �vMC reads as [Ziegler, 1995]

�vMC = �ω ×�rMC (C.35)

Inserting Eqs C.30 and C.25 into Eq. C.35 results in

�vMC = rϕ̇(cosδ�ex − sinδ�ez) (C.36)

Inserting Eqs C.26 and C.33 into Eq. C.23 and replacing �DM , �rM and �rMC , respectively,
and �vMC by the corresponding expressions according to Eqs C.27, C.25 and C.36,
results after some algebra,

�DC = −(I +mr2)ϕ̇�ey , m�rM ×�aC = �0 (C.37)

in
−
(
I +mr2

)
ϕ̈�ey = �MC (C.38)

Contact point C is a point on the settlement trough
The acceleration of point C is obtained by double differentiation of the position vector
�rC ,

�rC = R
[
sinδ�ex +(cosδ −1)�ez

]
(C.39)

with respect to time t,

�aC = R
[
(cosδδ̈ − sinδδ̇2)�ex − (sinδδ̈ +cosδδ̇2)�ez

]
(C.40)

Differentiation of �rMC (Eq. C.25) with respect to time t yields the relative velocity
�vMC

�vMC = −rδ̇(cosδ�ex − sinδ�ez) (C.41)

Inserting Eqs C.26 and C.40 into Eq. C.23, replacing �DM , �rM and �rMC , respectively,
and �vMC by the corresponding expressions according to Eqs C.27, C.25 and C.41, and
considering the rolling condition (Eq. C.13) results after some algebra

�DC = −
(

I −m
r3

l

)
ϕ̇�ey , m�rM ×�aC = −m

r2R

l
ϕ̈�ey (C.42)

in Eq. C.38.

Alternative form of the equation of angular momentum
Inserting Eq. C.26 into Eq. C.23, yields after some algebra an alternative form of the
equation of angular momentum:

d �DM

dt
+m�rMC ×�aM = �MC (C.43)

Note, when applying Eq. C.43, the problem of distinguishing point C from being
either on the drum or on the settlement trough does not arise. Inserting Eqs C.27 and
C.29 into Eq. C.43, replacing ẍM and z̈M by the corresponding expressions according
to Eqs C.32 and �rMC by the expression according to Eq. C.25, and considering the
rolling condition (Eq. C.13) yields after some algebra Eq. C.38.
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Equation of motion
To derive the equation of motion, Eqs C.24 and C.13 (rolling condition) are inserted
into Eq. C.38. Rearranging finally results in the equation of motion in terms of the
position angle δ(t):

(
1+

I

mr2

)
mlδ̈ +(mg +Fz)sinδ =

MM (t)
r

(C.44)





Appendix D
State-space representation of the

equations of motion

D.1 Spiral-shaped settlement trough

Stick phase
The equations of motion for the stick phase, Eqs 2.30, 2.31 and 2.32, are rewritten in
the state space such that

q1 = δ , q2 = xA , q3 = sA

q4 = δ̇ , q5 = ẋA , q6 = ṡA

(D.1)

The resulting system of first-order ODEs,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 mf1 m 0
0 0 0 mf3 0 m

0 0 0
(
f5

I
mr + f̃1

)
m mcosq1 −msinq1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q̇1
q̇2
q̇3
q̇4
q̇5
q̇6

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

q4
q5
q6

−h1
mg +Fz −h2

MM (t)
r − (mg +Fz)sinq1 −h3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D.2)

with

h1 = f2mq4
2 +f1cdq4 +(csh + cd)q5 +(ksh +kd)q2

+kd

[
−R0 exp(−kq1)cos(α + q1)− r sinq1 +R0 cosα

]
(D.3)
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h2 = f4mq4
2 +f3cdq4 +(csv + cd)q6 +(ksv +kd)q3

+kd

[
R0 exp(−kq1)sin(α + q1)− r cosq1 − (R0 sinα − r)

]
(D.4)

h3 =
(

f6
I

mr
+ f̃2

)
mq4

2 + cd

[
f̃1q4 + q5 cosq1 − q6 sinq1

]
+kd

[(
−R0 exp(−kq1)cos(α + q1)− r sinq1 +R0 cosα + q2

)
cosq1

−
(
R0 exp(−kq1)sin(α + q1)− r cosq1 − (R0 sinα − r)+ q3

)
sinq1

]
(D.5)

is analyzed numerically by the ode45 solver of Matlab [Mathworks, 2018]. After having
solved Eq. D.2, the response of the drum center (ẍM , z̈M ), which is of primary interest
for the studied CCC indicator, is obtained from Eqs 2.18 with

δ̈ =
MM (t)+ r

[
h1 cosδ −h3 +

(
mg +Fz −h2

)
sinδ

]
f5I

(D.6)

ẍA = −f1δ̈ − h1
m

(D.7)

s̈A = −f3δ̈ +
1
m

(mg +Fz −h2) (D.8)

Slip phase
To rewrite the equations of motion for the slip phase, Eqs 2.34, 2.36, 2.38, and cou-
pling condition, Eq. 2.39, in the state space, at first the latter equation needs to be
differentiated with respect to time and multiplied by m/csh,

fμ1mẍA −fμ2
csv

csh
ms̈A +

m

csh

{
fμ1
[
kshẋA − (csv ṡA +ksvsA) δ̇

]
−fμ2

[
ksv ṡA +(cshẋA +kshxA) δ̇

]}
= 0 (D.9)

The transformations

q
(sl)
1 = δ , q

(sl)
2 = xA , q

(sl)
3 = sA , q

(sl)
4 = ϕ

q
(sl)
5 = δ̇ , q

(sl)
6 = ẋA , q

(sl)
7 = ṡA , q

(sl)
8 = ϕ̇

(D.10)
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lead to the first-order ODEs for the slip phase,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 m(f1fμ1 −f3fμ2) mfμ1 −mfμ2 0
0 0 0 0 mf̃3 msinq

(sl)
1 mcosq

(sl)
1 0

0 0 0 0 0 mfμ1 − csv
csh

mfμ2 0
0 0 0 0 sgnμmf̃3 sgnμmsinq

(sl)
1 sgnμmcosq

(sl)
1

I
r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇
(sl)
1

q̇
(sl)
2

q̇
(sl)
3

q̇
(sl)
4

q̇
(sl)
5

q̇
(sl)
6

q̇
(sl)
7

q̇
(sl)
8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q
(sl)
5

q
(sl)
6

q
(sl)
7

q
(sl)
8

−fμ2 (mg +Fz)−h
(sl)
1

(mg +Fz)cosq
(sl)
1 −h

(sl)
3

−h
(sl)
4

MM (t)
r −h

(sl)
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D.11)

with

h
(sl)
1 = (f2fμ1 −f4fμ2)mq

(sl)
5

2
+ cd

[(
f1fμ1 −f3fμ2

)
q

(sl)
5 +fμ1q

(sl)
6 −fμ2q

(sl)
7

]
+kd

[
fμ1
(

−R0 exp(−kq
(sl)
1 )cos(α + q

(sl)
1 )− r sinq

(sl)
1 +R0 cosα + q

(sl)
2

)
−fμ2

(
R0 exp(−kq

(sl)
1 )sin(α + q

(sl)
1 )− r cosq

(sl)
1 − (R0 sinα − r)+ q

(sl)
3

)]
(D.12)

h2
(sl) = −sgnμ

{
(mg +Fz)cosq

(sl)
1 − f̃4mq

(sl)
5

2 − f̃3cdq
(sl)
5

− cd

(
q

(sl)
6 sinq

(sl)
1 + q

(sl)
7 cosq

(sl)
1

)
−kd

[(
−R0 exp(−kq

(sl)
1 )cos(α + q

(sl)
1 )

− r sinq
(sl)
1 +R0 cosα + q

(sl)
2

)
sinq

(sl)
1 +

(
R0 exp(−kq

(sl)
1 )sin(α + q

(sl)
1 )

− r cosq
(sl)
1 − (R0 sinα − r)+ q

(sl)
3

)
cosq

(sl)
1

]}
(D.13)

h3
(sl) = cdf̃3q

(sl)
5 +(csh + cd)q

(sl)
6 sinq

(sl)
1 +(csv + cd)q

(sl)
7 cosq

(sl)
1

+mf̃4q
(sl)
5

2
+(ksh +kd)q

(sl)
2 sinq

(sl)
1 +(ksv +kd)q

(sl)
3 cosq

(sl)
1

+kd

[(
−R0 exp(−kq

(sl)
1 )cos(α + q

(sl)
1 )− r sinq

(sl)
1 +R0 cosα

)
sinq

(sl)
1

+
(
R0 exp(−kq

(sl)
1 )sin(α + q

(sl)
1 )− r cosq

(sl)
1 − (R0 sinα − r)

)
cosq

(sl)
1

]
(D.14)
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h
(sl)
4 =

m

csh

{
fμ1
[
kshq

(sl)
6 −

(
csvq

(sl)
7 +ksvq

(sl)
3

)
q

(sl)
5

]
−fμ2

[
ksvq

(sl)
7 +

(
cshq

(sl)
6 +kshq

(sl)
2

)
q

(sl)
5

]}
(D.15)

sgn = sign(vrel) (D.16)

that is solved numerically by the ode45 solver of Matlab [Mathworks, 2018]. After
having solved Eq. D.11, the response of the drum center (ẍM , z̈M ), is obtained from
Eqs 2.18 with

δ̈ =
1

m
(
f1fμ1 − csv

csh
f3fμ2

){h4
(sl) −fμ1

[
h1

(sl) cosδ +h3
(sl)fμ2

]

−fμ2
csv

csh

[
mg +Fz +h1

(sl) sinδ −h3
(sl)fμ1

]}
(D.17)

ẍA = −f1δ̈ − 1
m

(
h1

(sl) cosδ +h3
(sl)fμ2

)
(D.18)

s̈A = −f3δ̈ +
1
m

(
mg +Fz +h1

(sl) sinδ −h3
(sl)fμ1

)
(D.19)

D.2 Semi-circular settlement trough
Stick phase
The equations of motion for the stick phase, Eqs C.14, C.15 and C.16, are rewritten
in the state space such that

q1 = δ , q2 = xA , q3 = sA

q4 = δ̇ , q5 = ẋA , q6 = ṡA

(D.20)

The resulting system of first-order ODEs,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 mlcosq1 m 0
0 0 0 −ml sinq1 0 m

0 0 0
(
1+ I

mr2

)
ml mcosq1 −msinq1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q̇1
q̇2
q̇3
q̇4
q̇5
q̇6

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

q4
q5
q6

−h1
mg +Fz −h2

MM (t)
r − (mg +Fz)sinq1 −h3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D.21)

with

h1 = −ml sinq1q2
4 + cdlcosq1q4 + (csh + cd)q5 + (ksh +kd)q2 + kdl sinq1 (D.22)
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h2 = −mlcosq1q2
4 − cdl sinq1q4 +(csv + cd)q6

+(ksv +kd)q3 −kdl (1− cosq1) (D.23)

h3 = cd

[
lq4 + q5 cosq1 − q6 sinq1

]
+ kd

[
q2 cosq1 − (q3 − l)sinq1

]
(D.24)

is analyzed numerically by the ode45 solver of Matlab [Mathworks, 2018]. After having
solved Eq. D.21, the response of the drum center (ẍM , z̈M ), is obtained from Eqs C.11
with

δ̈ =
MM (t)+ r

[
h1 cosδ −h3 +

(
mg +Fz −h2

)
sinδ

]
l
r I

(D.25)

ẍA = −lcosδδ̈ − h1
m

(D.26)

s̈A = l sinδδ̈ +
1
m

(mg +Fz −h2) (D.27)

Slip phase
To rewrite the equations of motion for the slip phase, Eqs C.17, C.18, C.19, and the
coupling condition, Eq. C.20, in the state space, at first the latter equation needs to
be differentiated with respect to time and multiplied by m/csh,

fμ1mẍA −fμ2
csv

csh
ms̈A +

m

csh

{
fμ1
[
kshẋA − (csv ṡA +ksvsA) δ̇

]
−fμ2

[
ksv ṡA +(cshẋA +kshxA) δ̇

]}
= 0 (D.28)

Subsequently, the transformations

q
(sl)
1 = δ , q

(sl)
2 = xA , q

(sl)
3 = sA , q

(sl)
4 = ϕ

q
(sl)
5 = δ̇ , q

(sl)
6 = ẋA , q

(sl)
7 = ṡA , q

(sl)
8 = ϕ̇

(D.29)
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lead to the first-order ODEs for the slip phase,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 ml mfμ1 −mfμ2 0
0 0 0 0 0 msinq

(sl)
1 mcosq

(sl)
1 0

0 0 0 0 0 mfμ1 − csv
csh

mfμ2 0
0 0 0 0 0 sgnμmsinq

(sl)
1 sgnμmcosq

(sl)
1

I
r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇
(sl)
1

q̇
(sl)
2

q̇
(sl)
3

q̇
(sl)
4

q̇
(sl)
5

q̇
(sl)
6

q̇
(sl)
7

q̇
(sl)
8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q
(sl)
5

q
(sl)
6

q
(sl)
7

q
(sl)
8

−fμ2 (mg +Fz)−h
(sl)
1

(mg +Fz)cosq
(sl)
1 −h

(sl)
3

−h
(sl)
4

MM (t)
r −h

(sl)
2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D.30)

with

h
(sl)
1 = sgnμmlq

(sl)
5

2
+ cd

[
lq

(sl)
5 +fμ1q

(sl)
6 −fμ2q

(sl)
7

]
+kd

[
− sgnμl +fμ1q

(sl)
2 −fμ2

(
q

(sl)
3 − l

)]
(D.31)

h2
(sl) = −sgnμ

{
(mg +Fz)cosq

(sl)
1 +mlq

(sl)
5

2 − cd

(
q

(sl)
6 sinq

(sl)
1 + q

(sl)
7 cosq

(sl)
1

)
−kd

[
q

(sl)
2 sinq

(sl)
1 + q

(sl)
3 cosq

(sl)
1 + l

(
1− cosq

(sl)
1

)]}
(D.32)

h3
(sl) = −mlq

(sl)
5

2
+(csh + cd)q

(sl)
6 sinq

(sl)
1 +(csv + cd)q

(sl)
7 cosq

(sl)
1

+(ksh +kd)q
(sl)
2 sinq

(sl)
1 +(ksv +kd)q

(sl)
3 cosq

(sl)
1 +kdl

(
1− cosq

(sl)
1

)
(D.33)

h
(sl)
4 =

m

csh

{
fμ1
[
kshq

(sl)
6 −

(
csvq

(sl)
7 +ksvq

(sl)
3

)
q

(sl)
5

]
−fμ2

[
ksvq

(sl)
7 +

(
cshq

(sl)
6 +kshq

(sl)
2

)
q

(sl)
5

]}
(D.34)

sgn = sign(vrel) (D.35)
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which are solved numerically by the ode45 solver of Matlab. After having solved
Eq. D.30, the response of the drum center (ẍM , z̈M ), is obtained from Eqs C.11 with

δ̈ =
1

ml
(

cosδfμ1 + csv
csh

sinδfμ2
){h4

(sl) −fμ1
[
h1

(sl) cosδ +h3
(sl)fμ2

]

−fμ2
csv

csh

[
mg +Fz +h1

(sl) sinδ −h3
(sl)fμ1

]}
(D.36)

ẍA = −lcosδδ̈ − 1
m

(
h1

(sl) cosδ +h3
(sl)fμ2

)
(D.37)

s̈A = l sinδδ̈ +
1
m

(
mg +Fz +h1

(sl) sinδ −h3
(sl)fμ1

)
(D.38)





Appendix E
Lissajous curves

In mathematics, a Lissajous curve, also known as Lissajous figure or Bowditch curve
(e.g. [Lawrence, 1972], [Klotter, 1981], [Wikipedia, 2019]), is the pattern that results
when two sinusoidal curves,

x(t) = x0 sin(ωxt) , z(t) = z0 sin(ωzt+θz) (E.1)

are plotted against each other, i.e. the plot z(t) versus x(t). Variables x0 and z0
are the amplitudes of the sinusoidal curves, ωx and ωz denote their corresponding
frequencies, and θz is the phase difference (phase lag) between these curves. This family
of curves was first investigated by Nathaniel Bowditch in 1815, and later in much more
detail (independently) by Jules-Antoine Lissajous in 1857 ([Ferréol, 2017b], [MacTutor
History of Mathematics archive, 2019]). The shape of the figure is highly sensitive to
the frequency ratio ωz/ωx. Visually, the ratio ωz/ωx determines the number of “lobes”
of the resulting figure [Wikipedia, 2019]. For instance, from a ratio of

ωz

ωx
=

2
1

(E.2)

results a figure with two major lobes, as shown in Figs E2, E3 and E4. The amplitude
ratio x0/z0 determines the ratio of width to height of the curve [Wikipedia, 2019]. For
example, a ratio of

x0
z0

=
2
1

(E.3)

produces a figure that is twice as wide (2z0) as it is high (z0). The value θz causes
the “rotation” of the curve. Any non-zero θz produces a figure that appears to be
rotated, either as a left–right or an up–down rotation (depending on the frequency
ratio) [Wikipedia, 2019]. The shape of these curves is therefore characteristic of the
phase lag and the frequencies of the motion.

x(t) and z(t) according to Eq. E.1 are plotted in Figs E1 to E5 (a) versus time
(time histories) and (b) against each other (Lissajous figure) for five selected phase
lags (θz) based on the frequency and amplitude ratio given by Eqs E.2 and E.3. To
this end, x0 and ωx are assumed as follows:

x0 = 1 , ωx =
2π

Tx
= 2πf̄ = ν̄ (E.4)
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Figure E1: (a) Time history of x(t) and z(t) for a time window of t = Tx, and (b)
plot z(t) over x(t); θz = −π/2

Figure E2: (a) Time history of x(t) and z(t) for a time window of t = Tx, and (b)
plot z(t) over x(t); θz = −π/4

Figure E3: (a) Time history of x(t) and z(t) for a time window of t = Tx, and (b)
plot z(t) over x(t); θz = 0
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Figure E4: (a) Time history of x(t) and z(t) for a time window of t = Tx, and (b)
plot z(t) over x(t); θz = π/4

Figure E5: (a) Time history of x(t) and z(t) for a time window of t = Tx, and (b)
plot z(t) over x(t); θz = π/2

Figure E6: Ratio A(Liss)/(4x0z0) in dependence of the phase lag θz
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Fig. E3 (θz = 0) shows a curve that resembles a recumbent figure eight (“lying eight”
or eight curve [Lawrence, 1972]) or the figure of infinity. With increasing phase lag
θz = 0, the eight-shaped figure degenerates to a parabola (θz = π/2) with their vertex
at (x = 0,z = z0), see Fig. E5. A study of Figs E2 to E4 reveals that the resultant curve
is inscribed in a rectangle of sides 2x0 and 2z0 [Bajaj, 1988]. The sides of the rectangle
are tangential to the Lissajous curve at a number of points. The ratio of the numbers
of these tangential points along the x-axis to those along the y-axis is the inverse of the
ratio of the corresponding frequencies [Bajaj, 1988]. It is also worth mentioning that
the area within the curve decreases with increasing or decreasing phase lag θz = 0. If
θz = 0, the resultant curve resembles the aforementioned recumbent figure eight and
thus, the area in this figure is maximum. In this case, the area is computed as follows
[Nykamp, 2018]:

A(Liss) =
2
3

[4x0z0] (θz = 0) (E.5)

The area in the eight curve illustrated by Fig. E3 is therefore 2/3 of the area in the
rectangle of sides 2x0 = 2 and 2z0 = 1 that encloses the eight-shaped curve, i.e. 4/3.
Any non-zero θz reduces the ratio A(Liss)/(4x0z0), see Fig. E6. Note that the curve
shown in the Fig. E6 can be approximated by the following equation,

A(Liss)

4x0z0
= 1.858θ̃4

z +0.492θ̃3
z −3.391θ̃2

z +0.007θ̃z +
2
3

(E.6)

where θ̃z = |θz[rad]|/π. So to easily compute the area within the Lissajous curve
resulting from the frequency ratio given by Eq. E.2, only the amplitudes x0 and z0,
and the phase lag θz need to be known.



Appendix F
Finite Element model assuming

linear elastic soil behavior

The numerical model and the results presented in the following are summarized in
paper 3 as discussed in the introduction (Section 1.5).

F.1 Numerical model

To validate the 3DOF lumped parameter model (“LPM”), described in Section 2.2, in
ABAQUS/CAE a two-dimensional FE model was created that allows the simulation
of the response of the drum oscillating in a defined semi-circular notch on the surface
of a linear elastic soil halfspace (see Fig. F1). In the contact area between drum and
subsoil of this model, a constant coefficient of friction μ is assumed.

MM rr

kdkd

cdcd

kdkd cdcd

finite elements

Figure F1: Sketch of the Finite Element model (without mesh)
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F.2 Results
The steady state accelerations of the drum center found by the proposed semi-circular
3DOF LPM (see Appendix C.2) are compared both with selected drum accelerations
recorded during in situ field tests (4th pass with a HAMM HD+ 90 VO tandem roller
on gravel, based on [Pistrol, 2016]) and with outcomes of the linear elastic FE model
shown in Fig. F1.

In particular, the frequency content of the drum accelerations ẍM and z̈M is set in
contrast (see Fig. F2 (a) and (b) respectively). The computed drum responses of the
3DOF LPM and the FE model are in good agreement if the contact length resulting
from the FE simulations is used when calculating the parameters of the spring-dashpot
damper elements, which describe the elastic soil halfspace according to Section 2.2.2
(“LPM-1”). When dividing the damping coefficients csh and csv by the factor of two
(“LPM-2”), the vertical responses match even better. The amplitudes of the computed
accelerations ẍM are slightly larger than the ones of the measured response, except
at the second harmonic, where the corresponding overtone is overestimated by both
the analytical and FE model (see Fig. F2 (a)). In contrast, the amplitudes of the
computed accelerations z̈M are smaller than the ones of the recorded accelerations (see
Fig. F2 (b)). The larger the damping coefficients csh and csv are, the better is the
prediction of the overtone at the second harmonic (compare “LPM-1” and “LPM-2” in
Fig. F2 (b)). The difference between the computed and the measured drum response
is mainly due to the fact that in the recorded response the transition from stick to slip
phases and vice versa is smoother than in the analytical and numerical model, and
consequently, the “peak cut” of the drum accelerations is less pronounced. However,
the analytical model is capable of predicting the overall response behavior observed in
the field.

Figure F2: Frequency spectrum of the (a) horizontal and (b) vertical acceleration in
the drum center; computed vs. recorded accelerations



Appendix G
Hypoplastic constitutive model

G.1 Basic hypoplastic constitutive model
The notion of hypoplasticity has been introduced by Kolymbas [1991], but the ideas
behind this constitutive model are much older. Starting in the 1970’s (e.g. [Gudehus
and Kolymbas, 1979], [Kolymbas, 1978]), hypoplastic rate constitutive equations were
developed focusing on granular materials such as sands or gravels with applications in
soil mechanics (e.g. [Bauer, 1996], [Gudehus, 1996], [Niemunis and Herle, 1997], [von
Wolffersdorff, 1996]). The hypoplastic constitutive model considered in the present
paper was developed at the University of Karlsruhe, i.e. the so-called Karlsruhe hy-
poplasticity.

In the following brief summary of this constitutive model, the common sign con-
vention of solid mechanics (compression negative) is adopted throughout. In line with
the Terzaghi principle of effective stress, all stresses are effective stresses. Tensors of
second order are denoted by bold letters (e.g. T, D), and fourth order tensors by
calligraphic letters (e.g. L, M). Different types of tensorial multiplication are used:
T : D = TijDij , L : D = LijklDkl, T ·D = TijDjk.

In the hypoplastic constitutive relations the objective (Jaumann) co-rotational
stress rate tensor T̊ is determined by the Cauchy skeleton (effective) stress tensor
T, the strain rate (Eulerian stretching) tensor D, and the void ratio in the considered
granular material e according to

T̊ = h(T,D,e) (G.1)

where h is a nonlinear tensor-valued function of T, D and e, based on the representation
theorem for isotropic tensor functions. The function h is incrementally non-linear in D
to capture the stiffness change in loading and unloading cycles [Fellin and Ostermann,
2002]. Since the behavior of the granular material is assumed to be time independent,
basic hypoplastic laws are time-scale invariant Thus, h is positively homogeneous of the
first degree in D [Fellin and Ostermann, 2002]. Furthermore, h is homogeneous in T
in order to obtain proportional stress-paths in case of proportional strain-paths [Fellin
and Ostermann, 2002]. Eq. G.1 defines the objective (frame-indifferent) velocity, i.e.
the velocity perceived by a co-rotated observer, whose change is linked to change of
the stress tensor T, i.e. the so-called “co-rotated stress rate tensor” T̊) [Kelm, 2004]
or Zaremba-Jaumann rate of Cauchy stress ([Kolymbas, 1991], [Aubram, 2017]).
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Note, hypoplastic models use equations of the so-called rate type, i.e. incremental or
evolution equations, but the material behavior to be described by Eq. G.1 is considered
to be rate-independent and, thus, the lack of argotropy is expressed by the fact that
the Jaumann rate of Cauchy stress is positively homogeneous of the first degree in D
(Kolymbas [1991], Xu et al [2016]).

The hypoplastic constitutive model proposed by von Wolffersdorff [1996] (subse-
quently referred to a “basic hypoplastic model”), i.e. the synthesis of the research work
carried out in Karlsruhe on this subject, can be expressed through the tensor function

T̊ = fbfe
1

tr(T̂ · T̂)

[
F 2D+a2T̂tr(T̂ ·D)+fdaF (T̂+ T̂∗)‖D‖

]
(G.2)

and
T̊ = L(T,e) : D+N(T,e)‖D‖ (G.3)

respectively. The latter represents the hypoplastic equation in its general form. The
term L(T,e) : D in Eq. G.3 is linear both in T and in D [Kelm, 2004] and equivalent to
elasticity producing elliptical response envelope [Mašín, 2019b]. The term N(T,e)‖D‖
is linear in T and nonlinear in D [Kelm, 2004] and causes translation of the center of
the response envelope [Mašín, 2019b]. The linear stiffness tensor of fourth order L and
the nonlinear stiffness tensor of second order N are calculated as follows:

L := fbfe
1

tr(T̂ · T̂)
(F 2I +a2T̂T̂) (G.4)

N := fdfbfe
Fa

tr(T̂ · T̂)
(T̂+ T̂∗) (G.5)

The used stress variables, i.e. the non-dimensional stress tensor T̂ and its deviator T̂∗,
are defined as follows,

T̂ :=
T

tr(T)
, T̂∗ := T̂− 1

3
I (G.6)

I is a fourth order unity tensor with components Iijkl = 1
2(1ik1jl +1il1jk). The influence

of the mean pressure ps = −tr(T̂)/3 (barotropy) and void ratio e are considered in the
hypoplastic model through three scalar parameters, i.e. the barotropy factor fb,

fb :=
hs

n

(
ei0
ec0

)β 1+ei

ei

(3ps

hs

)1−n [
3+a2 −a

√
3
(

ei0 −ed0
ec0 −ed0

)α]−1
(G.7)

and the pyknotropy factors fd and fe,

fd :=
(

e−ed

ec −ed

)α

, fe :=
(

ec

e

)β

(G.8)

where ed is the void ratio for densest packing, ec the critical void ratio, and ei the void
ratio for loosest packing (for zero mean pressure the corresponding values are denoted
by ed0, ec0 and ei0). Variable hs denotes the granular hardness (dimension of stress),
the exponent n is a constant (0.18 (0.30) < n < 0.50 [Mašín, 2019b]([Gudehus, 1996])),
the parameter α controls the dependency of the peak friction angle on the relative void
ratio e−ed

ec−ed
(0 < α < 1 [Bauer, 1996]), the parameter β controls the increase of stiffness
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Figure G1: Pressure dependence of void ratios, based on ([Bauer, 1996], [Gudehus,
1996])

with increasing relative density (1 < β < 1.1 (4) [Gudehus, 1996]([Mašín, 2019b])), and
a is a parameter that depends on the critical state friction angle ϕc according to

a :=
√

3(3− sinϕc)
2
√

2sinϕc

(G.9)

With increasing mean pressure ps a decrease of the characteristic void ratios (maximum
(ei), minimum (ed) and critical (ec) void ratio) of a granular material is observed (see
Fig. G1) that is described by Bauer [1996] using the following compression law

ei = ei0 exp
[
−
(3ps

hs

)n]
(G.10)

where the void ratio ei is considered as an upper bound for a given mean pressure ps,
as shown in Fig. G1.

Gudehus [1996] postulated that the pressure dependence of ec and ed is related to
that one for ei,

ec

ei
=

ec0
ei0

,
ed

ei
=

ed0
ei0

, (G.11)

The factor F for adapting the failure criterion of Matsuoka–Nakai in the deviator
plan is given by

F :=

√
1
8

tan2 ψ +
2− tan2 ψ

2+
√

2tanψ cos3θ
− 1

2
√

(2)
tanψ (G.12)

with
tanψ :=

√
3‖T̂∗‖ (G.13)

and

cos3θ := −√
6

tr(T̂∗ · T̂∗ · T̂∗)
[T̂∗ : T̂∗]3/2

(G.14)
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With the assumed incompressibility of the grains and constant soil mass, respec-
tively, the evolution of the void ratio e can be described by ([Gudehus, 1981], [Gudehus,
1996], [Fellin et al, 2009])

ė := (1+e)tr(D) (G.15)

In summary, the basic approach for the hypoplastic constitutive model requires
eight parameters: the critical state friction angle ϕc, the granular hardness hs, the
exponent n controlling the shape of the limiting void ratio curves, the reference void
ratios ei0, ec0 and ed0 specifying positions of the limiting void ratio curves, the expo-
nent α controlling the dependency of peak friction angle on relative density, and the
exponent β controlling the dependency of soil stiffness on relative density.

G.2 Extended hypoplastic constitutive model
The here used extended version of hypoplasticity with intergranular strain was pro-
posed by Niemunis and Herle [1997]. In this version, the general stress–strain relation
is expressed through the following tensor function,

T̊ = M(T,δ,e) : D (G.16)

where M is the fourth order stiffness tensor of the material (material tangent tensor)
that is calculated from the hypoplastic tensors L(T,e) and N(T,e), and the new
state variable intergranular strain δ, which is a strain-like tensor, using the following
interpolation function

M := [ρχmT +(1−ρχ)mR]L+
{

ρχ(1−mT )L : δ̂δ̂ +ρχNδ̂ δ̂ : D > 0
ρχ(mR −mT )L : δ̂δ̂ δ̂ : D ≤ 0

(G.17)

Parameter mR controls the magnitude of the very small strain shear modulus in the
initial loading, and upon a 180◦ change in direction of strain path, the parameter
mT controls the initial shear modulus upon 90◦ strain path reversal and the expo-
nent χ controls the interpolation between the reversible elastic response and nonlinear
hypoplastic response [Mašín, 2019b].

In Eq. G.17
ρ := ‖δ‖/R (G.18)

denotes the normalized length of the intergranular strain with the radius of the elastic
strain range R (in the strain space) as maximum value. According to this formulation,
the intergranular strain is fully mobilized for ρ = 1, and no intergranular strain occurs
when ρ = 0. The direction of the intergranular strain δ̂ can be calculated as follows,

δ̂ :=
{

δ/‖δ‖ δ �= 0
0 δ = 0

(G.19)

The evolution equation for the intergranular strain tensor δ̊ reads as,

δ̊ =
{

(I − δ̂δ̂ρβr ) : D δ̂ : D > 0
D δ̂ : D ≤ 0

(G.20)
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where the exponent βr is a model parameter controlling the rate of the intergranular
strain evolution, and consequently, the stiffness degradation curve [Mašín, 2019b] and
I is a fourth order unity tensor.

For the one-dimensional case, Eq. G.20 can be interpreted as follows [Kelm, 2004]: If
δ̂ : D > 0, a gradual transition from elastic, intergranular deformation (deformation be-
tween the grains) to plastic deformation (contact displacements, i.e. the (hypo-)plastic
strains) takes place. If δ̂ : D ≤ 0, the deformations are purely elastic. Consequently,
after each change in direction of strain path, the material responds first elastically and
then gradually plastically again.

In summary, the extended hypoplastic constitutive model [Niemunis and Herle,
1997] requires five additional parameters, i.e. R, mR, mT , βr, and χ.





Appendix H
UMAT for the extended hypoplastic

constitutive model

Here, the basics of the user defined material subroutine, the so-called UMAT, for the
extended hypoplastic constitutive model used for the numerical investigations pre-
sented in Chapter 3, are briefly described. The original UMAT has been developed by
Claudio Tamagnini in 2005. It has since been further developed and updated to new
models by David Mašín.

The main program (ABAQUS/Standard) passes at time ta the actual Cauchy stress
tensor ΔT(ta) and the time increment Δt to the user defined material subroutine
(UMAT) that integrates the constitutive equations, i.e. Eqs H.1 and H.2, with a fully
given stretching tensor D = Δε

Δt using an error controlled time sub-stepping. The UMAT
returns the co-rotational part of the Cauchy stress tensor T(ta)+ T̊(ta) ·Δt at the end
of the time step and the Jacobian ∂T(ta+Δt)

∂Δε = ∂ΔT
∂Δε , i.e. the derivative of the stress

increment with respect to the strain increment. Based on these informations (updated
stress tensor and consistent tangent stiffness), a new estimate for the strain increment
is calculated by ABAQUS and the whole procedure is iterated until convergence is
reached. Note that displacement driven finite element methods require the so-called
consistent (algorithmic) tangent operator, i.e. the Jacobian of the model, for fast
convergence [Fellin et al, 2009].

Since ABAQUS handles large strain effects, the objective rates of the state variables
are equal to the time rates in the subroutine [Fellin et al, 2009]. Thus, the evolution
equations to be solved by the UMAT for 0 ≤ t ≤ Δt are [Fellin et al, 2009]

d

dt
T = h(T,D,Q) , T(0) = σ(ta) (H.1)

d

dt
Q = k(T,D,Q) , Q(0) = δ(ta) (H.2)

The constitutive equation of the rate of the stress tensor T is given by Eq. G.16.
The rate of the additional state variable Q is defined by Eq. G.20 (b). In [Fellin et al,
2009] the variational equations

d

dt

∂T
∂D

=
∂h
∂T

∂T
∂D

+
∂h
∂Q

∂Q
∂D

+
∂h
∂D

,
∂T
∂D

(0) = 0 (H.3)
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Figure H1: Flow chart for ABAQUS and UMAT intergration, based on Ribeiro et al
[2013]

d

dt

∂Q
∂D

=
∂k
∂T

∂T
∂D

+
∂k
∂Q

∂Q
∂D

+
∂k
∂D

,
∂Q
∂D

(0) = 0 (H.4)

are used to find the Jacobian ∂ΔTij

∂Δεkl
by implementation with a numerical approximation

according to Fellin and Ostermann [2002]. The Jacobian [Fellin and Ostermann, 2002]

∂ΔT
∂Δε

=
∂T(ta +Δt)

∂Δε
=

1
Δt

∂T
∂D

(Δt) (H.5)

must be precisely known to achieve fast (quadratic) convergence in the Newton-type
iteration performed in ABAQUS. In order to obtain the Jacobian, Eqs H.3 and H.4
must be solved simultaneously with Eqs H.1 and H.2. Due to the complicated struc-
ture of the constitutive law, the calculation (and implementation) of the expressions
appearing on the right-hand side of Eqs H.3 and H.4 are a tedious task [Fellin and
Ostermann, 2002]. Thus, Fellin and Ostermann [2002] recommend to replace Eqs H.3
and H.4 by an approximation that is obtained by numerical differentiation.

The explicit adaptive integration scheme with local sub-stepping implemented in
the used UMAT [Gudehus et al, 2008] coincides with the Richardson extrapolation of
the explicit Euler method in [Fellin et al, 2009]. The nonlinear initial value problem,

d

dt
y = f(y(t)) , y(0) = y0 (H.6)

where y collects the components of T and Q, respectively, is solved using the Runge-
Kutta method estimating the accuracy of the solution according to Fehlberg [1969]
and the new time step according to Hull et al [1972]. For the tolerance, a value of 10−3

is used in all numerical simulations.
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Note that the effective stress T used in the model formulation of the UMAT is
replaced by T−1pt. A non-zero value of the apparent cohesion pt is needed to overcome
problems with the stress-free state. If pt = 0, it is replaced by a default value of 1 kPa in
the “PLAXIS implementation of HYPOPLASTICITY including standalone ABAQUS
umat subroutine” [Gudehus et al, 2008]. If mR ≤ 0, in the UMAT [Gudehus et al, 2008]
the intergranular strain concept is switched off, and the problem is simulated using the
basic hypoplastic model.





Appendix I
Numerical modeling

I.1 Finite Element Models

In the framework of the development of the presented numerical model, test runs
have been performed based on a model with a linear elastic, isotropic subsoil that
is covered by a hypoplastic soil layer. The “layer” is modeled using the hypoplastic
constitutive law as described in Section 3.2.7. This model is subsequently referred to as
“model A” (see Fig. I1). The layer thicknesses is increased from 0.25 m (“model A(25)”)
to 1 m (“model A(100)”) in steps of 0.25 m to investigate the influence of the assumed
linear elastic subsoil. When assuming linear elastic subsoil behavior, a density ρ of
2200 kg/m3, a Young’s modulus E of 250×106 N/m2 and a Poisson’s ratio ν of 0.3
have been defined as standard values (see Section 3.2.7).

Modeling both layer and subsoil using the hypoplasticity model according to Sec-
tion 3.2.7 results in the model shown in Fig. I2. In the very first computations, for the
subsoil up to a depth of 1 m the apparent cohesion pt is assumed to be 5 kN/m2 while
to the soil below a reduced apparent cohesion of 1 kN/m2 is assigned. Note that the
numerical model described in Section 3.2 corresponds to model B with an apparent
cohesion pt being 5 kN/m2 in the entire soil domain.

The models were refined stepwise in the soil domain of potential compaction during
its development. The resulting mesh consists of 11,795 elements (coarse mesh, subse-
quently referred to as “mesh I”) and 37,569 elements (medium fine mesh, subsequently
referred to as “mesh II”), respectively (including the infinite elements). Additionally,
convergence studies were performed with an even more refined mesh using a model
with 46,326 elements (fine mesh, subsequently referred to as “mesh III”) and a re-
duced minimum element size of 0.01 m x 0.01 m. The results have shown that the finer
meshed model does not improve accuracy and, moreover, increases not only computa-
tion time but also the required disk space considerably. Note, the studies presented in
Chapter 3 are therefore based on model B with mesh II.

In the following, selected results (compaction effect, soil stresses and drum re-
sponse) based on the FE models A and B are presented. Computations using the
“surface protective measures” described in Section 3.2.8 are indicated by “PF” for
protective foil and “SD” for surface dampers.
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Figure I1: Sketch of FE “model A” (without mesh, without suspension)

Figure I2: Sketch of FE “model B” (without mesh, without suspension)
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I.2 Results based on “model A” with and without
“surface dampers (SD)”

Figure I3: Distribution of void ratio e in the upper soil layer of 0.25 m thick-
ness after the (a) first, (b) second, (c) third and (d) fourth oscillatory roller pass;
model A(25) / mesh I, e0 = 0.85, μ = 0.50, pt = 5 kN/m2, cx = cy = cx45 = cy45 =
1000 Ns/m
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Figure I4: Normalized void ratio profile e/e0 at x = 0, corresponds to Fig. I3

Figure I5: Time history of the (a) horizontal and (b) vertical acceleration in the
drum center M during four subsequent oscillatory roller passes; model A(25) / mesh I,
e0 = 0.85, μ = 0.50, pt = 5 kN/m2, cx = cy = cx45 = cy45 = 1000 Ns/m

Figure I6: Normalized frequency spectrum of the (a) horizontal and (b) vertical
acceleration in the drum center M for one second of the first, second, third, and fourth
oscillatory roller pass, based on Fig. I5
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Figure I7: Plot ÿM over ẍM for a time window of 1 s (grey lines) and two represen-
tative oscillating cycles (green lines), based on Fig. I5; (a) first and (b) second roller
pass

Figure I8: Plot ÿM over ẍM for a time window of 1 s (grey lines) and two represen-
tative oscillating cycles (green lines), based on Fig. I5; (a) third and (b) fourth roller
pass

Figure I9: Distribution of void ratio e in the upper soil layer of 0.5 m thickness after
an oscillatory roller pass; model A(50) / mesh I, e0 = 0.85, μ = 0.50, pt = 10 kN/m2
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Figure I10: Mean normalized void ratio profile e/e0 in the soil region −0.5m ≤ x ≤
0.5m, corresponds to Fig. I9

Figure I11: Distribution of void ratio e in the upper soil layer of 0.5 m thickness
after an oscillatory roller pass; model A(50) / mesh I / SD, e0 = 0.75, μ = 0.50, pt =
5 kN/m2, cx = cy = cx45 = cy45 = 1000 Ns/m

Figure I12: Mean normalized void ratio profile e/e0 in the soil region −0.5m ≤ x ≤
0.5m, corresponds to Fig. I11
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Figure I13: Distribution of void ratio e in the upper soil layer of 0.75 m thickness
after an oscillatory roller pass; model A(75) / mesh I / SD, e0 = 0.85, μ = 0.50, pt =
5 kN/m2, cx = cy = 2500 Ns/m

Figure I14: Mean normalized void ratio profile e/e0 in the soil region −0.5m ≤ x ≤
0.5m, corresponds to Fig. I13

Figure I15: Distribution of void ratio e in the upper soil layer of 0.75 m thickness
after an oscillatory roller pass; model A(75) / mesh I / SD, e0 = 0.85, μ = 0.50, pt =
5 kN/m2, cx = cy = 3500 Ns/m
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Figure I16: Mean normalized void ratio profile e/e0 in the soil region −0.5m ≤ x ≤
0.5m, corresponds to Fig. I15

Figure I17: Distribution of void ratio e in the upper soil layer of 1 m thickness after an
oscillatory roller pass; model A(100) / mesh I / SD, e0 = 0.85, μ = 0.50, pt = 10 kN/m2,
cx = cy = 10,000 Ns/m

Figure I18: Mean normalized void ratio profile e/e0 in the soil region −1m ≤ x ≤ 0,
corresponds to Fig. I17
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Figure I19: Distribution of void ratio e in the upper soil layer of 1 m thickness after
an oscillatory roller pass; model A(100) / mesh II / SD, e0 = 0.85, μ = 0.50, pt =
10 kN/m2, cx = cy = 500 Ns/m

Figure I20: Mean normalized void ratio profile e/e0 in the soil region −0.5m ≤ x ≤
0.5, corresponds to Fig. I19

Figure I21: Dynamic part of the (a) vertical and (b) shear stress component at a
depth of 0.49 m; model A(100) / mesh II / SD, e0 = 0.85, μ = 0.50, pt = 10 kN/m2,
cx = cy = 500 Ns/m
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Figure I22: Distribution of void ratio e in the upper soil layer of 1 m thickness after
an oscillatory roller pass; model A(100) / mesh II / SD, e0 = 0.70, μ = 0.50, pt =
10 kN/m2, cx = cy = 500 Ns/m

Figure I23: Mean normalized void ratio profile e/e0 in the soil region −1.3m ≤ x ≤
−0.3, corresponds to Fig. I22

Figure I24: Time history of the (a) horizontal and (b) vertical acceleration
in the drum center M during an oscillatory roller pass on initially loose soil;
model A(100) / mesh II / SD, e0 = 0.85, μ = 0.50, pt = 10 kN/m2, cx = cy = 500 Ns/m
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Figure I25: Normalized frequency spectrum of the (a) horizontal and (b) vertical
acceleration in the drum center M for one second of an oscillatory roller pass, based
on Fig. I24

Figure I26: Time history of the (a) horizontal and (b) vertical acceleration
in the drum center M during an oscillatory roller pass on initially dense soil;
model A(100) / mesh II / SD, e0 = 0.70, μ = 0.50, pt = 10 kN/m2, cx = cy = 500 Ns/m

Figure I27: Normalized frequency spectrum of the (a) horizontal and (b) vertical
acceleration in the drum center M for one second of an oscillatory roller pass, based
on Fig. I26
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Figure I28: Plot ÿM over ẍM for a time window of 1 s (grey lines) and two represen-
tative oscillating cycles (green and red lines) based on (a) Fig. I24 and (b) Fig. I26

I.3 Results based on “model B” without “protective
measures”

Figure I29: Distribution of (a) void ratio e and (b) normalized void ratio e/e0 in
the upper soil layer of 1 m thickness during an oscillatory roller pass; t = 1.286 s
(model B / mesh II, e0 = 0.90, μ = 0.50, pt = 5(1) kN/m2)
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Figure I30: Distribution of void ratio e in the upper soil layer of 1 m thickness during
compaction (a) without and (b) with oscillation; model B / mesh III, e0 = 0.90, μ =
0.50, pt = 5(1) kN/m2

e/e0

Figure I31: Distribution of the normalized void ratio e/e0 in the upper soil layer of
1 m thickness after a static roller pass; model B / mesh III, e0 = 0.90, μ = 0.50, pt =
5(1) kN/m2
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Figure I32: (a) Stress and (b) strain components due to an oscillatory (solid lines) and
a static roller pass (dashed lines), respectively; depth y = −0.24 m; model B / mesh II,
e0 = 0.90, μ = 0.50, pt = 5(1) kN/m2

Figure I33: Dynamic part of the (a) vertical and (b) shear stress component at a
depth of 0.51 m; model B / mesh III, e0 = 0.90, μ = 0.50, pt = 5(1) kN/m2

Figure I34: Normalized void ratio e/e0 vs. horizontal distance from a selected
observation point (“E”) at selected soil depths during an oscillatory roller pass;
model B / mesh III, e0 = 0.90, μ = 0.50, pt = 5(1) kN/m2
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Figure I35: Normalized void ratio profile e/e0 for two different initial void ratios e0;
μ = 0.50; model B / mesh II, corresponds to Fig. I29

Figure I36: Normalized void ratio profile e/e0 for two different initial void ratios e0;
μ = 0.50; model B / mesh III, corresponds to Fig. I30

Figure I37: Time history of the (a) horizontal and (b) vertical acceleration in the
drum center M ; model B / mesh II, e0 = 0.90, μ = 0.50, pt = 5(1) kN/m2



152 Appendix I. Numerical modeling

Figure I38: Time history of the (a) horizontal and (b) vertical acceleration in the
drum center M ; model B / mesh II, e0 = 0.80, μ = 0.50, pt = 5(1) kN/m2

Figure I39: Plot ÿM over ẍM for an initial void ratio e0 of (a) 0.90 and (b) 0.80 for a
time window of 1 s (grey lines) and two representative oscillating cycles (green lines),
based on Figs I37 and I38

Figure I40: Normalized frequency spectrum of the (a) horizontal and (b) vertical
acceleration in the drum center M for one second of an oscillatory roller pass; initially
very loose soil (e0 = 0.90); corresponds to Fig. I37
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Figure I41: Normalized frequency spectrum of the (a) horizontal and (b) vertical
acceleration in the drum center M for one second of an oscillatory roller pass; initially
loose soil (e0 = 0.80); corresponds to Fig. I38

I.4 Results based on “model B” with “surface dampers
(SD)”

Figure I42: Distribution of void ratio e in the upper soil layer of 1 m thickness after
an oscillatory roller pass; model B / mesh II / SD, e0 = 0.90, μ = 0.50, pt = 5 kN/m2,
cx = cy = 750 Ns/m

Figure I43: Mean normalized void ratio profile e/e0 in the soil region −0.5m ≤ x ≤
0.5m, corresponds to Fig. I42
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Figure I44: Time history of the (a) horizontal and (b) vertical acceleration in
the drum center M during an oscillatory roller pass on initially very loose soil;
model B / mesh II / SD, e0 = 0.90, μ = 0.50, pt = 5 kN/m2, cx = cy = 750 Ns/m

Figure I45: Plot ÿM over ẍM for a time window of 1 s (grey lines) and two repre-
sentative oscillating cycles (green lines), based on Fig. I44; (a) without and (b) with
node

Figure I46: Normalized frequency spectrum of the (a) horizontal and (b) vertical ac-
celeration in the drum center M for one second of an oscillatory roller pass, corresponds
to Fig. I44
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I.5 Results based on “model B” with “protective foil
(PF)”

Figure I47: Distribution of the normalized void ratio e/e0 in the upper soil layer of
1 m thickness after an oscillatory roller pass on a soil with an initial void ratio e0 of
(a) 0.85, (b) 0.75, and (c) 0.70; model B / mesh II / PF, μ = 0.30, pt = 5(1) kN/m2

Figure I48: Mean normalized void ratio profile e/e0 in the soil region −1m ≤ x ≤ 0,
corresponds to Fig. I47
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Figure I49: Time history of the (a) horizontal and (b) vertical acceleration in the
drum center M during an oscillatory roller pass; model B / mesh II / PF, e0 = 0.85,
μ = 0.30, pt = 5(1) kN/m2; time window: t = 5−6 s

Figure I50: Time history of the (a) horizontal and (b) vertical acceleration in the
drum center M during an oscillatory roller pass; model B / mesh II / PF, e0 = 0.85,
μ = 0.30, pt = 5(1) kN/m2; time window: t = 6−7 s

Figure I51: Normalized frequency spectrum of the (a) horizontal and (b) vertical
acceleration in the drum center M , corresponds to Fig. I49
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Figure I52: Normalized frequency spectrum of the (a) horizontal and (b) vertical
acceleration in the drum center M , corresponds to Fig. I50

Figure I53: Time history of the (a) horizontal and (b) vertical acceleration in the
drum center M during an oscillatory roller pass; model B / mesh II / PF, e0 = 0.75,
μ = 0.30, pt = 5(1) kN/m2; time window: t = 5−6 s

Figure I54: Time history of the (a) horizontal and (b) vertical acceleration in the
drum center M during an oscillatory roller pass; model B / mesh II / PF, e0 = 0.75,
μ = 0.30, pt = 5(1) kN/m2; time window: t = 6−7 s
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Figure I55: Normalized frequency spectrum of the (a) horizontal and (b) vertical
acceleration in the drum center M , corresponds to Fig. I53

Figure I56: Normalized frequency spectrum of the (a) horizontal and (b) vertical
acceleration in the drum center M , corresponds to Fig. I54

Figure I57: Time history of the (a) horizontal and (b) vertical acceleration in the
drum center M during an oscillatory roller pass; model B / mesh II / PF, e0 = 0.70,
μ = 0.30, pt = 5(1) kN/m2; time window: t = 5−6 s
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Figure I58: Time history of the (a) horizontal and (b) vertical acceleration in the
drum center M during an oscillatory roller pass; model B / mesh II / PF, e0 = 0.70,
μ = 0.30, pt = 5(1) kN/m2; time window: t = 6−7 s

Figure I59: Normalized frequency spectrum of the (a) horizontal and (b) vertical
acceleration in the drum center M , corresponds to Fig. I57

Figure I60: Normalized frequency spectrum of the (a) horizontal and (b) vertical
acceleration in the drum center M , corresponds to Fig. I58
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Figure I61: Plot ÿM over ẍM for an initial void ratio e0 of 0.85 for a time window
of 1 s (grey lines) and two representative oscillating cycles (green lines), based on (a)
Fig. I49 and (b) Fig. I50

Figure I62: Plot ÿM over ẍM for an initial void ratio e0 of 0.75 for a time window
of 1 s (grey lines) and two representative oscillating cycles (green lines), based on (a)
Fig. I53 and (b) Fig. I54

Figure I63: Plot ÿM over ẍM for an initial void ratio e0 of 0.70 for a time window
of 1 s (grey lines) and two representative oscillating cycles (green lines), based on (a)
Fig. I57 and (b) Fig. I58



Abbreviations

CCC Continuous Compaction Control
DOF degree of freedom
FE Finite Element
LPM lumped parameter model
PF protective foil
SD surface dampers
SDOF single degree of freedom

Lumped parameter modeling
0 origin of the logarithmic spiral representing the settlement trough or center

of the semi-circular settlement trough
1 start of the logarithmic spiral
a size parameter of the logarithmic spiral, i.e. the distance from the spiral

start to the origin 0 (a > 0)
a0 half contact length between drum and soil
b drum width
cd viscous damping coefficient of the dashpot dampers representing the damp-

ing effect of the suspension between drum and roller frame
csh viscous damping coefficient of the dashpot damper representing the geo-

metric damping of the soil in horizontal direction
csv viscous damping coefficient of the dashpot damper representing the geo-

metric damping of the subsoil in vertical direction
eu distance of one eccentric lumped mass from the axis of the unbalanced shaft

(unbalance eccentricity)
ew distance of the unbalanced shaft from the drum center (shaft eccentricity)
fi function depending on δ(t), a, k, α, R0, and r (i = 1,2, ...,6)
fμ1, fμ2 functions depending on μ, δ(t) and the sign of vrel

f̄ excitation frequency of the oscillation drum
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162 Abbreviations

g acceleration of gravity
hi abbreviation used in the state-space representation of the equations of mo-

tion of the stick phase (i = 1,2,3)

h
(sl)
i abbreviation used in in the state-space representation of the equations of

motion of the slip phase (i = 1,2,3,4)
k shape parameter of the logarithmic spiral (k > 0)
kd spring stiffness representing the suspension stiffness between drum and roller

frame
ksh spring stiffness representing the horizontal soil stiffness
ksv spring stiffness representing the vertical soil stiffness
l distance between 0 and the drum center M (= R − r)
m mass of the drum
mu mass of one imbalance (eccentric lumped mass)
nu number of unbalanced masses per shaft
r drum radius
sA(t) vertical displacement component of support point A

sign(vrel) signum function of vrel

t time
vrel(t) slip velocity between drum and soil at point C

x horizontal axis (abscissa) pointing right
xA(t) horizontal displacement component of the support point A

xM (t) horizontal displacement component of the drum center M

x
(roll)
M (t) horizontal displacement component of the drum center M relative to the

settlement trough
ẋM (t) horizontal velocity component of the drum center M

ẍM (t) horizontal acceleration component of the drum center M

z vertical axis (ordinate) pointing down
zM (t) vertical displacement component of the drum center M

z
(roll)
M (t) vertical displacement component of the drum center M relative to the set-

tlement trough
żM (t) vertical velocity component of the drum center M

z̈M (t) vertical acceleration component of the drum center M

A support point of the settlement trough
B point on the drum; corresponds to point A at t = 0
C contact point between drum and settlement trough
Fz vertical load applied to the drum center M representing the static axle load

P0 minus drum weight mg

G shear modulus of the soil
I mass moment of inertia of the drum (with respect to M)
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M drum center (axis) and, if t = 0, M corresponds to O

MMd constant driving torque (around the drum axis)
MMu(t) sinusoidal excitation torque (unbalanced shaft moment around the drum

axis)

M
(0)
Mu amplitude of the excitation torque MMu(t)

N normal component of the interface force at point C

O origin of the defined x-z coordinate system
P0 static axle load
R radius of the semicircular settlement trough
R radius of a spiral-shaped (k > 0, a = R0, R(ϕ̄) with ϕ̄(t)) or semicircular

(k = 0, a = R0 = R = const) settlement trough
R0 distance from 0 to the bottom A of the spiral-shaped settlement trough
T tangential component of the interface force at point C

Tf sliding friction force between drum and soil
|ẌM (f)| absolute value of horizontal spectral acceleration of M at frequency f

|Z̈M (f)| absolute value of vertical spectral acceleration of M at frequency f

α angle between the tangent line at A and the radial line 0-A (= arctan 1
k )

δ(t) angle defining the drum position in the settlement trough
δ̇ position angle velocity
ϕ(t) absolute rotation angle of the drum
ϕ̄(t) angle between a and R(t) of the logarithmic spiral
ϕ̄0 angle between a and R0 of the logarithmic spiral
ϕ̇ rotation angle velocity
μ coefficient of friction according to Coulomb’s law of dry friction
ν Poisson’s ratio of the soil
ν̄ angular velocity (= 2πf̄)
ρ soil density

Finite Element modeling
b drum width
cd viscous damper coefficient of the suspension between drum and roller frame
cx viscous damping coefficient of the dashpot dampers that connect the nodes

of the free soil surface to ground in horizontal direction
cy viscous damping coefficient of the dashpot dampers that connect the nodes

of the free soil surface to ground in vertical direction
e void ratio of the soil
e0 initial void ratio of the soil
eu distance of one eccentric lumped mass from the axis of the unbalanced shaft

(unbalance eccentricity)
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ew distance of the unbalanced shaft from the drum center (shaft eccentricity)
f frequency
f̄ excitation frequency of the oscillation drum
g acceleration of gravity
kd stiffness coefficient of the suspension between drum and roller frame
m mass of the drum
mu mass of one imbalance (eccentric lumped mass)
pt apparent cohesion of the soil
r radius of the drum
t time
v0 roller speed
x horizontal axis (abscissa) pointing right
ẍM (t) horizontal acceleration component of the drum center M

y vertical axis (ordinate) pointing up
ÿM (t) vertical acceleration component of M

E Young’s modulus
I mass moment of inertia of the drum (with respect to M)
M drum center (axis)
MMu(t) sinusoidal excitation torque around the drum axis

M
(0)
Mu amplitude of the excitation torque MMu(t)

O origin of the defined x-y coordinate system
P0 static axle load applied to the drum center M

|ẌM (f)| absolute value of horizontal spectral acceleration of M at frequency f

|ŸM (f)| absolute value of vertical spectral acceleration of M at frequency f

μ coefficient of friction (Coulomb’s law of dry friction)
ν̄ angular velocity (= 2πf̄)
ν Poisson’s ratio of the soil
ρ soil density

Parameters of the hypoplastic constitutive law
ϕc critical state friction angle
hs granular hardness (dimension of stress)
n constant
ed0 void ratio for densest packing for zero mean pressure
ec0 critical void ratio for zero mean pressure
ei0 void ratio for loosest packing for zero mean pressure
α parameter that controls the dependency of the peak friction angle on the

relative void ratio
β controls the increase of stiffness with increasing relative density
R radius of the elastic strain range
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mR controls the magnitude of the very small strain shear modulus in the initial
loading, and upon a 180◦ change in direction of strain path

mT controls the initial shear modulus upon 90◦ strain path reversal
βr model parameter
χ controls the interpolation between the reversible elastic response and non-

linear hypoplastic response
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