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Abstract
Partition logics often allow a dual probabilistic interpretation: a classical one for which probabilities lie on the convex hull
of the dispersion-free weights and another one, suggested independently from the quantum Born rule, in which probabilities
are formed by the (absolute) square of the inner product of state vectors with the faithful orthogonal representations of the
respective graph. Two immediate consequences are the demonstration that the logico-empirical structure of observables does
not determine the type of probabilities alone and that complementarity does not imply contextuality.

Keywords Quantum mechanics · Gleason theorem · Kochen–Specker theorem · Born rule · Partition logic · Grötschel–
Lovász–Schrijver set

1 Partition logics as nonboolean structures
pasted from Boolean subalgebras

Partitions provide ways to distinguish between elements of
a given finite set Sn = {1, 2, . . . , n}. The Bell number
Bn (after Eric Temple Bell) is the number of such parti-
tions (Sloane 2018). (Obvious generalizations are infinite
denumerable sets or continua.) We shall restrict our attention
to partitions with an equal number 1 ≤ m ≤ n of elements.
Every partition can be identified with some Boolean subal-
gebra 2m—in graph theoretical terms a clique—of 2n whose
atoms are the elements of that partition.

A partition logic (Svozil 1993; Schaller and Svozil 1994,
1996; Dvurečenskij et al. 1995; Svozil 2005) is the logic
obtained (i) from collections of such partitions, each parti-
tion being identified with an m-atomic Boolean subalgebra
of 2n , and (ii) by “stitching” or pasting these subalgebras
through identifying identical intertwining elements. In quan-
tum logic, this is referred to as pasting construction, and the
partitions are identified with, or are synonymously denoted
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by, blocks, subalgebras or cliques, which are representable
by orthonormal bases or maximal operators.

Partitions represent classical mini-universes which satisfy
compatible orthogonality, or Specker’s exclusivity princi-
ple (Specker 1960, 2009; Cabello 2013; Fritz et al. 2013;
Henson 2012; Cabello 2012; Cabello et al. 2013, 2014):
if any two observables corresponding to two elements of
a partition are co-measurable, the entire set of observables
corresponding to all elements of that partition are simultane-
ously measurable. (For Hilbert spaces, this is a well-known
theorem; see, for instance, (von Neumann 1931, Satz 8,
p. 221) and (von Neumann 1955, p. 173), or (Halmos
1958, § 84, Theorem 1, p. 171).)

Unlike complete graphs Km representations of m-vertex
cliques in which every pair of distinct vertices is connected
by a unique edge in quantum logic, it is quite common to
conveniently depict cliques (aka contexts) as smooth curves,
referred to as Greechie orthogonality diagram (Greechie
1971). For example, the two ad hoc partitions

{{1}, {2}, {3, 4}} and {{1}, {3}, {2, 4}} (1)

of S3 = {1, 2, 3, 4} form two 3-atomic Boolean algebras
23 with one identical intertwining atom {1}, as depicted in
Fig. 1a. It is the logic L12 (because it has 12 elements) is just
two straight lines (representing the two contexts or cliques)
interconnected at {1}. (Cf. Fig. 1 of Wright’s “Bowtie Exam-
ple 3.1” (Wright 1990, pp. 884,885).)

Many partition logics, such as the pentagon logic, have
quantum doubles. One of the (necessary and sufficient) crite-
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Fig. 1 Greechie orthogonality diagrams of a the L12 logic and
b the pentagon (pentagram) logic, with two of their associated
(quasi)classical partition logic representations

ria for quantum logics to be representable by a partition logic
is the separability of pairs of atoms of the logic by dispersion-
free (aka two-valued, {0, 1}-valued) weights/states (Kochen
and Specker 1967, Theorem 0, p. 67), interpretable as clas-
sical truth assignments.

Conversely, “sufficiently” many (more precisely, a sep-
arating set of) dispersion-free states allow the explicit
(re)construction of a partition logic (Svozil 2005, 2009).
For instance, the five cyclically intertwined contexts/cliques
forming a pentagon/pentagram logic (Ron 1978, p. 267,
Fig. 2) support 11 dispersion-free states v1, . . . , v11. Con-
structing 5 contexts/cliques from the occurrences of the
dispersion-free value 1 on the respective 10 atoms results
in the partition logic based on the set of indices of the
dispersion-free states S11 = {1, . . . , 11}, as depicted in
Fig. 1b

{{{1, 2, 3}, {4, 5, 7, 9, 11}, {6, 8, 10}},
{{6, 8, 10}, {1, 2, 4, 7, 11}, {3, 5, 9}},
{{3, 5, 9}, {1, 4, 6, 10, 11}, {2, 7, 8}},
{{2, 7, 8}, {1, 3, 9, 10, 11}, {4, 5, 6}},
{{4, 5, 6}, {7, 8, 9, 10, 11}, {1, 2, 3}}}.

(2)

According to this construction, the earlier logic L12 would
have apartition logic representation {{{2, 3}, {4, 5}, {1}}, {{1},
{3, 5}, {2, 4}}} based on S5 = {1, . . . , 5}, corresponding to
its 5 dispersion-free states.

2 Probabilities on partition logics

The following hypothesis or principle is taken for granted:
probabilities and expectations on classical substructures of
an empirical logic should be classical, that is, mutually
exclusive co-measurable propositions (satisfying Specker’s
exclusivity principle) should obey Kolmogorov’s axioms,
in particular nonnegativity and additivity. Nonnegativity
implies that all probabilities are nonnegative: P(E1), . . . ,

P(Ek) ≥ 0. Additivity among (pairwise) mutually exclu-

sive outcomes E1, . . . , Ek means that the probabilities of
joint outcomes are equal to the sum of probabilities of
these outcomes, that is, within cliques/contexts, for k ≤ m:
P(E1 ∨ · · · ∨ Ek) = P(E1) + · · · + P(Ek) ≤ 1. In partic-
ular, probabilities add to 1 on each of the cliques/contexts.
Furthermore, Kolmogorov’s axioms can be extended to con-
figurations of more than one (classical) context by assuming
that, relative to any atomic element of some context, the sum
of the conditional probabilities of all atomic elements in any
other context adds up to one (Svozil 2018).

At themoment, at least three such types of probabilities are
known to satisfy Specker’s exclusivity principle, correspond-
ing to classical, quantum andWright’s “exotic” pureweights,
such as the weight 1

2 on the vertices of the pentagon (Ron
1978, ω0, p. 68) and on the triangle vertices (Wright 1990,
pp. 899–902) (the latter logic is representable as partition
logic (Dvurečenskij et al. 1995, Example 8.2, pp. 420,421),
but not in two- or three-dimensional Hilbert space). The
former two “nonexotic” types, based on representations of
mutually disjoint sets and on mutually orthogonal vectors,
will be discussed later.

It is not toodifficult to imagineboxes allowing input/output
analysis “containing” classical or quantumalgorithms, agents
ormechanisms rendering the desired properties. For instance,
a model realization of a classical box rendering classical
probabilities is Wright’s generalized urn model (Ron 1978;
Wright 1990; Svozil 2006, 2014) or the initial state identi-
fication problem for finite deterministic automaton (Moore
1956; Svozil 1993; Schaller and Svozil 1995, 1996)—both
are equivalent models of partition logics (Svozil 2005) fea-
turing complementarity without value indefiniteness.

Specker’s parable of the overprotective seer (Specker
1960; Liang et al. 2011, 2017; Svozil 2016) involving three
boxes is an example for which the exclusivity principle does
not hold (Tarrida 2014, Section 116, p. 40). It is an interesting
problem to find other potential probability measures based
on different approaches which are also linear in mutually
exclusive events.

2.1 Probabilities from the convex hull of
dispersion-free states

For nonboolean logics, it is not immediately evident which
probability measures should be chosen. The answer is
already implicit in Zierler and Schlessinger’s 1965 paper
on “Boolean embeddings of orthomodular sets and quan-
tum logic”. Theorem 0 of Kochen and Specker’s 1967
paper (Kochen and Specker 1967) states that separability by
dispersion-free states (of image 21 = 0, 1) for every pair of
atoms of the lattice is a necessary and sufficient criterion for a
homomorphic embedding into some “larger” Boolean alge-
bra. In 1978, Wright explicitly stated (Ron 1978, p. 272)
“that every urn weight is “classical,” i.e., in the convex

123



Faithful orthogonal representations of graphs from partition logics

hull of the dispersion-free weights.” In the graph theoreti-
cal context Grötschel, Lovász and Schrijver have discussed
the vertex packing polytope V P(G) of a graph G, defined
as the convex hull of incidence vectors of independent sets
of nodes (Grötschel et al. 1986). This author has employed
dispersion-free weights for hull computations on the Specker
bug (Svozil 2001) and other (partition) logics supporting a
separating set of two-valued states.

Hull computations based on the pentagon (modulo pen-
tagon/pentagram graph isomorphisms) can be found in
Refs. Klyachko et al. (2008), Bub and Stairs (2009, 2010),
Badzia̧g et al. (2011) (for a survey see Svozil 2018, Sec-
tion 12.9.8.3). The Bub and Stairs inequality (Bub and Stairs
2009, Equation (10), p. 697) can be directly read off from the
partition logic (2), as depicted in Fig. 1b, which in turn are
the cumulated indices of the nonzero dispersion-free weights
on the atoms: the sum of the convex hull of the dispersion-
free weights on the 5 intertwining atoms (the “vertices” of
the pentagon diagram) represented by the subsets {1, 2, 3},
{6, 8, 10}, {3, 5, 9}, {2, 7, 8}, {4, 5, 6} of S11 is

(λ1 + λ2 + λ3) + (λ6 + λ8 + λ10) + (λ3 + λ5 + λ9)

+ (λ2 + λ7 + λ8) + (λ4 + λ5 + λ6) ≤ 2
11∑

i=1

λi = 2.

(3)

2.2 Born–Gleason–Grötschel–Lovász–Schrijver type
probabilities

Motivated by cryptographic issues outside quantum theory,
(Lovász 1979) has proposed an “indexing” of vertices of
a graph by vectors reflecting their adjacency: the graph-
theoretic definition of a faithful orthogonal representation
of a graph is by identifying vertices with vectors (of some
Hilbert space of dimension d) such that any pair of vectors
are orthogonal if and only if their vertices are not orthog-
onal (Lovász et al. 1989; Parsons and Pisanski 1989). For
physical applications (Cabello et al. 2010; Solís-Encina and
Portillo 2015) and others have used an “inverse” notation,
in which vectors are required to be mutually orthogonal
whenever they are adjacent. Both notations are equivalent
by exchanging graphs with their complements or inverses.

There is no systematic algorithm to compute the min-
imal dimension for a faithful orthogonal representation
of a graph. Lovász (1979), Cabello et al. (2013) gave a
(relative to entropy measures (Haemers 1979) “optimal”
vector representation of the pentagon graph depicted in
Fig. 1b in three dimensions [L12 depicted in Fig. 1a is a
sublogic thereof]: modulo pentagon/pentagram graph iso-

morphisms which in two-line notation is

(
1 2 3 4 5
1 4 2 5 3

)
and

in cycle notation is (1)(2453); its set of five intertwining

vertices {v1, . . . , v5} = {u1, u3, u5, u2, u4} are represented
by the three-dimensional unit vectors (the five vectors cor-
responding to the “inner” vertices/atoms can be found by a
Gram–Schmidt process)

|ul〉 = 5− 1
4

(
1,

[
5

1
2 − 1

] 1
2
cos 2πl

5 ,
[
5

1
2 − 1

] 1
2
sin 2πl

5

)
,

(4)

which, by preparing the “(umbrella) handle” state vector(
1, 0, 0

)
, turns out to render the maximal (Bub and Stairs

2009;Badzia̧g et al. 2011) quantum-bound
∑5

j=1 |〈c|ul〉|2 =√
5, which exceeds the “classical” bound (3) of 2 from

the computation of the convex hull of the dispersion-free
weights.

Based on Lovász’s vector representation by graphs,
Grötschel, Lovász and Schrijver have proposed (Grötschel
et al. 1986, Section 3) a Gleason–Born type probability
measure (Cabello 2019) which results in convex sets dif-
ferent from polyhedra defined via convex hulls of vectors
discussed earlier in Sect. 2.1. Essentially their probability
measure is based upon m-dimensional faithful orthogonal
representations of a graph G whose vertices vi are repre-
sented by unit vectors |vi 〉 which are orthogonal within,
and nonorthogonal outside, of cliques/contexts. Every ver-
tex vi of the graph G, represented by the unit vector |vi 〉,
can then be associated with a “probability” with respect to
some unit “preparation” (state) vector |c〉 by defining this
“probability” to be the absolute square of the inner prod-
uct of |vi 〉 and |c〉, that is, by P(c, vi ) = |〈c|vi 〉|2. Iff the
vector representation (in the sense of Cabello–Portillo) of
G is faithful, the Pythagorean theorem assures that, within
every clique/context ofG, probabilities are positive and addi-
tive, and (as both |vi 〉 and |c〉 are normalized) the sum of
probabilities on that context adds up to exactly one, that
is,

∑
i∈clique/context P(c, vi ) = 1. Thereby, probabilities and

expectations of simultaneously co-measurable observables,
represented by graph verticeswithin cliques or contexts, obey
Specker’s exclusivity principle and “behave classically.” It
might be challenging to motivate “quantum type” probabili-
ties and their convex expansion, the theta body (Grötschel
et al. 1986), by the very assumptions such as exclusiv-
ity (Cabello et al. 2014; Cabello 2019).

A very similar measure on the closed subspaces of Hilbert
space, satisfying Specker’s exclusivity principle and additiv-
ity, had been proposed by Gleason Gleason (1957), first and
second paragraphs, p. 885: “A measure on the closed sub-
spaces means a function μ which assigns to every closed
subspace a nonnegative real number such that if {Ai } is a
countable collection of mutually orthogonal subspaces hav-
ing closed linear span B, then μ(B) = ∑

i μ(Ai ). It is easy
to see that such ameasure can be obtained by selecting a vec-
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tor v and, for each closed subspace A, taking μ(A) as the
square of the norm of the projection of v on A.” Gleason’s
derivation of the quantummechanical Born rule (Born 1926,
Footnote 1, Anmerkung bei der Korrektur, p. 865) operates
in dimensions higher than two and allows also mixed states,
that is, outcomes of nonidealmeasurements. However,mixed
states can always be “completed” or “purified” (Nielsen and
Chuang 2010, Section 2.5, pp. 109–111) (and thus outcomes
of nonideal measurements made ideal Cabello 2019) by the
inclusion of auxiliary dimensions.

3 Quasiclassical analogues of entanglement

In what follows, classical analogs to entangled states will
be discussed. These examples are local. They are based on
Schrödinger’s observation that entanglement among pairs
of particles is associated with, or at least accompanied
by, joint or relational (Zeilinger 1999) properties of the
constituents, whereas nonentangled states feature individ-
ual separate properties of the pair constituents (Schrödinger
1935a, b, 1936). (For early similar discussions in the mea-
surement context, see von Neumann 1955, Section VI.2,
p 426, pp 436–437 and London and Bauer 1939; London
and Edmond 1983.)

3.1 Partitioning of state space

Wrights generalized urn model (Ron 1978; Wright 1990),
in a nutshell, is the observation of black balls, on which
multiple colored symbols are painted, with monochromatic
filters in only one of those colors. Complementarity mani-
fests itself in the necessity of choice of the particular color
one observes: onemay thereby obtain knowledge of the infor-
mation encoded in this color, but thereby invariable loses
messages encoded in different colors. A typical example is
the logic L12 encoded by the partition logic enumerated in (1)
and depicted in Fig. 1(a): suppose that there are 4 ball types
and two colors on black backgrounds:

• ball type 1 is colored with orange a and blue a;
• ball type 2 is colored with orange b and blue c;
• ball type 3 is colored with orange c and blue b;
• ball type 4 is colored with orange c and blue c.

Suppose an urn is loaded with balls of all four types. Sup-
pose further that an agent’s task is to draw one ball from the
urn and, by observing this ball, to find which type it is. Of
course, if the observer is allowed to look at both colors simul-
taneously, thiswould allow to single out exactly one ball type.
But that maximal resolution can no longer be maintained in
experiments restricted to one of the two colors. Any one of
such two experiment varieties could resolve different, com-

Table 1 Six subensembles E1–E6 of the set {00, 01, 10, 11} with the
following properties: E1 = {00, 01} encodes the first digit being 0;
E2 = {10, 11} encodes the first digit being 1; E3 = {00, 10} encodes
the second digit being 0; E4 = {01, 11} encodes the second digit being
1; E5 = {00, 11} encodes the first and the second digit being equal;
E6 = {01, 10} encodes the first and the second digit being different

sample ball type 1 ball type 2 ball type 3 ball type 4
E1 00 01
E2 10 11
E3 00 10
E4 01 11
E5 00 11
E6 01 10

Table 2 Subensembles (E5)
2 and (E6)

2 of the set {0000, 0001,
0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010, 1011,
1100, 1101, 1110, 1111} with the following properties: E5 =
{0000, 0011, 1100, 1111} encodes the first and the second pair, as
well as the third and the fourth pair of digits being equal; E6 =
{0101, 0110, 1001, 1010} encodes the first and the second pair, as well
as the third and the fourth pair of digits being different

sample ball type 1 ball type 2 ball type 3 ball type 4
(E5)2 0000 0011 1100 1111
(E6)2 0101 0110 1001 1010

plementary properties: looking at the drawn ball with orange
glasses, the agent is able to resolve between balls (i) of type
1 associated with the symbol a; (ii) of type 2 associated with
the symbol b; and (iii) of type 3 or 4 associated with the
symbol c. The resolution between type 3 and 4 balls is lost.
Alternatively, by looking at the drawn ball with blue glasses
the agent is able to resolve between balls (i) of type 1 asso-
ciated with the symbol a; (ii) of type 3 associated with the
symbol b; and (iii) of type 2 or 4 associated with the symbol
c, that is, for the color blue the resolution between type 2
and 4 balls is lost. In any case, the state of ball type is parti-
tioned in different ways, depending on the color of the filter.
(Similar considerations apply for initial state identification
problems on finite automata.)

3.2 Relational encoding

Tables 1 and 2 enumerate a relational encoding among two
or more colors not dissimilar to Peres’ detonating bomb
model (Peres 1978). Suppose that an urn is loaded with balls
of the type occurring in subensemble E6 of Table 1. The
observation of some symbol s ∈ {0, 1} in green implies the
(counterfactual) observation of the same symbol s in red,
and vice versa. Table 2 is just an extension to two colors
per observer, and an urn loaded with subensembles (E6)

2.
Agent Alice draws a ball from the urn and looks at it with
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her red (exclusive) or blue filters. Then, Alice hands the ball
over to Bob. Agent Bob looks at the ball with his green
(exclusive) or orange filters. This latter scenario is similar
to a Clauser–Horne–Shimony–Holt scenario of the Einstein–
Podolsky–Rosen type, except that the former is totally local
and its probabilities derived from the convex hull of the
dispersion-free weights can never violate classical bounds,
whereas the latter one may be (and hopefully is) nonlocal,
and its performance with a quantum resource violates the
classical bounds.

4 Partition logic freak show

Let us, for a moment, consider partition logics not restraint
by low-dimensional faithful orthogonal representability, but
with a separable set of two-valued states (with the exception
of the logic depicted in Fig. 2f). These have no quantum real-
ization. Yet, due to the automaton logic, they are intrinsically
realized in Turing universal environments.

An example of such a structure is Wright’s triangle
logic (Wright 1990, Figure 2, p. 900) depicted in Fig. 2a
(see also Dvurečenskij et al. 1995, Fig. 6, Example 8.2,
pp. 414,420,421). As mentioned earlier, together with 4
dispersion-free weights it allows another weight 1

2 on its
intertwining vertices. Figure 2b, c depicts a square logic,
the latter one being formed by a pasting of two triangle
logics along a common leg. Figure 2d, e depicts pentagon
logic with one and three inner cliques/contexts; the latter
one realizing a true-implies-four-times-true configuration for
{3}. Figure 2f has no partition logic representation, as its 5
dispersion-free weights cannot separate three atoms realized
by {1} and {2, 3}, as well as two atoms realized by {2, 4} and
{4, 5}, respectively.

5 Identical graphs realizable by different
physical resources require different
probability types

It is important to emphasize that both scenarios—the classical
generalized urn scenario as well as the quantized one—
from a graph theoretical point of view, operate with identical
(exclusivity) graphs (e.g., Figure 1 in both References Fritz
et al. 2013; Cabello et al. 2014). The difference is the rep-
resentation of these graphs: the quantum case has a faithful
orthogonal representation in some finite-dimensional Hilbert
space,whereas the classical case in terms of a generalized urn
model has a set-theoretic representation in terms of partitions
of some finite set.

Generalized urn models and automaton logics are models
of partition logics which are capable of complementarity yet
fail to render (quantum) value indefiniteness. They are impor-
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(a) (b)
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{2,4}

{3,5}
{2,4}

{1} {4,5} {2,3}

{1}
{4,5}

{2,3}

m

(e) (f)

Fig. 2 Greechie orthogonality diagram of partition logic realizations
of a Wright’s triangle logic with a partition logic realization (Wright
1990; Dvurečenskij et al. 1995); b a square logic from the cyclic
pasting of four three-atomic edges/cliques/contexts K3; c a combo of
triangle logics pasted along a common edge with a partition logic real-
ization (Dvurečenskij et al. 1995, Example 8.3, pp. 421,422), with
m = {1, 2, 3, 4}; d pentagon logic with inner edge, with a partition
logic realization, and m = {5, 6, 7, 10}; e pentagon logic with three
inner edges, with a partition logic realization, and m1 = {1, 2, 4, 5, 7},
m2 = {4, 5, 6, 7}, m3 = {1, 2, 4, 5, 6}; f pentagon logic with two inner
edges and m = {2, 3}, without a partition logic realization since the
vertex representation generated from the 5 dispersion-free weights is
highly degenerate and nonseparating

tant for an understanding of the “twilight zone” spanned by
nonclassicality (nondistributivity, nonboolean logics) and yet
full value definiteness—one may call this a “purgatory”—
floating in-between classical Boolean and quantum realms.

It should be stressed that the algebraic structure of empir-
ical logics, or graphs, does in general not determine the types
of probability measures on them. For instance, a generalized
urn loaded with balls rendering the pentagon structure, as
envisioned by Wright, has probabilities different from the
scheme of Grötschel, Lovász and Schrijver, which is based
on orthogonal representations of the pentagon. Likewise, a
geometric resource such as a “vector contained in a box” and
“measured along projections onto an orthonormal basis” will
not conform to probabilities induced by the convex hull of
the dispersion-free weights—even if these weights are sep-
arating. Therefore, the particular physical resource—what
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is actually inside the black box—determines which type of
probability theory is applicable.

Furthermore, partition logics which are not just a single
Boolean algebra represent empirical configurations featuring
complementarity. And yet they all have separating (Kochen
and Specker 1967, Theorem 0) sets of two-valued states
and thus are not “contextual” in the Specker sense (Specker
1960).
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Klyachko AA, Can MA, Binicioğlu S, Shumovsky AS (2008) Sim-
ple test for hidden variables in spin-1 systems. Phys Rev Lett
101:020403 arXiv:0706.0126

Kochen S, Specker EP (1967) The problem of hidden variables in quan-
tum mechanics. J Math Mech 17:59–87

Liang Y-C, Spekkens RW, Wiseman HM (2011) Specker’s parable of
the overprotective seer: a road to contextuality, nonlocality and
complementarity. Phys Rep 506:1–39 (2011). arXiv:1010.1273

Liang Y-C, Spekkens RW, Wiseman HM (2017) Erratumto “Specker’s
parable of the over-protective seer: a road to contextuality, non-
locality and complementarity” [phys. rep. 506 (2011) 1-39]. Phys
Rep 666: 110–111 (2017). arXiv:1010.1273

London F, Bauer E (1939) La theorie de l’observation en mécanique
quantique; No. 775 of Actualités scientifiques et industrielles:
Exposés de physique générale, publiés sous la direction de Paul
Langevin (Hermann, Paris, 1939) english translation in (London
and Bauer 1983)

London F, Bauer E(1983) The theory of observation in quantum
mechanics. In: Quantum theory and measurement, Princeton Uni-
versity Press, Princeton, NJ, 1983, pp 217–259, consolidated
translation of French original (London and Bauer 1939)

LópezTarridaAJ (2014)Quantumcorrelations and graphs. Ph.D. thesis,
Universidad de Sevilla

Lovász L (1979) On the Shannon capacity of a graph. IEEE Trans Inf
Theory 25:1–7

Lovász L, Saks M, Schrijver A (1989) Orthogonal representations and
connectivity of graphs. Linear Algebra Appl 114:439–454

Moore EF (1956) Gedanken-experiments on sequential machines
(AM-34). In: Shannon CE, McCarthy J (eds) Automata studies.
Princeton University Press, Princeton, NJ, pp 129–153

Nielsen MA, Chuang IL (2010) Quantum computation and quantum
information. Cambridge University Press, Cambridge

Parsons TD, Pisanski T (1989) Vector representations of graphs. Discret
Math 78:143–154

Peres A (1978) Unperformed experiments have no results. Am J Phys
46:745–747

Ron W (1978) The state of the pentagon. A nonclassical example. In:
Marlow AR (ed) Mathematical foundations of quantum theory.
Academic Press, New York, pp 255–274

Schaller M, Svozil K (1994) Partition logics of automata. Il Nuovo
Cimento B 109:167–176

Schaller M, Svozil K (1995) Automaton partition logic versus quantum
logic. Int J Theor Phys 34:1741–1750

SchallerM, Svozil K (1996) Automaton logic. Int J Theor Phys 35:911–
940

Schrödinger E (1935) Die gegenwärtige Situation in der Quanten-
mechanik. Naturwissenschaften 23:807–812, 823–828, 844–849

Schrödinger E (1935) Discussion of probability relations between sep-
arated systems. Math Proc Camb Philos Soc 31:555–563

Schrödinger E (1936) Probability relations between separated systems.
Math Proc Camb Philos Soc 32:446–452

Sloane NJA (2018) A000110 Bell or exponential numbers: number of
ways to partition a set of n labeled elements. Formerly m1484
n0585. The on-line encyclopedia of integer sequences

Solís-EncinaA, Portillo JR (2015)Orthogonal representation of graphs.
arXiv:1504.03662

Specker E (2009) Ernst Specker and the fundamental theorem of quan-
tummechanics, video byAdán Cabello, recorded on June 17, 2009

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1006.0500
http://arxiv.org/abs/1212.1756
http://arxiv.org/abs/1801.06347
http://arxiv.org/abs/1210.2988
http://arxiv.org/abs/1211.5825
http://arxiv.org/abs/1401.7081
http://arxiv.org/abs/1010.2163
http://arxiv.org/abs/1806.04271
http://arxiv.org/abs/1210.3018
http://arxiv.org/abs/1210.5978
http://arxiv.org/abs/0706.0126
http://arxiv.org/abs/1010.1273
http://arxiv.org/abs/1010.1273
http://arxiv.org/abs/1504.03662


Faithful orthogonal representations of graphs from partition logics

SpeckerE (1960)DieLogik nicht gleichzeitig entscheidbarerAussagen.
Dialectica 14:239–246 arXiv:1103.4537

Svozil K (2001) On generalized probabilities: correlation polytopes for
automaton logic and generalized urn models, extensions of quan-
tum mechanics and parameter cheats. arXiv:quant-ph/0012066

Svozil K (2016) Generalized event structures and probabilities. In:
BurginM,CaludeCS (eds) Information and complexity, world sci-
entific series in information studies: vol. 6, World Scientific, Sin-
gapore, 2016, Chap. Chapter 11, pp 276–300. arXiv:1509.03480

Svozil Karl (2018) Kolmogorov-type conditional probabilities among
distinct contexts. arXiv:1903.10424

Svozil K (1993) Randomness & undecidability in physics. World Sci-
entific, Singapore

Svozil K (2005) Logical equivalence between generalized urn
models and finite automata. Int J Theor Phys 44:745–754
arXiv:quant-ph/0209136

Svozil K (2006) Staging quantum cryptography with chocolate balls.
Am J Phys 74:800–803 arXiv:physics/0510050

Svozil K (2009) Contexts in quantum, classical and partition logic. In:
Engesser K, GabbayDM, LehmannD (eds) Handbook of quantum
logic and quantum structures. Elsevier, Amsterdam, pp 551–586
arXiv:quant-ph/0609209

Svozil K (2014) Non-contextual chocolate ball versus value indef-
inite quantum cryptography. Theoret Comput Sci 560:82–90
arXiv:0903.0231

Svozil K (2018) Physical (a)causality, fundamental theories of physics,
vol 192. Springer, Cham

von Neumann J (1955) Mathematical foundations of quantum mechan-
ics. Princeton University Press, Princeton, NJ, German original in
(von Neumann 1996)

von Neumann J (1931) Über Funktionen von Funktionaloperatoren.
Ann Math (Ann Math) 32:191–226

von Neumann J (1996) Mathematische Grundlagen der Quanten-
mechanik, 2nd edn. Springer, Berlin

Wright R (1990) Generalized urn models. Found Phys 20:881–903
Zeilinger A (1999) A foundational principle for quantum mechanics.

Found Phys 29:631–643

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

http://arxiv.org/abs/1103.4537
http://arxiv.org/abs/quant-ph/0012066
http://arxiv.org/abs/1509.03480
http://arxiv.org/abs/1903.10424
http://arxiv.org/abs/quant-ph/0209136
http://arxiv.org/abs/physics/0510050
http://arxiv.org/abs/quant-ph/0609209
http://arxiv.org/abs/0903.0231

	Faithful orthogonal representations of graphs from partition logics
	Abstract
	1 Partition logics as nonboolean structures pasted from Boolean subalgebras
	2 Probabilities on partition logics
	2.1 Probabilities from the convex hull of dispersion-free states
	2.2 Born–Gleason–Grötschel–Lovász–Schrijver type probabilities

	3 Quasiclassical analogues of entanglement
	3.1 Partitioning of state space
	3.2 Relational encoding

	4 Partition logic freak show
	5 Identical graphs realizable by different physical resources require different probability types
	Acknowledgements
	References




