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Abstract:
In this paper, an approach to modeling, controller design, and parameter estimation for a self-
leveling tripod base is presented. The foldable tripod requires manual set-up and its exact leg
positions are therefore unknown, although knowledge of the leg configuration is needed for
motion planning and also allows better control of the leveling task. An analysis of the geometry
is presented, enabling parameter estimation based on finding the tilt axes of the tripod by
moving both actuators separately in sequence. This is then generalized for the estimation from
an arbitrary movement of the actuators. Further, a linear state-space model is derived with
the estimated parameters, which serves as the basis for LQG controller design. The tripod
configuration estimation is experimentally verified and provides sufficient accuracy for both the
motion planning and leveling tasks. By using a linear Kalman filter, the leveling control achieves
good results despite significant measurement errors caused by structural vibrations.

Keywords: Robotic manipulators, Linearization, Kalman filters, Parameter estimation, LQG
control method

1. INTRODUCTION

The distribution of floor insulation material on construc-
tion sites is currently a demanding manual task. Automa-
tion of this task will improve work and health conditions
for the construction workers and enable higher through-
put. A stable and level base is needed to fulfill the require-
ments on millimeter precision of surface evenness. This
base should be light-weight and portable for ease of use.
The task of leveling robotic platforms is required in various
fields of engineering, such as high precision machining,
welding, automotive engineering and agricultural engineer-
ing (Yang and Lee (1984); Chen et al. (2018); Yang and
Li (2006)).
Qiliang et al. (2015) propose a leveling control strategy for
a three-point fixed supported automated platform. This
approach is completed under the mutual cooperation of
signal collection system, tilt sensors, servo encoders, and
a control system.
A similar approach is conducted in Zhang et al. (2007),
although the auto-leveling platform has four legs. With
help of model dynamics, derived via the method of linear
graphs, a circular leveling strategy is developed and ap-

? The financial support by the Austrian Research Promotion Agency
(FFG) under grant no. 866395, as well as Mixit Dämmstoffe GmbH
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plied to the leveling system. Also, Wang and Xia (2018)
are considering a four-legged platform, though the height
actuation of the leg is performed by a hydraulic system.
Furthermore, the control algorithm is realized with a cas-
cade control: The outer loop consists of a Backstepping
control for the full platform suspension, while the inner
loop is integrated as a Sliding Mode Control (SMC) of the
desired tracking force.
The control of a parallel robot platform with 6-DoF pre-
sented in Jouini et al. (2013) is realized with two model-
based control laws, PID and SMC.
For the design and control of Hexapod platforms, Zak
and Rozman (2015) use legs equipped with force-sensitive
resistor to detect ground. Additionally, each servomotor
has an encoder to determine joint’s current position. In
the case of inclination control for hexapods, a body leveling
algorithm (Copot et al. (2017)) uses the hexapod’s forward
and inverse kinematic model, basic geometry, and the
Cartesian plane equation to calculate the leg tip displace-
ments necessary for counteracting the fused orientation
data obtained from an inertial measurement unit (IMU).
The aforementioned approaches on the leveling of robot
platforms are relying on either fixed leg positions or the
incorporation of positioning sensor units in the joints.
Since this is not the case for the considered system, a
new approach enclosing modeling, controller design and
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parameter estimation of a self-leveling tripod base for a
robotic arm is presented. The developed methods allow
automatic leveling of a variable-configuration tripod with
only a two-axis inclination sensor and the encoders of the
servomotors controlling the height of two leg stands.
Section 2 contains a description of the system and two
methods for estimating its configuration. In Section 3, a
linear state-space model is used to obtain an LQG con-
troller, enabling the leveling of the platform. Experimental
results and discussion are presented in Section 4, followed
by conclusion in Section 5.

2. SYSTEM DESCRIPTION AND MODELING

The considered system, shown in Fig. 1, is a SCARA-like
robotic arm with an end-effector tool that is used to dis-
tribute granular insulation material in sweeping motions.
The arm is mounted on a portable tripod that is manually
set-up with each placement of the robotic arm. Leg 3 is
fixed in orientation and the height of its stand can only
be adjusted by manually turning its height-setting screw.
Legs 1 and 2 are foldable for ease of transport and to pro-
vide flexibility for various spatial conditions. The unknown
angles of the foldable legs introduce uncertainties into the
system. In order to ensure that the robotic arm requires
no additional compensation of any torque resulting from a
tilted base, it is needed to level the base after each set-up
of the robot arm on the construction site. This will also
reduce the effect of end-effector tilt on the quality of the
finished surface.
The commercially available and manually operated plat-
form Granubot 1 is used as the basis for the automation
task. Two of the tripod legs have been equipped with
synchronous servomotors to enable platform self-leveling.
Driving the height-setting screws on the leg stands allows
movement of these two legs in the vertical z-axis and thus
provides control of the two degrees of freedom necessary
to tilt the tripod plane.

Fig. 1. Robotic arm mounted on a foldable tripod. The
end-effector is a blade that moves material across the
floor and must be kept level to ensure good quality of
the worked surface.

In order to level the tripod, it is necessary to measure
its tilt. A TMM55E-PMH010 two-axis inclination sensor
from SICK is mounted on the triangular base of the
tripod, providing measurements with a resolution of 0.01◦

in a ±10◦ range and a sampling frequency of 1.95 kHz.
One axis follows the stationary leg and the other is
1 Product webpage [accessed 2019-01-31]: https://www.granubot.de

perpendicular to it and horizontal, giving measurements
of pitch and roll angles. The control system consists of
PLC-controlled I/O terminals connected to two AM8113
geared synchronous servomotors with absolute position
encoders serving as the actuators, provided by Beckhoff.
The motors are mounted on the side of the leg stands and
drive the height-setting screws via a spur gear connection.
A schematic drawing of the tripod is shown in Fig. 2.
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Fig. 2. Schematic drawing of the tripod, showing the
relevant dimensions and angles, as well as the chosen
system of coordinates and the two tilt axes.

2.1 Tilt axis model

The first method for estimating the leg stand positions
and thus the leg angles is derived from the geometric
relationships shown in Fig. 3 and described by equa-
tions (1) and (2). After moving one of the motors, tilting
the tripod plane along one of its tilt axes, the ratio of the
sines of the inclination angle changes is the same as the
ratio of the x and y positions of the unmoved leg stand.
This relationship is only valid under the assumption that
the changes in pitch and roll angles are very small, allowing
the use of the small-angle approximation. This assumption
holds in practice, as the tilt angles are within the range of
< −1.5◦; 1.5◦ >.

h = ∆x sinφx = ∆y sinφy (1)

y =
∆y

∆x
x ≈ φx

φy
x (2)

Combined with the fact that the leg stand must be located
on a semicircle centered on the leg’s axis in the triangular
base, finding the correct position is reduced to finding the
intersection of a line defined by its slope and the semicircle.
As seen in Fig. 2, there can be two points where the
tilt axis intersects the semicircle. However, as the tripod
has to provide a stable base for the robot arm, the legs
will never be set at angles smaller than 90◦, allowing the
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Fig. 3. Schematic drawing of the angles and dimensions for
deriving the position of one leg stand from the ratio
of tilt angle differences after changing the height of
the other leg stand.

elimination of one of the solutions and determining the leg
stand position uniquely. This method provides a closed-
form solution, but requires two separate movements to find
the positions of both legs.

2.2 General geometric model

The approach for computing the tilt axis can be extended
to the more general case of both actuators moving. Using
the geometric analysis of the tripod, a relationship can be
found between the changes of the pitch and roll angles and
the height differences traveled by the two actuators, shown
in (3). This again uses the small-angle approximation for
the inclination angles φx and φy, giving a set of linear
equations.

∆φx = b1h1 + b2h2

∆φy = b3h1 + b4h2
(3)

The tilt angle changes are a linear combination of the two
height differences, where the coefficients bi are dependent
on the positions of the two foldable leg stands as expressed
by (4).

b1 =
y2

x1y2 − x2y1
, b2 = − y1

x1y2 − x2y1

b3 = − x2

x1y2 − x2y1
, b4 =

x1

x1y2 − x2y1

(4)

The leg positions xi and yi are four parameters, so the
system of equations from (3) needs to be completed by
adding the conditions (5) that the leg positions can only
lie on circles centered in the leg mounting points in the
triangular base,

(x1 − xC1)2 + (y1 − yC1)2 = r2

(x2 − xC2)2 + (y2 − yC2)2 = r2 (5)

where r is the leg length and circle radius and the C
subscript signifies the position of the circle center. The set
of equations formed by (3) and (5) is complete, however,
an explicit analytical solution is unavailable, making a

numerical approach necessary. The limited computational
resources and programmatic capabilities of typical low-end
PLC control hardware mean that it may be advantageous
to try a different approach based on linearization.

2.3 Linearization

The leg positions can be expressed with the use of the two
leg angles α and β from Fig. 2 with the equations

x1 = xC1 − r sinα
y1 = yC1 − r cosα
x2 = xC2 + r sinβ
y2 = yC2 − r cosβ

, (6)

leading to the coefficients bi in (4) being only dependent
on these two angles.
As can be seen on the example of b1 in (7), the parameters
bi are still nonlinearly dependent on α and β. Furthermore,
the evaluation of trigonometric functions only adds to
the computational complexity. However, if the coefficients
bi are approximated by linear functions of these two
variables, the angles α and β can be explicitly computed.
In order to linearize the bi coefficients, their value at a
linearization point and their partial derivatives are needed.

b1(α, β) =
1

xC1 − r sinα− yC1−r cosα
yC2−r cos β (xC2 + r sinβ)

(7)

The linearization point is chosen as [120◦; 120◦] due to
the fact that this is the most balanced configuration with
ends of the three legs forming an equilateral triangle and
is the typical way of setting up the tripod in practice.
Fig. 4 shows the value of the coefficient b1 depending on
the two leg angles in the range of < 100◦; 140◦ > for each
of the angles. Coefficients ci for the linear equations are
computed according to (8).
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Fig. 4. Visualization of the coefficient b1 depending on the
leg angles α and β in the range < 100◦; 140◦ >. Lin-
earization of the equation for b1 will approximate this
surface by a plane tangent at the point [120◦; 120◦].

b1(α, β) ≈ c1α+ c2β + c3 =

=
∂b1(α, β)

∂α
(α− α0) +

∂b1(α, β)

∂β
(β − β0) + b1(α0, β0)

(8)
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With this approximation, the leg angles can be found by
solving the matrix Equation (9). As the matrix inverse is
only of a 2 × 2 matrix, its calculation can be performed
very efficiently and is easily implementable on any control
hardware.

[
α

β

]
=

[
c1h1 + c4h2 c2h1 + c5h2

c7h1 + c10h2 c8h1 + c11h2

]−1 [
∆φx − (c3h1 + c6h2)

∆φy − (c9h1 + c12h2)

]
(9)

By linearizing the coefficients bi, an error is introduced
into the estimate of the leg angles. The error for each of
the two angles is found to be asymmetric with respect
to the other angle. For example, if the actual angle α is
close to the linearization point of 120◦, it will be estimated
correctly (under 1◦ deviation) regardless of the angle β. A
further measure is thus introduced to give a more useful
picture of the method’s accuracy, as both angles should
be estimated correctly for optimal control and the later
motion planning stages for the robot arm. This is the mean
squared error, described by Equation (10). This error ∆γ
is visualized in Fig. 5. As expected, linearization provides
good results in the vicinity of the optimal configuration
of [120◦; 120◦]. Interestingly, the estimate will also stay
reasonably accurate along the diagonal α + β = 240◦.
Considering the leg length is 91.8 cm, an error of 1◦ in
leg angle estimation translates to a leg position error of
1.6 cm. Errors of a few centimeters will not seriously affect
modeling accuracy and controller performance. Obstacle
avoidance of the tripod legs will also be unaffected, having
larger safety margins.

∆γ =
1

2

√
∆α2 + ∆β2 (10)
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Fig. 5. Contour plot of the combined angular error due
to linearization, computed from the individual errors
according to (10).

3. LEVELING CONTROL

Using the previously derived mathematical model (3) of
the tripod, a state-space representation of the system
can be obtained. The states to be controlled are the two
inclination angles. The two actuators provide the means

to change these states and serve as the system inputs. It is
first necessary to relate the inclination angular velocities
to the actuator velocities by

φ̇x = b1v1 + b2v2

φ̇y = b3v1 + b4v2
. (11)

Note that the angular velocities do not depend on the
angular values themselves, signifying a purely integrating
behavior. The states are also the directly measured out-
puts of the system. Combining these considerations leads
to the state-space form

ẋ = Ax + Bu
y = Cx + Du

(12a)

x =

[
Φx
Φy

]
,y =

[
Φx
Φy

]
,u =

[
v1

v2

]
(12b)

A =

[
0 0
0 0

]
, B =

[
b1 b2
b3 b4

]
, C =

[
1 0
0 1

]
, D =

[
0 0
0 0

]
. (12c)

The measurement of the inclination sensor is highly sen-
sitive to mechanical vibrations of the tripod, which are
mainly caused by the eccentricity of the leg stand screws.
As can be seen in Fig. 6, the error caused by vibrations
is significant, rendering the measurement unsuitable for
feedback control without appropriate processing. Using
the linear state-space model of the system, a linear Kalman
filter can be derived to serve as an estimator of the in-
clination angles. The measurement of velocity provided
by absolute encoders in the servomotors is very precise,
partly due to a high gear ratio, making input uncertainties
negligible.
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Fig. 6. Measurements of the roll angle φx taken during a
point-to-point actuator movement with a tripod con-
figuration of α = 130◦, β = 110◦ show considerable
noise due to mechanical vibrations. Also shown is the
predicted behavior based on the state-space model
(12) and a moving average for comparison.

The state-space model described in (12) shows a good
match with experimental data taken from a point-to-
point actuator movement. When the system is simulated
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with the same initial conditions and measured input data,
the resulting estimation error is 0.96%, probably due
to the system linearization. The estimates remain valid
over larger timescales and multiple movements. A linear
Kalman filter based on this model should therefore provide
a better state estimate than low-pass noise filtering, such
as with a moving average filter.
The model is fully controllable and observable, but does
not consider the dynamics of the actuators. However, ap-
proximating the actuator behavior by a first-order system
does not provide a good fit and brings no marked im-
provement for the leveling task. Higher order systems that
would more accurately describe actuator behavior include
unmeasurable states that must be estimated and bring
higher computational complexity. Actuator dynamics are
therefore neglected.
Assuming good state estimates from the Kalman filter,
a proportional feedback controller can be designed. A
common method is the LQR algorithm, which designs an
optimal controller minimizing the cost function

J =

∫ ∞

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt . (13)

By choice of the weighting matrices Q and R, either
the states or the inputs are assigned more weight. The
combination of a Kalman filter and an LQR controller is
commonly known as the LQG controller. For the presented
system, the weight matrices

Q =

[
1 0
0 1

]
, R =

[
0.3 0
0 0.3

]
(14)

provide the best results in terms of settling time. Depend-
ing on the tripod configuration, the proportional feedback
gain K changes along with the system model, e.g. for a
configuration of [130◦; 110◦], the resulting gain matrix is

K =

[
−1.165 1.406
1.406 1.165

]
. (15)

4. EXPERIMENTAL RESULTS

4.1 Tripod configuration estimation

Measurements have been taken with defined tripod con-
figurations to verify the tripod leg position estimation
methods. Sensor data have been averaged over several
seconds, lessening the impact of sensor noise. The results
are shown in Table 1. The tilt axis method described in
Section 2.1 provides consistently accurate results across
the measured configurations, with the two sources of er-
ror being the distance measurement errors in the defined
measured configurations and inclination sensor noise. The
general method described in Section 2.2 that requires
solving a system of nonlinear equations should provide
comparable results, however, the measured error is an
order of magnitude higher in some cases. Aside from the
poorer performance of the general method, the effect of
linearization is roughly consistent with the predictions.
The discrepancy between expectation and experiment for

the general method can be caused by multiple factors.
Thorough calibration of the mounted inclination sensor
has yet to be performed to correct some known uncertain-
ties in the sensor readout. Any additive or multiplicative

Table 1. Mean squared error of the leg position
estimation methods in various configurations.

(α;β)[◦]
Tilt axis
method
∆γ[◦]

General
method
∆γ[◦]

Linearized
general
method
∆γ[◦]

Predicted
linearization

error
∆γ[◦]

100; 100 0.23 3.36 5.67 5.00
100; 110 0.29 2.36 4.74 2.70
100; 120 0.22 0.55 1.83 1.22
100; 130 0.62 1.44 2.98 0.80
100; 140 0.30 1.08 2.06 1.30
110; 110 0.74 1.82 1.83 1.14
110; 120 0.31 1.20 1.68 0.29
110; 130 0.20 0.75 0.88 0.30
110; 140 0.25 0.28 1.82 0.62
120; 120 0.08 0.55 0.55 0.00
120; 130 0.28 0.41 0.25 0.24
120; 140 0.30 0.33 2.80 0.86
130; 130 0.34 0.54 1.81 0.94
130; 140 0.34 0.33 4.51 2.00
140; 140 0.20 0.35 9.27 3.46

error on both angles would affect the general method more,
since the tilt axis method only evaluates the ratio of the
angle changes and not their absolute value. The choice of
the test motion also plays a large role in the estimation
accuracy, as smaller angle changes are more affected by
sensor inaccuracies. Further experiments are needed to
evaluate this.
Both the general method and the tilt axis method provide
sufficient precision to be usable in practice. The linearized
method is the fastest to compute and easiest to implement.
However, its large errors further away from the lineariza-
tion point mean that its use is only justified if initial
manual leg positioning is ensured with a ±15◦ accuracy
around the optimal 120◦. This could be accomplished by
the use of visual guides on the tripod.

4.2 Leveling control

The LQG controller designed in Section 3 is tested with
various tripod configurations and initial conditions, with
one example shown in Fig. 7.

During movement, the noise is very prominent and the
measurement cannot be used for feedback control without
processing. The results of the model verification, partly
shown in Fig. 6, indicate accurate modeling of the system,
providing good results even over longer periods of time.
Therefore, the discrepancy between the predicted state
and a moving average suggests that low-pass filtering does
not give a good estimate of the state during movement.
Furthermore, while computationally efficient, low-pass fil-
tering introduces a trade-off between noise suppression and
phase lag that a model-based Kalman filter avoids.
More precise evaluation of the Kalman filter would be pro-
vided by accurate angular measurements by other means.
As it is, the developed Kalman filter can only be evaluated
based on its effects on the leveling control and its settling
time, overshoot and steady-state error. These are improved
when the Kalman filter is set to place more importance on
the model and input data, while paying less attention to
the sensor measurements.
In practice, the model will not describe the system per-
fectly, partly due to the linearizations performed. The
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Fig. 7. Inclination sensor measurement of the roll angle φx
during a leveling operation with the initial conditions
φx = −1.15◦, φy = 0.29◦ and tripod configuration
α = 130◦, β = 110◦. The influence of sensor noise is
greatly reduced by using a Kalman filter. A moving
average is shown for comparison.

accuracy of the parameter estimation done in the previous
step also has a large effect on the validity of the model.
Sensor data is therefore still necessary for the estimate to
converge to the current state. The Kalman filter can be
adjusted to reflect these considerations by changing the
covariance matrices of the sensor noise and process noise.
Experiments have shown that the optimal ratio of sensor
to process noise covariances is on the order of 106.
The LQG controller achieves smooth leveling without over-
shoots for all tested configurations, which correspond to
the intended use on construction sites. Leveling precision is
within sensor noise, which in steady state is approximately
Gaussian with a standard deviation of 0.018◦. Besides
leveling, control of the platform to arbitrary pitch and roll
angles is also achieved, limited only by actuator stroke.

5. CONCLUSION

In this paper, the task of automatically leveling a tri-
pod platform with variable leg positions is analyzed. Two
methods for estimating the unknown configuration are
presented. The method based on finding the tilt axes
of the system provides the most accurate results with
a leg angle estimation error of generally less than 0.5◦.
However, more time is required for its two separate test
movements. A more general method only needs one test
movement and also provides useful estimates, however its
accuracy is below expectations. This is presumably due to
uncertainties in the measurement and sub-optimal choice
of test movement. The method also requires numerically
solving a system of nonlinear equations. A linearization
of the parameters allows straightforward implementation
and fast execution on any PLC hardware and provides
satisfactory results in a narrower range of configurations
expected to be used in practice.
Knowledge of the leg positions will provide obstacle in-
formation to a motion planning algorithm in future work.
The estimate is further used to obtain the parameters of
a state-space model of the system. The model is found to
describe system behavior accurately and serves as the basis

for a Kalman filter. This reduces the influence of sensor
noise caused by mechanical vibrations and allows smooth
control without overshoots with a proportional feedback
controller designed by the LQR algorithm. The system can
be controlled to arbitrary achievable pitch and roll angles
with a precision only limited by steady-state sensor noise.
Ongoing work focuses on proper calibration of the in-
clination measurement and further development of the
parameter estimation methods. One possible option would
be the use of joint or dual unscented Kalman filtering, as
seen in other work, e.g. Wielitzka et al. (2018), allowing
estimation of the states and parameters at the same time.
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