Investigating H^+/Li$^+$ exchange in cubic LLZO garnets: Spatially resolved H-determination using LIBS

S. Smetaczek1, V. Zeller1, D. Rettenwander2, S. Ganschow3, S. Berendts4, J. Fleig1 and A. Limbeck1

1Institute of Chemical Technologies and Analytics, TU Wien, Vienna, Austria
2Institute for Chemistry and Technology of Materials, TU Graz, Graz, Austria
3Leibniz-Institut für Kristallzüchtung, Berlin, Germany
4Institute of Chemistry, TU Berlin, Berlin, Germany

*Mailing Address: stefan.smetaczek@tuwien.ac.at

ABSTRACT

With next generations battery concepts such as aqueous Li-O$_2$ cells in mind, stability in aqueous/moisture environment is a critical material property for solid electrolytes. Cubic Li$_7$La$_3$Zr$_2$O$_{12}$ (LLZO) garnets show many promising characteristics for application in future Li-ion batteries, like suitable Li-ion conductivity and stability against metallic Li, however, they are known to exhibit H^+/Li$^+$ exchange in contact with water [1, 2]. Despite a lot of research focusing on that topic, many aspects such as the extent and rate of the proton-exchange is still an unsettled matter [3]. In order to truly understand this phenomenon as well as its impact on possible applications of LLZO, detailed information about the exact H-uptake is necessary.

In this work, we present a method for the spatially resolved H-determination within LLZO garnets. Laser induced breakdown spectroscopy (LIBS) was used to conduct depth-profiling experiments on various LLZO samples, including poly- as well as single crystals. H^+/Li$^+$ exchange caused by immersion in different aqueous media like distilled water and diluted hydrochloric acid was investigated, confirming significant H-uptake during treatment with protic solvents.

Keywords: LLZO, garnet, H^+/Li$^+$ exchange, stability, LIBS, depth-profiling, single crystal

References: