15:45 **Nishant Neokala, Sander Mann, Stephen March, Sch Bank, John Klem, Igal Brener, Andrea Ali and Mikhail Belkin**
Optical power limiting from intersubband polaritonic metasurfaces

16:00-16:20 Coffee Break (Exhibition is open)

16:20-17:35 Session 17: New Intersubband Materials
Chair: Gottfried Strasser

16:20
Arnaud Jollivet, Maria Tchernycheva, Enrico Di Russo, Lorenzo Rigutti, Miguel Montes Bajo, Julen Tamayo Arrola, Adrian Hierro, Borg Vinter, Nolwenn Le Biavan, Maxime Hugues, Jean-Michel Chauveau and Francois Julien
Room temperature excitonic transitions induced by intersubband absorption in m-plane ZnO/ZnMgO quantum wells.

16:30
Thomas Grange, David Stark, Giacomo Scalari, Jérôme Faist, Luca Persichetti, Monica De Seta, Luciana Di Gaspare, Giovanni Capellini, Douglas Paul, Michele Ortolani, Stefan Birner and Michele Virgilio
Comparing III-V and group-IV terahertz quantum cascade lasers using non-equilibrium Green’s functions.

16:50
Trang Nguyen, Alexander Senichev, Brandon Draba, Yang Cao, Michael Manfra and Oana Malis
Non-polar strain-balanced AlGaN/InGaN superlattices for infrared optoelectronic devices.

17:05
Monica De Seta, Michele Montanari, Chiara Ciano, Luca Persichetti, Luciana Di Gaspare, Michele Virgilio, Giovanni Capellini, Marvin Zoellner, Oliver Sklibitzi, David Stark, Giacomo Scalari, Jerome Faist, Douglas J. Paul, Thomas Grange, Stefan Birner, Kirsty Rew, Douglas Paul, Jérôme Faist and Giacomo Scalari
High-quality n-type Ge/SiGe multilayers for room temperature THz emission

17:20
David Stark, Luca Persichetti, Michele Montanari, Chiara Ciano, Luciana Di Gaspare, Monica De Seta, Marvin Zoellner, Oliver Sklibitzi, Giovanni Capellini, Michele Ortolani, Leonetta Baldassarre, Michele Virgilio, Thomas Grange, Stefan Birner, Kirsty Rew, Douglas Paul, Jérôme Faist and Giacomo Scalari
Si-based n-type Quantum Cascade Structures for THz Emission

19:00-22:00 Banquet
Banquet will be held at the Ojai Valley Inn and Spa in the Hacienda Ballroom.

Award for Best Student Poster will be presented by the conference chairs along with DRS Daylight Solutions.

Friday, September 20th

09:00-10:30 Session 18: Detection
Chair: Daniel Wasserman

09:00
David Ting
Type-II superlattice unipolar barrier infrared detectors (Invited)

09:30
Azzurra Bigioli, Diamal Gacemi, Daniele Palaferrri, Yanko Todorov, Angela Vasanelli and Carlo Sirtori
Mixing properties of room temperature patch-antennas receivers in a mid-Infrared (9 um) heterodyne system

09:45
Changyuan Yao, Mengchen Huang, Jonathan Kawamura, Ken West, Boris Karasik, Loren Pfeiffer and Mark Sherwin
Tunable Antenna-Coupled Intersubband Terahertz (TACIT) Mixers

09:50
Baroslav Hinkov, Arnaud Jollivet, Hanh T. Hoang, Stefano Pirotta, Maria Tchernycheva, Raffaele Colombelli, Maxime Hugues, Nolwenn Le Biavan, Miguel Montes Bajo, Adrian Hierro, Jean-Michel Chauveau, Gottfried Strasser and Francois H. Julien
Quantum cascade detectors based on non-polar ZnO/ZnMgO quantum wells

10:00
Johannes Hillbrand, Sandro Dal Cia, Aaron Maxwell Andrews, Hermann Detz, Erich Gornik, Benedikt Schwarz and Gottfried Strasser
High bandwidth quantum cascade detectors

10:30-10:50 Coffee Break
Award for Best Student Presentation will be presented by the conference chairs along with DRS Daylight Solutions.

10:50-12:20 Session 19: New Physics
Chair: Mark Sherwin

10:50
Ilana-Cristina Beza-Chelmus, Francesca Fabiana Settembrini, Giacomo Scalari and Jerome Faist
Electric field correlation measurements on the electromagnetic vacuum state (Invited)
Quantum cascade detectors based on non-polar ZnO/ZnMgO quantum wells

Borislav Hinkov1, Arnaud Jollivet1, Hanh T. Hoang1, Stefano Piratta1, Maria Tcherneycheva2, Rafael Colomboi2, Maxime Hugues1, Noiween Le Bihan3, Miguel Montes Bajo4, Adrian Hierro5, Jean-Michel Chauveau6, Gottfried Strasser1, and Francois H. Julien2

1Institute of Solid State Electronics & Center for Micro- and Nanostuctures, Technische Universitat Wien, Vienna, Austria
2Center of Nanoscience and Nanotechnology, CN2 University Paris-Sud, University Paris-Saclay, France
3Université Côte d'Azur & CNRS/CREA, Valbonne, France
4USM, Universidad Politecnica de Madrid, Madrid, Spain
*Contact Email: borislaw.hinkov@tuwien.ac.at

Short Abstract: The performance of state-of-the-art THz optoelectronic devices is limited by parasitic LO phonon transitions, e.g. preventing the operation of GaAs-based THz-QCLs above ~200 K. This can be overcome by using alternative, novel material systems with higher LO-phonon energies like ZnO [1]. Here we present the first mid-IR ZnO/ZnMgO-based QCD with a peak responsivity of 0.15 mA/W at 77 K.

1. Introduction

Wurtzite ZnO/ZnMgO is a new material system for quantum cascade devices. Due to its large LO-phonon energy, it was predicted that THz quantum cascade lasers could be operated above room temperature [1], which is not the case for the current technology based on GaAs/AlGaAs materials. Interband absorption in m-plane ZnO structures has been shown recently [2]. We report in this paper on the first demonstration of ZnO/ZnMgO-based quantum cascade detectors (QCD) grown on m-plane substrates by molecular beam epitaxy (MBE). As inherent to wurzite heterostructures, the m-plane [10-10] crystallographic orientation allows to avoid the internal electric field, thus simplifying the design of the QCD. The layer structures of our QCD is shown in Fig. 1(a) together with the conduction band profile of one of the 20 periods of the ZnO/ZnMgO QCD active region (see Fig. 1(b)). The target wavelength, not accounting for the depolarization shift, is 37 μm.

We developed a device fabrication process for square MESA, using a dry etching process in an ICP-RIE based on a CH4 chemistry [3]. Applying non-annealed Ti/Al contacts results in typical contact resistances on the order of ~mid 10^6 Ω cm^2. The inset of Fig. 1(c) shows a top-view microscope image of the final device.

2. Results

Figure 1(c) shows typical room temperature (300 K) J-V plots for differently sized MESA-QCDs between 10 x 10 μm^2 and 100 x 100 μm^2. As can be seen, the curves overlap nicely which means that there is no significant surface leakage current in these devices. This is the result of an additional surface passivation step using high temperature H2O at 95°C [4] which reduces the leakage current in our devices by 2-3 orders of magnitude.

In addition, we also measured and analyzed the polarization-dependent photocurrent spectra. As can be seen in Fig. 1(d), the photocurrent is peaked at 3 μm wavelength. The blue-shift with respect to the targeted wavelength is explained by the depolarization shift. As can be seen in the same figure, the main contribution of the photocurrent signal originates from TM-polarized light, as it is expected for a detector based on interband transitions. Further details can be found in [5]. The responsivity of the devices has been calibrated and persists up to room temperature (R_mw = 0.15 mA/W).

References