q

Check for
updates

Combining Resolution-Path Dependencies
with Dependency Learning

1) Friedrich Slivovsky, and Stefan Szeider

Tom4s Peit
Algorithms and Complexity Group, TU Wien, Vienna, Austria
{peitl,fs,sz}@ac.tuwien.ac.at

Abstract. We present the first practical implementation of the reflexive
resolution-path dependency scheme in a QBF solver. Unlike in DepQBF,
which uses the less general standard dependency scheme, we do not com-
pute the dependency relation upfront, but instead query relevant depen-
dencies on demand during dependency conflicts, when the solver is about
to learn a missing dependency. Thus, our approach is fundamentally tied
to dependency learning, and shows that the two techniques for depen-
dency analysis can be fruitfully combined. As a byproduct, we propose a
quasilinear-time algorithm to compute all resolution-path dependencies
of a given variable. Experimental results on the QBF library confirm
the viability of our technique and identify families of formulas where the
speedup is particularly promising.

1 Introduction

Dependency analysis is a state-of-the-art technique in QBF solving, in which
the QBF solver attempts to identify spurious syntactic dependencies between
variables and by doing so simplify the quantifier prefix. The historically older
approach to dependency analysis are dependency schemes [14], first implemented
in the QCDCL (Quantified Conflict-Driven Clause/Cube/Constraint Learning)
solver DepQBF [2]. A dependency scheme is a mapping that, given a formula,
identifies pairs of variables that are syntactic dependencies according to the
quantifier prefix, but can in fact be safely ignored. DepQBF employs the stan-
dard dependency scheme in order to identify pairs of variables that are guaran-
teed to be independent. A more recent idea, implemented in the QCDCL solver
Qute [11], is dependency learning, where the solver speculatively assumes all
pairs of variables to be independent, and updates the information whenever it
proves wrong during search.

Since the dawn of DepQBF and its use of the standard dependency scheme,
one of the main open questions in QBF dependency analysis has been whether
stronger dependency schemes can be utilized as well. Since DepQBF uses tailor-
made data structures to efficiently compute the standard dependency scheme [3],
one cannot answer this question by simply substituting a different dependency

This research was partially supported by FWF grants P27721 and W1255-N23.

© Springer Nature Switzerland AG 2019
M. Janota and I. Lynce (Eds.): SAT 2019, LNCS 11628, pp. 306-318, 2019.
https://doi.org/10.1007/978-3-030-24258-9_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24258-9_22&domain=pdf
https://doi.org/10.1007/978-3-030-24258-9_22

Combining Resolution-Path Dependencies with Dependency Learning 307

scheme into DepQBF. Of particular interest would be an efficient implementation
of the reflexive resolution-path dependency scheme [16,17], the strongest known
tractable sound one.

The main issue with implementing dependency schemes is that the number of
pairs of variables in the dependency relation can in the worst case be quadratic,
which turns out to be impractical for a large number of relevant formulas. We
therefore take a different approach, and only compute parts of the dependency
relation on demand. We do this during dependency conflicts, a state of the solver
unique to QCDCL with dependency learning, in which the solver attempts to
perform a resolution step, but fails due to universal literals (in the case of clause
resolution) left of the pivot variable appearing in different polarities in the two
clauses and thus blocking the resolution step. When the solver encounters a
dependency conflict, it would normally have to learn a new dependency. Instead,
we compute the dependencies of the pivot variable and filter out any blocking
variables that are actually independent. If it turns out that no blocking variables
remain, the resolution step can be carried out, otherwise a dependency on one
or more of the remaining blocking variables is learned.

While it is known that resolution paths are equivalent to directed paths in the
implication graph of the formula [15], using this result directly would require us
to perform one search for each blocking variable, resulting in an overall quadratic
running time. Instead, we show that all dependencies of a given variable can be
found by searching for widest paths in a weighted variant of the implication
graph. This is a well-studied problem that can be solved efficiently, for instance
in overall quasilinear time using a variant of Dijkstra’s algorithm [9].

We implemented the dependency scheme in the QBF solver Qute, and eval-
uated our implementation on the entire QBF Library [5], preprocessed by the
preprocessor HQSpre [18]. We observed a modest increase in the total number
of solved instances. We also identified families of formulas on which the use of
the dependency scheme appears to be particularly beneficial.

2 Preliminaries

A CNF formula is a finite conjunction C7 A- - - AC,, of clauses, a clause is a finite
disjunction (€1 V -+ V £y) of literals, and a literal is a variable x or a negated
variable T. We will also refer to terms (also known as cubes), which are finite
conjunctions of literals. Whenever convenient, we consider clauses and terms as
sets of literals, and CNF formulas as sets of clauses. The length of a CNF formula
@0 =C1 A+ ACh is defined as |¢]| = Y i%, |Chl.

We consider QBF's in Prenex Conjunctive Normal Form (PCNF), i.e., for-
mulas F = Q.p consisting of a (quantifier) prefix Q@ and a propositional CNF
formula ¢, called the matriz of F. The prefiz is a sequence Q = Q121 ... Qnxy,
where Q; € {V,3} is a universal or existential quantifier and the z; are (univer-
sal or existential) variables. The depth of a variable z; is defined as d(x;) = 1,
the depth of a literal £ is 6(¢) = d(var(€)). If §(z) < d(y) we say that x is left
of y, y is right of x, and we write Rx(z) = {v € var(F) | 6(z) < §(v) }, and

308 T. Peitl et al.

z; <Fx;if 1 <i<j<nandQ; # Q;, dropping the subscript if the formula F
is understood. The length of a PCNF formula F = Q.¢ is defined as || F|| = ||¢|l-

We assume that PCNF formulas are closed, so that every variable occurring
in the matrix appears in the prefix, and that each variable appearing in the
prefix occurs in the matrix. We write var(x) = var(Z) = « to denote the variable
associated with a literal and let var(C) = {var(¢) | £ € C'} if C is a clause
(term), var(y) = Uge, var(C) if ¢ is a CNF formula, and var(F) = var(p)
if 7 = Q. is a PCNF formula.

The semantics of a PCNF formula @ are defined as follows. If @ does not
contain any variables then @ is true if its matrix is empty and false if its matrix
contains the empty clause @). Otherwise, let & = Qx Q.. If Q = 3 then @ is true
if @[(x)] is true or @[(—x)] is true, and if @ = V then & is true if both P[(z)]
and @[(—x)] are true.

2.1 QCDCL and Q-Resolution

We briefly review QCDCL and Q-resolution [10], its underlying proof system.
More specifically, we consider long-distance Q-resolution, a version of Q-resolu-
tion that admits the derivation of tautological clauses in certain cases. Although
this proof system was already used in early QCDCL solvers [19], the formal
definition shown in Fig.1 was given only recently [1]. A dual proof system
called (long-distance) Q-consensus, which operates on terms instead of clauses,
is obtained by swapping the roles of existential and universal variables (the ana-
logue of universal reduction for terms is called existential reduction).

CiVe —eV Cq
Ci1V Oy

(resolution)

The resolution rule allows the derivation of C; V Cs from clauses C1 Ve and —e V Cs,
provided that the pivot variable e is existential and that e < var(¢,,) for each universal
literal ¢, € C, such that ¢, € Cs. The clause C; V Cs is called the resolvent of C; Ve
and —e V Cy. Each variable u for which £, € C; and ¢, € Cs is said to be merged
over e in this resolution step.

¢
C\ {u,u}

(universal reduction)

The universal reduction rule admits the deletion of a universal variable u from a
clause C' under the condition that e < u for each existential variable e in C.

Fig. 1. Long-distance Q-resolution.

A (long-distance) Q-resolution derivation from a PCNF formula @ is a
sequence of clauses such that each clause appears in the matrix of @ or can
be derived from clauses appearing earlier in the sequence using resolution or

Combining Resolution-Path Dependencies with Dependency Learning 309

universal reduction. A derivation of the empty clause is called a refutation, and
one can show that a PCNF formula is false, if, and only if, it has a long-dis-
tance Q-resolution refutation [1]. Dually, a PCNF formula is true, if, and only
if, the empty term can be derived from a DNF representation of its matrix by
Q-consensus.

Starting from an input PCNF formula, QCDCL generates (“learns”) con-
straints—clauses and terms—until it produces an empty constraint. Every clause
learned by QCDCL can be derived from the input formula by Q-resolution, and
every term learned by QCDCL can be derived by Q-consensus [4,6]. Accordingly,
the solver outputs TRUE if the empty term is learned, and FALSE if the empty
clause is learned.

3 Resolution-Path Dependency Scheme

The reflexive resolution path dependency scheme detects spurious dependencies
of PCNF formulas based on resolution paths [16,17].

Definition 1 (Resolution Path). Let F = Q.p be a PCNF formula and let
X be a set of variables. A resolution path from ¢y to lo in F is a sequence
m=1{1,...,0a of literals satisfying the following properties:

1. for alli € {1,...,k}, there is a C; € ¢ such that ly;_1, L € C;,
2. for alli e {1,...,k}, var(fai_1) # var(la;),

3. fOT’ allie{l,...,kfl}, ggiiggi_i_l.
If additionally
4. fOT’ allie{l,...,k—l}, {égi,€2i+1}§XUY,

then we say that 7 is a resolution path via X. If m = £1,..., o is a resolution
path in F (via X), we say that {1 and lg, are connected in F (with respect
to X). For every i € {1,...,k — 1} we say that m goes through var(¢s;) and
var(f2;),1 < i < k are the connecting variables of .

Definition 2 (Proper Resolution Path). Let £, ¢ be two literals of a PCNF
formula F such that 6(¢') < §(£) . A resolution path from £ to £’ is called proper,
if it is a resolution path via Rx(var(¢"))Nvars(F). If there is a proper resolution
path from £ to €', we say that £ and ¢ are properly connected (in F).

Resolution paths can be understood in terms of walks in the implication graph
of a formula [15].

Definition 3 (Implication graph). Let F = Q.¢ be a PCNF formula. The
implication graph of F, denoted by IG(F) is the directed graph with vertex set
var(F) Uvar(F) and edge set { (£,0") | there is a C € ¢ such that £,¢' € C and

040

Lemma 1 ([15]). Let F be a PCNF formula and let £,0 € var(F) U var(F) be
distinct literals. The following statements are equivalent:

310 T. Peitl et al.

1. {,Kl,a,...,ék,a,f’ is a resolution path from ¢ to (',
2. 0,0y,..., 0,0 is a path in IG(F).

The resolution path dependency scheme identifies variables connected by a pair
of resolution paths as potentially dependent on each other. We call a pair of
variables connected in this way a dependency pair.

Definition 4 (Dependency pair). Let F be a PCNF formula and xz,y €
var(F). We say {x,y} is a resolution-path dependency pair of F with respect
to X C vars(F) if at least one of the following conditions holds:

-z and y, as well as ~x and —y, are connected in F with respect to X.
-z and ~y, as well as ~x and y, are connected in F with respect to X.

It remains to determine the set X of variables with respect to which a pair z,y
of variables needs to be connected to induce a dependency. For <£ y, the orig-
inal resolution-path dependency scheme only included dependency pairs {z,y}
connected with respect to existential variables to the right of z, excluding x
and y. It turns out that this dependency scheme can be used for reordering the
quantifier prefix [15] but does not lead to a sound generalization of Q-resolution
as required for use within a QCDCL-solver [16]. By dropping the restriction
that z and y must not appear on the resolution paths inducing a dependency
pair, we obtain the reflexive resolution-path dependency scheme, which yields a
sound generalization of Q-resolution [16].

Definition 5 (Proper dependency pair). Let F be a PCNF formula and
x,y € var(F), §(x) < d(y). We say {x,y} is a proper resolution-path dependency
pair of F if at least one of the following conditions holds:

- x and y, as well as ~x and —y, are properly connected in F.
-z and —y, as well as —x and y, are properly connected in F.

Definition 6. The reflexive resolution-path dependency scheme is the mapping
D' that assigns to each PCNF formula F = Q.p the relation

D7 ={z <ry|{x,y} is a proper resolution-path dependency pair of F }.

When D' is used in QCDCL solving, the solver learns clauses in a generalization
of long-distance Q-resolution called LDQ(D™*)-resolution. Figure3 shows the
proof rules of LDQ(D"*)-resolution. Soundness of LDQ(D™*)-resolution has been
established by [12].

Theorem 1 (Corollary 3, [12]). LDQ(D™)-resolution is sound.

We note that the soundness of the corresponding LDQ(D™*)-consensus for terms
still remains as an open problem. In our experiments with the proof system, we
have been able to independently verify the truth value of all formulas by a
different QBF solver.

Combining Resolution-Path Dependencies with Dependency Learning 311

CiVe —eV Cy

Ve, (resolution)

Nel (input clause)

An input clause C' € o can be used as an axiom. From two clauses Cy Ve and —eV Cf,
where e is an existential variable, the (long-distance) resolution rule can derive the
clause C1 V Cy, provided that (u,e) ¢ D%® for each universal variable u with u € Cy
and u € Cy (or vice versa), and that Cy V C2 does not contain an existential variable
in both polarities.

N GO
C\ {u, ~u}
The V-reduction rule derives the clause C' \ {u, —u} from C, where u € var(C) is a
universal variable such that (u,e) ¢ D%° for every existential variable e € var(C).

(generalized V-reduction)

Fig. 2. Derivation rules of LDQ(D™®)-resolution for a PCNF formula F = Q.¢.

4 Using Resolution-Path Dependencies in Practice

The major issue with implementing any dependency scheme for use in a QBF
solver is the fact that the size of the dependency relation is inherently worst-case
quadratic in the number of variables—all pairs of variables of opposite quantifier
type potentially need to be stored. QBFs of interest often contain hundreds of
thousands of variables, and therefore any procedure with quadratic complexity is
infeasible. DepQBF overcomes this by identifying equivalence classes of variables
with identical dependency information, and storing only one chunk of data per
equivalence class [3]. This compressed form, however, is specifically tailored to
the standard dependency scheme, and cannot directly be transferred to other
dependency schemes.

4.1 Dynamically Applying D**

In order to avoid the quadratic blowup, we take a different approach. We do not
aim at computing the entire dependency relation, but instead compute parts of
it on demand, when a dependency conflict occurs.

Dependency conflicts in clause learning in QCDCL with dependency learning
take place in the following way (in this entire section we focus on the case of
clauses, but the case of term learning is dual): the solver attempts to resolve
two clauses, C; and C5, over a pivot variable e, but there is a non-empty set of
universal variables U, such that

VueUu<e (ueCiAueCy)V(ueCAue(y).

These variables are blocking the resolution step, as is shown in the pseudocode
snippet in Algorithm 1 (for a more thorough treatment of QCDCL with depen-
dency learning we refer to [11]). The reason why this occurs is that the solver

312 T. Peitl et al.

mistakenly assumed e not to depend on any u € U, and this erroneous assump-
tion is now to be rectified by learning the dependency of e on at least one variable
from U.

Algorithm 1. Conflict Analysis with Dependency Learning

1: procedure ANALYZECONFLICT(conflict)
2: constraint = GETCONFLICTCONSTRAINT(conflict)

3: while NOT ASSERTING (constraint) do

4: pivot = GETPIVOT(constraint)

5: reason = GETANTECEDENT (pivot)

6: if EXISTSRESOLVENT(constraint, reason, pivot) then
7: constraint = RESOLVE (constraint, reason, pivot)
8: constraint = REDUCE(constraint)

9: else // dependency conflict

10: U = ILLEGALMERGES(constraint, reason, pivot)
11: D =D uU{(v,pivot) |[veU}

12: return NONE, DECISIONLEVEL(pivot)

13: end if

14: end while

15: btlevel = GETBACKTRACKLEVEL(constraint)

16: return constraint, btlevel

17: end procedure

We can conveniently insert a dynamically computed dependency scheme at
this moment. Before any dependency of e is learned, the dependencies of e accord-
ing to the dependency scheme are computed. Any u € U that turns out to be
independent of e can be removed from the set of blocking variables. If everything
in U is independent, no dependency needs to be learned, and conflict analysis
can proceed by performing a resolution step in LDQ(D**)-resolution, in which
all u € U are merged over e. If some variables in U turn out to be actual depen-
dencies of e, at least one of them has to be learned as usual. The modification
to the conflict analysis process is shown in Algorithm 2.

The computed dependencies of e are then stored and re-used in any future
dependency conflicts featuring e as the pivot variable, as well as in strengthening
the reduction rule.

Soundness of QCDCL with dependency learning and the reflexive resolution-
path dependency scheme follows from the soundness of long-distance Q(D"™*)-res-
olution, the underlying proof system used by the algorithm.

4.2 Dynamically Computing D"

When computing resolution-path connections, it is natural to start with a vari-
able v, and compute all variables which depend on v. This is because in this
case, the set of connecting variables that can form proper resolution paths is

Combining Resolution-Path Dependencies with Dependency Learning 313

Algorithm 2. Conflict Analysis with DL and a Dependency Scheme
1: procedure ANALYZECONFLICT(conflict)

2: constraint = GETCONFLICTCONSTRAINT (conflict)

3 while NOT ASSERTING(constraint) do

4 pivot = GETPIVOT(constraint)
5: reason = GETANTECEDENT(pivot)
6
7
8

if EXISTSRESOLVENT (constraint, reason, pivot) then
constraint = RESOLVE(constraint, reason, pivot)
constraint = REDUCE(constraint)

9: else // dependency conflict
10: U = ILLEGALMERGES(constraint, reason, pivot)
11: rrs_deps[pivot] = getDependencies(pivot)
12: U =U N rrs_deps[pivot]
13: if U =0 then
14: goto 7
15: else
16: D =DU{(v,pivot) |veU}
17: return NONE, DECISIONLEVEL(pivot)
18: end if
19: end if
20: end while
21: btlevel = GETBACKTRACKLEVEL(constraint)
22: return constraint, btlevel

23: end procedure

fixed—all existential variables right of v are permitted—and the task of find-
ing everything that depends on v is reducible to reachability in a single directed
graph. However, since a dependency conflict may feature any number of blocking
variables, we would potentially need to perform the search many times in order
to check each dependency. It would be preferable to compute all dependencies of
the pivot variable instead. However, since for every blocking variable u € U, the
set of allowed connecting variables may be different, we cannot reduce the task
of finding all dependencies of the pivot e to just reachability in a single directed
graph, and we need a different approach.’

Definition 7. Let F be a PCNF formula, ¢ a literal of F, and wy : var(F) U
var(F) — RU{xoo} the mapping defined by

00 if l =1,
we(l) =< 6(0) ifl # € and var(l) is exvistential,
—o0 otherwise.

The depth-implication graph for F at ¢, denoted DIG(F,¥{) is the weighted ver-
sion of IG(F) where the weight of an edge (¢1,¢2) is defined as w({1,l2) = we(f1).

! This is the case regardless of the quantifier type of the pivot, the issue is that different
targets in the set of blocking variables can be reached using different connecting
variables.

314 T. Peitl et al.

For a path 7 in a weighted directed graph G, the width of 7 is defined as the
minimum weight over all edges of 7. The following theorem relates resolution
paths in a formula with widest paths in its depth-implication graph.

Theorem 2. Let £,¢' be two literals of a PCNF formula F such that §(0') <
6(£). There is a proper resolution path from £ to £’ if, and only if, the widest path
from £ to ¢' in DIG(F,L) has width larger than 6(¢').

Proof. Let m = ¢, Lo, ..., la_1,¢" be a proper resolution path, and let 7/ =
0,0y, ... lop_o, ¢ be the corresponding path in DIG(F,¢) (by Lemmal). The
width of 7’ is defined as

w(r') = min {w(l,), ..., w(lap—2,0)}
= min {w@@), . ,wg(égk,g)} .

Since wy(¢) = oo and 7 is proper and hence none of its connecting variables
are universal, we have that w(7") = min {6(¢3),...,d(lar—2)} > §(¢'), where the
inequality follows from 7 being proper.

Conversely, let 7/ = £1,0s,..., 01, ¢ be a path of width greater than &(¢),

and let m = {1,005, ..., 0,0, ' be the corresponding resolution path. Since
w(rw’') > 0(¢"), no connecting variables in 7 can be universal, and they all have
to be right of ¢, hence 7 is proper. O

Naively applying the algorithm from [15] would result in an overall quadratic
running time needed to determine all dependencies of a given variable v. Using
Theorem 2 we can reduce the task to two searches for widest paths, and obtain
a much more favourable time bound.

Theorem 3. Given a variable v of a PCNF formula F, all resolution-path
dependencies, i.e., the set {x € var(F) | (x,v) € DE*}, can be computed in
time O(||F]|log || F]|).-

Proof. In order to find out whether a given candidate variable z is a dependency
of v, one has to determine whether there is a pair of proper resolution paths,
either from v to x and from v to 7, or from v to T and from v to x. Theorem 2 tells
us that the existence of proper resolution paths is equivalent to existence of wide
paths. A generalization of Dijkstra’s algorithm can compute widest paths from
a single source to all destinations in a given graph in quasilinear time [9]. The
key observation is that the entire computation is performed within two graphs,
namely DIG(F,v) and DIG(F,v). By computing all widest paths from both
v and v, and then subsequently checking for which candidate variables x both
polarities of x are reached by a wide enough path, we can find all dependencies
of v.

By using the clause-splitting trick like in [15] we can, in linear time, obtain an
equisatisfiable formula F" with var(F) C var(F’) such that the resolution-path
connections between variables of F are the same. Since F’ has bounded clause
size, we get that the number of edges in IG(F’) is O(||F'[) = O(|| F||), and the
stated running time is then simply the running time of Dijkstra’s algorithm. O

Combining Resolution-Path Dependencies with Dependency Learning 315

5 Experiments

We modified the dependency-learning solver Qute so as to perform the procedure
described above—when a dependency is about to be learned, resolution-path
dependencies of the pivot variable are computed, and all blocking variables that
turned out to be spurious dependencies are eliminated. Furthermore, the com-
puted dependencies are kept for re-use in future dependency conflicts featuring
the same pivot variable, as well as to be used in generalized V-reduction.

We evaluated our solver on a cluster of 16 machines each having two 10-
core Intel Xeon E5-2640 v4, 2.40 GHz processors and 160 GB of RAM, running
Ubuntu 16.04. We set the time limit to 900s and the memory limit to 4 GB. As
our benchmark set, we selected the QDIMACS instances available in the QBF
Library? [5]. We first preprocessed them using the preprocessor HQSpre? [18]
with a time limit of 400 seconds, resulting in a set of 14893 instances not solved by
HQSpre. Out of these instances, we further identified the set of easy instances as
those solved within 10 seconds by each of the following solvers: CaQE?* 3.0.0 [13],
DepQBF?® 6.03 [2], QESTOS 1.0 [8], Qute” 1.1 [11], and RaReQS® 1.1 [7]. We
decided to focus only on instances not solved by at least one of these solvers in
under 10s, as it arguably makes little sense to try and push state of the art for
formulas that can already be solved in almost no time regardless of the choice
of the solver. That left us with a set of 11262 instances.

Table 1 and Fig. 3 show the comparison between plain Qute and the version
which implements the dependency scheme (Qute-D™). The version with the
dependency scheme solved 176 (roughly 4.5%) more instances than the version
without. The scatter plot in Fig. 3 deserves further attention. While the overall
number of solved instances is higher for Qute-D™*, the plot is skewed towards
Qute-D's. We attribute this to a small overhead associated with the use of the
dependency scheme, which is most apparent for the easiest formulas. The plot
also shows that there are a few formulas solved by the plain version, but not
by Qute-D™. This is only partly due to the additional time spent computing
resolution paths, and is, in our opinion, in much larger part due to the heuristics
being led off the right track towards a proof of the formula.

We found two families of instances where the increase in number of solved
instances is even more significant, as is documented in Table 1. Particularly on
the matriz multiplication and reduction finding benchmarks the dependency
scheme provides a tremendous boost of performance, resulting in almost four
times as many solved instances.

2 http://www.qbflib.org/.

3 https://projects.informatik.uni-freiburg.de /users /4.
* https://www.react.uni-saarland.de/tools/caqe.

5 https://github.com/lonsing/depgbf.

5 http://sat.inesc-id.pt/~mikolas/sw/qesto.

" https://github.com/perebor/qute.

8 http://sat.inesc-id.pt/~mikolas /sw/aregs.

http://www.qbflib.org/
https://projects.informatik.uni-freiburg.de/users/4
https://www.react.uni-saarland.de/tools/caqe
https://github.com/lonsing/depqbf
http://sat.inesc-id.pt/~mikolas/sw/qesto
https://github.com/perebor/qute
http://sat.inesc-id.pt/~mikolas/sw/areqs

316 T. Peitl et al.

Table 1. Number of instances solved by plain Qute vs Qute using the reflexive
resolution-path dependency scheme on the ‘matrix multiplication’ and ‘reduction find-
ing’ families of formulas, as well as on all instances.

MM-family RF-family all instances
of instances 334 2269 11262
solved by Qute (SAT / 34 (4/30) 423 (140/283) | 3959 (1467/2492)

UNSAT)

solved by Qute-D™ (SAT / | 123 (4/119) | 484 (144/340) | 4135 (1489/2646)
UNSAT)

10° 5 ® e 00 ocoogummecngp
)
°« %
e,
2 L4 ‘ ® [] '
" e *°w s et
L/ b)
° ﬁ ° o °
L3 ° °
° 0.’ & % °
107 5 P ".0: .
° .‘ ° % e ‘% :.
PO
o °
“. T8 ® 330
1 0 9% % ® @ o o, %%
5 ° ° o® o o
e® e °
LA . o 8 °
’ . o0 ° ® ° []
1071 ° o0 . Ce,® o° [}
°
° ° ! !) e ° ° s !
° o o goe ° °
° o oo o o0 o o °
1072 e [X] [}
10-3 o oo ° ° o0
10-% 10-2 10- 100 10! 102 10°
Qute

Fig. 3. Runtimes of Qute with and without D™®on all instances.

Combining Resolution-Path Dependencies with Dependency Learning 317

6 Conclusion and Future Work

We presented the first practical implementation of D™* in a QBF solver. Thus, we
have demonstrated that the strongest known tractable sound dependency scheme
can be efficiently used in QBF solving. Our approach shows that dependency
schemes can be fruitfully combined with dependency learning. Our algorithm
for the computation of all resolution-path dependencies of a given variable may
also be of independent interest.

While the additional prefix relaxation that comes from D™ is no cure-all
for the hardness of QBF, we have found families of formulas where it provides
a significant speedup. In particular, the use of the dependency scheme turned
out very beneficial on the ‘matrix multiplication’ and ‘reduction finding’ classes,
which are both practically relevant applications and further improvement using
QBF would be valuable.

A possible direction for future work is to try to further improve the time
bound of our algorithm for computing the resolution-path dependencies of a
variable either by using data structures more suitable for this concrete scenario,
or by preprocessing the formula. A succinct, possibly implicit, representation of
D™ for use in other solver architectures would also be very interesting.

References

1. Balabanov, V., Jiang, J.H.R.: Unified QBF certification and its applications. For-
mal Methods Syst. Des. 41(1), 45-65 (2012)

2. Lonsing, F., Biere, A.: Integrating Dependency schemes in search-based QBF
solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158—
171. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_14

3. Lonsing, F., Biere, A.: A compact representation for syntactic dependencies in
QBFs. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 398-411. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02777-2_37

4. Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: proof generation and
strategy extraction in search-based QBF solving. In: McMillan, K., Middeldorp,
A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 291-308. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-45221-5_21

5. Giunchiglia, E., Narizzano, M., Pulina, L., Tacchella, A.: Quantified Boolean For-
mulas satisfiability library (QBFLIB) (2005). www.qgbflib.org

6. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning
in the evaluation of quantified Boolean formulas. J. Artif. Intell. Res. 26, 371-416
(2006)

7. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 114-128. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31612-8_10

8. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: Yang, Q.,
Wooldridge, M. (eds.) Proceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence, IJCAI 2015, pp. 325-331. AAAI Press (2015)

9. Kaibel, V., Peinhardt, M.: On the bottleneck shortest path problem. Zib-report
0622, Zuse Institute Berlin (2006)

https://doi.org/10.1007/978-3-642-14186-7_14
https://doi.org/10.1007/978-3-642-02777-2_37
https://doi.org/10.1007/978-3-642-45221-5_21
www.qbflib.org
https://doi.org/10.1007/978-3-642-31612-8_10
https://doi.org/10.1007/978-3-642-31612-8_10

318

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

T. Peitl et al.

Biining, H.K., Karpinski, M., Flogel, A.: Resolution for quantified Boolean formu-
las. Information and Computation 17(1), 12-18 (1995)

Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. J. Artif. Intell.
Res., 65 (2019)

Peitl, T., Slivovsky, F., Szeider, S.: Long-distance Q-resolution with dependency
schemes. J. Autom. Reason. 63(1), 127-155 (2019)

Rabe, M.N., Tentrup, L.: CAQE: A certifying QBF solver. In: Kaivola, R., Wahl,
T. (eds.) Formal Methods in Computer-Aided Design - FMCAD 2015, pp. 136-143.
IEEE Computer Society (2015)

Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom.
Reason. 42(1), 77-97 (2009)

Slivovsky, F., Szeider, S.: Quantifier reordering for QBF. J. Autom. Reason. 56(4),
459-477 (2016)

Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes.
Theor. Comput. Sci. 612, 83-101 (2016)

Gelder, A.: Variable Independence and resolution paths for quantified Boolean
formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789-803. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-23786-7_59

Wimmer, R., Reimer, S., Marin, P., Becker, B.: HQSpre — an effective preprocessor
for QBF and DQBF. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol.
10205, pp. 373-390. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54577-5_21

Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability
solver. In: Pileggi, L.T., Kuehlmann, A. (eds.) Proceedings of the 2002 IEEE/ACM
International Conference on Computer-aided Design, ICCAD 2002, San Jose, Cal-
ifornia, USA, 10-14 November 2002, pp. 442-449. ACM/IEEE Computer Society
(2002)

https://doi.org/10.1007/978-3-642-23786-7_59
https://doi.org/10.1007/978-3-662-54577-5_21
https://doi.org/10.1007/978-3-662-54577-5_21

	Combining Resolution-Path Dependencies with Dependency Learning
	1 Introduction
	2 Preliminaries
	2.1 QCDCL and Q-Resolution

	3 Resolution-Path Dependency Scheme
	4 Using Resolution-Path Dependencies in Practice
	4.1 Dynamically Applying Drrs
	4.2 Dynamically Computing Drrs

	5 Experiments
	6 Conclusion and Future Work
	References

