

Applied Energy Symposium: MIT A+B (AEAB2019)

Resource adequacy with increasing shares of wind and solar power: a comparison of European and U.S. electricity market designs

Hans Auer, Energy Economics Group, TU Wien, Austria

Audun Botterud, Laboratory for Information and Decision Systems, Massachusetts Institute of Technology & Energy Systems Division, Argonne National Laboratory

IIIii

May 22-24, 2019 • MIT, Boston, USA www.applied-energy.org/aeab2019

KEY QUESTIONS

- How does rapidly increasing wind and PV generation impact electricity markets in the short- and long-term?
- Have wind and PV generation been the (only) drivers for wholesale electricity market price decreases in recent years?
- What are the pros and cons of the key electricity market design characteristics in Europe and the U.S. (for hosting high shares of wind and PV generation)?
- What are the possible electricity market design options for resource adequacy?
- What are the recommendations for improvements in electricity market design (general, Europe, U.S.) supporting further increasing wind and PV generation?

ELECTRICITY & NATURAL GAS PRICES IN EUROPE & U.S.

Europe (1999-2016)

U.S. (1999-2016)

Sources: EEG-EEMD (2017) and BAFA (2017)

Data Sources: Data Source: ABB Velocity Suite and U.S. EIA

Applied Energy Symposium MIT A+B (AEAB2019)

RENEWABLE SUPPORT SCHEMES IN EUROPE & U.S.

Europe (2017; 29.6% RES-E)

Applied Energy Symposium

MIT A+B (AEAB2019)

U.S. (2017, 15.6% RES-E)

Source: EEG Green-X (2017)

Data Source: DSIRE (2017)

DRIVERS FOR ELECTRICITY PRICE DECREASES IN EUROPE & U.S.

Europe

- Merit Order Effect: 5-13 €/MWh (Praktiknjo/Erdmann (2016))
- VRE mainly responsible for price decline at least since 2011/2012
- Price decline 0-1 €/MWh in relative terms for 1% VRE increase (Welisch et al (2016))

	2006	2007	2008	2009	2010	2011	2012
	Euros/MWh						
Sensfuß et al. (2008)	-7.8						
Weigt (2009)	-6.2	-10.4	-13.0				
vbw (2011)					-8.0		
Sensfuß (2012)		-5.8	-5.3	-6.0	-5.2	-8.7	-8.9
Speth, Stark (2012)					-5.6	-5.6	
Cludius et al. (2013)			-10.8	-7.8	-6.0	-7.7	-10.1

Source: Praktiknjo/Erdmann (2016)

U.S.

- Merit Order Effect: 0-9 \$/MWh (Wiser et al (2017))
- But: 5% VRE contribution only to overall price decline between 2008-2016 (85-90% gas)

Source: Wiser et al (2017)

In addition, we frequently have been observing negative electricity market prices in recent years, both Europe & the U.S.

Applied Energy Symposium MIT A+B (AEAB2019)

COMPARISON: SHORT-TERM MARKET OPERATIONS

Europe

Indroduced new power exchanges (PXs)

- Include long-term contracts
- TSOs typically own transmission system
- Emphasize markets and economics

Short-term market operations

- Day-ahead and intraday markets (PX)
- Real-time balancing markets (TSO)
- Simple bids/generator UC
- Zonal pricing/market coupling
- Sequential reserve and energy markets
- Market-based decentralised balancing through balance responsible parties

Variable renewable energy

- Strong policy support
- Feed-in tariffs/premiums, tenders/auctions
- VRE as "must-take"

Retail competition

• Retail choice in all countries

U.S.

Build into existing system operators (ISOs)

- Short-term system operation
- ISOs do not own transmission system
- Emphasize physics of the power system

Short-term market operations

- Day-ahead market (ISO hourly)
- Real-time market (ISO 5 min)
- Complex bids/ISO UC
- Locational marginal prices
- Co-optimization of energy and operating reserves
- More centralized control through ISO

Variable renewable energy

- Intermittent policy support
- Tax credits, renewable portfolio standards
- "Dispatchable" VRE

Retail competition

Retail choice in some states

Applied Energy Symposium MIT A+B (AEAB2019)

THE REVENUE SUFFICIENCY CHALLENGE WITH INCREASING VRE

Applied Energy Symposium MIT A+B (AEAB2019)

RESOURCE ADEQUACY PARADIGMS

Several ways to close the gap between Average Cost (AC) and Marginal Cost (MC):

- Energy-only market
 - Prices in energy (and reserves) markets provide investment incentives
 - Importance of scarcity rents (higher offer prices in energy market)
 - Exploitation of several existing flexibilities in the electricity system

Applied Energy Symposium MIT A+B (AEAB2019)

CAPACITY MECHANISMS: CURRENT STATUS IN EUROPE & U.S.

Europe (2017)

Source: EEG-EEMD (2017)

Applied Energy Symposium MIT A+B (AEAB2019)

CAPACITY SUBSCRIPTION

The idea (Doorman 2005)

- Consumers buy the capacity they need under system scarcity
- · Generators (and storage) receive capacity payments accordingly
- System operator limits consumer demand during scarcity
- A practical implementation of "priority service" (Chao and Wilson 1987)

Several advantages (Doorman and De Vries 2017)

- Consumers pay directly for the scarce resource: generation capacity
- Capacity adequacy moves in the direction of a private good (economically efficient rationing)
- Capacity price and quantity reflecting consumer preferences
- Reduced risk for consumers and producers

Challenges

• Cost of controlling loads at consumer level (load limiting devices)

Applied Energy Symposium MIT A+B (AEAB2019)

GENERAL RECOMMENDATIONS FOR IMPROVED MARKET DESIGN

- Gradually remove technology specific subsidy schemes for VRE generation
- Adequate pricing of carbon and other environmental externalities in a more marketcompatible manner
- Improve price formation in energy and reserve markets, particularly during scarcity conditions
- Move day-ahead markets closer to the operating day
- Improve incentives for provision of system flexibility
- Remove barriers for supply, demand and energy storage technologies to enable competition in several market segments
- Enable participation of distributed generation and demand response
- Reduce reliance on explicit capacity mechanisms to incentivize investments (if still needed, use more market-based designs like capacity subscriptions)

Applied Energy Symposium MIT A+B (AEAB2019)

SPECIFIC RECOMMENDATIONS FOR IMPROVED MARKET DESIGN

Europe

- Improved representation of transmission in market clearing to better reflect congestion in prices
- Imbalance netting to avoid opposite activation of frequency reserves in neighboring zones
- Shortening timeframes in intraday market
- Higher time resolution of real-time dispatch and market clearing
- Co-optimization of energy and reserves instead of sequential/separate markets
- Economic dispatch of VRE
- Better coordination between TSOs to reduce dispatch needs
- Further develop retail competition, notably in terms of more flexible and variable pricing/tariff products

U.S.

- Increased liquidity and transparency in long-term contracts
- Implementation of intraday markets for market-based balancing
- Higher time resolution of settlements in real-time energy and reserve markets
- Further refinements of products in ancillary service markets
- Full co-optimization of energy and reserves in all regional U.S. markets
- Better coordination between regional capacity, energy, and reserve markets
- Open up for retail competition in larger parts of the country, along with innovations in flexible pricing/ tariff design

Applied Energy Symposium MIT A+B (AEAB2019)

CONCLUDING REMARKS

- The impact of variable renewable generation on electricity markets is more visible in European compared to U.S. electricity markets.
- U.S. electricity markets better aligned with physics of the transmission grid: more centralized coordination and control.
- European electricity markets more focused on market clearing via power exchanges (including also long-term contracts).
- One of the key questions: how much of the "optimization problem" should be solved by system operators vs. market participants?
- Getting the price formation in short-term energy/reserve markets is the key challenge.
- Capacity mechanisms should be a back-up only (and if needed, preference for a more market-based approach like capacity subscriptions).
- No single solution: lessons to be learned in both directions!

Applied Energy Symposium

MIT A+B (AEAB2019)

Applied Energy Symposium: MIT A+B (AEAB2019)

Acknowledgements / References

Collaborators

Audun Botterud N	lassachusetts Institute of Technology
Todd Levin A	rgonne National Laboratory
Andrew Mills La	wrence Berkeley National Laboratory
Ryan Wiser La	wrence Berkeley National Laboratory
Conleigh Byers N	lassachusetts Institute of Technology

References

Botterud A. and Auer H., "<u>Resource Adequacy with Increasing Shares of Wind and Solar Power: A Comparison of European and U.S. Electricity Market Designs</u>," *Economics of Energy and Environmental Policy*, forthcoming 2019 (MIT CEEPR Working Paper 2018-08). Levin T., Kwon J., Botterud A., "<u>The Impacts of Carbon and Variable Renewable Energy Policies on Electricity Markets</u>," *Energy Policy*, Vol. 131, pp. 53-71, 2019. Byers C., Levin T., Botterud A., "<u>Capacity market design and renewable energy: Performance incentives, qualifying capacity, and demand curves</u>," *Electricity Journal*, Vol. 31, No. 1, pp. 65-74, 2018. Wiser R., Mills A.D., Seel J., Levin T., Botterud A., "<u>Impacts of Variable Renewable Energy on Bulk Power System Assets, Pricing, and Costs</u>," Technical Report LBNL-2001082," Nov. 2017.

May 22-24, 2019 • MIT, Boston, USA www.applied-energy.org/aeab2019