Iterative Learning Control for Laser Scanning based Micro 3D Printing

Han Woong Yoo∗, Christoph Johannes Kerschner∗,1, Shingo Ito∗, Georg Schitter∗

∗ Automation and Control Institute (ACIN), TU Wien, Gusshausstr. 27-29, 1040 Vienna, Austria
(e-mail: {yoo, kerschner, ito, schitter}@acin.tuwien.ac.at).

Abstract: This paper proposes an iterative learning control (ILC) for a micro stereo lithography (MSL) setup to enhance both the speed and the quality of 3D printing. The MSL setup is built based on a commercial confocal microscope while the scanners of both x and y axes are replaced with fast galvanometer scanners considering requirements of random trajectories in 3D printing. With the stabilized galvanometer scanners, a frequency domain ILC is applied for a precise operation of desired 2D scanning trajectories. For fast scan trajectories up to 400 features per second of a 0.6 × 0.6 mm square, the RMS beam tracking error of the ILCs is 0.01 mm, which is 3 times better than the previous results. This improves uniformity of line thickness as well as accuracy of the trajectory.

Keywords: Iterative learning control, 3D printing, Micro stereo lithography (MSL), Scanning MSL, Velocity fluctuation

1. INTRODUCTION

Additive manufacturing, also often called 3D printing, refers to a process by which materials are deposited layer by layer to build components (Horn and Harrysson (2012)). In recent years, additive manufacturing has received much attention due to increasing demands in the rapid prototyping and technology advancement, enabling design-driven manufacturing (Joshi et al. (2012)). The speed of 3D printing processes is critical not only for high throughput of the manufacturing process but also for design optimization by reducing cost and time of the design iterations (Vaezi et al. (2013); Tumbleston et al. (2015)).

Stereo Lithography (SL) technologies are one of the earliest additive manufacturing techniques, which uses light to cure the a liquid resin selectively by photopolymerization (Kodama (1981)). Compared to other additive manufacturing techniques, SL is most suitable for fabrication of micro-scale components, which is called micro stereolithography (MSL) due to high resolution, good surface quality, and no porosity (Vaezi et al. (2013)). By the light control mechanisms, MSL machines are categorized by projection MSL and scanning MSL (Vaezi et al. (2013)). Projection MSL typically uses a liquid crystal display (LCD) or a digital micromirror device (DMD) to create mask patterns for printing, providing extremely high printing speed for large and complex structures while the resolution of the outline is rough due to innate pixelated structure (Stampfl et al. (2016); Bertsch et al. (1997)). Scanning MSL machines uses moving the beam spot, which can generate fine finishing of the outlines, but it is slower than projection based MSL.

Scanning MSL machines often use galvanometer scanners due to their high flexibility and cost-effectiveness (Stampfl et al. (2016)). The quality of the printed lines also depends on the speed variation of the light spot, which is also considered as local exposure for the resin (Tumbleston et al. (2015)). For galvanometer scanners (Yoo et al. (2016)), however, the inertia of the rotor and the finite torque do not allow to have a constant speed at a sharp turnaround while the printing patterns typically contain such corners. One main approach is based on path planning that add a path for acceleration and deceleration to keep the target path in a constant velocity and turn off the laser during the added path (Stampfl et al. (2016); Yeung et al. (2016); Luo et al. (2017)). Another main approach is based on modulation of the laser power or pulsing frequency according to the beam velocity to compensate for the velocity variations (Yeung et al. (2016); Luo et al. (2017); Pothen et al. (2017)). Both techniques can improve line thickness variation, however the path planning approach needs much effort for users to generate a proper path (Pothen et al. (2017)) and requires a prior calibration of the laser beam for the defined scanning pattern, which can reduce the entire throughput of the MSL. So far, little attention has been paid to scanning controls to improve such beam velocity profiles in 3D printing.

This paper proposes an iterative learning control (ILC) for a micro stereo lithography (MSL) setup to enhance both the speed and accuracy of the repetitive scanning trajectories. ILC is a feedforward control that reduces tracking errors for desired trajectories by learning from the previous trials. Barton and Alleyne (2008) propose...
ILCs for electrohydrodynamic jet (e-jet) based 3D printing to improve positioning accuracy of deposition system, and Hoelzlze and Barton (2016) proposed spatial ILC considering 2D printed outcome. Yoo et al. (2016) propose ILC for galvanometer scanners in confocal laser scanning microscopy, showing improved tracking performance in a wide bandwidth. This paper extends the application of the ILC for galvanometer scanners to micro 3D printing, evaluating the benefits in the printing results. Due to simplicity in modeling, a frequency domain ILC (Li (2013); D. Wang (2014); Ito et al. (2017a)), is used for the stabilized galvanometer scanners in the MSL setup. The ILC and the MSL setup is evaluated for a square shape test pattern to illustrate its benefits.

The paper is organized as follows. Section 2 describes the developed MSL setup based on a commercial microscope with a laser and two fast galvanometer scanners as key components. Feedback stabilization of the galvanometer scanners and the design of the frequency based ILC are described in Section 3. Section 4 presents experimental results with an analysis on pattern accuracy and beam velocity, and printing results of a single layer are discussed. Section 5 concludes the paper.

2. EXPERIMENTAL SETUP

Fig. 1 shows a schematic diagram and a picture of the MSL setup. The MSL setup is built based on a optical microscope (Leica DMRE, Leica Microsystems, Wetzlar, Germany) with an external laser, galvanometer scanners and associated optics. A diode laser system (iBeam Smart, 405 nm, 150 mW, digital bandwidth 290 MHz, Grafteling, Toptica Photonics, Germany) emits laser light. The laser light passes a beam splitter (70:30, component from Leica SP2) and is expanded by a beam expander (3× beam expander, component from Leica SP2). Then the beam diameter is adjusted by a diaphragm (ID25, ThorLabs, Newton, NJ, USA) to fill the back focal plane of the microscope objective. After mirrors the laser beam coincides two galvanometer scanners, which are positioned at the back focal plane of the scan lens to move the focused beam in x- and y-direction. An objective (HC PL Fluotar, 10×, 0.3 NA, 1.5 mm field of view, Leica) focuses the beam onto the build platform in the resin container. Since the microscope is an upright type, the MSL setup is built in top-down architecture, where the laser cures the material from the top. The reflected light from the sample passes back through the microscope and is focused on an APD sensor (APD120, ThorLabs) by a lens (AC254-045-A1, f = 45 mm, ThorLabs) to detect the focal plane precisely.

For 3D printing, in contrast to most optical scanning microscopes, the beam trajectories can be arbitrary due to the target structures to print, i.e. speed of the scanners in both x and y axis should be equally high. Two fast galvanometer scanners (6210H, Cambridge Technology, Lexington, MA, USA) are chosen, which are a moving magnet type with low rotor inertia and have the structural modes beyond 20 kHz (Yoo et al. (2016)). The galvanometer scanners are driven by custom-made current amplifiers with more than 50 kHz bandwidth, and sensor readout boards (678 rev.B, Cambridge Technology) to process the encoder output of the galvanometer scanner measuring the beam deflection angle.

3. CONTROL DESIGN

This section describes the control design for the x and y galvameter scanners. Since the x or y galvanometer scanner are similar and have the same controller structure, the design is shown for one axis only. Fig. 2 describes an overall architecture of controllers for the xaxis galvanometer scanner. The galvanometer scanner Gx is stabilized by a feedback controller Cx. At s-th iteration and time k, the ILC is applied as a feedforward controller to the an input signal uk[k] of the stabilized galvanometer scanner Px, reducing the the error ek[k] of the encoder output yk[k] with respect to the desired output trajectory yd[k].

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
This and other publications are available at:
http://www.acin.tuwien.ac.at/publikationen/ans/

Kim and Zou (2013); de Rozario et al. (2016); Ito et al. (2017a))

\[U_{x,i+1}[n] = \begin{cases}
U_{x,i}[n] + \rho \hat{P}_X^{-1}[n]E_{x,i}[n], & n \in S_\delta, \\
0, & n \notin S_\delta,
\end{cases} \quad (2) \]

\[E_{x,i}[n] = Y_{x,i}[n] - Y_{x,d}[n], \quad (3) \]

where discrete Fourier transform (DFT) coefficients of the output and desired output signal are defined as

\[Y_{x,d}[n] = \sum_{k=0}^{N-1} y_{x,d}^* e^{-j \frac{2 \pi nk}{N}}, \]

\[Y_{x,i}[n] = \sum_{k=0}^{N-1} y_{x,i} e^{-j \frac{2 \pi nk}{N}}, \quad (4) \]

where \(j = \sqrt{-1} \), \(n \) is the index of harmonic frequencies for the fundamental frequency \(\frac{1}{N} \) in discrete time domain, and \(S_\delta \) is a selected subset of the harmonic frequencies, i.e. \(S_\delta \subset S_N \equiv \{0, 1, \ldots, N-1\} \), which are the low order harmonic frequencies with good SNR (Elci et al. (1994); Ito et al. (2017a)). \(P_X \) is the modeled frequency response function of the stabilized galvanometer scanner \(P_X \), and \(\rho \) denotes a learning gain to cope with modelling errors by sacrificing learning speed. Both finite numbers of harmonic frequencies and the learning gain are designed as a Q filter in ILC to meet the condition of monotonic convergence of ILC as (Norrlund and Gunnarsson (2002); de Rozario et al. (2016))

\[1 - \rho P_X[n] \hat{P}_X^{-1}[n] \leq 1, \quad \forall n \in S_\delta. \quad (5) \]

In contrary to the inversion of the transfer function, the frequency response function model is obtained by a direct inversion of the complex number at each harmonic frequency, which does not suffer from unstable inversion of non-minimum phase zeros (Ito et al. (2017b)). By assuming that the system \(P_X \) is linear time-invariant (D. Wang (2014)), the discrete frequency components of the inverse model can be obtained by a simple division in the frequency domain as

\[\hat{P}_X^{-1}[n] = \sum_{n} U_{x,i+1}[n] e^{-j2\pi kn/N}. \quad (6) \]

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/
This section presents experimental results of the frequency domain ILC for the x and y galvanometer scanners in comparison to the designed feedback controllers. A square trajectory is chosen for the desired output y_{d} as a representative fine outline pattern in 3D printing at a rate of 100, 200 and 400 features/s. The ILC runs up to 30 iterations for experimental verification of the monotonic convergence of the error. Initial input by ILC is set by the desired output, i.e. $u_{1} = y_{d}$. This means that the encoder output $y_{e,1}$ at the first iteration corresponds to that of the feedback controller only while $y_{e,30}$ shows the output improved by the ILC. Considering the convergence of ILC with model errors in Eq. (5), the compensated harmonic frequencies for the ILC are limited up to 8 kHz, i.e. 80, 40 and 20 harmonic frequencies for 100, 200 and 400 features/s scanning trajectories, respectively. The learning gain ρ is set to 0.4.

4.1 Tracking Performance

Fig. 4a shows the encoder outputs on the xy plane for the desired output y_{d} at 400 features/s. The encoder output by the ILCs (black solid line) shows a square trajectory with small rounded corners while about 12.5 % overshoot is observed for each axis with the feedback controller (blue dash-dotted line). The generated input by the ILCs at the 30th iteration (orange dotted lines) shows a significant change of the input to the stabilized galvanometer scanners. Fig. 4b describes the trajectories along the time axis, showing an overshoot after the transition of the scanning motion by the feedback controllers. The ILC input u_{30} shows a non-causal behavior by design, compensating for the upcoming overshoot before the turnaround occurs. Fig. 5 shows the power spectral density of the error trajectories at 400 features/s with measured encoder noise floor (red dotted line with asterisks). The error frequency components of the ILC (black solid line with circles) are significantly reduced up to the 19th harmonic frequency while the error frequency components of the feedback controller (blue dashed line with diamonds) remain high for all harmonic frequencies.

<table>
<thead>
<tr>
<th>Table 1. RMS and peak to peak errors. [mV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS (PP)</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>x-axis</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>y-axis</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
beam velocity by the feedback controllers reaches up to 1061 mm/s at 400 features/s. The tracking errors of the ILCs and the feedback controllers are listed in Table 1, showing a significant reduction by the ILC. The mean velocities from the target velocity are also observed for all edges with residual high frequencies. Table 2 provides detail information about the velocity profiles according to the scan rates. ILC provides up to 34.6 % less standard deviation of the beam velocity and suppress the maximum velocity error with respect to the target velocity from 45.8 % to 14.6 % at 400 features/s. In case of the feedback controllers, the mean velocities are increased from the target velocity since the trajectories become longer by overshoot. In case of the ILCs, small reductions of the mean velocities from the target velocity are also observed since the trajectories shrink due to the realization of the sharp corners.

4.3 Printing Results

This section describes the printing results with the feedback controllers and the ILCs by the developed MSL setup. The same square trajectory is used with a size of 0.6 mm × 0.6 mm, corresponding to the amplitude of the 1 V and 1.44 V for x- and y- encoder signals. Since only a 2D printing is considered, only a thin layer of resin (Envisiontec R11) between a steel plate and a transparent polytetrafluoroethylene (PTFE) film is prepared for polymerization. The laser power is set to 30 mW and the laser is turned on during a single scan of the square trajectory. After printing and draining the rest of the sample, it is carefully cleaned with pure ethanol. The printed patterns are imaged by an optical microscope (Axio Scope.A1, Carl Zeiss, Oberkochen, Germany).

Fig. 8 illustrates the printing results of single line printing with the feedback controllers (a,b) and with the ILC (c,d) at 200 features/s. As shown in Fig. 4a, a distortion of the square pattern by the feedback controllers and its

Table 2. Mean, standard deviation, minimum and maximum of velocity profiles. [mm/s]

<table>
<thead>
<tr>
<th></th>
<th>100 feat./s</th>
<th>200 feat./s</th>
<th>400 feat./s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean(STD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB</td>
<td>245(27)</td>
<td>502(75)</td>
<td>1061(202)</td>
</tr>
<tr>
<td>ILC</td>
<td>239(12)</td>
<td>477(26)</td>
<td>947(91)</td>
</tr>
<tr>
<td>(Max.,Min.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FB</td>
<td>(158,351)</td>
<td>(311,697)</td>
<td>(623,1401)</td>
</tr>
<tr>
<td>ILC</td>
<td>(156,280)</td>
<td>(344,535)</td>
<td>(640,1301)</td>
</tr>
</tbody>
</table>

4.2 Beam Velocity Evaluation

Especially for MSL, beam velocity is analyzed for the uniformity evaluation of printed lines (Tumbleston et al. (2015)). From the square trajectories with 0.6×0.6 mm, the target velocities are 240, 480, and 960 mm/s for 100, 200, and 400 features/s. In practice it is difficult to attain a constant speed due to turnarounds at each corner. To obtain the beam velocity, the encoder outputs are differentiated and then filtered by a 4th order low pass Butterworth filter with a bandwidth of 20 kHz in a zero phase manner to remove high frequency errors by differentiation and to keep enough frequency contents of the trajectory errors. Then the beam velocity is calculated from the velocities of each x and y axis. The encoder outputs are scaled by 0.3 mm/V to compare to the printing results in the next subsection.

Fig. 7 shows two color-coded beam velocity plots based on the measured encoder outputs with the feedback controllers (left) and the ILC (right) at 400 features/s. The beam velocity by the feedback controllers reaches up to 1401 mm/s after turnaround over an half of each edge. In contrast, ILC shows smaller velocity peak up to 1101 mm/s for all edges with residual high frequencies. Fig. 8 illustrates the printing results of the square pattern at 200 feat./s on a steel disk. Bright field images (a,c) and zoomed dark field images (b,d) of the printed patterns with feedback control (a,b) and with ILC (c,d).
compensation by ILC are observed in Fig. 8a and 8c. Figure 8b and 8d show zoomed dark field images around a corner of the square pattern, showing the thickness of the printed line distinctly. The line thickness in the feedback control case varies before and after the corner as a result of inhomogeneous curing due to beam velocity variations. In contrast, ILC shows relatively uniform thickness along the corner by small fluctuation of the beam velocity. This illustrates that ILC is beneficial in the high speed 3D printing of MSL, not only for accurate and precise patterning for period trajectories but also for more uniform line thickness by decreasing beam velocity variations.

5. CONCLUSION

This paper investigates an integration of iterative learning control on a laser scanning based MSL to improve precision of the printed pattern as well as line thickness uniformity. A MSL setup is built based on a commercial confocal microscope by adding two high speed galvanometer scanners and a 405 nm diode laser. The galvanometer scanners are first stabilized by feedback controllers, and a frequency domain ILC is applied to compensate for the errors at the harmonic frequencies up to 8 kHz. As a test trajectory, a 2D square pattern is chosen and applied in a periodic manner at rates of 100, 200 and 400 features/s to verify benefits of the ILC as compared to the designed feedback control. Experimental results show that ILC reduces the RMS beam tracking errors by a factor of up to 25.9 compared to the feedback controllers. Additionally, the maximum velocity errors are reduced from 45.8 % to 14.6 % with respect to the target velocity. The printing results show the benefits of the ILC by accurate patterning as well as more uniform line thickness.

ACKNOWLEDGEMENTS

The authors thank Prof. Jürgen Stampfl and Bernhard Busetti for their suggestions and supports for materials and printing procedure.

REFERENCES

