A Case Study of Systematic Top-down Design of Cyber-physical
Models with Integrated Validation and Formal Verification

Christoph Luckeneder
Technische Universitat Wien
Vienna, Austria
christoph.luckeneder@tuwien.ac.at

ABSTRACT

Abstract models are required to handle the complexity for designing
and verifying large-scale systems. An open problem is to consis-
tently and systematically derive a more concrete model from an
abstract model with regard to verification of its behavior against
certain properties. Based on our recently proposed workflow for
systematic top-down design of models of a Cyber-physical System
(CPS), we present an in-depth case study of Adaptive Cruise Con-
trol (ACC). It includes both verification through model checking and
validation in the sense that a refined model is checked for its fit with
reality. This approach works top-down for designing a concrete
model by starting from an abstract model. The resulting concrete
model was validated and indirectly verified in this case study. In
addition, we made a cross-check by verifying it directly on the
concrete level. Hence, our case study provides some empirical evi-
dence on the feasibility of this new workflow for top-down design
of models.

CCS CONCEPTS

- Software and its engineering — Software design engineering;
Formal software verification;

KEYWORDS
Top-down design, formal verification, behavioral models, CPS

ACM Reference Format:

Christoph Luckeneder and Hermann Kaindl. 2019. A Case Study of System-
atic Top-down Design of Cyber-physical, Models with Integrated Validation
and Formal Verification. In The 34th ACM/SIGAPP Symposium on Applied
Computing (SAC ’19), April 8-12, 2019, Limassol, Cyprus. ACM, New York,
NY, USA, 9 pages. https://doi.org/10.1145/3297280.3297460

1 INTRODUCTION

Complexity is a major reason for designing in a top-down fashion,
by starting with an abstract model and refining it. Verification in
the course of such a design approach often means checking lower-
level artefacts against higher-level ones. We make use of behavioral
verification against properties through model checking in such a
context.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAC 19, April 8-12, 2019, Limassol, Cyprus

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5933-7/19/04...$15.00
https://doi.org/10.1145/3297280.3297460

1828

Hermann Kaindl
Technische Universitat Wien
Vienna, Austria
hermann kaindl@tuwien.ac.at

An approach to design and model-check an abstract qualitative
model of a cyber-physical system (CPS) was proposed in [1]. More
specifically, this was an Adaptive Cruise Control (ACC) model, stud-
ied from the perspective of a composition of features. It includes
both Cruise Control (CC), as widely used in cars, and Distance Con-
trol (DC) of a vehicle A following another vehicle B. Since ACC per
se and its inherent feature interactions are well understood already,
it was possible for this work to focus on automated verification of
feature coordination. A minimalist qualitative model of the behav-
ior of ACC in the sense of a high-level representation of the ACC
behavior was verified through model checking against a formula
in temporal logic representing a rear-end collision accident.

In [2], we proposed a new workflow for systematic top-down
design of cyber-physical models with integrated validation and
formal verification. Their results guide model changes on different
levels of abstraction. This workflow also uses refinement techniques
from [3], but in a top-down design approach rather than bottom-up
verification.

The major motivation for studying and using this workflow is
the inherent guarantee on behavioral consistency between a higher-
and a lower-level model. If the higher-level model satisfies certain
properties, then the lower-level model is guaranteed to satisfy them
as well. This is particularly important for top-down design of safety-
critical systems.

In this paper, we present a case study of applying our system-
atic workflow to the abstract qualitative ACC model. It resulted
in a concrete quantitative model, which we validated (primarily
according to simple physics). According to the workflow, it was
also formally verified indirectly. As a cross-check, we additionally
verified it directly through model-checking.

The remainder of this paper is organized in the following man-
ner. First, we present some general background material and re-
lated work, as well as the workflow, in order to keep this paper
self-contained. Then we describe our case study, including lessons
learned. In addition, we present a direct verification of the resulting
concrete model. Finally, we discuss this approach more generally
and conclude.

2 BACKGROUND

The top-down design approach used heavily relies on mappings
from an abstract (and qualitative) to a concrete (and quantitative)
model. Such a mapping does not only define several parameters
of the concrete model but also an abstraction function from the
concrete to the abstract model. It is key to preserving the statement
made about a specific property checked in the abstract model, in our
case whether a collision can occur or not. Hence, the mapping from

https://doi.org/10.1145/3297280.3297460
https://doi.org/10.1145/3297280.3297460

the abstract to the concrete model needs to define an abstraction
function that guarantees this.

In this regard, we build on the theory of [3], more precisely
its part on abstraction techniques. Clarke et al. distinguish be-
tween two systematic abstraction techniques, over- and under-
approximation. These techniques are designed in a such a way that
the information loss inherent in abstraction causes only one-sided
error. Over-approximation and under-approximation techniques
only cause false negatives and false positives, respectively.

Which type of approximation has to be used depends on the
reasoning needed. Since we use over-approximation, let us focus on
it as required background. Over-approximation guarantees that, if
a temporal logic expression evaluates to true in an abstract model,
then it is true in the concrete model as well. If it evaluates to false
in the abstract model, however, no conclusion can be drawn for
the concrete model in this regard. For determining whether the ab-
straction function defined by a mapping is an over-approximation,
we strongly build on the framework of existential abstraction pre-
sented by Clarke et al. [4]. Intuitively, an abstract model is an over-
approximation of a concrete model, if it allows for all the behavior
of the latter and possibly more. In the course of an abstraction,
states of the concrete model are clustered into abstract states. This
may already lead to an increase of behavioral options through the
transitions between clustered states in the abstract model. How-
ever, no transition in the abstract model must be removed so that a
possible behavioral option in the concrete model is not available in
the abstract model.

Assume-Guarantee Abstraction Refinement (AGAR) [5] is a vari-
ant of Counterexample-guided Abstraction Refinement (CEGAR) [3].
Both approaches make model-checking more efficient based on
automated use of such abstraction techniques. While CEGAR is de-
fined for transition systems and Kripke structures, AGAR is defined
for labeled transition systems (LTS). Since Finite State Machines
(FSMs) are used in our work, which are labeled transition systems,
we can rely on the definitions in [5].

3 RELATED WORK

Since model checking intrinsically faces combinatorial explosion,
abstraction techniques were studied, e.g., in [3, 4, 6], to reduce the
state-space. These techniques provide a systematic way to generate
an abstract model from a concrete one with one-sided error. In
contrast to the approach used here, this work considers the concrete
model as given and fixed. Hence, these techniques start from a
given concrete model, while our workflow starts from an abstract
model either given or defined in due course. Still, these abstraction
techniques can be used in the course of enacting our workflow.
Clarke et al. [3, 4] distinguish in CEGAR between spurious and
real counterexamples, where the former only occur in the abstract
model but not in the concrete one, while the latter occur in both.
Given a spurious counterexample, CEGAR provides a systematic
and automated way to refine the abstract model. If the counterex-
ample is real, the algorithm stops and states that the system does
not fulfil the property checked. If no counterexample can be found,
however, the concrete system is considered safe. Either way, the
technique can be used to make a statement whether a concrete

1829

model fulfils a given property, by model-checking it against ab-
stract models derived from the concrete one. In contrast, the goal
of our workflow is to systematically construct a concrete model
that fulfils the property. Since the design starts at the abstract level,
also real counterexamples are used in our approach to fix the ab-
stract model. In effect, all counterexamples are used as sources of
information for (manually) creating a concrete and quantitative
model.

Wang et al. [7] and Tian et al. [8] proposed meanwhile tech-
nical improvements on CEGAR with regard to the detection of
spurious counterexamples and the refinement of the model. For our
case study, we employed the original techniques (manually). For
automating, it could be interesting to apply these improvements.

The seminal CEGAR approach has been applied to different ver-
ification tasks for already given systems. Nellen et al. [9, 10] used
CEGAR to verify an already given programmable logic controller
(PLC) against safety properties, proposing two approaches for that.
Stursberg et al. [11] built on CEGAR for verification of a cruise con-
trol system using counterexample-guided search. Hybrid automata
representing an already given ACC implementation are used for its
verification in a closed-loop setting. In addition to the integrated
verification (based on the same theory), our design workflow in-
cludes steps for constructively designing such a CPS in the first
place, including, e.g., the determination of system parameters.

Clarke et al. [12] extended CEGAR for verification of hybrid
systems. While we derived a quantitative model from a qualitative
one in the course of our case study, it is still a finite system since
we restrained it, e.g., to a finite number of distinct speed values.
Hence, we did not have to use these extended techniques for hybrid
systems. Still, applying them should be possible in the context of
our workflow.

Software and CPS design in practice integrates verification as
well, of course, both informally and formally. However, we are
not aware of any previous approach that would systematically
determine changes of models on different levels of abstraction
based on verification results like our workflow.

4 THE MODEL DESIGN WORKFLOW USED

Now let us explain our very recently proposed workflow for system-
atic top-down model design used in our case study, as illustrated
in Figure 1. It uses theory on over-approximation and refinement
techniques from [3, 4] in a different context and in a different way.

First, an initial abstract model has to be provided (or used, when
already given like the abstract qualitative model of a CPS proposed
in [1]). This activity requires design skills and domain knowledge
as well as a vision. Still, it should be easier to create an abstract
model first than a concrete one, without having to take all the
details into account upfront. Model-checking the abstract model
may already at this stage reveal property violations in the form
of counterexamples, and it is more efficient than model-checking
a more concrete model. These counterexamples can be used as a
source of information for modifying the abstract model with respect
to the violated properties. Hence, the counterexamples have to be
analyzed and the model modified, until model-checking does not
find any counterexample.

Concrete Model

Validated?

Abstract Model

Provide initial
model
Model-check

Refine
according to
CEGAR

Determine
mapping

Start

Check
counterexample

Counterexample

Spurious

Analyze

Modify

Real

Over-
approximation?
Yes

Figure 1: Workflow for systematic top-down model design,
redrawn from [2]

For a verified abstract model, a mapping to a concrete model is
to be determined. The resulting concrete model should be immedi-
ately validated whether it is realistic or not. If the validation is not
successful, the reasons must be analyzed and the mapping modified
accordingly, until a concrete model is considered realistic.

For answering the question whether the concrete model ful-
fils the properties that the abstract model has already been veri-
fied against successfully, the abstract model needs to be an over-
approximation of the concrete model. This must be checked, and
such a check can be intricate when done manually. Even if this holds
with respect to the originally mapped concrete model, the mapping
may actually have changed due to changes of the concrete model
regarding its validation. Hence, the over-approximation check must
be performed bottom-up and separately.

If this check fails, the abstract model needs to be modified ac-
cordingly and model-checked again. If a counterexample is found,
it is checked whether it is spurious (according to [3]). This is the
case, if it is not a counterexample for the concrete model, i.e., it is
an artefact of the abstraction. Hence, the abstract model is to be
refined, and this can be done systematically according to [3, 4.4].
If the counterexample is real then the abstract model needs to be
analyzed and modified accordingly, and model-checked again, etc.

Once the check for over-approximation is successful, the work-
flow can stop with the result that the concrete model is verified
successfully against the same properties that hold for the abstract
model.

5 CASE STUDY

Our case study started with the qualitative ACC model presented
in [1], the FSMs are given in Figure 2. In order to make this paper
self-contained, the whole model is also presented in this paper.
However, we modified its representation, in order to make changes
in the course of the case study easier to spot. In the following,
all tables regarding transition conditions belong to the qualitative
model. Hence, all changes in these tables or the FSMs are changes
in the abstract model.

The transition conditions are partly given in Table 2. For the lat-
ter, we created a compressed representation in Table 1, where each
row contains a different speed value of vehicle A, and each column a
different speed value of vehicle B. The table entries specify whether

1830

the distance is kept (held), increased or decreased, depending on
the current speed values of vehicle A and vehicle B. For example, if
the speed value of both vehicles is currently Low, then the distance
is kept. This corresponds to (LowSpeedA A LowSpeedB) in Table 2,
which is given there in the Dist_H row. Generally, the entry in each
cell of Table 1 corresponds to the row of Table 2 where the term
(xSpeedA A ySpeedB) appears.

Table 1: Transition conditions of Table 2 compressed

l Speed A\B H Low l Medium l High ‘
Low H I I
Medium D H I
High D D H

H ...Hold distance
I...Increase distance
D ...Decrease distance

The transition conditions for both DC and the coordinator are
equivalent to the conditions given in [1], still we decided to repre-
sent them in the form of a table, see Tables 3 and 4.

This qualitative model has been successfully verified through
model-checking in [1] against the rear-end collision accident prop-
erty in Eq. 1, which means that it is always (globally) true that the
physical distance is different from a collision:

AG(state_phy_dist # COLLISION) (1)

Since this property holds in this abstract model it should be
possible to reason that it also holds in a more concrete model. To
achieve this, according to [3] the abstract model needs to be an
over-approximation of the concrete model.

5.1 First Mapping to a Quantitative Model

Our first mapping was from the qualitative ACC model introduced
in [1], which we briefly explained above, to a quantitative model.
According to our mapping approach outlined above, we first se-
lected the total range of speed values and partitioned it according
to the number of speed classes in the qualitative model. More pre-
cisely, we chose three concrete speed values (15m/s = 54km/h,
22.5m/s = 81km/h, and 30m/s = 108km/h), corresponding to the
three speed values defined in [1] (LowSpeed, MediumSpeed, and
HighSpeed). Since we selected the same concrete speed values for
both vehicles, there is no change in their distance in the quantitative
model whenever they are in the same speed class.

Then we defined the cycle time for the model-checking runs as 1s.
In one time-step, a change from one speed class to an adjacent class
is allowed. Consequently, the possible speed changes are —7.5m/s,
0m/s, and +7.5m/s, i.e., possible accelerations of —7.5m/s?, 0m/s?,
and +7.5m/s?.

Based on all that, we mapped the Distance Classification of the
qualitative model [1] to real distances in our first quantitative model.
In particular, the maximum speed difference between the two vehi-
cles of 15m/s results in a maximum change of their distance in a
single time-step of 15m. Taking also the constraints on such a map-
ping into consideration as given above, we defined the following
mapping of distances:

———— . ___Vehiclea

___ _ _Environment

[Coordinator

Co_High

Co_High
Co_Med v Co_Low

Co_Low

Medium

Speed Low Speed

Co_Med v Co_High

4 DC DIST
@)

DC
Standby, IR

/ $

DC_Low A IDIST

DC_Med A IDIST

pIST DIST

DC_Med

DC_Med v DC_Low
Requ.

Medium

Speed
DC_Med v DC_High

AN

VY4

True

Requ.
Low Speed

AN

initSpeedB == Medium_Speed
v

Low Speed

hold hold v dec

(" Distance Classification

Dist_H v Dist_I v Dist_D Dist_H Dist_H True

cc)
) DC Target Too Close Collision

\ Guided

J

Figure 2: FSMs according to [1], with changed representation

1831

Table 2: Conditions for Transitions of FSM of the Distance Classification according to [1]

Name | Condition

Dist_H | (LowSpeedA A LowSpeedB) V (MediumSpeedA A MediumSpeedB) V (HighSpeedA A HighSpeedB)
Dist_D | (MediumSpeedA A LowSpeedB) V (HighSpeedA A LowSpeedB) V (HighSpeedA A MediumSpeedB)
Dist_I | (LowSpeedA A MediumSpeedB) V (LowSpeedA A HighSpeedB) V (MediumSpeedA A HighSpeedB)

Table 3: Transition conditions related to the DC FSM of [1]

Distance\Speed B H Low [Medium [High [
DC Target DC_Low | DC_Med | DC_High
Too Close DC _Low | DC_Low | DC_Med

Table 4: Transition conditions related to the coordinator
FSM of [1]

[Speed DC\CC || Low Medium | High
Low Co_Low Co_Low | Co_Low
Medium Co_Low Co_Med | Co_Med
High Co_Low Co_Med | Co_High

e CC Guided = [Inf, 35m)
e DC Target = [35m, 20m)
e Too Close = [20m, Om)
e Collision = [0m, -inf]

In addition, it was necessary to provide the quantitative mod-
els with the Newtonian equations for the physics involved, e.g.,
Distancen+1 = (Speedp — Speed 4) * At + Distancep,. They may not
be violated and provide an essential basis for the validation in the
course of the investigated workflow.

5.2 Detailed Analysis and Model Modification

Analyses of the physical behavior of the quantitative model result-
ing from our first mapping showed that its behavior is not fully
covered by the original qualitative model. According to physics, the
distance interval is not always changed when, e.g., vehicle A drives
LowSpeed and vehicle B MediumSpeed. The distance may also be
kept within an interval, depending on where exactly it was before.
Since physics cannot be changed, of course, we had to modify the
qualitative model. Actually, only certain transition conditions had
to be changed. Based on our analyses, the conditions must be as
given in Table 5, where the letters in orange indicate the additional
possibilities as compared to Table 1.

Table 5: Transition conditions according to physics with dis-
tance ranges

lSpeed A\B H Low [Medium [High [
Low H /1 I
Medium /D H /1
High D /D H

H ...Hold distance
1...Increase distance
D ...Decrease distance

1832

This adapted table indicates indeterministic state transitions in
the Distance Classification FSM at the bottom of Figure 2. This
leads to a collision when model-checking the adapted qualitative
model with the new transition conditions, with the following coun-
terexample output by the tool NuSMV [13]:

(1) Vehicle A drives HighSpeed and Vehicle B MediumSpeed. —
Distance changes from CCGuided to DCTarget.

(2) Vehicle A drives MediumSpeed (because of the DC Request)
and Vehicle B accelerates to HighSpeed. — Because DC
Target is now a range, the distance DCTarget may be kept,
and in this example, it is kept (while in the previous model
the distance would change to CCGuided).

(3) Vehicle A drives HighSpeed (DC recognizes HighSpeed of
Vehicle B from the previous step) and Vehicle B decelerates
to MediumSpeed. — Distance changes to Too Close.

(4) Vehicle A decelerates to MediumSpeed and Vehicle B decel-
erates to LowSpeed. — Distance changes to Collision.

According to the workflow, the counterexample was checked
whether it is spurious or real. Since the check revealed that it is
spurious, CEGAR refinement was applied, which led to the distance
classification depicted in Figure 3.

Model-checking by using the adapted FSMs did not reveal any
collision.

5.3 Second Mapping to a Quantitative Model

After having successfully adapted the original qualitative model
from [1], we started another iteration by defining our second map-
ping to a quantitative model. More precisely, we mapped the model
with the new Too Close 1/2 state defined in the FSM in Figure 3 with
its transition conditions defined in Table 5 as well as the adapted DC
FSM transition conditions in Table 6 to a quantitative model with
the values given in Table 7. This was also done using the CEGAR
refinement that the workflow adopts, since it is also defined for the
concrete model. Note, that the distance of DC Target has not been
increased in the course of this change of the quantitative model.

Table 6: Transition conditions of the DC FSM corresponding
to the Distance Classification with two Too Close states

Distance\Speed B H Low [Medium [High ‘
DC Target DC_Low | DC_Med | DC_High
Too Close 1/1 DC_Low | DC_Low | DC_Med

Since the values look realistic according to physics, in partic-
ular the distances and the accelerations (~7.5m/s?, 0m/s?, and
+7.5m/s?) as compared to the concrete speed values, we were
tempted at first to consider this model validated. And since the ab-
stract qualitative model was an over-approximation of the concrete

Figure 3: Distance Classification with Too Close 1 split according to CEGAR refinement

Table 7: Summary of mapping found to be valid for specific
speed values

[Value/Range ‘
HighSpeed 30m/s
MediumSpeed | 22.5m/s
LowSpeed 15m/s
Time-step 1s
CC Guided [Inf, 35m)
DC Target [35m, 20m)
Too Close 1/1 | [20m, 7.5m)
Too Close 1/2 | [7.5m, Om)
Collision [Om, -inf]

quantitative one, the workflow would already have been finished
successfully.

Still, there is a serious validation problem with this model, since
it is obviously unrealistic in the real world to allow only select few
concrete speed values and no speed values in between. This results
from our mapping where each speed class is mapped to exactly one
speed value only.

5.4 Introducing Speed Ranges

To overcome this shortcoming, speed classes in the qualitative
model were mapped to a range of speed values each, such as follows:

e High-Speed = [30m/s, 25m/s)
e Medium-Speed = [25m/s, 20m/s)
e Low-Speed = [20m/s, 15m/s)

In order to avoid having to deal with the additional techniques
for hybrid systems, we simply define these ranges through the
integer values in between.

Unfortunately, when each vehicle randomly picks one speed
value from the same speed range, e.g., it is no longer guaranteed
that the distance stays the same, of course. Hence, the abstract qual-
itative model is not an over-approximation, since it does not have
the corresponding transitions. As a consequence, correctness of the
qualitative model does not imply correctness of the quantitative
one.

Hence, the qualitative model has to be modified again. The
adapted transition conditions in Table 8 reflect these changes. Model-
checking with these adaptations generated a counterexample, i.e.,
collision is possible, even with the previously adapted Distance

1833

Classification (with Too Close 1/1 and Too Close 1/2) as shown in
Figure 3.

Table 8: Transition conditions according to speed ranges

lSpeed A\B H Low ‘ Medium ‘ High ‘
Low H/1/ H/I /1
Medium H/D H/1/ H/I
High /D H/D H/1/

H ...Hold distance
I...Increase distance
D ...Decrease distance

5.5 Analysis and Another Model Modification

Since checking the counterexample revealed that it is real, we per-
formed a detailed analysis of the qualitative model from [1] as
adapted by Table 8.

This analysis revealed that, whenever vehicle A is in the Too
Close 1/2 state, its speed is LowSpeed. The critical case occurs
when vehicle B also drives LowSpeed. Since we abstract the exact
speed values of both vehicles, we do not know whether vehicle A
is approaching or not. The transition conditions of this qualitative
model take that into account by allowing the transition from Too
Close 1/2 to Collision.

In order to solve this problem, we changed the conditions accord-
ing to Table 9. This adaptation of the qualitative model reflects a
mapping of LowSpeed to exactly one concrete speed value, so that,
when both vehicles have this speed, the distance can only stay the
same. Hence, there are fewer transitions again, and model-checking
with this adaptation did not lead to a counterexample.

Table 9: Transition conditions when LowSpeed is mapped to
exactly one concrete value

ISpeed A\B H Low [Medium [High ‘
Low H/I H/I
Medium H/D H/I/D H/T
High H/D H/D H/I/D

H ...Hold distance
I...Increase distance
D ...Decrease distance

Table 10: Transition conditions related to the coordinator FSM with AbsLowSpeed

[Speed DC\CC || AbsLow | Low | Medium | High |
AbsLow Co_AbsLow Co_AbsLow Co_AbsLow Co_AbsLow
Low Co_AbsLow Co_Low Co_Low Co_Low
Medium Co_AbsLow Co_Low Co_Med Co_Med
High Co_AbsLow Co_Low Co_Med Co_High

Table 11: Transition conditions related to the DC FSM when the Distance Classification has two Too Close states and four

speed classes are used

l Distance\Speed B H AbsLow l Low Medium l High
DC Target DC_AbsLow DC_Low DC_Med DC_High
Too Close 1/1 DC_AbsLow DC_AbsLow DC_Low DC_Med
Too Close 1/2 DC_AbsLow DC_AbsLow DC_AbsLow DC_Low

5.6 Modification of the Mapping

As indicated above, keeping the distance when both vehicles drive
with LowSpeed is only possible in a mapped quantitative model with
both vehicles having the same concrete speed value for LowSpeed.
Hence, we modified the mapping as follows, to take this latest
change of the qualitative model into account:

o High-Speed = [30m/s, 22,5m/s)
e Medium-Speed = [22,5m/s, 15m/s)
e Low-Speed = 15m/s

According to the workflow, the question had to be answered,
whether this model can be validated. Our changes of the speed
ranges (while keeping the cycle time at 1s) have actually increased
the possible accelerations, which are in this model in the range
(~15m/s2, +15m/s%). At least for current automotive vehicles, we
judged them as unrealistic.

To reduce these acceleration values, the mapping was changed
in such a way that the overall speed range was divided into four
instead of three sub-ranges. In a nutshell, this led to a validated
quantitative model, which the qualitative one is clearly not an over-
approximation of, however, since it does not have the fourth speed
class yet. Hence, we had to add it into the qualitative model.

After all this, the correspondence can be summarized as follows,
where the new speed class corresponds to an absolute low speed
(AbsLowSpeed), identical for both vehicles (while LowSpeed is
mapped to a range of speed values again):

e HighSpeed = [30m/s, 25m/s)

e MediumSpeed = [25m/s, 20m/s)
e LowSpeed = [20m/s, 15m/s)

e AbsLowSpeed = 15m/s

Due to the inclusion of the new speed class AbsLowSpeed, all
FSMs had to be updated. Of course, the transition conditions had to
be updated, too. The new conditions for the Distance Classification
are given in Table 12 and the transition conditions corresponding
to the FSMs of vehicle A in Tables 10 and 11.

Model-checking this qualitative model shows that a collision
can occur. We did not expect that, since according to our intuition
introducing an additional speed class into the abstract model re-
duces the approximation error. However, it entails the need for a

1834

Table 12: Transition conditions with AbsLowSpeed

l Speed A\B H AbsLow l Low l Medium l High ‘
AbsLow H H/I H/I H/I
Low H/D H/1/D H/I H/I
Medium H/D H/D H/I/D H/I
High H/D H/D H/D H/I/D

H ...Hold distance
I...Increase distance
D ...Decrease distance

more detailed Distance Classification as well. Keep also in mind,
that the distance can change in this model, although the speed
classes are the same (except for the case of both vehicles driving
AbsLowSpeed).

(1) Vehicle B drives MediumSpeed and Vehicle A drives High-
Speed — Target changes from CCGuided to DCTarget.

(2) Vehicle B decelerates to MediumSpeed and Vehicle A drives
HighSpeed (DC sees HighSpeed of Vehicle B from the previ-
ous step) — Distance changes to Too Close 1/1.

(3) Vehicle B decelerates to LowSpeed and Vehicle A decelerates
to MediumSpeed — Distance changes to collision, since the
difference in the vehicle speeds allows ‘jumping over’ the
Too Close 1/2 state.

However, this is a spurious counterexample due to the abstrac-
tion.

5.7 Modification of the Qualitative Model and
the Mapping

According to CEGAR refinement, the state Too Close 1/1 has to be

split. This results in Too Close 1/1/1 [20m, 10m) and Too Close 1/1/2

[10m, 7.5m). Due to lack of space and analogy with some of the

above, we omit the concrete state machines and their corresponding

tables in the following.

This more detailed Distance Classification fixed the occurrence of
this spurious counterexample. However, model-checking revealed
another counterexample, a real one. Therefore, we increased the
distance between Collision and Too Close 1/2 and labeled it Too

Table 13: Transition conditions related to the DC FSM when the Distance Classification has two Too Close states and four

speed classes are used

l Distance\Speed B H AbsLow [Low [Medium [High [

DC Target DC_AbsLow DC_Low DC_Med DC_High

Too Close 1/1/x DC_AbsLow DC_AbsLow DC_Low DC_Med

Too Close 1/2 DC_AbsLow DC_AbsLow DC_AbsLow DC_Low

Too Close 2 DC_AbsLow DC_AbsLow DC_AbsLow DC_AbsLow
Close 2 in the qualitative model. This insertion of a new state e While such formal techniques for verification can be auto-
required changes in the transition conditions of DC as well, see mated, validation is (still) according to human judgment.
Table 13. o As a side-effect of enacting this workflow, the human(s) do-

Model-checking this model did not reveal any counterexample. ing it gain(s) insight and understanding of the given domain.
Hence, we had to determine its mapping to a quantitative model, e In summary, enacting the workflow in [2] was possible sys-
where both the splitting of Too Close 1/1 and the insertion of Too tematically and led to a reasonable quantitative model at the
Close 2 had to be taken into account, resulting in Table 14. concrete level that was also formally verified indirectly.
6 CROSS-CHECK THROUGH MODEL-

Table 14: Summary of mapping found to be valid for speed
ranges

l l Range ‘

CC Guided [Inf, 50m)

DC Target [50m, 35m)
Too Close 1/1/1 | [35m, 25m)
Too Close 1/1/2 | [25m, 22.5m)
Too Close 1/2 [22.5m, 15m)
Too Close 2 [15m, Om)
Collision [Om, -inf]

This model also passed our validation, but the check for over-
approximation revealed that the abstract model had to be mod-
ified again to cover the whole behavior of this concrete model.
Model-checking this modified abstract model did not reveal any
counterexample.

Determining the new mapping and validation of the resulting
concrete model were straightforward, since the most recent modi-
fication of the abstract model was only related to the most recent
modification of the mapping. Finally, the abstract qualitative model
was an over-approximation of the concrete quantitative one. There-
fore, the workflow finished successfully.

In terms of verification, this means that the concrete quantitative
model has been shown indirectly to not run into any collision, since
the abstract qualitative model has been formally model-checked
against this condition, and it is an over-approximation of the con-
crete quantitative model.

5.8 Lessons Learned

Through inductive generalization from the case at hand, we gener-
alize the following lessons learned:

o Applying the theory of over-approximation helps to keep the
models on different levels of abstraction consistent with each
other, hence it can also be utilized in a top-down approach.

e The CEGAR refinement is also applicable and useful in a
top-down approach.

1835

CHECKING AT THE CONCRETE LEVEL

In addition to doing the case study per se, we wanted to make a
cross-check by directly model-checking the resulting quantitative
model at the concrete level. If successful, this provides some evi-
dence on the correctness of the workflow itself and of our enactment
in the course of this case study.

The quantitative model was given through the FSMs of the
qualitative model together with the mappings. For directly model-
checking it with NuSMYV, the quantitative physical formulas were
used explicitly (instead of implicitly as in the qualitative model).

Fortunately, the mapping limits the possible ranges of values, e.g.,
the speed range, to decrease the state-space for model-checking.
The used limits were determined by the mapping in such a way
that for each variable the lowest and highest values were taken. In
general, these values correspond to different states in the qualitative
model. For example, the minimum speed of vehicle B is 15m/s, which
corresponds to ABSLowSpeed, and the maximal speed is 30m/s,
which corresponds to HighSpeed. Hence, the code snipped for
NuSMYV below reflects this through the min/max combination for
the variable speed_VB, where speed_VB_tmp is used additionally
for the technical reason that its value can be used in the same
cycle of the model-checking run. In addition, the mapping defines,
together with the model-checking cycle time, that the acceleration
is in the range of —10m/s® and 10m/s%. In the code snipped, this
is represented through the variable acceleration_delta_VB, i.e., the
delta possibly resulting within 1s cycle time for the speed of vehicle
B. In every model-checking cycle, every integer value in between
is possible to occur.

acceleration_delta_VB :

speed_VB_tmp :
acceleration_delta_VB),

min (max ((speed_VB —
15), 30);

next(speed_VB) := speed_VB_tmp;

distance_tmp
speed_VA_tmp_limited))), —100),

min (max ((distance + ((speed_VB_tmp —
500);

next(distance) distance_tmp;

We limited the distance values possible during model-checking
as well. Based on our familiarity with the ACC domain gained in
the course of this case study, we only considered distances in the
range of [-100m, 500m]. Whenever the distance becomes zero or
smaller, a collision occurs. Compared to the target distance in the
range [50m, 35m), the maximum distance considered here is very
high.

In addition, there is an interesting aspect related to the controller
in the qualitative model, which is specified in Table 13. Through the
mappings, of course, no specific controller is defined for the quanti-
tative model. In fact, many controller equations for the quantitative
model may comply to this specification.

In the quantitative model checked directly, we implemented
DC as a discrete controller that simply requests the highest pos-
sible value of the range given in the corresponding table entry.
For example, when Distance is DC Target and Vehicle B is driving
MediumSpeed, then the table requests MediumSpeed. In the quan-
titative model, the request is 25m/s, since this is the highest speed
classified as MediumSpeed.

Model-checking this quantitative model directly at the concrete
level did not reveal any counterexample. Running it in NuSMV on a
usual PC took about 45min. In contrast, each of the model-checking
runs of the various qualitative models took less than 5sec.

7 DISCUSSION

Unfortunately, this case study does not show scalability to large
problem sizes. Based on our experience from this case study, we
think that automation through tool support will be required for
efficiently applying our workflow to large-scale systems. Check-
ing formal properties and applying formal refinement manually is
simply too demanding for engineers in large real-world projects.

Still, our case study provides some empirical evidence that our
workflow is operational, in principle, and that it can be made use-
ful for practice through tool support. After all, CEGAR was fully
automated, and based on its tool support, the formal techniques in
our workflow can be automated as well.

While we cannot envision yet a fully automated version of this
approach to model design, there may be additional automation
through applying model-driven technology. It can support auto-
mated mappings from the abstract to the concrete model.

The verification approach studied here and in the related work
strives for a Boolean result of whether there is a a counterexample
or not. In safety verification of real-world applications, however,
typically a probabilistic result is desired. In this case, formal verifi-
cation through probabilistic model checking [14] may be used. This
approach allows a wide variety of quantitative properties to be
specified, such as “the probability of a system failure occurring”,
etc. Probabilistic safety properties can be used to capture certain
properties of probabilistic models, including “the probability of no
failures occurring is at least 0.99”. It may be interesting to adapt
our top-down design approach and its underlying theory for such
a setting.

1836

8 CONCLUSION

In this paper, we show the feasibility of our workflow for system-
atic top-down design of cyber-physical models with integrated
validation and formal verification proposed in [2]. The additionally
performed cross-check provides some evidence on the correctness
of our workflow itself and of our enactment in the course of this
case study. For larger problems, it will not be feasible, however,
and this emphasizes the importance of our workflow for formal
verification. Future work will have to automate its formal steps in
order to improve its applicability.

ACKNOWLEDGMENT

The FeatureOpt project (No. 849928), was funded by the Austrian
Federal Ministry of Transport, Innovation and Technology (BMVIT)
under the program “ICT of the Future” between June 2015 and May
2018. More information can be found at https://iktderzukunft.at/en/.

REFERENCES

[1] M. Rathmair, C. Luckeneder, and H. Kaindl, “Minimalist qualitative models for
model checking cyber-physical feature coordination,” in Proceedings of the 23rd
Asia-Pacific Software Engineering Conference (APSEC), (USA), IEEE, Dec 2016.
C. Luckeneder and H. Kaindl, “Systematic top-down design of cyber-physical
models with integrated validation and formal verification,” in ICSE "18 Companion:
40th International Conference on Software Engineering Companion, ACM, 2018.
E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-guided
abstraction refinement for symbolic model checking,” Journal of the ACM (JACM),
vol. 50, no. 5, Pp- 752-794, 2003.

E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and abstraction,”
ACM Trans. Program. Lang. Syst., vol. 16, pp. 1512-1542, Sept. 1994.

M. G. Bobaru, C. S. Pasareanu, and D. Giannakopoulou, “Automated assume-
guarantee reasoning by abstraction refinement,” in CAV, vol. 5123, pp. 135-148,
Springer, 2008.

W. Lee, A. Pardo, J.-Y. Jang, G. Hachtel, and F. Somenzi, “Tearing based automatic
abstraction for CTL model checking,” in Computer-Aided Design, 1996. ICCAD-96.
Digest of Technical Papers., 1996 IEEE/ACM International Conference on, pp. 76-81,
IEEE, 1996.

C. Wang, H. Kim, and A. Gupta, “Hybrid CEGAR: combining variable hiding and
predicate abstraction,” in Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM
International Conference on, pp. 310-317, IEEE, 2007.

C. Tian, Z. Duan, and Z. Duan, “Making CEGAR more efficient in software model
checking,” IEEE Transactions on Software Engineering, vol. 40, no. 12, pp. 1206—
1223, 2014.

J. Nellen and E. Abraham, “A CEGAR approach for the reachability analysis of
PLC-controlled chemical plants,” in Information Reuse and Integration (IRI), 2014
IEEE 15th International Conference on, pp. 500-507, IEEE, 2014.

J. Nellen, K. Driessen, M. Neuhiufer, E. Abraham, and B. Wolters, “Two CEGAR-
based approaches for the safety verification of PLC-controlled plants,” Information
Systems Frontiers, vol. 18, no. 5, pp. 927-952, 2016.

O. Stursberg, A. Fehnker, Z. Han, and B. H. Krogh, “Verification of a cruise control
system using counterexample-guided search,” Control Engineering Practice, vol. 12,
no. 10, pp. 1269-1278, 2004.

E. Clarke, A. Fehnker, Z. Han, B. Krogh, O. Stursberg, and M. Theobald, “Verifica-
tion of hybrid systems based on counterexample-guided abstraction refinement,”
in International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pp. 192-207, Springer, 2003.

NuSMV, “NuSMV: A new symbolic model checker.” http://nusmv.fbk.eu/. [Online;
accessed Oct. 11, 2018].

M. Kwiatkowska, G. Norman, and D. Parker, “Probabilistic model checking: Ad-
vances and applications,” in Formal System Verification, Springer, 2017.

[2]

[3]

[9

(10]

[11

(12]

(13]

[14

https://iktderzukunft.at/en/
http://nusmv.fbk.eu/

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 12.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 12.6000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 8
 9

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 3.60 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 3.6000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 9
 0
 1

 1

 HistoryList_V1
 qi2base

