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(1) Motivation / Rosetta project / COSIMA instrument

Data from deep space (comet), Multivariate statistics 3 Information about chemical
and laboratory (meteorites) Chemoinformatics composition of samples

Arrival: 100 km from comet, 2.8 AU from Earth, 6 Aug 2014.
Escorting: typ. distance 10 - 200 km, 1.5 — 3.8 AU from Earth.

End: 30 Sep 2016 (landing).
[1 AU = 150 000 000 km]

On the way
10 years, 5 months, 4 days
(31 months hibernation)

Launch: 2 Mar 2004,
Ariane 5, Kourou,
French Guaiana

Spacecraft Rosetta (ESA), 11 instruments + lander

Comet 67P

Cometary dust particles. Collected by instrument /Churyumov-Gerasimenko:
COSIMA, 10 - 200 km from surface; imaged and Appr. 6 km x 4 km x 2 km
analyzed by a mass spectrometer (TOF-SIMS). Density: 0.53 g/cm?

1400 particles, 30 000 fragments, size 10 - 1000 pm. Orbit: 1.2 - 5.7 AU

Gold target
i 10'mm x 10 mm
Meteorite Allende,

from NHM Wien,

carbonaceous chondrite (CC) COSMA

COSIMA instrument, instrument,
on-board
10cm mass spectral data mass spectral data Data
—— from cometa from meteorite i
Elactron ey evaluation
microscope particles samples
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(2) Selection of potentially relevant spectra

measured on cometary particles or meteorite grains

COSIMA: TOF-SIMS / Time-Of-Flight Secondary lon Mass Spectrometry

Primary ions,**°In*, 8 keV, 2-Stage

3 ns shots (a 1000 ions), Secondary ions, 3 keV, O ion reflector
typ. 225,000 shots (1.5 kHz)  typ. 0.2 — 1.5 ions/shot

per spectrum,

spot 30 um x 50 pm

Raw mass spectrum
About 26,300 time (mass) bins
for m/z 0 — 300 Dalton with
ion counts. Mass resolution
~ 1400 (half peak height).

Cometary particles :

collected on a gold
plate (1 cm x 1 cm)

| t Gold target (1 cm x 1 cm) with
on counter collected cometary particles.
flight-time = a+b*(mass/z)%> (1] Dec 2014 — Feb 2015, 20 — 140 km

from comet (COSIMA target 2CF).

The position of the primary ion beam (~ 30 um x
50 um wide) has uncertainties up to £70 um. One-class classification
Therefore, an evaluation of the spectra's origin is
necessary: From background (Au target material)
or cometary particle (10 - 1000 um size) ?

[J Target class = background spectra
[0 Combination of
® PCA approach (distances of query

spectrum to PCA model)

® KNN approach (mean distance of
Q Ratios of selected ion counts, e.g., C*/CH,* > 1 query spectrum to k background

Q Multivariate methods are used here I spectra)

Strategies




(3) One-class classification

PCA approach combined with KNN approach
X3
t, X3
schematically PCA model for h ticall
background spectra SEHCIREREEtY
- [ ]
LA ® ®
query spectrum / /8/|J¢ 3° t . .: . ..
in original space N :'2 X3 I (g s
: . /e 20 2
« 1*'/ SD, score distance A
Mahalanobis distance in PCA space e ® . ,\
° \
X, query spectrum, projected * ./O query spectrum 5, 6]
5,
OD, orthogonal distance X1 classification criterion = mean of Euclidean
distance to projection in PCA space [5-7] distances to k (here 3) nearest background spectra
B OD>O0D., . AND. SD > SDg
Classification B . AND.

A query spectrum is NOT assigned
to the background class, that means
is considered potentially relevant if

B mean KNN distance > KNN_;

CUToff values are typically 0.90 quantiles of
empirical distributions + safety addition
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(4) Data and Methods

Data

Variables. m =9 mass spectral peak heights (ion counts)

for C*, CH*, CH,*, CH,*, Mg*, Al*, K*, Ca*, Fe* (most
abundant isotopes); for organics and inorganics.

Objects. n =1152 spectra

55 from background for comet data (space),

121 from background for meteorite data (laboratory),
275 from 3 cometary particles (or neighborhood),
701 from 3 meteorites (Allende, Lancé, Murchison)

PCA approach (example)

Distributions of OD (left) and SD (right) for background
spectra (blue, 55 spectra) and spectra on/near the cometary
particle Kerttu (red, 68 query spectra). Query spectra with
distances > cutoff are considered as relevant (63 selected).

probability density probability density
T e P :backgr: T
o |l ' S ' cutoff
o~ ]
o : ' cutoff particle
R I | HCRAY s (queries)
=
T particle ~
. o
@ (queries)
o e o
i T T = T T T o T - ll T T
oft 4 3 4 0 2 4 6 8

2
0.8 qu.
medianq oD | A =0.8 quantile - median | SD

Preprocessing

Transformation (scaling). Because of the compositional
data type (relative ion abundances are relevant) the
centered log-ratio transformation (clr) has been applied
(for PCA and KNN) [8].

CLR Xj = In[xj / G(X)] G, geometric.mean of
X{ oo Xy J=1..m
PCA. Robust [9], minimum 90% variance preserved
(typically 4 components).

KNN approach (example)

Distributions of median distances from query spectrato k=8
nearest background spectra (for inscriptions and colors see
left). Query spectra with median distances > cutoff are
considered as relevant (all 68 selected).

probability density

1]

1

baCkgfh Considering k = 8 nearest

. neighbors is a compromise
H—gA  particle between

: (queries) Q overfitting (instability)
with a too small k, and

\’\ Q underfitting (the bulk of 55

E cutoff

1

1

background spectra is
taken) with a too big k.
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(5) Results

I B ]
Selection of potentially relevant spectra PCA of selected spectra
by 1-class classification with OD, SD and KNN
PC2 score (24.1 % var.) PC2 loadings (24.1 % var.)
Sample particle Number of spectra (objects) T% o Donia é}co R To ] EAl
class Used Selected by osa oo © K E
OD&SD  KNN OD&SD & KNN o |2t Foo | . !
ooo S 7 .
Comet Donia 147 36 87 36 %o :
Comet Kerttu 68 63 68 63 g ° meteorites g 5
Comet Sai 60 52 60 52 comet cH. |
o ° ¥y ° o 3 :
Meteorite Allende 447 21 G 212 od , %o 05, '@'. S [ttt mTomTmmomsoooees
Meteorite Lancé 121 105 116 105 vﬁ%% o [N N CH, CH, E Ca
Meteorite Murchison 133 123 130 123 o |° @ ° e ° '
S AL . C . Fe M
Sum 976 S0l e 591 . . o I S
} -40 -20 0 20 -04 -02 00 02 04 06
l PC1 score (41.3 % var.) PC1 loadings (41.3 % var.)
n =301 spectra (50 randomly selected B Carbon-containing ions prominent
from each meteorite, 151 comet spectra) in comet data.
. . for better balanced data set. B Comet data more diverse than
Comparison of comet and meteorite data m = 9 variables, sum 100 normalized for meteorite data,

Distribution of sum-100 normalized ion counts (univariate) better interpretation; PDMS subtracted.

comet o -
o |

. ©
‘1’ meteorites
-

B Comet material contains more
carbon (based on CH, ;* ions) than
the considered meteorites (which

|
] o
1 ° .
1 [ ]
1 1
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88 All n = 591 selected spectra used. are C-rich meteorites, so called
£+
1
L
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Contamination of PDMS carbonaceous chondrites).

— (polydimethylsiloxane) subtracted. B Ca*and Mg* are more prominent
Normalized to sum 100 of m = 9 variables. in meteorites than in comet.
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(6) Summary

One-class classification
based on orthogonal & score distances
and a k-nearest neighbor approach

B Data from background (target)
define the "one-class".

B Minimum assumptions; concepts
from robust statistics and
compositional data processing.

B Cutoff criteria solely derived from
the "one-class data".

B Stable and reliable results with
difficult TOF-SIMS data from space
and with laboratory data.

Cometary/meteoritic material
TOF-SIMS data from space and lab,
including results from the COSIMA team

0 Cometary particles appear diverse
and different from CC meteorites
(carbonaceous chondrites) [10].

O More (organic) carbon in comet
than in CC meteorites.

O Organics: macromolecular [11].

O lons C;H, %, C,*, etc. indicate
unsaturated organic compounds
in cometary particles [12].

[0 Atomic ratios from SIMS data:
(/S 5 [1]] C/N ~ 30 [14]
C/H ][]
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One-class classification for the recognition of relevant measurements -
applied to mass spectra from cometary and meteoritic particles

Varmuza K.', Filzmoser P.*, Ortner 1.*, Hilchenbach M., Kissel J.%,
Merouane S.2, Paquette J., Stenzel 0.2, Engrand C.%, Cottin H.*, Fray N.”,
Isnard R.%, Briois C.°, Thirkell L.°, Baklouti D.°, Bardyn A.”, Siljestrém S.2,

Schulz R.?, Silen J.°, Brandstatter F."*, Ferriére L.!, Koeberl C.}**2
1 TU Wien - Vienna University of Technology (Austria), Institute of Statistics and Mathema-
tical Methods in Economics (Computational Statistics); kurt.varmuza@tuwien.ac.at

Motivation. The mass spectrometer COSIMA on board of the ESA mission Rosetta to comet
Churyumov-Gerasimenko (67P) collected particles (20 - 1000 um diameter) at distances 10 -
1500 km from the comet and measured TOF-SIMS spectra at the particle surfaces. Because
of the special conditions for these remote experiments, it is not trivial to assign the spectra
either to particles or to the background (target). An objective classification of the spectra's
origin (measuring spot 35 um x 50 um with position uncertainties up to 70 um) has been
developed by applying multivariate one-class classification strategies.

Method. The single class (target, background) for one-class classification is described by a
set of multivariate objects (spectral data) measured on the target (gold). Two methods for
modelling the target class are applied: robust PCA, and KNN. Criteria are defined for
characterizing the dissimilarity (3) between a query object and the target class: for robust
PCA the orthogonal and the score distances from the median; for KNN the median of the
distances to the k nearest neighbors. The cutoff values of 5 for assigning a query object to the
target class or not (the later indicates a potentially relevant object) are derived from the
distributions of & for the target objects, based on median, 0.8-quantile and an adjustable
parameter (controlling the efficiency of classification). Because of the nature of the data,
concepts for compositional data and robust methods have been preferred.

Application. The data used consist of 275 spectra measured on three cometary particles, and
701 spectra measured by a laboratory twin instrument of COSIMA on particles from three
meteorites (carbonaceous chondrites, often considered having similar composition as comet
material). A set of nine variables is derived from the measured ion counts at masses 12-15
(CHo3"), 24 (Mg"), 27 (Al"), 39 (K™), 40 (Ca"), and 56 (Fe") characterizing minerals and
presumed organics. Results show distinctive differences between the cometary and the
meteoritic samples with considerably more carbon containing material in the comet particles.

Affiliations of coauthors. ?Max Planck Inst. for Solar System Res., Gottingen (Germany);
3CSNSM, CNRS/Univ. Paris Sud, Univ. Paris Saclay, Orsay (France); “Lab. Interuniver-
sitaire des Systémes Atmosphériques, Univ. Paris Est, Créteil (France); °Lab. de Physique et
Chimie de I’Environnement et de I’Espace, Univ. d’Orléans (France); °IAS, CNRS/Univ.
Paris Sud, Univ. Paris Saclay, Orsay (France); 'Carnegie Institution of Washington, DC
(USA); ®Bioscience and Materials / Chemistry and Materials, Res. Inst. of Sweden,
Stockholm (Sweden); °European Space Agency, Noordwijk (The Netherlands); *°Finnish
Meteorological Inst., Helsinki (Finland); **Natural History Museum, Vienna (Austria);
2Dept. of Lithospheric Res., Univ. of Vienna (Austria).
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