Cometary Particle Surfaces Characterized by Chemometric Evaluations of Secondary Ion Mass Spectra

Varmuza Kurt 1*, Filzmoser Peter 1, Hilchenbach Martin 2, Kissel Jochen 2, Stenzel Oliver 2, Merouane Sihane 2, Paquette John 2, Hornung Klaus 3, Cottin Hervé 4, Fray Nicolas 4, Isnard Robin*, Engrand Cécile 5, Briois Christelle 6, Thirkell Laurent 6, Modica Paola 6, Langevin Yves 7, Baklouti Donia 7, Bardyn Anais 8, Siljeström Sandra 9, Silén Johan 10, Rynö Jouni 10, Lehto Harry 11, Schulz Rita 12

1 Vienna University of Technology, Institute of Statistics and Mathematical Methods in Economics, Research Unit Computational Statistics, Vienna, Austria
2 Max Planck Institute for Solar System Research, Göttingen, Germany
3 Universität der Bundeswehr München, LRT-7, Neubiberg, Germany
4 Laboratoire Interuniversitaire des Systèmes Atmosphériques, Université Paris Est Créteil et Université Paris Diderot, Créteil, France
5 CSNSM, CNRS-IN2P3, Université Paris Sud, Université Paris-Saclay, Orsay, France
6 Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, Université d’Orléans et du CNES, Orléans, France
7 Institut d’Astrophysique Spatiale, Université Paris Sud, Orsay, France
8 DTM, Carnegie Institution of Washington, Washington, DC, USA
9 Bioscience and Materials, Research Institute of Sweden, Stockholm, Sweden
10 Finnish Meteorological Institute, Helsinki, Finland
11 Finnish Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Piikkiö, Finland
12 European Space Agency, Noordwijk, The Netherlands

Comet 67P

Name: 67P / Churyumov-Gerasimenko (Chury)
Size: 6 km x 4 km x 2 km; Density: 0.53 g/cm³
Orbit: 6.44 years; 1.24 AU (perihel) – 5.7 AU (aphel)
1 AU (Astronomical Unit) = 150,000,000 km,
* mean distance Earth – Sun
Rotation: 12.76 h
Albedo: ca 5% (“black like charcoal”) [14]

Spacecraft Rosetta (ESA)
Launch: 2 March 2004 (Kourou), Ariane 5. More than 10 years journey.
Arrival at comet (ca 100 km): 6 Aug 2014, 2.8 AU from Earth.
First mission to rendezvous with a comet. Escorting the comet at typical distances of 10 – 200 km [2].
Nov 2014: lander Philae reached the surface of the comet.
Aug 2015: nearest to Sun (perihel, 186. 10⁶ km).
30 Sep 2016: end of mission by controlled touch down at comet & shut down.

Instrument COSIMA on board of the ESA mission Rosetta collected cometary particles with 20 - 1000 μm diameter at distances of 10 - 1500 km from comet Churyumov-Gerasimenko (67P) between August 2014 and September 2016.
More than 30,000 particles were documented by images. About 33,900 secondary ion mass spectra were measured (time-of-flight mass analyzer) by COSIMA and sent to Earth.

Sets of selected positive SIMS spectra were evaluated by univariate and multivariate statistical techniques.

Aims of the data analyses and result shown here are:
- characterization of carbon-containing substances on the surface of cometary particles,
- determination of atomic ratios,
- search for different chemical compositions of the particles collected at various distances from the sun.

Cometary dust particles
About 1400 dust particles (30 000 fragments) of 10 – 1000 μm size have been collected on metal targets [4] (1 cm x 1 cm, see picture) by the COSIMA instrument.
Distances to the comet typically between 10 – 150 km.
Distance to Sun: 1.24 – 3.83 AU.

Mass spectrometer COSIMA onboard of Rosetta
- Collected dust particles on metal targets (Au, Ag).
- Analyzed them by time-of-flight secondary ion mass spectrometry (TOF-SIMS). The mass resolution of ca 1400 (half peak) at m/z 100 separated several inorganic and organic ions with the same mass number. About 30,000 full spectra have been sent to ground [1,5].
- Primary ions: 115In, 3 ns shots, 8 keV, 1.5 kHz.
- Typical 225,000 shots per spectrum.
- Measurement spot: 30 μm x 50 μm.
- Secondary ions (positive & negative): 3 keV, 2-stage ion reflector.
- 26,300 time bins (4 ns) for m/z 0 - 300.
- COSISCOPE camera: 1024 x 1024 pixel (14 μm diameter) [3].
Organics
- Organic material on the surface of cometary particles is macromolecular [6].
- No specific organic compounds could be identified on cometary particles.
- Cometary particles appear different from the meteorite type carbonaceous chondrites (CC meteorites) [9].
- Cometary material contains more (organic) carbon than CC meteorites.

The mineralic composition of the cometary material is similar to that of chondritic meteorites, however, with the more volatile rock-building elements C, S, Na, K, Cu, Li enriched in the comet [9].

Distance between collection area and Sun may affect the composition of particle surfaces
Collection of cometary particles occurred at various distances between comet and Sun. Is the composition of the particles dependent on the distance to the Sun – and may this be reflected in the mass spectral data? A first approach:

Data: n = 3095 mass spectra, m = 11 peak heights (C*, CH*, CH4, CH5+, Mg+, Al*, C2H5+, K+, C3H7+, Ca*, Fe*).

Distance to Sun (mean in the sampling interval): 2.16 – 3.6 AU
3 classes: <2.5 AU (n=579); 2.5 – 3.1 AU (n=1023); >3.1 AU (n=1493)

Methods
- Robust PCA [14] with data transformed by the centered log-ratio method (compositional data) [13].
- KNN classification with repeated double cross validation (rdCV) [16].

Unsaturated CH-ions
have been found to be characteristic in the mass spectra of cometary material. The presence of C6H10O5+, C7O5+, etc. indicates unsaturated organic compounds [10].

Methods used to characterize the importance of variables for a discrimination between the two classes (1) comet particle spectra and (2) background spectra are [17]:
- t-test: comparing class means, criterion LOGPr = sgn [-log(p)]
- D-PLS: standardized regression coefficients of discriminant variable
- Random Forest: criterion MDA (Mean Decreasing Accuracy)
- Robust Pair-wise Log-Ratios (rPLR): criterion V*, developed for the identification of biomarkers, based on all ratios of all variables [12].

PC indicates some separation of the classes.
KNN gives 67 – 78% correct assignments to the classes.

References
Cometary particle surfaces - characterized by chemometric evaluation of secondary ion mass spectra

¹ Vienna University of Technology, Institute of Statistics and Mathematical Methods in Economics, Research Unit Computational Statistics, Vienna, Austria
² Max Planck Institute for Solar System Research, Göttingen, Germany
³ Universität der Bundeswehr München, LRT-7, Neubiberg, Germany
⁴ Laboratoire Interuniversitaire des Systèmes Atmosphériques, Université Paris Est Créteil et Université Paris Diderot, Créteil, France
⁵ CSNSM, CNRS-IN2P3, Université Paris Sud, Université Paris-Saclay, Orsay, France
⁶ Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, Université d’Orléans et du CNES, Orléans, France
⁷ Institut d’Astrophysique Spatiale, Université Paris Sud, Orsay, France
⁸ DTM, Carnegie Institution of Washington, Washington, DC, USA
⁹ Bioscience and Materials, Research Institute of Sweden, Stockholm, Sweden
¹⁰ Finnish Meteorological Institute, Helsinki, Finland
¹¹ Finnish Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Piikkiö, Finland
¹² European Space Agency, Noordwijk, The Netherlands

The instrument COSIMA on board of the ESA mission Rosetta collected at distances of 10 - 1500 km from comet Churyumov-Gerasimenko solid cometary particles with 20 - 1000 µm diameter. More than 30,000 particles were documented by images, and about 17,000 positive secondary ion mass spectra were measured (time-of-flight mass analyzer, mass resolution 500 - 1200, measuring spot 35 µm x 50 µm). Sets of selected data with some dozen to some thousand mass spectra were evaluated by univariate and multivariate statistical techniques. Aims of the data analyses were a characterization of carbon-containing substances on the comet, determination of elemental ratios and estimation of the chemical homogeneity of the particles collected at different distances to the sun. Supported by Austrian Science Fund (FWF), P 26871-N20.
20th Conference on Solid State Analysis

Vienna, July 1 – 3, 2019

Organizers:
Institut für Chemische Technologien und Analytik der TU Wien
Österreichische Gesellschaft für Analytische Chemie (ASAC)
in der GÖCh

Supporting Organizations:
Institut für Physik & Institut für Chemie der TU Chemnitz
Chemikerausschuss des Vereins Deutscher Eisenhüttenleute
Deutsche Gesellschaft für Materialkunde
Fachgruppe Analytische Chemie der GDCh
Fachgruppe Festkörperchemie und Materialforschung der GDCh
Deutscher Arbeitskreis für Analytische Spektroskopie DAAS der GDCh
GDMB Gesellschaft der Metallurgen und Bergleute e.V.
Deutscher Verband für Materialforschung und –prüfung e.V.
Deutsche Vakuumgesellschaft e.V. (DVG)
Fachverband Kristalline Festkörper und deren Mikrostruktur der DPG

Program
Vienna University of Technology
Wiedner Hauptstraße 8-10
A-1040 Vienna

Office hours and registration:
Sunday, June 30, 2019, 16.00 - 20.00 h
Monday, July 1 to Wednesday, July 3, 2019, 8.30 - 18.00 h
POSTERS

The best posters will be awarded with money prizes sponsored by

RENISHAW

apply innovation™

P1 R. Hesse, R. Denecke, University of Leipzig, Germany, UNIFIT 2019 - the Improved Spectrum Processing Analysis and Presentation Software for XPS, AES, XAS and RAMAN Spectroscopy

P2 R. Hesse, R. Denecke, University of Leipzig, Germany, UNIFIT 2020 - the Improved Spectrum Processing Analysis and Presentation Software for XPS, AES, XAS and RAMAN Spectroscopy

P3 O. Selyshchev, O. Beier, S. Gerullis, B. S. M. Kretzschmar, T. Tölke, A. Pfuch, B. Grüner, T. I. Madeira, D. R. T. Zahn, TU Chemnitz & INNOVENT e.V. Technology Development, Jena, Germany, Valence band and core-levels X-ray photoemission spectroscopy study on plasma-induced CVD, combustion CVD, and DC magnetron sputtered TiO₂ thin films

P4 I. Milekhin, O. Beier, S. Gerullis, B. S. M. Kretzschmar, T. Tolke, A. Pfuch, B. Grüner, T. I. Madeira, D. R. T. Zahn, TU Chemnitz & INNOVENT e.V. Technology Development, Jena, Germany, Infrared vibrational spectroscopy study of TiO₂ thin films deposited by plasma-induced, combustion chemical vapour deposition and magnetron sputtering

P6 A. Lumetzberger, A. P. Hinterreiter, J. Duchoslav, C. Unterweger, S. Breitenbach, C. Fürst, D. Stifter, Johannes Kepler University Linz & Wood K plus - Kompetenzzentrum Holz GmbH, Linz, Austria, Raman and AFM investigations of cellulose based carbon fibers

P7 M. Heckert, S. Enghardt, M. Liebschner, J. Bauch, TU Dresden, Germany, Multi energy X-ray computed tomography

P8 A. Bergner, B. Stripe, X. Yang, S. Seshadri, R. Giao, J. Geib, D. Want, S. Lewis, W. Yun, LOT-QuantumDesign GmbH, Darmstadt & Sigray, Inc., Concord, USA, Bridging the performance gap between lab based X-ray techniques with synchrotron beamlines: chemical, valence state & structural imaging

P9 C. Gottschalk, S. Praetz, W. Malzer, B. Kanngießer, C. Vogt, TU Freiberg & Institute of Optics and Atomic Physics, Berlin, Germany, Characterization and speciation of cerium reference materials for XANES-spectroscopy on a laboratory setup

P11 H. Paulus, J. Flock, T. Lostak, K.-H. Müller, E. Pappert, M. Schülke, Fachhochschule Süwwestfalen, Soest & thyssenkrupp Steel Europe AG, Duisburg, Germany, TDMS and CGHE Investigations on Steel Samples for the Characterization of Hydrogen

P12 S. Strobl, R. Haubner, TU Wien, Austria, Carbon diffusion in the ductile cast iron / iron couple produced by Damascus technique

P13 Witold Precht, Czesław Krewski, TU Koszalin, Poland, Friction free, hard and super-hard carbon- based coating for industrial application

P14 M. Weiss, D. Wipp, E. Povoden-Karadeniz, A. Limbeck, TU Wien, Austria, LA-ICP-MS depth profiling of micro-alloyed steels

P16 **S. Grünberger**, S. Eschlböck-Fuchs, J. Hofstadler, A. Pissenberger, H. Duchaczek, J. D. Pedarnig, Johannes Kepler University Linz & voestalpine Stahl GmbH, Linz, Austria, *Chemical imaging and analysis of metals by optical emission spectroscopy methods LIBS and LA-SD-OES*

P17 **J. Irrgeher**, **D. Bandoniene**, B. Bookhagen, J. Gonzalez, C. Opper, C. Koeberl, U. Pitha, B. Scharf, T. Prohaska, Montanuniversität Leoben, Austria & University of Vienna, Austria & German Federal Institute for Geosciences and Natural Resources (BGR), Berlin, Germany & Applied Spectra, Inc., Fremont, USA & Natural History Museum Vienna, Austria & University of Natural Resources and Life Sciences, Vienna, Austria, *Technology-critical elements (TCEs): Source characterization and assessment of environmental exposure*

P20 S. Schwarz, J. Bernardi, M. Stöger-Pollach, S. Löffler, TU Wien, Austria, Analytical Transmission electron microscopy for investigations of metals

P22 M. Ostermann, K. Wieland, B. Lendl, J. Bernardi, R. Haubner, TU Wien, Austria, Characterization of nano grained WC powders produced by direct carburization of WO2(OH)2

P23 L. Brunnbauer, A. Limbeck, TU Wien, Austria, Polymer classification in structured samples using laser induced breakdown spectroscopy (LIBS)

P24 L. Kronlachner, C. Herzig, J. Franck, J. Fleig, A. Limbeck, TU Wien, Austria, Signal quantification strategies for LA-ICP-MS data

P26 D. Jembrih-Simbürger, Z. Siketić, N. Marković, I. Bogdanović Radović, Academy of Fine Arts Vienna, Austria & Rudjer Bosković Institute, Zagreb, Croatia & Technical University of Denmark, Roskilde, Denmark, *MeV-ToF-SIMS: a surface sensitive method for the analysis of modern and contemporary art paints*