In the last decades Fe-doped SrTiO$_3$ (Fe:STO) has become one of the best investigated mixed conducting materials. Nevertheless, the effect of UV irradiation at elevated temperatures on the material's composition, more precisely on its oxygen content, has hardly been examined so far. UV illumination in oxygen causes an enhanced oxygen incorporation rate [1] and therefore a decreased oxygen vacancy concentration of SrTiO$_3$. [2] Consequently, Fe$^{3+}$ in Fe:STO is oxidized to Fe$^{4+}$ to preserve charge neutrality. This oxidation may cause color changes in Fe:STO and a decline in the AC and DC resistivity, which can be investigated by UV-vis spectroscopy, in-plane impedance spectroscopy, van der Pauw measurements respectively. Oxygen can also be released again from Fe:STO by annealing without UV exposure. Therefore, reversibly switching between these described states can be obtained.

Before UV illumination the Fe:STO single crystal is brownish/ transparent. It turns black after 19 h under UV illumination at 440 °C. Another 12 h at 700 °C without UV exposure turns the single crystal to its original color. The oxygen incorporation process is diffusion limited, since when covering one side of the sample during UV treatment a color gradient is obtained. Moreover, Pt electrodes seem to accelerate the release of oxygen (compare Fig. 1 c).

In situ UV-vis Measurements

Fig. 2: Van der Pauw measurements of Fe:STO before and after UV illumination.

After UV illumination at 440 °C the DC conductivity is increased. Slight changes of the resistivity of the black specimen occur after the first temperature cycle. E_s changes from 0.9 eV (pristine specimen) to 0.87 eV and 1.09 eV respectively after the exposure to UV light.

DC Conductivity Change of Fe:STO under UV Illumination

Before and after UV illumination, Fe:STO is investigated using UV-Vis absorption measurements. Instant absorption of Fe:STO at 440 °C was calculated. The decrease in oxygen vacancy concentration results in an increase in the AC conductivity, which is proportional to the oxygen chemical potential difference $\Delta \mu_O$.

$$A' = \frac{A(t) - A(0)}{A(\infty) - A(0)} = \frac{c(\infty) - c(0)}{c(0) - c(\infty)} = 1 - B \exp \left(-\frac{\pi^2 D_0^2 t}{4 L^2} \right)$$

Absorbance of the specimen increases during UV exposure and decreases again during the annealing period, reaching nearly its original absorbance after 4500 min. By using the equation above and the normalized absorbance the diffusion coefficient of Fe:STO at 440 °C can be calculated. A diffusion coefficient of 1.4×10^{-12} cm2 s$^{-1}$ was obtained.

Fig. 5: Evolution of the normalized absorbance at 432, 440 and 590 nm

In-plane AC Conductivity Change of Fe:STO under UV Illumination

In-plane AC conductivity of Fe:STO samples is increased by a factor of 10 during UV irradiation at 350 °C and by 4 at 400 °C. The oxygen chemical potential causing the oxygen incorporation can be calculated from these data and turned out to be equal to a $p(O_2)$ at least as high as 108 Pa.

Conclusion

- UV irradiation of Fe:STO at elevated temperatures causes oxygen incorporation
- Fe:STO single crystals turn black due to the oxidation of Fe$^{3+}$ to Fe$^{4+}$
- AC and DC conductivity is increased after long term UV exposure
- Using UV-vis spectroscopy an oxygen diffusion coefficient of 1.5×10^{-7} cm2 s$^{-1}$ is found at 440 °C

Contact Informations
alexander.viernstein@tuwien.ac.at
TU Wien, Institute of Chemical Technologies and Analytics
Getreidemarkt 9, 1060 Vienna, Austria