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Stability of order and type under
perturbation of the spectral measure

Anton Baranov and Harald Woracek

Abstract. It is known that the type of a measure is stable under per-
turbations consisting of exponentially small redistribution of mass and
exponentially small additive summands. This fact can be seen as stability
of de Branges chains in the corresponding L2-spaces.

We investigate stability of de Branges chains in L2-spaces under per-
turbations having the same form, but allow other magnitudes for the er-
ror. The admissible size of a perturbation is connected with the maximal
growth of functions in the chain and is measured by means of a growth
function λ. The main result is a fast growth theorem. It states that
an alternative takes place when passing to a perturbed measure: either
the original de Branges chain remains dense, or its closure must contain
functions with faster growth than λ. For the growth function λ(r) = r,
i.e., exponentially small perturbations, the afore mentioned known fact is
reobtained.

We propose a notion of order of a measure and show stability and
monotonicity properties of this notion. The cases of exponential type
(order 1) and very slow growth (logarithmic order ≤ 2) turn out to be
particular.

1. Introduction

Let μ be a finite positive Borel measure on the real line. The supremum in [0,∞] of
all numbers a ≥ 0 such that the linear span of the exponentials {z �→ eitz : |t| ≤ a}
is not dense in L2(μ) is called the type of μ; we denote it by T [μ]. It is a famous
problem in harmonic analysis – the type problem – to determine T [μ]. The origins
of this problem lie in work of Kolmogoroff and Wiener about stationary Gaussian
processes, and there are intimate connections with various topics of analysis. A
vast literature on the type problem exists which culminates in the recent work [20]
of A. Poltoratski.
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function, weighted approximation.
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The following examples from the theory of differential operators illustrate the
necessity to consider growth different from exponential type. While for the first
example exponential type suffices to determine spectral asymptotics, in the second
example orders ρ < 1 occur, and in the third example even slower growth is present
(logarithmic orders β). Our motivation to undertake the present investigation
actually originates from the study of spectral asymptotics of certain differential
operators.

The Schrödinger operator. Let V be an integrable potential on a finite in-
terval [0, L], and let μ be the spectral measure of the corresponding Schrödinger
operator −d2/dx2+V . Then μ is discrete and suppμ ⊆ [0,∞), say, suppμ = {xn :
n ∈ N} with 0 ≤ x1 < x2 < · · · . The type of the symmetrised measure (here δ{x}
denotes the unit point mass at x)

μ̂ :=
∑
n∈N

μ({xn})
(
δ{√xn} + δ{−√

xn}
)

governs the asymptotic distribution of the spectrum and is easily computed:

lim
n→∞

n√
xn

=
1

2
T [μ̂] =

L

2π
.

In particular, T [μ̂] is always finite and positive.

The Krein–Feller operator. The situation changes when considering a Krein–
Feller1 operator −DmDx associated to a string with mass distribution m being
defined on a finite interval [0, L] and having finite total mass. The spectral mea-
sure μ is again discrete and supported on the positive half-axis. The type of the
symmetrised measure μ̂ is again finite, governs the spectral asymptotics, and can
be computed:

lim
n→∞

n√
xn

=
1

2
T [μ̂] =

∫ L

0

√
m′(x) dx.

Apparently it may happen that T [μ̂] = 0. In fact, there is a variety of examples
where

(1.1) 0 < lim
n→∞

n1/ρ

√
xn

<∞

for some ρ ∈ (0, 1), see, e.g., [12].

The Jacobi operator. Much more drastically, for the spectral measure of a
Jacobi operator associated with an indeterminate Stieltjes moment sequence, one
always has T [μ̂] = 0, and eigenvalue asymptotics like

(1.2) #{n ∈ N : |xn| ≤ r} ∼ α(log r)β

are no rarity, see, e.g., [6].

1Here we understand by Dm the Radon–Nikodym derivative with respect to the Borel measure
generated by m, and by Dx the derivative with respecto to the Lebesgue measure.
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Analysing spectral asymptotics as in (1.1) or (1.2) requires to deal with orders
less than 1 or even with growth measured on a logarithmic scale, rather than with
exponential type.

Does there exist an underlying concept of “order of a measure μ” for μ
in the class of positive finite measures on the real line?

In order to suggest a – natural and potentially meaningful – candidate for such a
concept, recall that T [μ] can be characterised in several different ways. Most ways
are very much fitted to the study of exponential type, however, one of them allows
immediate passing to a finer scale of growth properties and smaller orders. This
particular way proceeds via de Branges’ theory of Hilbert spaces of entire functions,
cf. [11] (we will recall all necessary notions about de Branges spaces in Section 2.1).
For every finite positive Borel measure on the real line, there exists a distinguished
chain of de Branges spaces which are isometrically contained in L2(μ), and one
can characterise the type of μ as follows:

Let (Ht)t∈I be the unique maximal chain of de Branges spaces Ht which
are isometrically contained in L2(μ) and invariant under difference
quotients. Then T [μ] is the supremum of exponential types of func-
tions in

(1.3) L :=
⋃
t∈I

Ht.

Now the following definition comes naturally.

Definition 1.1. The order of μ is the supremum of all orders of functions in L.
Provided μ has finite order, the type of μ w.r.t. its order is the supremum of

all types w.r.t. the order of μ of functions in L.
We denote the order of μ by ρ[μ], and its type (w.r.t. ρ[μ]) by τ [μ].

Since the spaces Ht are invariant under forming difference quotients, all ele-
ments of Ht are functions of finite exponential type, and hence ρ[μ] ∈ [0, 1]. If
ρ[μ] ∈ [0, 1], the type τ [μ] may take any value in [0,∞]. One can easily construct
examples which show that ρ[μ] indeed can assume any value in [0, 1], and that,
prescribing ρ ∈ [0, 1), all values in [0,∞] can appear as τ [μ] for some measure μ
with ρ[μ] = ρ.

Remark 1.2. We should say immediately that the notion of order and type of a
measure proposed above is designed as an analogue of the type of a measure in
the limit point situation. There are other (possible and meaningful) notions which
arise as analogues of the limit circle situation. For some more explanations about
this, see Section 3 of the conference presentation [30].
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A brief account of our present results

Roughly speaking, the present paper is a generalisation to orders different from 1
of the work [8] of A. Borichev and M. Sodin2. There exponential type was in-
vestigated, monotonicity of type was shown when μ is majorised by μ̃ up to an
exponentially small error, and stability of type under exponentially small pertur-
bations followed.

Our results will be established in the context of growth classes defined by growth
functions (i.e., proximate orders) rather than usual order and type. Also, as in [8],
we work with power bounded measures rather than finite ones (but this is only a
minor point).

In the following items (1)–(3) we give a summary of our work.

(1) We introduce a majorisation relation “μ � μ̃ w.r.t. (λ1, λ2)” which depends
on a pair (λ1, λ2) of growth functions, cf. Definition 2.16. This relation expresses
majorisation of μ by a perturbation of μ̃, where the perturbation is composed of
a “shifting/redistribution of mass” part inside intervals of length e−λ1 , and an
“additive” part limited by e−λ2 .

One is tempted to think of majorisation w.r.t. smaller functions λ1 as majori-
sation up to a larger error. Having in mind the most simple cases (like small shifts
of point masses located at a well-separated sequence) this is a good intuition, but
in general it is misleading: relations � for different λ1 are incomparable.

Majorisation w.r.t. λ1(r) = o(r) or r = O(λ1(r)) are equally interesting cases,
and show very different behaviour. The reason for this is the automatic presence of
exponential type and completely regular growth w.r.t. order 1, occurring because
functions from the de Branges chains are of Cartwright class.

The case of exponentially small perturbations treated in [8] is reobtained using
λ1(r) = δr, λ2(r) = 2δr, cf. Remark 2.17.

(2) Our main result is Theorem 3.1, which reveals an alternative. Let L =⋃
t∈I Ht and L̃ =

⋃
t∈Ĩ H̃t be built as in (1.3) for μ and μ̃, respectively. If μ � μ̃

w.r.t. (λ1, λ2) where λ1 is a growth function, and one has the a priori knowledge
that all functions in L̃ grow correspondingly slowly, then the space L̃ is contained
in L2(μ) and either is dense in L2(μ) or its L2(μ)-closure is a de Branges space
which contains functions of comparatively fast growth. We refer to results of that
type as fast growth theorems.

If λ1(r) = o(r), density may indeed be lost. The fast growth theorem then
says that this loss must be balanced with occurrence of fast growing functions.
Contrasting this, if r = O(λ1(r)), density must be preserved (since balancing is
not possible), cf. Corollary 3.2.

An interesting case occurs when L is the space of all polynomials which we
discuss in Theorem 3.9. It turns out that, in order to have the conclusion of a
fast growth theorem, redistribution of mass in tremendously larger intervals than
in Theorem 3.1 can be allowed: the function λ1 might even tend to −∞ at a very
moderate speed.

2This paper has appeared as [9], however, after publication some gaps were found. These are
fixed in the cited arXiv version, and therefore we shall always refer to the “pre”-print.
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(3) The fast growth theorem gives rise to stability results. Assume the a priori
knowledge that all functions in L ∪ L̃ grow slowly. Then majorisation of mea-
sures implies a quasi-monotonicity property of type, cf. Theorem 3.6. The fact
that for smaller growth than exponential type only quasi-monotonicity is present
is an intrinsic phenomenon. It is due to the possible occurrence of irregular zero
distribution and corresponding irregular growth behaviour. Interestingly, this phe-
nomenon disappears for functions of very slow growth, cf. Theorem 3.8.

When μ and μ̃ mutually majorise each other, a much stronger property holds.
Namely, the de Branges chains of μ and μ̃ coincide (of course non-isometrically),
cf. Theorem 3.3. In particular, if μ � μ̃ and μ̃ � μ, then the orders and the types
of μ and μ̃ coincide.

Structuring of the manuscript and detailed description

The paper is structured according to the following table of contents.

1. Introduction p. 963

2. An introduction to the main players p. 969

3. Formulation of the main results p. 976

Part I: The toolbox

4. Weighted C0-spaces p. 979

5. De Branges’ theorem on weighted approximation p. 984

6. Various preliminaries p. 989

Part II: Proof of the fast growth theorem and its consequences

7. An inclusion result p. 994

8. Preparation p. 998

9. Carrying out the argument p. 1006

10. Consequences of Theorem 3.1 p. 1010

Appendix A: The Sodin–Yuditskii approach to de Branges’ theorem p. 1017

Section 2. This section is intended to explain the necessary notions for for-
mulating our main results in a logically consistent, but as brief and focussed as
possible, manner. The main players are: (1) de Branges spaces and chains of such
spaces isometrically included in a space L2(μ), (2) algebraic de Branges spaces and
their closure in spaces L2(μ), (3) classes of entire functions defined by restrictions
on growth, (4) a majorisation relation of measures quantified by a pair of fairly
regular behaving functions.

Section 3. This section is devoted to formulating our main results. First, the
fast growth theorem (Theorem 3.1) and the coincidence theorem (Theorem 3.3)
which deal with the chains of de Branges spaces themselves. Second, we turn to
stability and monotonicity of order and type. In this context it is seen that a
quasi-monotonicity theorem holds, cf. Theorem 3.6. We show in Corollary 3.7 that
for fast growth (at least as exponential type) true monotonicity holds. From this
Theorem 1.3 and Corollary 1.4 in [8] are reobtained. The argument in the proof
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of Corollary 3.7 explains in a neat way why the case of exponential type is much
different (and much simpler) than the case of growth with respect to an order less
than 1. The bottom line being that bounded type implies regularity of growth and
dominant growth along the imaginary axis. Interestingly also on the other end of
the growth band, for very slow growing function, true monotonicity holds. This is
shown in Theorem 3.8. Finally, we discuss a condition known from previous work
about density of polynomials, and show that this condition is preserved under very
large perturbations, cf. Theorem 3.9.

Section 4. We study weight functions and weighted C0-spaces in a rather
general setting. The main achievement is Theorem 4.12, where we establish a way
to pass from L2-spaces to weighted C0-spaces. The – probably – first time a result of
this type appeared is in a paper of A. Bakan dealing with density of polynomials,
cf. Theorem 4.1 in [1], Theorem 1.3 in [2]. Later on, this passage from L2(μ)
to C0(W ) was applied in the already cited work of A. Borichev and M. Sodin, cf.
Theorem 2.8 in [8]. It should be noted that the proofs in the mentioned literature
rely on analyticity (used in the form of a theorem often attributed to M. Riesz and
S.N. Mergelyan; a general version is Proposition 2.4 in [19]). However, this does not
reflect the actual situation: Bakan-type theorems are of purely topological nature.

Section 5. De Branges’ theorem on weighted polynomial approximation says
that non-density of polynomials in a weighted C0-space is equivalent to existence
of entire functions with certain properties. We discuss a version of this result for
algebraic de Branges spaces instead of the space of polynomials. This version was
deduced along the lines of de Branges’ original argument in [3]. Independently
M. Sodin and P. Yuditskii proposed a different approach based on Chebyshev
alternance following their earlier work [24], [25], and [8]. The Sodin–Yuditskii
approach yields finer knowledge about those entire functions whose existence is
claimed in de Branges’ theorem, and this is a key ingredient in our arguments.

Section 6. This is a collection of some further necessary preliminaries. First
we discuss some properties of growth functions and of functions quantifying the
size of perturbation in the majorisation of measures. Second, we make – on a
general level – the connection between the notions of infinite index of determinacy
of a measure (cf. Definition 2.5 which is a general version of [5] where the space of
polynomials is considered) and stable density (as known from [8] for the space E(a),
see also Definition 4.9).

Section 7. An inclusion result is established: under a growth assumption,
square-integrability is inherited when passing to a majorised measure (Theorem 7.1).
The proof of this fact is fairly elementary; we give the necessary estimates in an
explicit way.

Section 8. First, a smoothening operation with weight functions is introduced.
This construction corresponds on the level of weight functions to passing from
a measure to a majorised one. Second, we establish an estimate for canonical
products when shifting zeroes.

Section 9. We complete the proof of the fast growth theorem. The line of the
argument follows [8], and the theory we built up in the previous sections enables
us to successfully proceed that way.
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Section 10. We complete the proof of the other assertions stated in Section 3.

Appendix A. The only available source for the Sodin–Yuditskii approach to the
general de Branges’ theorem on weighted approximation is the conference presen-
tation [26] and personal communication. Otherwise, their proof remained unpub-
lished. With the kind permission of M. Sodin and P. Yuditskii, we elaborate it in
this appendix.

2. An introduction to the main players

In this section we introduce the main objects occurring in our present investigation,
and recall some basic properties. Namely, we discuss de Branges spaces and chains,
power bounded measures, closures of algebraic de Branges spaces, growth classes of
entire functions, and a growth dependent majorisation relation between measures.

2.1. De Branges spaces and distinguished chains

Recall the definition of a de Branges space.

Definition 2.1. Let H be a linear space whose elements are complex-valued func-
tions 3, H 
= {0}, and let (., .)H be a positive definite inner product on H. We call
〈H, (., .)H〉 a de Branges space if the following axioms are fulfilled (‖.‖H denotes
the norm induced by (., .)H):

(dB1) The elements of H are entire functions, and 〈H, (., .)H〉 is a reproducing
kernel Hilbert space.

(dB2) If F ∈ H and w ∈ C \ R with F (w) = 0, then also the function F (z)
z−w

belongs to H, and ∥∥∥z − w

z − w
F (z)
∥∥∥
H

= ‖F‖H.

(dB3) If F ∈ H, then also the function F#(z) := F (z) belongs to H, and

‖F#‖H = ‖F‖H.

A more concrete approach to de Branges spaces proceeds via a certain class of
entire functions and reproducing kernels, cf. �19 in [11]: we call an entire function
a Hermite–Biehler function if it satisfies

|E(z)| < |E(z)|, z ∈ C+.

Given a Hermite–Biehler function E, consider the function KE defined as

KE(w, z) =
i

2π

E(z)E#(w)− E#(z)E(w)

z − w
, z, w ∈ C,

3Here, and always, we tacitly assume that linear operations are defined by pointwise addition
and scalar multiplication.
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where the formula has to be interpreted as a derivative if z = w. Then KE

is a positive semidefinite kernel, and the reproducing kernel Hilbert space H(E)
generated by KE is a de Branges space. Conversely, for each de Branges space
〈H, (., .)H〉 there exist Hermite–Biehler functions E, such that the reproducing
kernel of 〈H, (., .)H〉 coincides with KE . Given a Hermite–Biehler function E, we
denote the de Branges space it generates as H(E).

The structure theory for the set of all de Branges spaces which are contained
isometrically in a space L2(μ) plays a particularly important role. To once state it
very precisely: by saying that some set of entire functions is contained in L2(μ) we
mean that the operator mapping an entire function to the equivalence class μ-a.e.
of its restriction to the real line maps it into L2(μ), and by saying that an inner
product space is contained isometrically in L2(μ) we mean that this operator maps
it isometrically into L2(μ).

A substantial portion of de Branges’ theory can be summarised as follows; the
standard reference, where all listed facts are found, is [11].

Let μ be a positive Borel measure on the real line 4, μ 
= 0. Then the following
facts hold true.

• The set of all de Branges spaces which are isometrically contained in L2(μ) is
nonempty. Each two maximal chains in this set (subsets which are totally ordered
w.r.t. set-theoretic inclusion, and maximal with this property) are either equal or
disjoint, and the whole set is the disjoint union of all its maximal chains.

• Let C be a maximal chain. Then

ClosL2(μ)

⋃
L∈C

L = L2(μ),

(
Clos

⋃
L∈C,L�H

L
)
∈ C and dim

(
H
/
Clos

⋃
L∈C,L�H

L
)
≤ 1,

if H ∈ C and H is not a minimal element of C,

and

dim
⋂
L∈C

L ≤ 1,

⋂
L∈C,L�H

L ∈ C and dim
( ⋂
L∈C,L�H

L
/
H
)
≤ 1,

if H ∈ C and H is not a maximal element of C.

• Let C1 and C2 be maximal chains. Then C1 = C2 if and only if the following
two conditions are satisfied:

(i) There exist Hi ∈ Ci, i = 1, 2, and Fi ∈ Hi \ {0}, i = 1, 2, such that F1/F2 is
a meromorphic function of bounded characteristic in C+.

4We include into the term Borel measure that compact sets have finite measure.
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(ii) There exist Hi ∈ Ci, i = 1, 2, such that for each x ∈ R the minimal multi-
plicity of x as a zero of functions F1 ∈ H1 \ {0} is the same as the minimal
multiplicity of x as a zero of functions F2 ∈ H2 \ {0}.

• If μ is Poisson integrable, i.e.,
∫
R

1
1+x2 dμ(x) <∞, then there exists a unique

maximal chain C in L2(μ) such that each space H ∈ C is invariant under forming
difference quotients, i.e.,

F (z)− F (w)

z − w
∈ H, F ∈ H, w ∈ C.

2.2. Power bounded measures

Sticking to the case of Poisson integrable (or even finite) measures is not natural.
The appropriate class to deal with are measures whose tails do not grow faster
than some power.

Definition 2.2. We say that a positive Borel measures on R has at most power

growth if there exists n ∈ N such that
∫
R

dμ(x)
(1+x2)n < ∞. The set of all nonzero

positive Borel measures having at most power growth is denoted by M.

In the present context it is vital to be able to single out one particular maximal
chain in L2(μ) whenever μ ∈ M (analogous as above for the Poisson integrable
case). The fact that this is possible may be viewed as a sign that the class M is
indeed “appropriate”.

The starting point for the next result is the observation that a de Branges
space H is invariant under forming difference quotients if and only if 1 ∈ H+ zH.

Proposition 2.3. Let μ ∈ M. Then there exists a unique maximal chain C in
L2(μ) such that5

(2.1) ∀H ∈ C : ∃n ∈ N0 : 1 ∈ H+ zH+ · · ·+ znH.

The minimum of all numbers n ∈ N0 such that (1 + x2)−n is integrable w.r.t. μ
is equal to the minimal number n ∈ N0 such that (2.1) holds (in particular it is
independent of H ∈ C).

If H ∈ C and F ∈ H, then F is of bounded type in C+ and C−, equivalently, it
is of Cartwright class6.

The proof of Proposition 2.3 is carried out by reduction to the Poisson integrable
case. Details are provided in the extended preprint [4], Appendix B.

5We denote by N0 the set of all nonnegative integers (while N are the positive integers).
6An analytic function is a domain Ω is said to be of bounded type in this domain, if it

can be written as the quotient of two functions which are analytic and bounded in Ω. An
entire function F is said to be of Cartwright class, if it is of finite exponential type and the

logarithmic integral
∫∞
−∞

log+ F (x)
1+x2 dx is finite. By a theorem of M.G. Krein, an entire function

is of Cartwright class if and only if it is of bounded type in both half-planes C+ and C−, see e.g.
Theorem 6.17 in [21].
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Definition 2.4. Let μ ∈ M. Then we denote the distinguished maximal chain
exhibited in Proposition 2.3 as C[μ].

The following property of a measure μ ∈ M is a strengthening of the property
that L2(μ) itself is not a de Branges space. In [8] it is called “stable density”,
however, we prefer the term established in the literature about moment problems.

Definition 2.5. Let μ ∈ M. We say that μ has infinite index of determinacy, if
for every finitely supported positive measure ν on R the space

⋃
H∈C[μ] H is dense

in L2(μ+ ν).

A systematic and general treatment of this notion can be found in [31], �4.

Remark 2.6. Observe that a measure with infinite index of determinacy neces-
sarily has infinite support. For if μ is finitely supported, then dim

⋃
H∈C[μ] H =

dimL2(μ) <∞, and hence
⋃

H∈C[μ]H is closed and not dense in any space L2(μ+ν)
where supp ν 
⊆ suppμ.

On the other hand, if μ is not discrete then μ has infinite index of determinacy,
cf. Corollary 4.7 in [31].

2.3. Closures of algebraic de Branges spaces

Let us introduce linear spaces which satisfy the “algebraic part” of the axioms for
a de Branges space. In order to save on notation, we shall include in this definition
the assumption that the space is invariant under dividing out real zeroes.

Definition 2.7. Let L be a linear space, L 
= {0}. We call L an algebraic
de Branges space if

(a-dB1) the elements of L are entire functions;

(a-dB2) if F ∈ L and w ∈ C with F (w) = 0, then also the function F (z)
z−w

belongs to L;
(a-dB3) if F ∈ L, then also the function F#(z) := F (z) belongs to L.
Note the following property of algebraic de Branges spaces: If D is a set of

algebraic de Branges spaces which is totally ordered w.r.t. set-theoretic inclusion,
then
⋃

H∈D H is an algebraic de Branges space.
Simple examples of algebraic de Branges spaces are obtained from spaces of

polynomials.

Example 2.8. Let S be a zero-free entire function with S = S#. Then each of
the spaces

Pd[S] := span
{
S(z), . . . , zd−1S(z)

}
, d ∈ N, P∞[S] := S · C[z],

is an algebraic de Branges space.
Recall in this place that every finite dimensional algebraic de Branges space is of

the form Pd[S] with some real and zero-free function S, cf. Problem 88 in [11]. ♦
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Another standard example of an algebraic de Branges space is obtained from
a chain of de Branges spaces.

Example 2.9. Let μ be a positive Borel measure on R, μ 
= 0, let C be a maximal
chain in L2(μ), and consider the union L :=

⋃
H∈C H. Provided that for each x ∈ R

this union contains some function which does not vanish at x, L is an algebraic
de Branges space.

For every measure μ ∈ M and its distinguished chain C[μ] this requirement is
fulfilled. ♦

Next, we recall a fact which was proved (in a more general context) in [19]. For
particular cases of measures and algebraic de Branges spaces, e.g., for the space of
polynomials, this is a classical result.

• Let μ be a positive Borel measure on the real line, μ 
= 0, and let L be an
algebraic de Branges space which is contained in L2(μ). Then either ClosL2(μ) L =
L2(μ) or this closure is a de Branges space contained isometrically in L2(μ).
To once state it very precise: by this we mean that there exists a de Branges
space H which contains L and such the operator mapping an entire function to
the equivalence class μ-a.e. of its restriction to the real line maps H isometrically
onto the closure in L2(μ) of the image of L.

An explicit deduction from the results of [19] is given in [3], Theorem 2.3.
Note here the following slight subtlety: we have assumed that L is invariant w.r.t.
dividing out real zeroes. Hence, if L contains a function which does not vanish
identically but whose restriction to the real line is equal to 0 μ-a.e., then L is
already dense in L2(μ), since otherwise the restriction map from H to L2(μ) were
not isometric.

• The two possibilities in the previous item do not exclude each other. In fact,
L2(μ) itself is a de Branges space H (invariant under dividing out real zeroes),
if and only if H is the maximal element of the maximal chain having H as an
element.

2.4. Growth classes

The notions of order and type of an entire function have been extended to the more
refined scale of proximate orders by G. Valiron in the 1920’s. On this scale the
growth of a function is compared to functions of the form eτλ(r) rather than eτr

ρ

,
where λ is growing sufficiently regularly.

Definition 2.10. A function λ : [0,∞) → R+ is called a growth function if it
satisfies the following axioms:

(gf1) The function λ is differentiable, strictly increasing, log r = o(λ(r)), and
λ(0) = 1.7

(gf2) The limit ρλ := lim
r→∞

log λ(r)
log r exists and is finite and non-negative.

7The essence of a growth function is its behaviour at infinity. It would be enough, but would
not lead to a significantly more general notion, to assume differentiability and monotonicity only
for all sufficiently large r and drop the normalisation at 0.
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(gf3) lim
r→∞

rλ′(r)
λ(r)

= ρλ.
8

The logarithm of a growth function is called a proximate order.

Typical examples of growth functions are functions λ which are, for large
enough r, given as

(2.2) λ(r) = ra · ( log r)b1 · ( log log r)b2 · · · ( log · · · log r︸ ︷︷ ︸
m-times iterate

)bm
,

where a ≥ 0 and b1, . . . , bm ∈ R such that log r = o(λ(r)). Comparison of the
growth of the maximum modulus of an entire function with functions of the par-
ticular form (2.2) goes back to E. Lindelöf in the first years of the 20th century.

Most theorems known for order and type have their analogues in the context
of proximate orders, cf. Section I.12 in [16] or Section I.6 in [15]. In particular,
the growth of an entire function with respect to some growth function is related to
the density of its zeroes (w.r.t. the same growth function), cf. Theorems 13.5.2–4
in [22].

Definition 2.11. Let λ be a growth function. The λ-type of an entire function F is

τλ[F ] := lim sup
|z|→∞

log |F (z)|
λ(|z|) ,

and we denote the set of all entire functions of finite λ-type as G(λ,∞).
The indicator w.r.t. λ of a function F ∈ G(λ,∞) is

hλ[F ](φ) := lim sup
r→∞

log |F (reiφ)|
λ(r)

, φ ∈ [0, 2π),

and the lower indicator w.r.t. λ of F is

hλ[F ](φ) := lim inf
r→∞

log |F (reiφ)|
λ(r)

, φ ∈ [0, 2π).

More specific growth classes are defined as

G(λ, c) := {F ∈ G(λ,∞) : hλ[F ](0), hλ[F ](π) ≤ c
}
, c ∈ R.

Note that the condition in the definition of G(λ, c) is a limitation of growth
along the real axis.

Remark 2.12. If λ is a growth function with λ(r) = o(r), then G(λ, c) = {0}
whenever c < 0. This follows since a function of minimal exponential type cannot
tend to zero along any line unless it vanishes identically.

8Instead of this, often the condition limr→∞
(
r
λ′(r)
λ(r)

/
log λ(r)
log r

)
= 1 is required. If ρλ > 0, then

this is equivalent to (gf3). However, if ρλ = 0, then (gf3) is weaker. For example consider λ as
in (2.2) with a = 0 and b1 > 0. In this context we should also draw the readers attention to [17],
p. 32, no. 1.
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Following the idea to consider order and type of a measure as in Definition 1.1,
we give the following general definition.

Definition 2.13. Let μ ∈ M. Then we denote

hλ[μ](φ) := sup
{
hλ[F ](φ) : F ∈

⋃
H∈C[μ]

H
}
,

hλ[μ](φ) := sup
{
hλ[F ](φ) : F ∈

⋃
H∈C[μ]

H
}
,

τλ[μ] := sup
{
τλ[F ] : F ∈

⋃
H∈C[μ]

H
}
.

Remark 2.14. If r = o(λ(r)), then always hλ[μ] = 0. This follows since all
functions F ∈ ⋃H∈C[μ] H are of Cartwright class and hence of finite exponential
type, cf. Proposition 2.3.

2.5. Majorisation of measures

In our version of majorisation of measures two properties play a role which a
function λ : [0,∞) → R may or may not have. Namely:

(P1) The function λ is differentiable. Either λ(0) = 1 and λ is strictly increas-
ing, or λ(0) = −1 and λ is strictly decreasing.

(P2) limr→∞ λ′(r) e−λ(r) = 0.

The case of main interest is that λ is a growth function. Indeed, if λ is a growth
function, then (P1) holds by definition and (P2) holds since

λ′(r) e−λ(r) =
1

r
· rλ

′(r)
λ(r)︸ ︷︷ ︸
→ρλ

·λ(r) e−λ(r)︸ ︷︷ ︸
≤1

.

We include the decreasing case because of occurrence of large perturbations in
Theorem 3.9. Examples for negative and decreasing functions λ satisfying (P1)
and (P2) are functions with very moderate decay.

Example 2.15. Consider a function λ subject to (P1) which is, for sufficiently
large r, of the form

λ(r) = a log r + ψ(r),

where a ∈ [−1, 0), ψ ≥ 0, ψ = o(log r), ψ′(r) = o(1/r), and limr→∞ ψ(r) = ∞ if
a = −1. Then λ satisfies (P2), since

λ′(r) e−λ(r) = ar−1−a e−ψ(r) + r−a ψ′(r) e−ψ(r).

Suitable functions ψ being, e.g.,

ψ(r) := (log log r)b2 + · · ·+ ( log · · · log r︸ ︷︷ ︸
m-times iterate

)bm
,

where b2, . . . , bm ∈ R with at least one bi > 0 if a = −1. ♦
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Definition 2.16. Let σ, ν ∈ M, let λ1, λ2 : [0,∞) → R, and assume that λ1
satisfies (P1) and (P2), and that λ2 satisfies (P1) with λ′2 > 0. If

(2.3)

∃ c0, c1, c2 with c1 ≥ 1, c0, c2 ≥ 0, ∀x ∈ R :

σ((x − e−λ1(|x|), x+ e−λ1(|x|)))

≤ c0 ν((x − c1e
−λ1(|x|), x+ c1 e

−λ1(|x|))) + c2 e
−λ2(|x|),

we say that σ is majorised by ν w.r.t. (λ1, λ2) and write “σ � ν w.r.t. (λ1, λ2)”.

Writing “σ � ν w.r.t. (λ1, λ2)” always implicitly includes that the parame-
ters λ1 and λ2 are subject to the stated requirements.

Remark 2.17. The relation � used in [8] is obtained as

σ � ν ⇐⇒ ∃ δ > 0 : σ � ν w.r.t. (δr, 2δr)

The relation “σ � ν w.r.t. (λ1, λ2)” should be viewed as a majorisation of σ by a
perturbation of ν, where this perturbation is composed of a “shifting/redistribution
of mass” part whose extent is limited by e−λ1 , and an “additive” part which does
not exceed e−λ2 .

Concerning this intuition one important word of caution is in order.
�
: The relation “� w.r.t. (λ1, λ2)” gets stronger when the parameter λ2 is in-

creased pointwise, but increasing the parameter λ1 pointwise leads to incomparable
relations.

In particular, majorisation w.r.t. a parameter λ1(r) := rρ where ρ > 1 is
incomparable with the majorisation used in [8].

3. Statement of the main results

The below Theorem 3.1 is our main result. In its statement two parameters are
involved which should be fitted to each other:

- A pair (λ, c) where λ is a growth function and c ∈ [0,∞). This parame-
ter quantifies the a priori knowledge on C[μ̃] as well as the strength of the
conclusion.

- A pair of functions (λ1, λ2). This parameter quantifies the permitted size of
the perturbation.

Theorem 3.1 (Fast growth theorem). Let μ, μ̃ ∈ M where μ̃ has infinite index of
determinacy, let λ be a growth function and let c ∈ [0,∞). Assume the a priori
knowledge that

[Chain] L̃ :=
⋃

H̃∈C[μ̃]
H̃ ⊆ G(λ, c).

Assume that μ � μ̃ w.r.t. (λ1, λ2), where

[A] λ1 ≥ 2c+λ with some c+ > c, and λ2 ≥ 2λ1.

Then L̃ is contained in L2(μ), and

(3.1) either ClosL2(μ) L̃ = L2(μ) or ClosL2(μ) L̃ � G(λ, c).
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The case that λ1 grows at least linearly deserves particular attention. It is
special due to the automatic presence of bounded type.

Corollary 3.2. Let μ, μ̃ ∈ M, where μ̃ has infinite index of determinacy, and
let λ1 be a growth function with r = O(λ1(r)). If μ � μ̃ w.r.t. (λ1, 2λ1), then L̃ is
a dense subspace of L2(μ).

Concerning the conclusion (3.1) of Theorem 3.1, a word of caution is in order.
�
: If the first case in the alternative (3.1) takes place, we still do not claim

that C[μ] ⊆ C[μ̃]. If the second case in the alternative (3.1) takes place, we still do
not claim that C[μ] ⊇ C[μ̃].

Contrasting this notice, if μ and μ̃ mutually majorise each other, a conclusion
about the chains themselves can be drawn.

Theorem 3.3 (Coincidence theorem). Let μ, μ̃ ∈ M with infinite index of determi-
nacy, let λ be a growth function and let c ∈ [0,∞). Assume the a priori knowledge
that

[2Chain]
⋃

H∈C[μ]
H ∪

⋃
H̃∈C[μ̃]

H̃ ⊆ G(λ, c).

Assume that μ � μ̃ w.r.t. (λ1, λ2) and μ̃ � μ w.r.t. (λ̃1, λ̃2), where

[2A] λ1, λ̃1 ≥ 2c+λ with some c+ > c, and λ̃2 ≥ 2λ̃1, λ2 ≥ 2λ1.

Then C[μ] = C[μ̃].
Let us again explicitly state the case of fast growing λ1.

Corollary 3.4. Let μ, μ̃ ∈ M with infinite index of determinacy, and let λ1, λ̃1 be
growth functions with r = O(λ1(r)), r = O(λ̃1(r)). If μ � μ̃ w.r.t. (λ1, 2λ1) and
μ̃ � μ w.r.t. (λ̃1, 2λ̃1), then C[μ] = C[μ̃].

Next, we turn to stability and monotonicity of order and type. It is a conse-
quence of the coincidence theorem that two measure who mutually majorise each
other have the same order and type.

Corollary 3.5. Let μ, μ̃ ∈ M with infinite index of determinacy, let ρ ≥ max{ρ[μ],
ρ[μ̃]}, assume that τrρ [μ], τrρ [μ̃] <∞, and set

c := max
{
hrρ [μ](0), hrρ [μ̃](0), hrρ [μ](π/2), hrρ [μ̃](π/2)

}
.

Moreover, let δ > 0. If μ � μ̃ and μ̃ � μ w.r.t. ((2c+ δ)rρ, (4c+ 2δ)rρ), then

ρ[μ] = ρ[μ̃] and τ [μ] = τ [μ̃].

If ρ ≥ 1, we always have τrρ [μ], τrρ [μ̃] <∞ and c = 0.

If one has only majorisation in one direction, and not mutual majorisation,
type satisfies only a quasi-monotonicity property.
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Theorem 3.6 (Quasi-monotonicity theorem). Let μ, μ̃ ∈ M and assume that C[μ]
has no maximal element. Let λ be a growth function, c ∈ [0,∞), and set

θ :=

{
π/2, ρλ ≤ 1/2,

π
2 (1/ρλ − 1), 1/2 < ρλ ≤ 1.

Assume that [2Chain] holds and that μ � μ̃ w.r.t. (λ1, λ2) as in [A]. Then

hλ[μ](φ) ≤ hλ[μ̃](φ), |φ− π/2| < θ.

If ρλ ∈ (1/2, 1), λ(r) = o(rρλ), or ρλ = 1, this inequality holds also for φ = π/2±θ.
Observe here that only the lower indicator hλ[μ] is estimated from above.
As a consequence of the quasi-monotonicity theorem, for exponential type

true monotonicity follows. This includes Theorem 1.3 in [8], remember here Re-
mark 2.17.

Corollary 3.7. Let μ, μ̃ ∈ M and assume that C[μ] has no maximal element.
Let λ1 be a growth function with r = O(λ1(r)). If μ � μ̃ w.r.t. (λ1, 2λ1), then
τr[μ] ≤ τr[μ̃]. In fact, hr[μ](φ) ≤ hr[μ̃](φ), φ ∈ [0, 2π).

Also on the other end of the growth scale, for very slow growing functions, true
monotonicity is present.

Theorem 3.8. Let μ, μ̃ ∈ M and assume that C[μ] has no maximal element.
Let λ be a growth function with λ(r) = O([log r]2), and let c ∈ [0,∞). Assume that
[2Chain] holds and that μ � μ̃ w.r.t. (λ1, λ2) as in [A]. Then

τλ[μ] ≤ τλ[μ̃].

Observe that in the situation of this theorem certainly ρλ = 0 and hence hλ[μ]
is constant equal to τλ[μ], cf. footnote no. 17 on page 997.

Finally, we discuss density of polynomials. From Corollary 6.13 in [31] we know
the following result (which is a theorem of “fast-growth type”):

If μ ∈ M and

[Meas]

∫ ∞

−∞
e2c

+λ(|x|) dμ(x) <∞ with some c+ > c,

then either C[z] is dense in L2(μ) or ClosL2(μ) C[z] � G(λ, c).
In view of this fact, it is noteworthy that [Meas] is stable under very large

perturbations.

Theorem 3.9. Let λ be a growth function and c ∈ [0,∞). Let μ, μ̃ ∈ M, assume
that μ̃ satisfies [Meas], and let c+ > c be as in this condition. If μ � μ̃ w.r.t.
(λ1, λ2), where

[B] λ1 ≥ (ρ+λ − 1) log r with some ρ+λ > ρλ, and λ2 ≥ 2c+λ,

then μ satisfies [Meas].

Observe that the condition [B] allows λ1 to decrease to −∞ when ρλ < 1.
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Part I: The toolbox

In this part of the paper we provide some necessary tools and preliminaries.

• Weight functions and a Bakan-type theorem relating (stable) density in
spaces L2(μ) and C0(W ); these results are of topological nature.

• A previously unpublished approach to de Branges’ theorem on weighted poly-
nomial approximation due to M. Sodin and P. Yuditskii.

• Some properties of growth functions and functions of the kind appearing
in the majorisation relation of measures; these considerations are mainly
elementary.

• The connection between infinite index of determinacy and stable density.

4. Weighted C0-spaces

Throughout this section let Ω be a locally compact and σ-compact metrisable
topological space. For example, one could think of Ω as being the real line, or an
open or closed subset of the Euclidean space Rn. Moreover, we denote by C(Ω) the
space of complex valued continuous functions on Ω, and by C00(Ω) its subspace of
all compactly supported functions.

If h is a complex valued function on Ω and α ∈ C, we write limx→∞ h(x) = α
if

(4.1) ∀ε > 0 ∃K ⊆ Ω,K compact ∀x ∈ Ω \K : |h(x) − α| < ε

Let Ω = Ω ∪ {∞} be the one-point compactification of Ω. Then limx→∞ h(x) = α
in the sense of (4.1), if and only if limx→∞ h(x) = α with respect to the topology
of Ω.

4.1. Weight functions

Definition 4.1. Let W : Ω → (0,∞] be a function. If W is lower semicontinuous
and not identically equal to ∞, we call W a weight function on Ω.

For a weight function W on Ω we set

ΩW := {x ∈ Ω :W (x) 
= ∞}.

With each weight function we associate a space of continuous functions.

Definition 4.2. Let W be a weight function on Ω. Then we denote 9

C0(W ) :=
{
f ∈ C(Ω) : lim

x→∞
f(x)

W (x)
= 0
}
,

‖f‖W := sup
x∈Ω

∣∣∣ f(x)
W (x)

∣∣∣, f ∈ C0(W ).

9We set a/∞ := 0, a ∈ C.
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For example, if W (x) = 1, x ∈ Ω, the space C0(W ) is just the usual Banach
space C0(Ω) of all continuous functions f on Ω which vanish at infinity.

For each weight function the space C0(W ) is a linear space, and ‖.‖W is a
seminorm on C0(W ). Observe that ‖.‖W is a norm if and only if the set ΩW
is dense in Ω. Unless specified differently, all topological notions applied within
C0(W ) refer to the locally convex (but not necessarily Hausdorff) topology induced
by the seminorm ‖.‖W .

Since a weight function is lower semicontinuous, it is bounded away from zero
on every compact set. This shows that for each weight function W on Ω it holds
that C00(Ω) ⊆ C0(W ).

Remark 4.3. Let W1 and W2 be weight functions on Ω. Assume that ΩW1 =
ΩW2 and that the quotient W2/W1|ΩW1

has a continuous extension to a function
L : Ω → (0,∞). Then the map λ : f �→ L ·f is an isometric isomorphism of C0(W1)
onto C0(W2).

Sometimes it is practical to pass to continuous weight functions which do not
assume the value infinity. The following statements provide tools to do this. For
details see the extended preprint [4] where proofs are elaborated.

Lemma 4.4. Let W be a weight function on Ω. Then there exists a continuous
function ω which takes finite and positive values such that ω(x) ≤W (x), x ∈ Ω.

Lemma 4.5. Let W and W̃ be weight functions, and assume that there exists
C ∈ (0,∞) with10

W̃ (x) ≤ CW (x), x ∈ Ω.

Then C0(W̃ ) is contained in C0(W ). The set-theoretic inclusion map ι : C0(W̃ ) →
C0(W ) is continuous. Each subsetD ⊆ C0(W̃ ) which is dense in C0(W̃ ) w.r.t. ‖.‖W̃
is also dense in C0(W ) w.r.t. ‖.‖W .

Lemma 4.6. Let W be a weight function. There exists a countable subset of
C00(Ω) which is dense in C0(W ).

4.2. The topological dual of C0(W )

Knowledge about duals of weighted C0-spaces (actually, in a much more general
setting than the present) was obtained in the 1960’s by W.H. Summers following
the work of L. Nachbin, cf. [27], [28], [18].

We denote by M+(Ω) the set of all positive Borel measure on Ω, and by Mb(Ω)
the space of all complex (bounded) Borel measures on Ω endowed with the norm
‖μ‖ := |μ|(Ω), where |μ| denotes the total variation of the complex measure μ.

Consider the map T which assigns to each measure μ ∈ Mb(Ω) the linear
functional Tμ defined as

(4.2) (Tμ)f :=

∫
Ω

1

W
f dμ, f ∈ C0(W ).

10We set a · ∞ := ∞, a ∈ (0,∞).
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Obviously, T is well-defined and maps Mb(Ω) into C0(W )′, in fact

‖Tμ‖ ≤ ‖μ‖, μ ∈ Mb(Ω).

The following statement is a consequence of Theorems 3.1 and 4.5 in [28]. First
one settles the case that ΩW is dense in Ω, which is the situation considered
in [28]. This requires just some standard approximation arguments, e.g., Lusin’s
theorem ([23], p. 55, 2.24). Then one passes to the general case using isometry of
the restriction operator f �→ f |ΩW

and Tietze’s extension theorem. We will not
go into details.

Theorem 4.7 (Summers). The map T defined by (4.2) maps Mb(Ω) surjectively
onto C0(W )′. For each μ ∈ Mb(Ω), the following statements hold11:

(i) We have Tμ = T (�ΩWμ) and ‖Tμ‖ = ‖�ΩW μ‖.
(ii) The functional Tμ is real (i.e., ∀ f ∈ C0(Ω), f ≥ 0 : (Tμ)f ∈ R) if and only

if �ΩW μ is a real-valued measure.

4.3. A Bakan type theorem

In this subsection we relate spaces of the types C0(W ) and L2(μ), where W is a
weight function on Ω and μ is a positive Borel measure on Ω. We use a unifying
notation in order to cover density as well as what is known as “stable density”
from Definitions 1.2 and 2.7 in [8] or as “infinite index of determinacy” from the
theory of power moment problems, cf. [5].

Definition 4.8. A scale (φn)
∞
n=1 on Ω is a sequence of functions φn ∈ C(Ω),

n ∈ N, with
1 ≤ φ1 ≤ φ2 ≤ . . . .

We always set φ0 := 1.
Let μ ∈ M+(Ω), let W be a weight on Ω, and let XN , N ∈ N0, be either the

sequence of spaces L2(φ2Ndμ), N ∈ N0, or C0(φ
−1
N W ), N ∈ N0. For A ⊆ CΩ set

AN [X0] :=
{
f ∈ XN : φ0f, . . . , φNf ∈ A

}
, N ∈ N0.

We say that A is dense in X0 w.r.t. the scale (φn)
∞
n=1 if

∀N ∈ N0 : ClosXN AN [X0] = XN .
Observe that AN [X0] can also be written as

AN [X0] :=
{
f ∈ CΩ : φ0f, . . . , φN−1f ∈ A, φNf ∈ A ∩ X0

}
, N ∈ N0.

Density w.r.t. a scale is in two ways stronger than just density. Namely, the set
AN [X0] is a (generally proper) subset of AN−1[X0], and the norm of the space XN
is (generally) stronger than the norm of XN−1. To be precise, C00(Ω) is a dense
subset of XN for all N ∈ N0, and hence density of AN [X0] in XN implies density
of AN−1[X0] in XN−1.

11We write hμ for the measure which is absolutely continuous with respect to μ and has
Radon–Nikodym derivative h.
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The first example is the trivial one: φn := 1, n ∈ N. Then a set A is dense
in X0 w.r.t. the scale (φn)n∈N if and only if ClosX0 [A ∩ X0] = X0. Second, stable
density in the sense of [8] is covered as follows.

Definition 4.9. Let A ⊆ CR.

(i) If μ ∈ M+(R), we say that A is stably dense in L2(μ) if A is dense in L2(μ)
w.r.t. the scale ((1 + |x|)n)∞n=1.

(ii) If W is a weight function on R, we say that A is stably dense in C0(W ) if A
is dense in C0(W ) w.r.t. the scale ((1 + |x|)n)∞n=1.

It is a simple but basic observation that for sufficiently small weights density
transfers from C0(W ) to L2(μ).

Lemma 4.10. Let W be a weight function on Ω, let μ ∈ M+(Ω), and assume
that W ∈ L2(μ). Then C0(W ) is contained in L2(μ). The set-theoretic inclusion
map ι : C0(W ) → L2(μ) is continuous and has dense range. In particular, it maps
dense subsets to dense subsets.

This follows immediately from

‖f‖2μ =

∫
Ω

|f |2 dμ =

∫
ΩW

∣∣∣ f
W

∣∣∣2W 2 dμ ≤ ‖f‖2W ‖W‖2μ.

This relation also shows that a function with ‖f‖W = 0 is equal to zero μ-a.e.

Corollary 4.11. Let W be a weight function on Ω, let μ ∈ M+(Ω), and assume
that W ∈ L2(μ). Let A ⊆ CΩ and let (φn)

∞
n=1 be a scale on Ω. If A is dense in

C0(W ) w.r.t. the scale (φn)
∞
n=1, then A is dense in L2(μ) w.r.t. (φn)

∞
n=1.

Proof. Let N ∈ N0. Since W ∈ L2(μ) also φ−1
N W ∈ L2(φ2Ndμ), and hence

C0(φ
−1
N W ) ⊆ L2(φ2Nμ). It follows that AN [C0(W )] ⊆ AN [L2(μ)]. Moreover,

since AN [C0(W )] is dense in C0(φ
−1
N W ), it is also dense in L2(φ2Nμ). �

In the next theorem we establish a partial converse of this fact; this is a Bakan-
type result.

Theorem 4.12. Let μ ∈ M+(Ω), μ 
= 0, let (φn)
∞
n=1 be a scale on Ω, and let

A ⊆ C(Ω). Assume that A is dense in L2(μ) w.r.t. the scale (φn)
∞
n=1. Then there

exists a weight W on Ω, such that W ∈ L2(μ) and A is dense in C0(W ) w.r.t. the
scale (φn)

∞
n=1.

Given a continuous and positive function ω ∈ L2(μ), the weight W can be
chosen such that W ≥ ω.

Proof. Assume that a continuous and positive function ω which belongs to L2(μ)
is given.

Let (Ωn)n∈N be a sequence of open and relatively compact subsets of Ω such
that

Ωn ⊆ Ωn+1, n ∈ N,
⋃
n∈N

Ωn = Ω,
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and set Ω−1 = Ω0 := ∅. The family

M :=
{
Ω2n \ Ω2n−3 : n ∈ N

}
is a locally finite open cover of Ω. Let (χn)n∈N be a continuous partition of unity
subordinate to M. Observe that the coveringM is not only locally finite, but that
a point x can belong to at most two elements of M.

For each n ∈ N we can choose a countable subset of C00(Ω) which is dense
in C0(φ

−1
n ω). Arranging the union of these sets in one sequence, we obtain

{dl : l ∈ N} ⊆ C00(Ω) which is dense in C0(φ
−1
n ω) for all n ∈ N.

Let k, l ∈ N. Since A is dense in L2(μ) w.r.t. the scale (φn)
∞
n=1, we find a

function hk,l ∈ Ak[L
2(μ)] such that

‖hk,l − dl‖L2(φ2
kdμ)

≤ 1

3k+l
.

Then we have

1

9k+l
≥
∫
Ω

|hk,l − dl|2 φ2k dμ =

∞∑
n=1

∫
Ω

|hk,l − dl|2 φ2k χn dμ.

Hence we can choose a nondecreasing sequence (bk,l;n)n∈N of real numbers with
bk,l;1 ≥ 1 and limn→∞ bk,l;n = ∞, such that

∞∑
n=1

bk,l;n

∫
Ω

|hk,l − dl|2 φ2k χn dμ ≤ 1

4k+l
.

Now we define a function W on Ω as

W (x) :=
[
ω(x)2 +

∞∑
k,l,n=1

2k+l bk,l;n |hk,l(x) − dl(x)|2 φ2k χn(x)
]1/2

, x ∈ Ω.

Since W is the supremum of continuous functions, it is lower semicontinuous.
Moreover, W (x) ≥ ω(x), x ∈ Ω, in particular W takes values in (0,∞]. The
estimate∫

Ω

W 2 dμ =

∫
Ω

ω2 dμ+

∞∑
k,l=1

2k+l
∞∑
n=1

bk,l;n

∫
Ω

|hk,l − dl|2 φ2k χn dμ

≤ ‖ω‖2μ +
∞∑

k,l=1

1

2k+l
= ‖ω‖2μ + 1

shows that W ∈ L2(μ). In particular, since μ 
= 0, the function W cannot be
identically equal to ∞. Thus, W is a weight function on Ω.

Now we fix N ∈ N. We show that hk,l ∈ C0(φ
−1
N W ), k ≥ N , l ∈ N. The fact

that

W (x)2 ≥
∞∑
n=1

2k+l bk,l;n |hk,l(x)− dl(x)|2 φ2k χn(x), x ∈ Ω,
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yields the basic estimate

(4.3)
∣∣∣hk,l(x) − dl(x)

W (x)

∣∣∣2 ≤
[
2k+l φ2k

∞∑
n=1

bk,l;n χn(x)
]−1

, x ∈ Ω.

If m ∈ N and x 
∈ Ω2m−2, then
∑∞

n=1 bk,l;n χn(x) ≥ bk,l;m. Hence,

∣∣∣ hk,l(x)
φ−1
N W (x)

∣∣∣2 ≤ |φN (x)|2
2k+l|φk(x)|2 bk,l;m ≤ 1

bk,l;m
,

x 
∈ Ω2m−2 ∪ supp dl, k ≥ N ,m ∈ N, l ∈ N.

Since limm→∞ bk,l;m = ∞, this shows that indeed hk,l ∈ C0(φ
−1
N W ), k ≥ N , l ∈ N.

It follows that hk,l ∈ AN [C0(W )], k ≥ N , l ∈ N.
We use (4.3) once again to show limk→∞ ‖hk,l − dl‖C0(φ

−1
N W ) = 0. Since∑∞

n=1 bk,l;nχn(x) ≥ 1, x ∈ Ω, (4.3) indeed gives∣∣∣ hk,l(x)− dl(x)

|φN (x)|−1W (x)

∣∣∣2 ≤ φ2N
2k+l φ2k

≤ 1

2k
, x ∈ Ω, k ≥ N, l ∈ N.

It follows that {dl : l ∈ N} ⊆ ClosC0(φ
−1
N W ) AN [C0(W )].

Finally, since φ−1
N W ≥ φ−1

N ω, we may apply Lemma 4.5 which yields that
{dl : l ∈ N} is dense in C0(φ

−1
N W ), and hence that

ClosC0(φ
−1
N W )AN [C0(W )] = C0(φ

−1
N W ). �

5. De Branges’ theorem on weighted approximation

In [10], L. de Branges showed that non-density of polynomials in C0(W ) is equiv-
alent to existence of entire functions with certain properties, so-called Krein class
functions. This result is fundamentally different from other characterisations of
non-density given by S.N. Mergelyan, N. I. Achieser or others (see, e.g., Chap-
ter VI in [14]), which characterise non-density in terms of the function (sometimes
called the Hall-majorant)

m(z) := sup
{|p(z)| : p ∈ C[z], ‖p‖W ≤ 1

}
, z ∈ C.

Apparently, the value m(z) is nothing but the norm of the point-evaluation func-
tional at z.

In this section we disscuss a variant of de Branges’ theorem, which is valid for
algebraic de Branges spaces instead of the space of polynomials, and is adapted to
deal with stable density.

A suitable replacement for Krein class functions is needed.

Definition 5.1. Let L be an algebraic de Branges space, let W be a weight func-
tion on R, and let m,n ∈ Z. Then we define the weighted Krein class Km,n(L,W )
as the set of all entire function B which have the following properties.
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(K1) The function B satisfies B = B# and all its zeros are real and simple.
It does not vanish identically and has at least one zero.

(K2) For each F ∈ L, the function F/B is of bounded type in C+.

(K3) For each F ∈ L we have

|y|1−m · |F (iy)| = o
(|B(iy)|), y → ∞.

(K4) If x ∈ R with B(x) = 0 then W (x) <∞, and

∑
x:B(x)=0

1

(1 + |x|)n
W (x)

|B′(x)| <∞.

Note the following obvious properties of weighted Krein classes.

Remark 5.2. Let L be an algebraic de Branges space and let W be a weight
function on R.

(i) If m ≤ m′ and n ≤ n′, then Km,n(L,W ) ⊆ Km′,n′(L,W ).

(ii) Let B ∈ Km,n(L,W ). If x0 ∈ ΩW with B(x0) 
= 0, then

(z − x0)B(z) ∈ Km−1,n−1(L,W ).

If B has at least two zeroes and x0 ∈ R with B(x0) = 0, then

B(z)

(z − x0)
∈ Km+1,n+1(L,W ).

(iii) For l ∈ Z, set Wl(x) := (1 + |x|)−lW (x). Then

Km,n(L,Wl+k) = Km,n+k(L,Wl), m, n, l, k ∈ Z.

For an algebraic de Branges space L and a number l ∈ Z set

(5.1) Ll :=
{
{F ∈ L : zlF (z) ∈ L} , l ≥ 0,

L+ zL+ · · ·+ z|l|L , l < 0.

Note that (Ll)l∈Z is a decreasing chain (w.r.t. inclusion) of algebraic de Branges
spaces. Moreover, recall that

dimL = inf
{
l ∈ N : Ll = {0}},

where the infimum of the empty set is understood as ∞, cf. Lemma 2.11 in [29].
The next property of Krein classes relies on the structure of L as algebraic

de Branges space. For details see [4].

Lemma 5.3. Let L be an algebraic de Branges space, let l, k ∈ Z, and assume
that Ll,Ll+k 
= {0}. Moreover, let W be a weight function. Then

Km,n(Ll+k,W ) = Km+k,n(Ll,W ), m, n ∈ Z.
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Next, let us observe that functions belonging to a weighted Krein class usually
will have infinitely many zeroes.

Lemma 5.4. Let L be an algebraic de Branges space, let W be a weight function
on R, and let m,n ∈ N0, N ∈ N. If Km,n(L,W ) contains a function having at
most N zeroes then dimL ≤ m+N .

Proof. Assume that B ∈ Km,n(L,W ) and that B has exactly N zeroes, say

x1, . . . , xN . Set S(z) :=
[∏N

i=1(z − xi)
]−1

B(z), then S is real and zero-free. The
function F/S is entire, of bounded type in C+ and C−, and satisfies 12

∣∣∣F (iy)
S(iy)

∣∣∣ � |y|m−1+N , y → ±∞.

Hence, F/S is a polynomial of degree at mostm−1+N . Thus dimL ≤ m+N . �

The following result is a general version of de Branges’ theorem. It relates
non-density of an algebraic de Branges space L with existence of functions in a
weighted Krein class. A proof along the lines of de Branges’ original argument was
given in [3].

Theorem 5.5. Let L be an algebraic de Branges space, let W be a weight function
on R, and assume that L ⊆ C0(W ). Then the following are equivalent.

(i) L is dense in C0(W ).

(ii) K0,0(L,W ) = ∅.
Let us deduce a version for stable density.

Proposition 5.6. Let L be an algebraic de Branges space, let W be a weight
function on R, and assume that L ⊆ C0(W ). Then the following are equivalent.

(i) L is stably dense in C0(W ).

(ii)
⋃
m,n∈N0

Km,n(L,W ) = ∅.
Proof. First we settle the case that L is finite-dimensional. Set d := dimL, then
L = span{S(z), . . . , zd−1S(z)} with some real and zero-free function S, cf. Ex-
ample 2.8. Choose x0 ∈ R with W (x0) 
= 0, then (z − x0)S(z) ∈ Kd−1,0(L,W ).
Hence, the union in (ii) is nonempty. Since the set {(z + i)kF (z) : k = 0, . . . , N}
is linearly independent unless F vanishes identically, we have LN [C0(W )] = {0}
when N ≥ dimL. However, C0((1 + |x|)nW (x)) 
= {0}, and hence L is not stably
dense in C0(W ).

12Let us once and for all fix a commonly used notation. We write

f(x) � g(x), x ∈ M :⇐⇒ ∃C > 0∀x ∈ M : f(x) ≤ Cg(x).

Notice that this relation sees the sign of f and g, e.g., we have −n � 1, n ∈ N. Moreover, we
write

f(x) 	 g(x), x ∈ M :⇐⇒ f(x) � g(x), x ∈ M and g(x) � f(x), x ∈ M

and f � g means that g � f .
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From now on assume that dimL = ∞. The space L is contained in C0(W )
and invariant under dividing out zeroes. Hence (using the notation from Re-
mark 5.2 (iii) and (5.1)),

LN [C0(W )] =
{
f ∈ C0(WN ) : f(z), . . . , (z + i)Nf(z) ∈ L} = LN , N ∈ N0.

We conclude that L is stably dense in C0(W ) if and only if⋃
N∈N0

K0,0(LN ,WN ) = ∅.

However, K0,0(LN ,WN ) = KN,N(L,W ), and hence⋃
N∈N0

K0,0(LN ,WN ) =
⋃
N∈N0

KN,N (L,W ) =
⋃

m,n∈N0

Km,n(L,W ). �

Corollary 5.7. Let L be an algebraic de Branges space, let W be a weight function
on R, and assume that L ⊆ C0(W ).

(i) If dimL <∞, then L is not stably dense in C0(W ).

(ii) If ΩW is not discrete and L is dense in C0(W ), then L is stably dense in
C0(W ).

Proof. Item (i) was shown in the first paragraph of the proof of Proposition 5.6,
and item (ii) follows from Remark 5.2 (ii). �

Another consequence of Proposition 5.6 is that stable density is inherited when
the weight is changed inside a finite interval. For details see [4].

Lemma 5.8. Let L be an algebraic de Branges space, let W1,W2 be weight func-
tions on R, and assume that L ⊆ C0(W1) ∩ C0(W2). If there exist T > 0 and
N ∈ N0 such that

W1(x)

(1 + |x|)N �W2(x), |x| > T,

and L is stably dense in C0(W1), then L is also stably dense in C0(W2).

Independently, and in parallel to our work [3], M. Sodin and P. Yuditskii pro-
posed a different approach to Theorem 5.5 based on Chebyshev alternance. It
follows ideas of their earlier work [24], [25] and the method from [8] 13. This
approach was presented in a conference talk, cf. [26], but remained unpublished
otherwise.

The Sodin–Yuditskii method yields, under the assumption of non-density, some
additional information on the constructed Krein class function.

Theorem 5.9. Let L be an infinite dimensional algebraic de Branges space, and
let W be a weight function on R. Assume that L ⊆ C0(W ) but that L is not dense
in C0(W ). Denote by mL the corresponding Hall-majorant

mL(z) := sup
{|F (z)| : F ∈ L, ‖F‖W ≤ 1

}
, z ∈ C.

13The proof given in this paper is very much adapted to the case of exponential type.
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Then there exists a function14 B ∈ K3,2(L,W ) which has infinitely many zeroes
and satisfies

(5.2) |B(z)| � (1 + |z|) ·mL(z), z ∈ Γϑ,

uniformly in each Stolz angle Γϑ := {z ∈ C : ϑ ≤ arg z ≤ π − ϑ}, ϑ ∈ (0, π/2).

The knowledge about K3,2(L,W ) expressed by existence of a function with (5.2)
is a key ingredient to our investigations, and the fact that it is unpublished left us in
a somewhat unsatisfactory situation. Thus, we decided –with the kind permission
of M. Sodin and P. Yuditskii – to make the details of their proof available in an
appendix to this paper, cf. Appendix A.

We are going to use the Sodin–Yuditskii theorem in form of the following:

Proposition 5.10. Let λ be a growth function and c ∈ [0,∞], let μ ∈ M, and
let W be a weight function on R. Assume that W ∈ L2(μ). If H ∈ C[μ] with

H 
= L2(μ), H ⊆ G(λ, c), dim
(H ∩C0(W )

)
= ∞,

then

K3,2

(H ∩C0(W ),W
) ∩ G(λ, c) 
= ∅.

Proof. The assumptions of Theorem 5.9 are satisfied with L := H ∩ C0(W ): L
clearly is an algebraic de Branges space, by assumption dimL = ∞, and L is not
dense in C0(W ) by Corollary 4.11. Thus we find a function B ∈ K3,2(L,W ) which
is bounded by the Hall-majorant mL in the sense of (5.2).

We have C0(W ) ⊆ L2(μ) and the corresponding inclusion map is bounded.
Since, for each z ∈ C, the point evaluation functional satisfies

〈H ∩ C0(W ), ‖.‖W 〉 ⊆ ��

f 	→f(z)
����

���
���

���
���

�
〈H, ‖.‖μ〉

f 	→f(z)

��
C

we have

mL(z) � sup
{|F (z)| : F ∈ H, ‖F‖μ ≤ 1

}
=: ∇〈H,‖.‖μ〉(z), z ∈ C.

However, since H ⊆ G(λ, c), it holds that

lim sup
|z|→∞

log∇〈H,‖.‖μ〉(z)
λ(|z|) <∞ and lim sup

x→±∞

log∇〈H,‖.‖μ〉(x)
λ(|x|) ≤ c,

see, e.g., Lemma 5.2 in [31]. This shows that B ∈ G(λ, c). �

14We believe, but do not know, that one can obtain a similar result for K0,0(L,W ).
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6. Various preliminaries

6.1. Growth functions

In this short subsection we list some elementary properties of growth functions
which are frequently used later on. Let λ be a growth function.

• The limit relation

lim
r→∞

λ(Cr)

λ(r)
= Cρλ

holds uniformly in C on compact subsets of (0,∞), cf. I.12. Lemma 5 in [17] or
Theorem 1.18 in [15]. In particular,

(6.1) xn, yn > 0, lim
n→∞

xn
yn

= 1 ⇒ lim
n→∞

λ(xn)

λ(yn)
= 1

• Let σ > 0. Then, for all sufficiently large r, the function λ(r)/rσ is increasing
to ∞ if σ < ρλ and decreasing to 0 if σ > ρλ. This follows from the relation[λ(r)

rσ

]′
=
λ(r)

rσ+1

(
− σ +

rλ′(r)
λ(r)

)
and the fact that limr→∞ rλ′(r)/λ(r) = ρλ by (gf3) from Definition 2.10.

6.2. Functions with (P1),(P2)

To start with, let us observe the following simple fact.

Lemma 6.1. Let λ : [0,∞) → R be subject to (P1) and (P2). Then for every
C > 0 there exists r0 > 0 such that

λ(r) ≥ − log r + C, r ≥ r0.

In particular, limr→∞ 1
r e

−λ(r) = 0.

Proof. This is trivial when λ is positive. If λ is negative, hence decreasing, it follows
by integrating the inequality |λ′(r) e−λ(r)| ≤ ε, which holds for arbitrary ε > 0
when r is sufficiently large. �

With a function λ we associate a sequence of real points and intervals.

Definition 6.2. Let λ : [0,∞) → R be subject to (P1) and (P2), set

a(r) := r + e−λ(r), r ∈ [0,∞),

and let a[n] be the n-times iterate of a. Define points xn and intervals In,c as

(6.2)
xn := a[n](0), n ∈ N, xn := 0, n ∈ Z, n ≤ 0,

In,c :=
(
xn − ce−λ(xn), xn + ce−λ(xn)

) ∩ [0,∞), n ∈ Z, c ≥ 1.
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Since λ is continuous, passing to the limit in the recursive definition of xn yields
that limn→∞ xn = ∞. However, the sequence (xn)n∈N cannot grow too fast: from
Lemma 6.1 we obtain that

(6.3) lim
n→∞

xn+1

xn
= 1.

Remark 6.3. The interval In,1 contains [xn, xn+1). Hence, for each m,m′ ∈ N0,
m ≤ m′, the family {In,1 : m ≤ n ≤ m′} covers the interval [xm− e−λ(xm), xm′+1).
In other words, we have 15

m′∑
n=m

�In,1 ≥ �(xm−e−λ(xm),xm′+1)
≥ �[xm,xm′+1)

.

In the next lemma we collect some still elementary but slightly more involved
facts.

Lemma 6.4. Let λ : [0,∞) → R be subject to (P1) and (P2). Then the following
statements hold.

(i) ∀ c ≥ 1 ∃ k+(c), k−(c) ∈ N : In,c ⊆
(
xn−k−(c), xn+k+(c)

)
, n ∈ N0.

(ii) ∀ c ≥ 1 : γ(λ, c) := sup
n∈N0

max{e−λ(t) : t ∈ [xn−k−(c), xn+k+(c)]}
min{e−λ(t) : t ∈ [xn−k−(c), xn+k+(c)]}

<∞.

(iii) Set c′ := γ(λ, c)(c+ k+(c) + k−(c)). Then

∀c ≥ 1, n ∈ N0, x ∈ [xn−k−(c), xn+k+(c)] : In,c ⊆
[
x− c′e−λ(x), x+ c′e−λ(x)

]
.

The proof can be found in the extended preprint [4].
For later reference, let us explicitly state some consequences of the properties

listed in Lemma 6.4.

Corollary 6.5. Let λ : [0,∞) → R be subject to (P1) and (P2).

(i)

∞∑
n=0

�In,c ≤ k+(c) + k−(c) =: d(λ, c).

(ii) For every growth function σ we have limn→∞
σ(xn+k+(c))

σ(xn−k−(c))
= 1.

(iii)

∫ xn+e
−λ(xn)

xn

eλ(t) dt ≥ min{eλ(t) : t ∈ [xn, xn + e−λ(xn)]
}
e−λ(xn) ≥ 1

γ(λ, 1)
.

Proof. Item (i) follows from Lemma 6.4 (i), since any given point x can be contained
in at most k+(c) + k−(c) intervals of the form (xn−k−(c), xn+k+(c)). For (ii) it is
enough to remember (6.1) and (6.3). Item (iii) is immediate from Lemma 6.4 (ii).

�

15We denote by �Y the characteristic function of the set Y .
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6.3. Stable density vs. infinite index of determinacy

In this subsection we discuss stable density in L2-spaces. This is done by reducing
to the C0(W )-situation with help of our Bakan-type theorem.

First, we show the analogue of Corollary 5.7.

Lemma 6.6. Let L be an algebraic de Branges space, let μ ∈ M+(R), μ 
= 0, and
assume that L ⊆ L2(μ).

(i) If dimL <∞, then L is not stably dense in L2(μ).

(ii) If μ is not discrete and L is dense in L2(μ), then L is stably dense in L2(μ).

Proof. Item (i) is again clear by linear independence of {F (z), . . . , znF (z)} for F
not identically zero. To show (ii) apply Theorem 4.12 to obtain a weight W , such
that W ∈ L2(μ) and that L ∩ C0(W ) is dense in C0(W ). Since μ is not discrete,
also ΩW cannot be discrete. By Corollary 5.7 (ii), the space L ∩ C0(W ) is stably
dense in C0(W ). Now Corollary 4.11 applies and yields that even L ∩ C0(W ) is
stably dense in L2(μ). �

The following connection is known for the space of polynomials from [5] and
for the space E(a) of Fourier transforms of fast decaying functions from [8], Ap-
pendix B.

Proposition 6.7. Let L be an algebraic de Branges space, let μ ∈ M+(R), μ 
= 0,
and assume that L ⊆ L2(μ). Then the following are equivalent.

(i) L is stably dense in L2(μ).

(ii) For every compactly supported measure ν ∈ M+(R), the space L is stably
dense in L2(μ+ ν).

(iii) For every finitely supported measure ν ∈ M+(R), the space L is dense in
L2(μ+ ν).

Proof. Obviously (ii) implies the other two properties. We are going to show
“(i) ⇒ (ii)” and “(iii) ⇒ (i)”.

Assume L is stably dense in L2(μ) and let a compactly supported measure ν
be given. By Theorem 4.12 we can choose a weight W ∈ L2(μ), such that L is
stably dense in C0(W ). Choose T > 0 such that supp ν ⊆ (−T, T ), and choose a
weight function W̃ which is finite and continuous in [−T, T ] and coincides with W
outside of this interval. By Lemma 5.8, L is stably dense in C0(W̃ ). However,
W̃ ∈ L2(μ+ ν) and Corollary 4.11 yields that L is stably dense in L2(μ+ ν).

Now assume that (iii) holds. Then, in particular, L is dense in L2(μ). If μ is not
discrete, L is stably dense by Lemma 6.6 (ii). Hence, assume that μ is discrete. Let
N ∈ N, choose N different points x1, . . . , xN ∈ R \ suppμ, and let ν be the finitely
supported measure having unit point mass at each of the points xi, i = 1, . . . , N .
For f ∈ L2((1 + |x|)2Ndμ), the function g(x) := f(x)

∏N
i=1(x − xi) belongs to

L2(μ + ν). Hence, we find functions Gn ∈ L, n ∈ N, with limn→∞Gn = g in
L2(μ+ ν). In particular, it holds that limn→∞Gn(xi) = 0, i = 1, . . . , N .
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We have dimL2(μ+ν) ≥ N+1, and hence LN−1 
= {0}. Thus we find functions
Hi ∈ L, i = 1, . . . , N , with Hi(xj) = δij , i, j = 1, . . . , N . The functions

G̃n(z) := Gn(z)−
N∑
i=1

Gn(xi)Hi(z)

belong to L, vanish at the points x1, . . . , xN , and converge to g in L2(μ). The
functions

Fn(z) :=
[ N∏
i=1

(z − xi)
]−1

G̃n(z)

belong to LN [L2(μ)], and

lim
n→∞

∫
R

∣∣Fn(x) − f(x)
∣∣ · ∣∣∣ N∏

i=1

(x− xi)
∣∣∣ dμ = lim

n→∞

∫
R

∣∣G̃n(x) − g(x)
∣∣ dμ = 0.

Since xi 
∈ suppμ, this implies that limn→∞ Fn = f in L2((1 + |x|)2Ndμ). �

Proposition 6.7 immediately gives the following.

Corollary 6.8. Let μ ∈ M. Then μ has infinite index of determinacy, if and only
if
⋃

H∈C[μ]H is stably dense in L2(μ).

Next, we show a result which is needed in the later proofs but is also of indepen-
dent interest. It deals with density of the domain of the multiplication operator.

Definition 6.9. Let L be an algebraic de Branges space. Then we denote

D(L) := {F ∈ L : zF (z) ∈ L}.
Note that D(L) is again an algebraic de Branges space provided that dimL > 1

(to ensure D(L) 
= {0}).
Proposition 6.10. Let μ ∈ M and assume that C[μ] has no maximal element.
Let L be an algebraic de Branges space with L ⊆ L2(μ) and such that there exists
a function in L \ {0} which is of bounded type in C+ and C−. Then L is dense in
L2(μ) if and only if D(L) is dense in L2(μ).

Proof. Starting from μ we define two measures μ′ and μ′′:
• μ not discrete: choose a < b such that �R\[a,b]μ is still not discrete, and set

μ′ := �R\[a,b]μ, μ′′ := μ+ δ,

where δ denotes the unit point mass at 1
2 (a+ b).

• μ discrete: choose a < b with μ([a, b]) = 0, and set

μ′ := μ, μ′′ := μ+ δ.

Now we consider a space L as in the statement of the proposition and show
that

(6.4) L dense in L2(μ) ⇔ L dense in L2(μ′) ⇔ L dense in L2(μ′′)
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Since μ ≥ μ′ and μ′′ ≥ μ′ the implications “⇒” on the left and “⇐” on the
right are clear.

Assume first that μ is not discrete. Then also μ′ and μ′′ are not discrete and
hence all three measures have infinite index of determinacy. By Theorem 6.7 in [31]
we have C[μ] = C[μ′] = C[μ′′]. If L is not dense in L2(μ), then ClosL2(μ) L ∈ C[μ] =
C[μ′]. By assumption C[μ] has no maximal element. Thus L is not dense in L2(μ′).
If L is not dense in L2(μ′′) we argue in the same way. Second, consider the case
that μ is discrete. Again, L being dense in L2(μ′′) implies that L is dense in L2(μ),
since μ ≤ μ′′. Since C[μ] has no maximal element, Theorem 4.10 in [31] leaves us
with two cases:

(i) C[μ′′] = C[μ]∪̇{H0} with
⋃

H∈C[μ] H dense in H0;

(ii) C[μ′′] = C[μ].
If L is not dense in L2(μ′′), we have H := ClosL2(μ′′) L ∈ C[μ′′] and is not equal to
L2(μ′′). Apparently, therefore, H ∈ C[μ]. It follows that L is not dense in L2(μ).
This finishes the proof of (6.4).

Let L be a space as in the statement of the proposition, and assume that L is
dense in L2(μ) but D(L) is not. Denote H := ClosL2(μ) D(L). Since C[μ] has no

maximal element, we can choose H̃ ∈ C[μ] with dim H̃/H ≥ 2. Then D(H̃) � H,

since dim H̃/ClosH̃ D(H̃) ≤ 1. Choose F ∈ D(H̃)\H, and set x0 := 1
2 (a+b). Then

(z−x0)F (z) ∈ H̃ ⊆ L2(μ′′), and we find a sequence Ln ∈ L with Ln → (z−x0)F (z)
in L2(μ′′). In particular, Ln(x0) → 0, whence we may assume from the start that
Ln(x0) = 0, n ∈ N. Then

Gn(z) :=
Ln(z)

z − x0
∈ D(L) ⊆ H

and Gn → F in L2(μ′). This implies that F ∈ H: if μ is not discrete, H ∈ C[μ] =
C[μ′], and if μ is discrete, μ′ = μ. We reached a contradiction. �

Part II: Proof of the fast growth theorem and

its consequences

The proof of Theorem 3.1 occupies the first three sections of this part.

• We show that growth restrictions imply integrability properties (this is needed
to establish L̃ ⊆ L2(μ)).

• A smoothening operation with weight functions and some estimates for canon-
ical products (technical but essential).

• Carrying out the proof by passing to C0-spaces by virtue of Bakan’s theo-
rem and appealing to de Branges’ theorem (one important point is to have
stability of Krein classes when passing to smoothened weights).

The fourth and last section of this part contains the proofs of the other results
stated in Section 3.
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7. An inclusion result

In this section we show that square-integrability can be deduced from growth
properties.

Theorem 7.1 (Inclusion theorem). Let λ be a growth function and c ∈ [0,∞). Let
μ, μ̃ ∈ M, and assume that μ � μ̃ w.r.t. (λ1, λ2). Assume that there exists b > c
such that

(7.1)

∫ ∞

−∞
e2bλ(|x|) · e−λ1(|x|) dμ̃(x) <∞,

∫ ∞

0

e2bλ(r) · eλ1(r)−λ2(r) dr <∞.

Then G(λ, c) ∩ L2(μ̃) ⊆ L2(μ).

The following statement contains the core estimate. We formulate it in a very
explicit way that allows to keep track of various constants appearing in the esti-
mate.

Lemma 7.2. Let μ, μ̃ ∈ M, assume that μ � μ̃ w.r.t. (λ1, λ2), and let c0, c1, c2
be constants such that (2.3) holds. Let λ be a growth function, β1, β2 ∈ R, and
assume that

(7.2) C1 :=

∫ ∞

0

eβ1λ(x)e−λ1(x)dμ̃(x) <∞, C2 :=

∫ ∞

0

eβ2λ(r)eλ1(r)−λ2(r)dr <∞.

Let R ≥ 0 and ε > 0, and set (points xn, intervals In,c1 , and constants k±(c1),
constructed from λ1 as in Definition 6.2 and Lemma 6.4 (i))

n0 := min
{
n ∈ N0 : xn−k−(c1) ≥ R and

λ(xm+k+(c1))

λ(xm−k−(c1))
≤ 1 + ε,m ≥ n

}
,

R0 := inf
⋃
n≥n0

In,1, R1 := inf
⋃
n≥n0

In,c1 .

Let f ∈ C1([0,∞)) with

(7.3) h := sup
x≥R

log |f(x)|
λ(x)

<∞, h′ := sup
x≥R

log |f ′(x)|
λ(x)

<∞,

and 16

(7.4) β1 ≥ h(1 + ε)sgnh + h′(1 + ε)sgnh
′
, β2 ≥ 2h(1 + ε)sgnh.

Then (numbers γ(λ1, c1) and d(λ1, c1) as in Lemma 6.4 (ii), and Corollary 6.5 (i),
respectively)∫ ∞

R0

|f(t)|2 dμ(t) ≤ c0 d(λ1, c1)

∫ ∞

R1

|f(t)|2 dμ̃(t)

+ 2c0(c1 + 1) γ(λ1, c1) d(λ1, c1)C1 + c2 γ(λ1, 1)C2.

16For convenience, we set sgn 0 := +1.
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Proof. Step 1. The basic estimate. Using the estimate from below in Remark 6.3
and the mean value theorem of integration, we get with an appropriate choice of
ηn ∈ In,1,

∫ ∞

R0

|f |2 dμ ≤
∫ ∞

R0

∞∑
n=n0

�In,1 · |f |2 dμ =

∞∑
n=n0

∫
In,1

|f |2 dμ =

∞∑
n=n0

|f(ηn)|2μ
(
In,1
)

≤ c0

∞∑
n=n0

|f(ηn)|2μ̃
(
In,c1
)
+ c2

∞∑
n=n0

|f(ηn)|2e−λ2(xn).(7.5)

The first of these sums can be related to the L2(μ̃)-norm of f . Namely, using
the estimate from above in Corollary 6.5 (i), we get, with an appropriate choice
of ξn ∈ In,c1 ,

(7.6)

∫ ∞

R1

|f |2 dμ̃ ≥ 1

d(λ1, c1)

∞∑
n=n0

∫
In,c1

|f |2 dμ̃ =
1

d(λ1, c1)

∞∑
n=n0

|f(ξn)|2μ̃
(
In,c1
)
.

Continuity of f ′ provides us with ζn ∈ In,c1 such that maxt∈In,c1
|f ′(t)| = |f ′(ζn)|,

and we can estimate

∣∣|f(ηn)|2 − |f(ξn)|2
∣∣ = ∣∣|f(ηn)| − |f(ξn)|

∣∣ · (|f(ηn)|+ |f(ξn)|
)

≤ ∣∣f(ηn)− f(ξn)
∣∣ · (|f(ηn)|+ |f(ξn)|

)
≤ max

t∈In,c1

|f ′(t)| · |ηn − ξn| ·
(|f(ηn)|+ |f(ξn)|

)
≤ |f ′(ζn)| · (c1 + 1) e−λ1(xn) · (|f(ηn)|+ |f(ξn)|

)
.(7.7)

Putting together (7.5), (7.6), and (7.7), we obtain

∫ ∞

R0

|f |2 dμ ≤ c0 d(λ1, c1)

∫ ∞

R1

|f |2 dμ̃

+ c0(c1 + 1)
∞∑

n=n0

|f ′(ζn)|
(|f(ηn)|+ |f(ξn)|

) · e−λ1(xn)μ̃(In,c1)(7.8)

+ c2

∞∑
n=n0

|f(ηn)|2 · e−λ2(xn).(7.9)

Step 2. A bound for (7.8). We consider the summands |f ′(ζn)|·|f(ηn)|·e−λ1(xn)

·μ̃(In,c1) in (7.8). Note that

h = sup
x≥R

log+ |f(x)|
λ(x)

if h ≥ 0, h′ = sup
x≥R

log+ |f ′(x)|
λ(x)

if h′ ≥ 0.
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We obtain

|f ′(ζn)|

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

≤ exp
[ log+ |f ′(ζn)|

λ(ζn)︸ ︷︷ ︸
0≤ ↓≤h′

· λ(ζn)

λ(xn−k−(c1))︸ ︷︷ ︸
≤1+ε

·λ(xn−k−(c1))
]
, h′ ≥ 0,

= exp
[ log |f ′(ζn)|

λ(ζn)︸ ︷︷ ︸
≤h′<0

· λ(ζn)

λ(xn+k+(c1))︸ ︷︷ ︸
≥(1+ε)−1

·λ(xn+k+(c1))
]

, h′ < 0,

|f(ηn)|

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

≤ exp
[ log+ |f(ηn)|

λ(ηn)︸ ︷︷ ︸
0≤ ↓≤h

· λ(ηn)

λ(xn−k−(c1))︸ ︷︷ ︸
≤1+ε

·λ(xn−k−(c1))
]
, h ≥ 0,

= exp
[ log |f(ηn)|

λ(ηn)︸ ︷︷ ︸
≤h<0

· λ(ηn)

λ(xn+k+(c1))︸ ︷︷ ︸
≥(1+ε)−1

·λ(xn+k+(c1))
]

, h < 0,

e−λ1(xn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−λ1(xn)

e−λ1(xn+k+(c1))︸ ︷︷ ︸
≤γ(λ1,c1)

·e−λ1(xn+k+(c1)) , λ1 nondecreasing,

e−λ1(xn)

e−λ1(xn−k−(c1))︸ ︷︷ ︸
≤γ(λ1,c1)

·e−λ1(xn−k−(c1)) , λ1 nonincreasing.

Together, using that λ is increasing,

|f ′(ζn)| · |f(ηn)| · e−λ1(xn)μ̃
(
In,c1
)

≤ γ(λ1, c1)

∫
In,c1

exp
[(
h′(1 + ε)sgnh

′
+ h(1 + ε)sgnh

)
λ(x)
] · e−λ1(x) dμ̃(x).

The summands |f ′(ζn)| · |f(ξn)| ·e−λ1(xn)μ̃(In,c1) in (7.8) are estimated in the same
way. Summing over n and using the bound Corollary 6.5 (i) yields

(7.8) ≤ 2c0(c1 + 1) γ(λ1, c1) d(λ1, c1)

·
∫ ∞

R1

exp
[(
h′(1 + ε)sgn h

′
+ h(1 + ε)sgnh

)
λ(x)
] · e−λ1(x) dμ̃(x)

≤ 2c0(c1 + 1) γ(λ1, c1) d(λ1, c1) ·
∫ ∞

0

eβ1λ(x) · e−λ1(x) dμ̃(x).
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Step 3. A bound for (7.9). Since λ2 is nondecreasing, we can estimate

|f(ηn)|

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

≤ exp
[ log+ |f(ηn)|

λ(ηn)︸ ︷︷ ︸
0≤ ↓≤h

· λ(ηn)

λ(xn−1)︸ ︷︷ ︸
≤1+ε

·λ(xn−1)
]
, h ≥ 0,

= exp
[ log |f(ηn)|

λ(ηn)︸ ︷︷ ︸
≤h<0

· λ(ηn)

λ(xn)︸ ︷︷ ︸
≥(1+ε)−1

·λ(xn)
]

, h < 0.

Using Corollary 6.5 (iii), and that λ is increasing, we obtain

|f(ηn)|2e−λ2(xn) ≤ γ(λ1, 1)

∫ xn

xn−1

exp
[
2h(1 + ε)sgn hλ(r)

] · e−λ2(r)+λ1(r) dr.

Summing over n yields

(7.9) ≤ c2 γ(λ1, 1) ·
∫ ∞

xn0−1

exp
[
2h(1 + ε)sgn hλ(r)

] · e−λ2(r)+λ1(r) dr

≤ c2 γ(λ1, 1) ·
∫ ∞

0

eβ2λ(r) · eλ1(r)−λ2(r) dr. �

Using Lemma 7.2, it is not difficult to deduce Theorem 7.1.

Proof of Theorem 7.1. Let F ∈ G(λ, c) be given, then also F ′ ∈ G(λ, c). 17 Set

a := max
{
lim sup
x→∞

log |F (x)|
λ(x)

, lim sup
x→∞

log |F ′(x)|
λ(x)

}
,

then a ≤ c. By the assumption (7.1), the integrals (7.2) are finite for β1 = β2 := 2b.
Since b > a, we can choose R ≥ 0 sufficiently large and ε > 0 sufficiently small,
such that the relations (7.4) hold.

Now assume that F |R ∈ L2(μ̃). Then Lemma 7.2 implies that for some R0 > 0
the integral

∫∞
R0

|F (t)|2 dμ(t) is finite. Using the same argument with the function

F (−z), we obtain that, for some R′
0 > 0,

∫∞
R′

0
|F (t)|2 dμ(t) < ∞. Since F is

continuous, the integral over the interval [−R′
0, R0] is certainly finite, and together

thus F ∈ L2(μ). �

Combining the inclusion theorem with Theorem 3.5 in [31], we obtain an
ordering-type theorem for certain beginning sections of chains defined by imposing
growth restrictions. This result also shows what might happen when we drop the
condition [2Chain] in the coincidence theorem.

17This is a classical fact. For growth functions λ with ρλ > 0, it is well-known and can be
deduced from results in standard textbooks, e.g., from Ch. 1, Theorems 27, 28 in [17]. The case
that ρλ = 0 is probably less widely known. It follows using that the indicator function w.r.t. λ
actually is constant. This result goes back to [13]. A more recent reference, which contains a
nice proof due to W. Hayman, is Appendix in [6].
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Proposition 7.3 (Section ordering). Let μ, μ̃ ∈ M, let λ be a growth function,
and let c ∈ [0,∞). Assume that μ � μ̃ w.r.t. (λ1, λ2) and μ̃ � μ w.r.t. (λ̃1, λ̃2),
where the condition [2A] from the coincidence theorem holds. Then

(7.10)
{H ∈ C[μ] : H ⊆ G(λ, c)}

〈 ⊆
or

⊇

〉 {H ∈ C[μ̃] : H ⊆ G(λ, c)}
Proof. Since μ̃ � μ and μ � μ̃, we get from Theorem 7.1 that

H ∈ C[μ],H ⊆ G(λ, c) ⇒ H ⊆ L2(μ̃), H ∈ C[μ̃],H ⊆ G(λ, c) ⇒ H ⊆ L2(μ)

However, we know from Theorem 3.5 (1) in [31] that

{H ∈ C[μ] : H ⊆ L2(μ̃)
} 〈 ⊆

or

⊇

〉 {H ∈ C[μ̃] : H ⊆ L2(μ)
}

Depending on which of “⊆” and “⊇” holds in this relation, in (7.10) the same
inclusion takes place. �

Observe that, in the situation of the coincidence theorem, the conclusion of
Proposition 7.3 is much weaker than the conclusion of Theorem 3.3.

8. Preparation

8.1. A construction of weight functions

We study the following construction carried out with weight functions.

Definition 8.1. Let σ1, σ2 : [0,∞) → R be continuous functions and let γ > 0.
Then we define, for each weight function W on R,

(8.1) S[W ](x) := min
{
inf{W (t) : |t− x| ≤ γ e−σ1(|x|)}, eσ2(|x|)}, x ∈ R.

We suppress explicit notation of the parameters S on σ1, σ2, γ.

Lemma 8.2. The function S[W ] defined by (8.1) is an everywhere finite weight
function.

Proof. The infimum in the first argument of the minimum (8.1) is attained sinceW
is lower semicontinuous. In particular, it is positive for all x ∈ R. The function W
being lower semicontinuous, the infimum in the first argument of (8.1) being taken
over a closed interval, and the function σ1 being continuous, implies that this
first argument is a lower semicontinuous function of x. The term in the second
argument is continuous, positive and finite. �

Remark 8.3. For later reference, let us state the following obvious properties.

(i) We have S[W ](x) ≤W (x), x ∈ R. In particular, thus

C0(S[W ]) ⊆ C0(W ), ‖f‖S[W ] ≥ ‖f‖W , f ∈ C0(S[W ]).
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(ii) Assume that σ1 ≤ σ′
1, σ2 ≤ σ′

2, γ ≥ γ′, and let S and S ′ be the corresponding
operators defined as in (8.1). Then, for every weight W , we have S[W ](x) ≤
S ′[W ](x), x ∈ R. In particular, thus

C0(S[W ]) ⊆ C0(S ′[W ]), ‖f‖S[W ] ≥ ‖f‖S′[W ], f ∈ C0(S[W ]).

In the next two results, we exhibit a dichotomic situation. When σ1 and σ2
grow sufficiently fast, passing from W to S[W ] is compatible with growth classes
(Lemma 8.4), and when σ1 and σ2 grow sufficiently slowly, passing fromW to S[W ]
is compatible with an integrability property w.r.t. pairs of majorised measures
(Lemma 8.5).

Lemma 8.4. Let σ1, σ2 : [0,∞) → R be continuous functions and let γ > 0. Let λ
be a growth function and let c ∈ [0,∞). Let W be a weight function on R, and let
ω : R → (0,∞) be a function with ω(x) ≤ W (x), x ∈ R. Assume that σ1, σ2, ω, γ
satisfy18

∃ r1 > 0 : σ1(|x|) + logω(x) > 0, σ2(|x|) > 0 for |x| ≥ r1,(8.2)

lim
r→∞

1

r
e−σ1(r) = 0,(8.3)

ω(t)

ω(x)
� 1, x, t ∈ R, |t− x| ≤ γ e−σ1(|x|),(8.4)

lim sup
r→∞

λ(r)

σ2(r)
<

1

c
,(8.5)

lim sup
|x|→∞

λ(|x|)
σ1(|x|) + logω(x)

<
1

c
.(8.6)

Then
C0

(S[W ]
) ∩ G(λ, c) = C0(W ) ∩ G(λ, c).

Proof. By Remark 8.3 (i), it is enough to show the inclusion C0(W ) ∩ G(λ, c) ⊆
C0(S[W ]). Let f ∈ C0(W ) ∩ G(λ, c) be given. We need to estimate the quotients
of f by each of the two arguments in the minimum (8.1). In the following denote

h0 := lim sup
x→∞

log |f(x)|
λ(x)

, h′0 := lim sup
x→∞

log |f ′(x)|
λ(x)

.

The quotient of f by the second argument is easy to treat. For each ε > 0 we have
for all sufficiently large points x > 0 that∣∣∣ f(x)

eσ2(x)

∣∣∣ ≤ exp
[(
h0 + ε

)
λ(x) − σ2(x)

]
= exp

[
σ2(x)
(
(h0 + ε)

λ(x)

σ2(x)
− 1
)]
.

Our assumption (8.5) ensures that for sufficiently small values of ε > 0

lim
r→∞σ2(r) = +∞, lim sup

r→∞

(
(h0 + ε)

λ(r)

σ2(r)
− 1
)
< 0.

18In (8.5) and (8.6) we understand 1/0 := ∞.
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Thus limx→+∞
∣∣f(x)/eσ2(x)

∣∣ = 0. The limit along the negative real axis is evalu-
ated in the same way.

We turn to the quotient of f by the first argument in (8.1). For each x > 0
choose a point ξx ∈ [x− γ e−σ1(x), x+ γ e−σ1(x)] such that

W (ξx) = inf
{
W (t) : |t− x| ≤ γ e−σ1(x)

}
.

For an appropriate point ηx on the line segment co{x, ξx} connecting x with ξx we
have

(8.7)
∣∣∣ f(x)
W (ξx)

∣∣∣ ≤ ∣∣∣ f(ξx)
W (ξx)

∣∣∣+ |ξx − x| · |f ′(ηx)|
W (ξx)

.

If x tends to +∞, also ξx and ηx tend to +∞ by (8.3). Since f ∈ C0(W ), this
yields that

lim
x→∞

∣∣∣ f(ξx)
W (ξx)

∣∣∣ = 0.

For each ε > 0 we have for all sufficiently large points x > 0 that

|ξx − x| · |f ′(ηx)|
W (ξx)

≤ γ e−σ1(x) · e(h′
0+ε)λ(ηx) · 1

ω(ξx)

(6.1),(8.3),(8.4)

� exp
[
(h′0 + ε)(1 + ε)λ(x) − σ1(x)− logω(x)

]
.

Our assumption (8.6) ensures that for sufficiently small values of ε > 0

lim
|x|→∞

[
σ1(|x|) + logω(|x|)] = +∞,

lim sup
|x|→∞

(
(h′0 + ε)(1 + ε)

λ(|x|)
σ1(|x|) + logω(|x|) − 1

)
< 0.

Hence also the second summand on the right side of (8.7) tends to 0 when x
approaches +∞. The limit along the negative real axis is evaluated in the same
way. �

Lemma 8.5. Let μ, μ̃ ∈ M, assume that μ � μ̃ w.r.t. (λ1, λ2), and let c0, c1, c2
be constants such that (2.3) holds. Let σ1, σ2 : [0,∞) → R be continuous functions
and let γ > 0. Assume that σ2 is positive and nondecreasing, and that σ1, σ2, γ
satisfy (constants γ(λ1, c1) and k±(c1) as in Lemma 6.4)

σ1 ≤ λ1, γ ≥ γ(λ1, c1)(c1 + k+(c1) + k−(c1)),(8.8)

lim
t/s→1, t,s>0

σ2(t)

σ2(s)
= 1,(8.9) ∫ ∞

0

eβσ2(r) · eλ1(r)−λ2(r) dr <∞ for some β > 2.(8.10)

Then, for each weight function W ,

W ∈ L2(μ̃) ⇒ S[W ] ∈ L2(μ).
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Proof. Let points xn and intervals In,c be defined as in Definition 6.2 using the
function λ1. Then we have the estimate∫ ∞

0

S[W ](x)2 dμ(x) =

∞∑
n=0

∫ xn+1

xn

S[W ](x)2dμ(x) ≤
∞∑
n=0

[
sup

x∈[xn,xn+1)

S[W ](x)
]2
μ(In,1)

≤ c0

∞∑
n=0

[
sup

x∈[xn,xn+1)

(
inf{W (t) : |t− x| ≤ γ e−σ1(x)})]2μ̃(In,c1)(8.11)

+ c2

∞∑
n=1

[
sup

x∈[xn,xn+1)

eσ2(x)
]2
e−λ2(xn).(8.12)

Our aim is to show that each of the sums in (8.11) and (8.12) is finite.
Using Lemma 6.4 (iii) and our present assumption (8.8), we obtain that

In,c1 ⊆ [x− γ e−σ1(x), x+ γ e−σ1(x)], x ∈ [xn, xn+1),

and hence

sup
x∈[xn,xn+1)

(
inf{W (t) : |t− x| ≤ γ e−σ1(x)})
≤ sup

x∈[xn,xn−1)

(
inf{W (t) : t ∈ In,c1}

)
= inf{W (t) : t ∈ In,c1}.

In turn, it follows that (with the constant d(λ1, c1) as in Corollary 6.5 (i))

(8.11) ≤ c0

∞∑
n=0

[
inf

t∈In,c1

W (t)
]2
μ̃(In,c1) ≤ c0

∞∑
n=0

∫
In,c1

W (x)2 dμ̃(x)

≤ c0

∫
R

∞∑
n=0

�In,c1
(x)W (x)2 dμ̃(x) ≤ c0 d(λ1, c1)

∫
R

W (x)2 dμ̃(x) <∞.

Since limn→∞
xn+1

xn−1
= 1, our assumption (8.9) implies limn→∞

σ2(xn+1)
σ2(xn−1)

= 1. Using

that σ2 is nondecreasing, we find for each ε > 0 a number n0 ∈ N such that

sup
x∈[xn−1,xn+1)

σ2(x) ≤ (1 + ε) · inf
x∈[xn−1,xn+1)

σ2(x), n ≥ n0.

Using Corollary 6.5 (iii), we see that for each n ≥ n0,[
sup

x∈[xn−1,xn+1)

eσ2(x)
]2

· e−λ2(xn)

≤
[

sup
x∈[xn−1,xn+1)

eσ2(x)
]2

· γ(λ1, 1)
∫ xn

xn−1

eλ1(t)dt · e−λ2(xn)

≤ γ(λ1, 1)

∫ xn

xn−1

e2(1+ε)σ2(t) · eλ1(t) · e−λ2(t)dt

Making a sufficiently small choice for ε > 0 and using (8.10), it follows that

(8.12) ≤ c2 γ(λ1, 1)

∫ ∞

0

e2(1+ε)σ2(t) · eλ1(t)−λ2(t) dt <∞.

Finiteness of the integral
∫ 0
−∞W (x)2 dμ(x) is shown in the same way. �
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8.2. Shifting of zeroes in canonical products

Let �α := (αn)n∈N be a sequence of real numbers with the following proper-
ties:

(S1) The sequence �α consists of pairwise distinct non-zero points and has no
finite accumulation point.

(S2) Denote by �α+ and �α− the subsequences of �α consisting of all positive
or negative, respectively, elements of ξ arranged according to increasing
modulus 19. Then the following limits exist in [0,∞) and are equal: 20

β := lim
n→∞

n

�α+
n

= lim
n→∞

n

|�α−
n | .

(S3) The limit

lim
r→∞

∑
|αn|≤r

1

αn

exists in R.

Then we denote

P�α(z) := lim
r→∞

∏
|αn|≤r

(
1− z

αn

)
, z ∈ C.

The function P�α is an entire function of finite exponential type with

lim
r→∞

log |P�α(reiϑ)|
r

= πβ| sin ϑ|, ϑ ∈ (0, π) ∪ (π, 2π).

The fact that P�α(z) is of exponential type is a consequence of Lindelöf’s theo-
rem (see, e.g., �2.10.3 in [7]), and �8.3.1 in [7] yields the above formula for the
exponential indicator of P�α.

In the following pair of lemmata we provide some simple facts about what
happens off the real axis when perturbing the zeroes αn. The detailed proof can
be found in the extended preprint [4] of the article.

Lemma 8.6. Let �α := (αn)n∈N and �β := (βn)n∈N be two sequences subject to (S1).
Assume that

(8.13)

∞∑
n=1

|βn − αn|
|αn| <∞.

Then, for each ϑ ∈ (0, π/2], the product

Q(z) :=

∞∏
n=1

1− z/βn
1− z/αn

converges uniformly in the Stolz angle Γϑ = {z ∈ C : ϑ ≤ arg z ≤ π − ϑ}, and
Q(z) � 1, z ∈ Γϑ.

19Both sequences are supposed to have an empty or finite or infinite index set of the form
{n ∈ N : n < N} for some N ∈ N0 ∪ {∞}.

20Here we tacitly understand the limit of a finite or empty sequence as being equal to 0.
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Lemma 8.7. Let �α := (αn)n∈N and �β := (βn)n∈N be two sequences subject to (S1)
for which (8.13) holds. Assume moreover that �α satisfies (S2) and (S3), and that
αn > 0 if and only if βn > 0. Then also βn satisfies (S2) and (S3), and the
following statements hold.

(i) For each ϑ ∈ (0, π/2], we have

|P�β(z)| � |P�α(z)|, z ∈ Γϑ.

(ii) Let λ be a growth function. Then P�α is of finite λ-type if and only if P�β has
this property. If P�α is of finite λ-type, then

lim sup
r→∞

log |P�α(reiϑ)|
λ(r)

= lim sup
r→∞

log |P�β(reiϑ)|
λ(r)

, ϑ ∈ [0, 2π).

The next proposition plays a crucial role in the proof of Theorem 3.1. It com-
pares the values of the derivatives of canonical products P�α(z) and P�β(z) at their
respective zeroes αn and βn. Its proof is a modification of an argument due to
A. Borichev and M. Sodin [9].

Proposition 8.8. Let �α := (αn)n∈N be a sequence subject to (S1)–(S3). Assume
that P�α ∈ G(λ, c) and

|P ′
�α(αn)| ≥ (1 + |x|)−Ñ

for some Ñ ∈ N. Furthermore, let c+ > c and assume that �β := (βn)n∈N is a
sequence satisfying (S1) such that

|βn − αn| ≤ γ e−c+λ(|αn|).

Then the sequence �β satisfies (S2) and (S3), and

|P ′
�β
(βn)| � |P ′

�α(αn)|, n ∈ N.

In the proof we use an estimate for the separation of a sequence �α = (αn)n∈N.
We denote the separation by s�α, i.e.,

s�α(n) := min
{|αk − αn| : k 
= n

}
.

Lemma 8.9. Let λ be a growth function, d ∈ [0,∞), and let B ∈ G(λ, d) be a
function with B(0) = 1 and B(z) = B(z), z ∈ C. Denote by �α := (αn)n=1,2,...

the (finite or infinite) sequence of real zeroes of B, and let ω : R → (0,∞) be a
function with ω(αn) � |B′(αn)|, n = 1, 2, . . .. Then, for each d+ > d,

(8.14) s�α(n) � min
{|αn|, ω(αn) e−d+λ(|αn|)}, n = 1, 2, . . . .

Proof. If there are only finitely many real zeroes, this is of course trivial. Hence,
assume that B has infinitely many real zeroes.

For each n ∈ N choose m(n) ∈ N with s�α(n) = |αn − αm(n)|. We claim that

|B′(αn)|+ |B′(αm(n))| = |B′(αn)−B′(αm(n))|.
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If one of αn and αm(n) is a multiple zero of B, this is trivial. If both are simple,
the signs of B′(αn) and B′(αm(n)) are different, and again the claim holds.

The function B′′ is of finite λ-type and satisfies

lim sup
|x|→∞

log |B′′(x)|
λ(x)

≤ d.

Let d+ > d be given and choose d∗ ∈ (d, d+). Then we can estimate

ω(αn) � |B′(αn)| ≤ |B′(αn)|+ |B′(αm(n))| = |B′(αn)−B′(αm(n))|

=
∣∣∣ ∫ αm(n)

αn

B′′(x) dx
∣∣∣ ≤ ∣∣∣ ∫ αm(n)

αn

|B′′(x)| dx
∣∣∣

� |αn − αm(n)|︸ ︷︷ ︸
=s�α(n)

· ed∗λ(max{|αn|,|αm(n)|}), n ∈ N,

and obtain
s�α(n) � ω(αn) e

−d∗λ(max{|αn|,|αm(n)|}), n ∈ N.

Choose ε > 0 such that d∗(1 + ε) ≤ d+, and choose δ > 0 and r0 > 0 such that

λ(r(1 + δ))

λ(r)
≤ 1 + ε, r ≥ r0.

Consider the sets

M1 :=
{
n ∈ N : s�α(n) ≥ δ|αn|

}
,

M2 :=
{
n ∈ N : s�α(n) < δ|αn|, |αn|, |αm(n)| ≥ r0

}
.

The asserted inequality (8.14) trivially holds when n ranges overM1. Let n ∈M2.
Then

d∗ λ(max{|αn|, |αm(n)|}) ≤ d∗ λ(|αn|+ s�α(n)) ≤ d∗ λ
(|αn|(1 + δ)

)
≤ d∗(1 + ε)λ(|αn|) ≤ d+(|αn|).

We see that
s�α(n) � ω(αn) e

−d+λ(|αn|), n ∈M2.

Since N \ (M1 ∪M2) is finite, the assertion (8.14) follows. �

Proof of Proposition 8.8. Lemma 8.7 together with the fact that log r = o(λ(r))

imply that the sequence �β satisfies (S2) and (S3).

Step 1. Let 0 < ε < c+ − c. By Lemma 8.9, there exists A > 0 such that the
discs Dm with the centers αm and the radius Ae−(c+ε)λ(|αm|) are disjoint. Then
there exists a constant A3 > 0 such that for any m and for z ∈ ∂Dm, we have∣∣∣(1− z

βm

)(
1− z

αm

)−1

− 1
∣∣∣ = |βm − αm| · |z|

|αm − z| · |βm| ≤ A3 e
−(c+−c−ε)λ(|αm|).
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By the maximum principle, the same estimate is true for z /∈ Dm. Hence, for
n 
= m, we have∣∣∣(1− αn

βm

)(
1− αn

αm

)−1

− 1
∣∣∣ ≤ A3 e

−(c+−c−ε)λ(|αm|).

Since log r = o(λ(r)) and
∑

m α
2
m <∞, we conclude that∑

m

e−(c+−c−ε)λ(|αm|) <∞,

and so there exist constants A4, A5 > 0 such that for all n,

(8.15) A4 ≤
∏
m �=n

∣∣∣1− αn/βm
1− αn/αm

∣∣∣ ≤ A5.

We have

(8.16)

∣∣∣P ′
�β
(βn)

P ′
�α(αn)

∣∣∣ = |αn|
|βn|
∏
m �=n

∣∣∣ 1− βn/βm
1− αn/αm

∣∣∣ = ∏
m �=n

∣∣∣ 1− αn/βm
1− αn/αm

∣∣∣
+

∏
m �=n |1− βn/βm| −

∏
m �=n |1− αn/βm|∏

m �=n |1− αn/αm| .

The first term in (8.16) is both bounded and bounded away from zero by (8.15).

Step 2. To estimate the last term in (8.16), put fn(z) = P�β(z)/(1− z/βn). We

show that for any ε1 ∈ (0, c+ − c) there exists A6 > 0 such that for all n

(8.17) |f ′
n(x)| ≤ A6 exp((c+ ε1)λ(|αn|)), |x− αn| ≤ γ e−c+λ(|αn|).

By Lemma 8.8, P�β ∈ G(λ, c). Hence, for any ε1 > 0 there exists a constant A7

such that

|P�β(z)|+ |P ′
�β
(z)| ≤ A6 e

(c+ε1)λ(|z|), z ∈ C, |Im z| ≤ 1.

Then, for z such that |z − βn| = min
(
1, |βn|

λ(|βn|)
)
,

|f ′
n(z)| ≤

∣∣∣βnB̃′(z)
z − βn

∣∣∣+ ∣∣∣ βnB̃(z)

(z − βn)2

∣∣∣≤ A7 |βn|
(
2 +

λ(|βn|)
|βn| +

λ2(|βn|)
|βn|2

)
e(c+ε1)λ(|z|).

Taking a slightly larger ε1 and a larger constant we can get rid of the factor in
front of the exponent and obtain that |f ′

n(z)| ≤ A8e
(c+ε1)λ(|z|). Since

∣∣|z|− |αn|
∣∣ =

O
(|αn|/λ(αn)), we use again the fact that λ′(r) = O(r−1λ(r)) to conclude that

λ(|z|)− λ(|αn|) = O(1). By the maximum principle,

|f ′
n(z)| ≤ A6 exp((c+ ε1)λ(|αn|)), |z − βn| ≤ min

(
1,

|βn|
λ(|βn|)

)
for some constant A6 independent on n. In particular (8.17) holds.
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Step 3. To complete the estimate of the last term in (8.16), note that∣∣∣ ∏
m �=n

(1− βn/βm)−
∏
m �=n

(1− αn/βm)
∣∣∣ = |fn(βn)− fn(αn)|

≤ γ e−c+λ(|αn|) · A6 e
(c+ε1)λ(|αn|) ≤ γA6 e

−(c+−c−ε1)λ(|αn|),

where c+ ε1 < c+. Note that for the denominator we have∏
m �=n

|1− αn/αm| = |αnP ′
�α(αn)| ≥ (1 + |αn|)−Ñ+1,

Thus, the last term in (8.16) tends to zero as n→ ∞, and so |P ′
�β
(βn)| � |P ′

�α(αn)|.
�

9. Carrying out the argument

From now on we assume that we are in the situation of the fast growth theorem.
That means:

Let λ be a growth function and c ∈ [0,∞). Let μ, μ̃ ∈ M with μ̃ having infinite
index of determinacy, and assume that μ � μ̃ w.r.t. (λ1, λ2). Further assume that

[Chain] L̃ :=
⋃

H̃∈C[μ̃]
H̃ ⊆ G(λ, c) ,

and that ( ∃ c+ > c : λ1 ≥ 2c+λ
)

and λ2 = 2λ1.

Assuming equality in the conditions for λ2 is no loss in generality; remember
what we said in the paragraph after Remark 2.17.

Let us collect the given data:

Given constants and functions

• λ growth function,

• c, c+ with 0 ≤ c < c+ <∞,

• λ1(r) ≥ 2c+λ(r) and λ2 = 2λ1,

• c0, c1, c2 as in Definition 2.16 for μ � μ̃ w.r.t. (λ1, λ2),

In the subsequent arguments several functions and constants will be chosen
appropriately. Again we collect them:

Chosen constants and functions

• b with c < b < c+,

• d1, d2 with c < d2 < d1 < c+,

• Ñ ∈ N with
∫∞
−∞(1 + x2)−2Ñ dμ̃(x) <∞,

• γ(λ1, c1) and k±(c1) as in Lemma 6.4,
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• ω(x) := (1 + x2)−Ñ ,

• σ1 := λ1, σ2 := d1λ, and γ := γ(λ1, c1)
(
c1 + k+(c1) + k−(c1)

)
,

The argument proceeds in five steps.

➾ Step 1. We show that L̃ ⊆ L2(μ).

We check finiteness of the integrals in (7.1): since log r = o(λ(r)) and μ̃ has at
most power growth, we have∫ ∞

−∞
e2bλ(|x|)e−λ1(|x|) dμ̃(x) ≤

∫ ∞

−∞
exp
[
2(b− c+)︸ ︷︷ ︸

<0

λ(|x|)] dμ̃(x) <∞,

∫ ∞

0

e2bλ(r)eλ1(r)−λ2(r) dr ≤
∫ ∞

0

exp
[
2(b− c+)︸ ︷︷ ︸

<0

λ(r)
]
dr <∞.

An application of Theorem 7.1 yields

L̃ ⊆ G(λ, c) ∩ L2(μ̃) ⊆ L2(μ).

➾ Step 2. We construct weight functions W, W̃ on R such that

W̃ ∈ L2(μ̃), L̃ is stably dense in C0(W̃ ),

W ∈ L2(μ), C0(W ) ∩ G(λ, c) = C0(W̃ ) ∩ G(λ, c),(9.1)

ω(x) � min{W (x), W̃ (x)}, x ∈ R.

Note that the function logω|[0,∞) is decreasing and negative, and that ω∈L2(μ̃).

Since μ̃ has infinite index of determinacy, the space L̃ is stably dense in L2(μ̃),
cf. Proposition 6.7. Now Theorem 4.12 provides us with a weight function W̃ such
that

W̃ ∈ L2(μ̃), L̃ stably dense in C0(W̃ ), ω(x) ≤ W̃ (x), x ∈ R.

We apply the smoothening operator S from Definition 8.1 with the parameters
σ1, σ2, ω, γ: denote W := S[W̃ ].

The properties (9.1) are established by applying Lemma 8.4 and Lemma 8.5.
We need to check the required hypothesis.

We have | logω(r)| = o(σ1(r)). The conditions (8.2) and (8.3) are now obvious.
For (8.4) note that ω is rational and σ1 ≥ 0. For (8.5) observe that

λ(r)

σ2(r)
=

1

d1
<

1

c
,

and for (8.6) compute

lim sup
|x|→∞

λ(|x|)
σ1(|x|) + logω(x)

≤ lim sup
|x|→∞

λ(|x|)
2c+λ(|x|)(1 + o(1))

=
1

2c+
<

1

c
.
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Lemma 8.4 applies and yields

C0(W ) ∩ G(λ, c) = C0(W̃ ) ∩ G(λ, c).
The condition (8.8) holds by definition (even with equality), and (8.9) holds since σ2
is a growth function, cf. (6.1). For (8.10) choose β with 2 < β < 2 c

+

d1
, and compute

βσ2(r) + λ1(r) − λ2(r) ≤ (βd1 − 2c+)λ(r)

Lemma 8.5 applies and yields W ∈ L2(μ).
It remains to show that ω �W . Since ω satisfies (8.4), we have

ω(x) � inf
{
ω(t) : |t− x| ≤ γ e−σ1(|x|)} ≤ inf

{
W̃ (t) : |t− x| ≤ γ e−σ1(|x|)}, x ∈ R.

By the definitions of logω and σ2 we have lim|x|→∞(log ω(x)− σ2(x)) = −∞, and

hence ω(r) = o(eσ2(r)). Together, thus,

ω(x) �W (x), x ∈ R.

We continue using proof by contradiction: Assume from now on that

ClosL2(μ) L̃ 
= L2(μ) and ClosL2(μ) L̃ ⊆ G(λ, c).

➾ Step 3. The function B and estimates for the separation of its zeroes.

Set H := ClosL2(μ) L̃, then H belongs to the chain C[μ]. Since W̃ is everywhere

positive, dimC0(W̃ ) = ∞ and it follows that dim[L̃ ∩ C0(W̃ )] = ∞ by density.
However, L̃ ∩ C0(W̃ ) = L̃ ∩ C0(W ) ⊆ H ∩ C0(W ) since L̃ ⊆ G(λ, c). Thus also
dim
[H ∩ C0(W )

]
= ∞. Proposition 5.10 tells us that

K3,2(H ∩C0(W ),W ) ∩ G(λ, c) 
= ∅.
Since W is everywhere positive, we can use Remark 5.2 (ii) and Lemma 5.4 to add
or remove finitely many zeroes in Krein classes with weight W . Clearly, doing this
does not lead out of G(λ, c). Hence, we can choose a function

B ∈ K0,0(H ∩ C0(W ),W ) ∩ G(λ, c), B(0) = 1.

Denote the sequence of zeroes of B as �α = (αn)n∈N. Observe that B is of
Cartwright class, and hence �α satisfies (S1)–(S3) and B = P�α (see, e.g., V.4,
Theorem 11 in [17]). Moreover, note that the convergence exponent ρ�α of the
sequence �α does not exceed the order of B which, in turn, does not exceed ρλ.

Next we estimate the separation of �α from below. Convergence of the series∑∞
n=1

W (αn)
|B′(αn)| implies that

ω(αn) �W (αn) � |B′(αn)|, n ∈ N.

Now Lemma 8.9 yields

(9.2) s�α(n) � min
{|αn|, ω(αn) e−d2λ(|αn|)}.
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This is used to establish

(9.3) e−σ1(|αn|) = o(s�α(n)), n→ ∞.

We have to estimate the quotients by each argument of the minimum in (9.2).
Since σ1 satisfies (P1) and (P2), it holds that e−σ1(|αn|) = o(|αn|). Next, we have

e−σ1(x) · e
d2λ(|x|)

ω(x)
≤ (1 + x2)−Ñ exp

[
(d2 − 2c+)λ(|x|)]

Apparently the expression on the right side tends to 0 for |x| → ∞.

➾ Step 4. We construct a perturbation �β = (βn)
∞
n=1 of the sequence �α, and

show that

(9.4) |P ′
�β
(βn)| � |P ′

�α(αn)|, n ∈ N, |P�β(iy)| � |P�α(iy)|, y ∈ R.

The relation (9.3) implies that there exists n0 ∈ N such that the intervals

[αn − γ e−σ1(|αn|), αn + γ e−σ1(|αn|)], n ≥ n0,

are pairwise disjoint, and that each of these intervals contains neither the point 0
nor a point αm different from αn.

Convergence of the series
∑∞

n=1
W (αn)
|B′(αn)| and the fact that B′ ∈ G(λ, c) imply

that
W (αn) � |B′(αn)| � ed2λ(|αn|) = o

(
eσ2(|αn|)).

Hence, there exists n1 ≥ n0 such that

W (αn) = inf
{
W̃ (t) : |t− αn| ≤ γ e−σ1(|αn|)}, n ≥ n1.

For n ≥ n1 choose βn ∈ [αn − γ e−σ1(|αn|), αn + γ e−σ1(|αn|)] such that

(9.5) W̃ (βn) =W (αn), n ≥ n1.

For all other n, set βn := αn.
We have ∣∣∣βn

αn
− 1
∣∣∣ � e−σ1(|αn|)

|αn| =
1

|αn| e
−2c+λ(|αn|),

and hence
∑

n∈N |βn/αn − 1| <∞. Lemma 8.7 (i) applies and yields

|P�β(iy)| � |P�α(iy)|, y ∈ R.

Since c+λ < λ1 = σ1, Proposition 8.8 applies and yields

|P ′
�β
(βn)| � |P ′

�α(αn)|, n ∈ N.

➾ Step 5. We finish the proof by deducing

Kn1−1,n1−1(L̃ ∩ C0(W̃ ), W̃ ) 
= ∅,
which contradicts the fact that L̃ is stably dense in C0(W̃ ).
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Set

B̃(z) :=
[ n1−1∏
n=1

(
1− z

βn

)]−1

P�β(z).

Using (9.4), (9.5), and that βn/αn → 1, it follows that (with some appropriate
constants C,C′, C′′ > 0)

∑
x:B̃(x)=0

1

(1 + |x|)n1−1

W̃ (x)

|B̃′(x)| ≤ C
∞∑

n=n1

W̃ (βn)

|P ′
�β
(βn)|

≤ C′
∞∑

n=n1

W (αn)

|P ′
�α(αn)|

≤ C′ ∑
x:B(x)=0

W (x)

|B′(x)| <∞,

lim
y→∞

y2−n1 · |F (iy)|
|B̃(iy)| = lim

y→∞
y · |F (iy)|
|P�β(iy)|

≤ C′′ lim
y→∞

y · |F (iy)|
|P�α(iy)| = 0,

F ∈ L̃ ∩ C0(W ).

By convergence of the series we have

|P ′
�β
(βn)| � W̃ (βn) � ω(βn) � 1

β2Ñ
n

and hence ∞∑
n=1

1

β2Ñ+2
n |P ′

�β
(βn)|

≤ C

∞∑
n=1

1

β2
n

<∞.

It follows that P�β is of bounded type in C+ and C−, and hence that B̃−1F is of

bounded type for all F ∈ L̃. Altogether, thus,
B̃ ∈ Kn1−1,n1−1(L̃ ∩ C0(W ), W̃ ).

However, by (9.1) and L̃ ⊆ G(λ, c), we have L̃ ∩ C0(W ) = L̃ ∩ C0(W̃ ).

The proof of the fast growth theorems is complete.

10. Consequences of Theorem 3.1

Corollary 3.2 follows due to presence of bounded type.

Proof of Corollary 3.2. Our aim is to apply Theorem 3.1 with λ(r) := r and c := 0.
All functions in L̃ are of bounded type in the upper and lower half-planes, and
hence belong to G(r, 0). Thus [Chain] holds. Since r = O(λ1(r)), we can choose
c+ > 0 so small that r ≤ 1

2c+λ1(r). Then [A] is satisfied.

Theorem 3.1 yields the alternative (3.1). Assume L̃ were not dense in L2(μ).
Then ClosL2(μ) L̃ is a member of the chain C[μ], whence contained in G(r, 0) and
this is a contradiction. �
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The coincidence theorem follows by combining the fast growth theorem with a
result from [31].

Proof of Theorem 3.3. The assumptions of Theorem 3.1 are fulfilled for μ and μ̃,
as well as when the roles of μ and μ̃ are exchanged. We conclude first of all that

L ⊆ L2(μ̃) and L̃ ⊆ L2(μ).

By Theorem 3.5 (i) in [31] either C[μ̃] is a beginning section of C[μ] or vice versa.
For definiteness, assume the first case takes place.

If C[μ̃] 
= C[μ] then C[μ̃] � C[μ], and for any space H ∈ C[μ] \ C[μ̃] it holds that
L̃ ⊆ H. Therefore

ClosL2(μ) L̃ ⊆ H ⊆ G(λ, c),
whence the second alternative in (3.1) is ruled out. However, L̃ also cannot be dense
in L2(μ) since μ has infinite index of determinacy and in particular H 
= L2(μ).
We reached a contradiction. �

Proof of Corollary 3.4. For the same reasons as in the proof of Corollary 3.2 we
can apply the coincidence theorem with λ(r) := r and c := 0. �

Proof of Corollary 3.5. Apply the coincidence theorem with the parameters

λ(r) := rρ, c, λ1(r) := (2c+ δ)rρ, λ2(r) := 2λ1(r).

Observe here that always c ≥ 0. �

The proofs of the (quasi-) monotonicity Theorems 3.6 and 3.8 are based on the
argument used in Theorem 26 of [11]. Let us analyse this argument.

10.1. De Branges Theorem 26: Suppose we are given a positive measure μ, a
de Branges space H(E) which is contained isometrically in L2(μ), and an entire
function S. The following properties are assumed:

(a) S ∈ L2
(dμ(x)
1+x2

)
and S/E, S#/E have no real poles,

(b) S/E, S#/E are of bounded type in C+,

(b26) S(±iy)/E(iy) = o(1), y → +∞,

(c) if Q ∈ H(E) + zH(E) and Q = 0 μ-a.e., then Q = 0 identically.

It is concluded that S ∈ H(E) + zH(E).

The proof consists of three steps.

Step 1. For h ∈ L2(μ)�H(E) consider

(10.1) Lh(z) :=
S(z)

G(z)

∫ ∞

−∞

1

x− z
G(x)h(x) dμ(x) −

∫ ∞

−∞

1

x− z
S(x)h(x) dμ(x)

where G ∈ H(E) + zH(E).

It is shown that this expression does not depend on G and defines an entire
function.
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This follows using the algebraic identity

G(w)
G̃(z)S(w)− S(z)G̃(w)

z − w
− G̃(w)

G(z)S(w) − S(z)G(w)

z − w

= S(w)
G̃(z)G(w)−G(z)G̃(w)

z − w

and property (a).

Step 2. It is shown that Lh = 0 for all h ∈ L2(μ) �H(E).

This follows using the properties (b) and (b26) by an application of the
Phragmén–Lindelöf principle.

Step 3. It is shown that indeed S ∈ H(E) + zH(E).

This is seen as follows (the argument in [11] is formulated slightly different):
for each w ∈ C+, choose Gw ∈ H(E) with

Gw(x) =
S(x)E(w) − E(x)S(w)

z − w
μ-a.e.,

and consider

Tw(z) :=
1

E(w)
[E(z)S(w) + (z − w)Gw(z)] ∈ H(E) + zH(E).

Then Tw(x) = S(x) μ-a.e., and Tw(w) = S(w).
For w,w0 ∈ C+ we have Tw − Tw0 ∈ H(E) + zH(E) and (Tw − Tw0)(x) = 0

μ-a.e. Property (c) implies that Tw = Tw0 identically. This yields S(w) = Tw0(w),
w ∈ C+, and hence S = Tw0 ∈ H(E) + zH(E). ♦

Proof of Theorems 3.6 and 3.8. As usual, denote L̃ :=
⋃

H∈C[μ̃] H. We assume,
towards a contradiction, that the conclusion of Theorem 3.6 or Theorem 3.8, re-
spectively, is false, and are going to establish

(10.2) ∃H ∈ C[μ] : L̃ ⊆ H + zH.

Using this claim it is easy to derive a contradiction: (10.2) implies that D(L̃) ⊆ H.
Since C[μ] has no maximal element, D(L̃) is not dense in L2(μ). By Proposition 6.10
also L̃ is not dense in L2(μ) and hence ClosL2(μ) L̃ ∈ C[μ]. However, by the fast
growth theorem (note that the assumptions of Theorem 3.1 are certainly fulfilled)

ClosL2(μ) L̃ � G(λ, c),

which contradicts [2Chain].
The proof of the claim (10.2) consists of two tasks. Namely, to find H and to

prove S ∈ H + zH for all S ∈ L̃ (where, clearly, it is enough to consider S with
S = S#).

The first of these tasks is easily completed using our indirect hypothesis.
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• For Theorem 3.6. Let φ be in the described range of angles with hλ[μ](φ) >
hλ[μ̃](φ), and fix τ1, τ2 with

hλ[μ̃](φ) < τ1 < τ2 < hλ[μ](φ).

Choose F0 ∈ ⋃H∈C[μ]H with hλ[F0](φ) > τ2, and let H ∈ C[μ] be such that
F0 ∈ H.

• For Theorem 3.8. Fix τ1, τ2 with

τλ[μ̃] < τ1 < τ2 < τλ[μ].

Choose F0 ∈ ⋃H∈C[μ] H with τλ[F0] > τ2, and let H ∈ C[μ] be such that F0 ∈ H.

The second task will be completed along the lines of the argument explained
in 10.1 using the assumptions of our theorems instead of (b26). We start with a
preliminary observation.

By the fast growth theorem we have L̃ ⊆ L2(μ). Since L̃ consists of functions
from spaces in C[μ̃], every function in L̃ is of bounded type in C±. Write H = H(E)
with some Hermite–Biehler function E. Since H ∈ C[μ], the function E is of
bounded type in C± and has no real zeroes. This shows that (a) and (b) of 10.1
hold. Since C[μ] has no maximal element, H 
= L2(μ), and Problem 69 in [11]
implies that also (c) holds.

Now let S ∈ L̃, S = S#, be given. Then Step 1 of 10.1 can be applied, and
Step 3 will apply once Step 2 is completed. We are thus left with the task to show
“Lh = 0 for all h ∈ L2(μ)�H” (where again it is enough to consider h with h = h).

• For Theorem 3.6. The relation

(10.3) |F0(re
iφ)| ≤

( |E(reiφ)|2 − |E(re−iφ)|2
4πr sinφ

)1/2
‖F0‖H � |E(reiφ)|

yields hλ[F0](φ) ≤ hλ[E](φ) and in turn eτ2λ(r) � |E(reiφ)|. The relation

lim sup
y→+∞

log |S(iy)|
λ(y)

≤ hλ[μ̃] < τ1

yields |S(reiφ)| � eτ1λ(r). Together,

(10.4)
|S(reiφ)|
|E(reiφ)| � e(τ1−τ2)λ(r) = o(1).

If φ = π/2, this is (b26) and Step 2 of 10.1 directly applies. Assume that φ 
= π/2.
Then, certainly, ρλ < 1.

The first step is to show that Lh has order at most ρλ with minimal type if
λ(r) = o(rρλ). We know that Lh is of finite exponential type and, using e.g. the

function A := 1
2 (E + E#) for G in (10.1), that L#

h = Lh. Hence, it suffices to
consider the growth of Lh on rays R := {reiψ : r > 0} with ψ ∈ (0, π).
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Now we use the function E for G in (10.1). Both integrals in (10.1) tend to 0
when z tends to infinity along the ray R, and the function S satisfies

log |S(reiψ)| ≤ Cλ(r), r > 0,

with some constant C > 0. In order to estimate log |E(reiψ)| we use Theorem 3.7.1
in [7]. Fix δ ∈ [0, 1 − ρλ) where δ = 0 is only permitted if λ(r) = o(rρλ). Set
η := 1

4 sinψ and let ε > 0. Then Theorem 3.7.1 in [7] provides us with R0 > 0 and,
for each R > R0, with a finite set of disks Ωi(R), i ∈ I(R), such that the sum of
their radii is at most ηR and such that

log |E(z)| ≥ −εRρλ+δ, |z| ≤ R, z 
∈ Ω(R) :=
⋃

i∈I(R)

Ωi(R).

However, keep in mind that R0 as well as the disks Ωi(R) may depend on δ and ε.
These exceptional disks arise from an application of the Boutroux–Cartan lemma,
Lemma 3.4.1 in [7], hence each of them contains at least one zero of E. The
zeroes of E are all located in the lower half plane, and hence Ω is contained in the
half-plane {z ∈ C : Im z ≤ 2ηR}.

Let r > 1
2R0, and choose R > R0 such that 1

2R < r ≤ R. Then Im reiψ =

r sinψ > R sinψ
2 = 2ηR. Thus

log |E(reiψ)| ≥ −εRρλ+δ ≥ −ε 2ρλ+δ rρλ+δ.

It follows that

log
∣∣∣S(reiψ)
E(reiψ)

∣∣∣ ≤ Cλ(r) + ε2ρλ+δrρλ+δ ≤ εrρλ+δ
(
2ρλ+δ + C

λ(r)

rρλ+δ

)
, r ≥ 1

2
R0.

We conclude that

lim sup
r→∞

1

rρλ+δ
log |Lh(reiψ)| ≤ ε C′, ψ ∈ (0, π),

where

C′ := sup
r≥1

(
2ρλ+δ + C

λ(r)

rρλ+δ

)
.

The Phragmén–Lindelöf principle yields that the order of Lh does not exceed ρλ+δ.
Choosing δ > 0 arbitrarily small implies that it is at most ρλ. Assume now that
λ(r) = o(rρλ). Then we use δ = 0, remember that ε > 0 was arbitrary, and
note that C′ is independent of ε. It follows that Lh is of minimal type w.r.t. the
order ρλ.

By (10.4) and symmetry the function Lh tends to 0 along the rays with angle φ
and −φ. The allowed range of φ is defined in such a way that the Phragmén–
Lindelöf principle applies to both sectors bounded by these rays. We conclude
that indeed Lh = 0.
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• For Theorem 3.8. Again referring to the reproducing kernel estimate (10.3)
we obtain τλ[E] > τ2. Choose a zero z0 of E and set Ê(z) := E(z)/(z − z0). Then
also τλ[Ê] > τ2. Moreover, denote

M̂(r) := max
|z|=r

|Ê(z)|, n̂(r) := #{z : |z| ≤ r, Ê(z) = 0},

Q̂(r) := r

∫ ∞

r

1

x2
n̂(x) dx.

Choose a function Δ which increases to +∞, such that

lim
r→∞Δ(r) · log r

λ(r)
= 0.

Then Lemma 3.5.10 in [7] provides us with R0 > 0 and, for each R ≥ R0, disks
ΩR,i, i ∈ IR, such that

(i) the sum of the radii of ΩR,i does not exceed
1
4R,

(ii) log |Ê(z)| ≥ log M̂(2R)− Q̂(2R)Δ(R) for |z| ≤ R with z 
∈ ⋃i∈IR ΩR,i.

The disks ΩR,i arise from an application of the Boutroux–Cartan lemma, hence

each of them contains at least one zero of Ê. From the proof of Lemma 3.5.8 in [7],
we see that

#IR ≤ n̂(2R) � logR.

Choose a sequence Rn ↗ +∞ such that log M̂(Rn/2) ≥ τ2λ(Rn/2). Let Tn,i,
n ∈ N, i ∈ IRn , be the torus Tn,i :=

⋃
θ∈R e

iθΩRn,i. Then the set

(10.5) {z ∈ C : Rn/2 ≤ |z| ≤ Rn} \
⋃

i∈IRn

Tn,i

is the disjoint union of at most #IRn + 1 � logRn tori. Since the sum of the
widths of the tori Tn,i does not exceed Rn/4, there exists a torus T (n) in the
representation of (10.5) whose width is at least equal to 2 (in fact, there must be
much larger ones).

Let ε > 0 be so small that τ2/(1 + ε)2 ≥ τ1. From limr→∞ λ(r)/λ(r/2) = 1 and
our choice of Δ we obtain that, for all sufficiently large n,

log M̂(2Rn) ≥ log M̂(Rn/2) ≥ τ2 λ(Rn/2) ≥ τ2
1 + ε

λ(Rn/2),

Q̂(2Rn)Δ(Rn)

log M̂(2Rn)
≤ 1− 1

1 + ε
.

For such n, thus,

log |Ê(z)| ≥ τ2
(1 + ε)2

λ(Rn) ≥ τ2
(1 + ε)2

λ(|z|), z ∈ T (n).

For n sufficiently large, |S(z)| ≤ τ1λ(|z|), z ∈ T (n), and hence

|S(z)|
|Ê(z)| ≤ 1, z ∈ T (n).
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In order to estimate Lh, use Ê for G in (10.1). Off the real axis the integrals are
bounded by C/| Im z|, where

C := max
{∫ ∞

−∞
Ê(x)h(x) dμ(x),

∫ ∞

−∞
S(x)h(x) dμ(x)

}
.

This gives

(10.6) |Lh(z)| ≤ 2C

| Im z| , z ∈ T (n), z 
∈ R.

The function log |Lh(z)| is subharmonic, whence

log |Lh(z)| ≤ 1

2π

∫ 2π

0

log |Lh(z + eiθ)| dθ.

Let rn be such that the circle {z ∈ C : |z| = rn} is exactly in the middle of the
torus T (n). Then each disk {ζ : |ζ − z| ≤ 1} where |z| = rn is entirely contained
in T (n), and we obtain

log |Lh(z)| ≤ log(2C) + C ′, |z| = rn,

where

C′ := sup
z∈C\R

1

2π

∫ 2π

0

log+
1

| Im(z + eiθ)| dθ.

It follows that Lh is constant. However, (10.6) gives a sequence tending to i∞
along which Lh tends to 0. Hence, Lh vanishes identically. �

Proof of Corollary 3.7. Let H ∈ C[μ] and write H = H(E). The function E is of
bounded type and has no zeroes in C+. Hence,

hr[E](φ) = hr[E](φ) = lim
r→∞

1

r
log
∣∣E(reiφ)

∣∣ = τr[E] · sinφ, φ ∈ (0, π).

Now an application of the quasi-monotonicity theorem yields the desired assertion.
�

Proof of Theorem 3.9. Let c+ > c be as provided by [Meas] for μ̃, and fix b, b∗

with c < b∗ < b < c+. We check the condition (7.1) for b. Since log r = o(λ(r))
and μ̃ satisfies the condition [Meas], we have∫

R\(−1,1)

e2bλ(|x|)e−λ1(|x|) dμ̃(x)

≤
∫
R\(−1,1)

exp
[
2(b− c+)︸ ︷︷ ︸

<0

λ(|x|)] · |x|1−ρ+λ · e2c+λ(|x|) dμ̃(x) <∞,

∫ ∞

1

e2bλ(r)eλ1(r)−λ2(r) dr ≤
∫ ∞

1

exp
[
2(b− c+)︸ ︷︷ ︸

<0

λ(r)
]
rρ

+
λ −1 dr <∞.

The integrals over the intervals (−1, 1) and [0, 1), respectively, are clearly finite.
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Our aim is to apply Lemma 7.2 with β1 = β2 := 2b, and with the func-
tion f(x) := eb

∗λ(x). Clearly, for arbitrary R > 0, we have h = b∗. Next,
limr→∞ rλ′(r)/λ(r) = ρλ implies that for all large enough x,

f ′(x) = b∗λ′(x) eb
∗λ(x) ≤ b∗(ρλ + 1)

λ(x)

x
· eb∗λ(x) ≤ λ(x) eb

∗λ(x).

Thus

lim sup
x→∞

log |f ′(x)|
λ(x)

≤ lim sup
x→∞

( logλ(x)
λ(x)

+ b∗
)
= b∗.

By choosing R large enough and ε > 0 small enough the condition (7.4) can be
satisfied, and it follows that ∫ ∞

R0

e2b
∗λ(x) dμ <∞.

The integral along a half-axis unbounded to the left is estimated in the same way.
Thus [Meas] holds for μ with the number b∗ > c. �

A. The Sodin–Yuditskii approach to de Branges’ theorem

This appendix is devoted to the proof of Theorem 5.9. From now on, assume
that L and W are given subject to the assumptions of this theorem.

It is a classical fact, going back at least to M. Riesz, that the Hall-majorant is
an everywhere finite and continuous function. This property is actually established
by L. Pitt in a very general context, cf. [19]. Note here that L being not dense
implies that L is contained injectively in C0(W ).

Remark A.1. We have the estimate

|F (z)| ≤ m(z)‖F‖W , F ∈ L.

Since m is (in particular) locally bounded, this implies that each ‖.‖W -bounded
subset of L is relatively compact in H(C) with respect to locally uniform conver-
gence.

The following fact can be extracted from Propositions 2.4 and 2.3 in [19]. An ex-
plicit proof can be found in the extended preprint [4] of this paper.

Lemma A.2. Let w ∈ C+. Then there exists a function H0 ∈ L with H0(x)
x−w 
∈

ClosC0(W ) L.
The next lemma is a stripped-down version of Proposition 3.4 in [19] for C0(W ).

Lemma A.3. Let F be a ‖.‖W -bounded subset of L, and let F,G ∈ ClosH(C) F
with G not identically zero. Then F/G is a meromorphic function of bounded type
in C+ and in C−.
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Proof. Fix w ∈ C+. The space L is not dense in C0(W ), invariant under .#, and
contains for each x ∈ R a function which does not vanish at x. Hence Lemma A.2
applies and shows that there exists a function H0 ∈ L with H0(x)

x−w 
∈ ClosC0(W ) L.
Choose a complex Borel measure μ on R with∫

R

H(x)

W (x)
dμ(x) = 0, H ∈ L,

∫
R

H0(x)

(x − w)W (x)
dμ(x) 
= 0.

Now let F ∈ ClosH(C) F be given, and choose Fn ∈ F , n ∈ N, with limn→∞ Fn = F
locally uniformly. Then, for z ∈ C \ R,

0 =

∫
R

Fn(x)H0(z)− Fn(z)H0(x)

x− z

1

W (x)
dμ(x)

= H0(z)

∫
R

1

x− z

Fn(x)

W (x)
dμ(x)− Fn(z)

∫
R

1

x− z

H0(x)

W (x)
dμ(x).

Since supn∈N ‖Fn‖W <∞ the bounded convergence theorem applies, and we con-
clude that

F (z)

H0(z)
=
(∫

R

1

x− z

F (x)

W (x)
dμ(x)
)
·
(∫

R

1

x− z

H0(x)

W (x)
dμ(x)
)−1

, z ∈ C \ R.

Cauchy integrals of complex measures are functions of bounded type, and the
assertion follows. �

Since dimL > 1 (actually infinite), and L is invariant under .#, we can choose
w ∈ C+ and w′ ∈ C \ R, such that

M :=
{
F ∈ L : F = F#, F (w) = w′} 
= ∅.

Set rM := inf{‖F‖W : F ∈M}, then

rM ≥ |w′|
m(w)

> 0.

Since the set {F ∈ M : ‖F‖W ≤ rM + 1} is relatively compact, we find functions
Fn ∈M , n ∈ N, such that

rM = lim
n→∞ ‖Fn‖W , A := lim

n→∞Fn exists in H(C).

Clearly, A = A# and A(w) = w′. In particular, A is not constant. Moreover, we
have

(A.1) |A(z)| = lim
n→∞ |Fn(z)| ≤ lim inf

n→∞
[
m(z)‖Fn‖W

]
= rMm(z), z ∈ C,

and for each F ∈ L the quotient F/A is of bounded type in C+ and C−.
A function A constructed in the above way has several important properties,

which are proved using the method of Markov corrections.
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Proposition A.4. Set

MA :=
{
G ∈ L : G = G#, ‖G‖W < rM , A−G not constant

}
,

ΛA :=
{
x ∈ R :

|A(x)|
W (x)

= rM

}
.

Then for each G ∈ MA the following statements hold.

(i) A−G has only real zeroes.

(ii) Every zero of A−G is simple.

(iii) Let x1 < x2 be two consecutive zeroes of A−G. Then (x1, x2) ∩ ΛA 
= ∅.
Note that, since A is not constant, we have 0 ∈ MA. Moreover, for each F ∈ L,

F = F#, there exists t > 0 with tF ∈ MA. In particular, therefore, L = spanMA.
In the proof of the above proposition, we frequently use the following pointwise

convexity property of the weighted supremum norm ‖.‖W .

Lemma A.5. Let Ω ⊆ R, t : R → [0, 1], and set t0 := inf{t(x) : x ∈ Ω}. Then∥∥�Ω

(
F (1− t) +Gt

)∥∥
W

≤ ‖�ΩF‖W (1− t0) + ‖�ΩG‖W t0,
F,G ∈ H(C), ‖�ΩF‖W ≥ ‖�ΩG‖W .

Proof. We have, for each x ∈ Ω,

1

W (x)

∣∣F (x)(1− t(x)) +G(x)t(x)
∣∣

≤ 1

W (x)
·
⎧⎨
⎩|G(x)| , |G(x)| ≥ |F (x)|
|F (x)|(1 − t0) + |G(x)|t0 , |G(x)| < |F (x)|

≤
⎧⎨
⎩‖�ΩG‖W , |G(x)| ≥ |F (x)|
‖�ΩF‖W (1− t0) + ‖�ΩG‖W t0 , |G(x)| < |F (x)|

≤ ‖�ΩF‖W (1− t0) + ‖�ΩG‖W t0. �

Proof of Proposition A.4. (i) Showing that A−G has only real zeroes is the techni-
cally simplest task. Assume on the contrary that w0 ∈ C\R and (A−G)(w0) = 0.
Since A −G is not constant and limn→∞(Fn −G) = A −G locally uniformly, we
find n0 ∈ N and a sequence (wn)

∞
n=n0

such that

lim
n→∞wn = w0, (Fn −G)(wn) = 0, |wn − w0| ≤ 1

2
| Imw0|.

Set

Tn :=
(z − w)(z − w)

(z − wn)(z − wn)
,

and consider the Markov corrections

(A.2) Hn,δ := Fn − δ Tn(Fn −G), n ≥ n0,
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where δ > 0 (and a specific choice for δ will be made later). Since L is an algebraic

de Branges space, we have Hn,δ ∈ L. Moreover, Hn,δ = H#
n,δ and Hn,δ(w) =

Fn(w) = w′. In total, thus, Hn,δ ∈M .
The functions Tn satisfy

inf
{
Tn(x) : x ∈ R, n ≥ n0

}
> 0, sup

{
Tn(x) : x ∈ R, n ≥ n0

}
<∞.

Now we choose δ := sup{Tn(x) : x ∈ R, n ≥ n0}−1. Setting tn(x) := δTn(x),
x ∈ R, the function Hn,δ can be written as the pointwise convex combination

(A.3) Hn,δ(x) = Fn(x)(1 − tn(x)) +G(x) tn(x), x ∈ R, n ≥ n0,

and Lemma A.5 implies

‖Hn,δ‖W ≤ ‖Fn‖W (1− tn,0) + ‖G‖W tn,0, n ≥ n0,

where tn,0 := inf{tn(x) : x ∈ R}. Clearly, inf{tn,0 : n ≥ n0} > 0, and hence
‖Hn,δ‖W < rM for sufficiently large n. We have reached a contradiction.

(ii) For showing that A−G has no multiple real zeroes, the argument essentially
repeats, but in a slightly more complicated fashion. Assume on the contrary that
w0 ∈ R and (A−G)(w0) = (A−G)′(w0) = 0. First, choose ε > 0 such that

‖G‖W + 3ε < rM .

Second, since |A|/W is upper semicontinuous and A(w0) = G(w0), we can choose
r > 0 such that

|A(x)|
W (x)

≤ ‖G‖W + ε, x ∈ I := [w0 − 2r, w0 + 2r].

Choose n0 ∈ N and two sequences (w1,n)
∞
n=n0

, (w2,n)
∞
n=n0

, such that

lim
n→∞wi,n = w0,

Fn(z)−G(z)

(z − w1,n)(x − w2,n)
entire, |wi,n − w0| ≤ r,

w1,n, w2,n ∈ R or w1,n = w2,n.

Since W is lower semicontinuous and limn→∞ Fn = A locally uniformly, we can
make the choice of n0 such that in addition

(A.4)
|Fn(x)|
W (x)

≤ ‖G‖W + 2ε, x ∈ I.

Set

(A.5) Tn :=
(z − w)(z − w)

(z − w1,n)(z − w2,n)
,

and let Hn,δ be the function (A.2). Then again Hn,δ ∈M .
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The functions Tn satisfy

(A.6)
inf
{
Tn(x) : x ∈ R \ I, n ≥ n0

}
> 0,

sup
{
Tn(x) : x ∈ R \ I, n ≥ n0

}
<∞.

Moreover, since

lim
n→∞Tn(z)(Fn(z)−G(z)) =

(z − w)(z − w)

(z − w0)2
(A(z)−G(z)) locally uniformly,

we have in particular

c := sup
{ |Tn(x)(Fn(x)−G(x))|

W (x)
: x ∈ I, n ≥ n0

}
<∞.

Now we choose δ := min{sup{Tn(x) : x ∈ R, n ≥ n0}−1, ε/c}. Set
(A.7) tn(x) := �R\I · δTn(x), x ∈ R, tn,0 := inf{tn(x) : x ∈ R \ I},
and consider the representation (A.3) of Hn,δ on R \ I. Using (A.4) we find

‖�R\IFn‖W = ‖Fn‖W > ‖G‖W ≥ ‖�R\IG‖W ,
and pointwise convexity implies

‖�R\IHn,δ‖W ≤ ‖�R\IFn‖W (1− tn,0) + ‖�R\IG‖W tn,0

≤ ‖Fn‖W (1− tn,0) + ‖G‖W tn,0, n ≥ n0.

Again inf{tn,0 : n ≥ n0} > 0, and hence ‖�R\IHn,δ‖W < rM for all sufficiently
large n. For x ∈ I we have

|Hn,δ(x)|
W (x)

≤ |Fn(x)|
W (x)

+ δ
|Tn(x)(Fn(x) −G(x))|

W (x)
≤ ‖G‖W + 3ε,

and hence ‖�IHn,δ‖W < rM . In total ‖Hn,δ‖W < rM for large n, and we reached
a contradiction.

(iii) Let x1 < x2 be two consecutive zeroes of A−G, and assume on the contrary
that (x1, x2) ∩ ΛA = ∅. Since |A(xi)|/W (xi) = |G(xi)|/W (xi) ≤ ‖G‖W < rM , we
then have

max
{ |A(x)|
W (x)

: x ∈ [x1, x2]
}
< rM ,

and can choose r > 0 such that (I := [x1 − 2r, x2 + 2r])

max
{ |A(x)|
W (x)

: x ∈ I
}
< rM .

Choose n0 ∈ N and sequences (w1,n)
∞
n=n0

, (w2,n)
∞
n=n0

, such that

lim
n→∞wi,n = xi, (Fn −G)(wi,n) = 0, wi,n ∈ [x1 − r, x2 + r], w1,n 
= w2,n,

c := sup
{ |Fn(x)|
W (x)

: x ∈ I, n ≥ n0

}
< rM .
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The functions (A.5) are again subject to (A.6), and Tn(Fn −G) converges locally
uniformly.

Now we choose δ sufficiently small so that

δ · sup{Tn(x) : x ∈ R \ I, n ≥ n0

} ≤ 1,

δ · sup
{ |Tn(x)(Fn(x) −G(x))|

W (x)
: x ∈ I, n ≥ n0

}
<
rM − c

2
.

Notation being as in (A.7), pointwise convexity implies that ‖�R\IHn,δ‖W < rM
for large n. On the interval I we estimate

‖�IHn,δ‖W ≤ max
x∈I

|Fn(x)|
W (x)

+ δmax
x∈I

|Tn(x)(Fn(x) −G(x))|
W (x)

≤ c+ rM
2

< rM .

Again, we reached the contradiction that ‖Hn,δ‖W < rM for large n. �

Proposition A.4 is supplemented by the following simple facts.

Lemma A.6. Let x1 < x2 be two consecutive points of ΛA, and let G ∈ MA.

(i) If sgnA(x1) 
= sgnA(x2), then A−G has a zero in (x1, x2).

(ii) If sgnA(x1) = sgnA(x2), then A−G has no zero in (x1, x2).

Proof. If x ∈ ΛA, then |A(x)|/W (x) = rM > ‖G‖W , and hence

sgnA(x) = sgn(A−G)(x).

The first statement follows immediately. Assume now that sgnA(x1) = sgnA(x2)
and A − G has a zero y in (x1, x2). By Proposition A.4 (i), all zeroes of A − G
are simple, thus A − G changes sign at y. Hence there must exist a second zero
of A − G in (x1, x2). Proposition A.4 (iii) implies that (x1, x2) ∩ ΛA 
= ∅. This
contradicts the fact that x1 and x2 are consecutive points of ΛA. �

Consider the discrete set ΛA and group it in blocks where A(x) has the same
sign:

ΛA

sgnA(x)

| | | | | | | |

+ + + − − + − +

a−−2 a+−2 a−−1 a+−1
a−0

=

a+0

a−1

=

a+1

a−2

=

a+2

· · · · · ·
(A.8)

Formally, we obtain (possibly one-sided or two-sided infinite) sequences

(a−n )n−<n<n+ and (a+n )n−<n<n+

such that

· · · ≤ a+n−1 < a−n ≤ a+n < a−n+1 ≤ · · ·
a±n ∈ ΛA, ΛA ⊆ ⋃n−<n<n+

[a−n , a+n ], sgnA(x) = (−1)n, x ∈ [a+n , a
−
n+1] ∩ ΛA.
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Corollary A.7. Let the sequences (a±n )n−<n<n+ be as above, and set

Jn := (a+n , a
−
n+1), J−∞ := (−∞, inf ΛA), J∞ := (supΛA,∞).

For each G ∈ MA the function A−G has

(i) exactly one zero in each interval Jn, n− < n < n+,

(ii) at most one zero in each of J−∞ and J∞,

(iii) no zeroes in R \ [J−∞ ∪ J∞ ∪⋃n−<n<n+
Jn
]
.

Proof. By Lemma A.6 (i), the function A−G has a zero in each Jn, n− < n < n+.
By Proposition A.4 (iii), it has at most one zero in each such interval as well as
in J−∞ and J∞. The third item holds by Lemma A.6 (ii). �

Lemma A.8. The function A has infinitely many zeroes. In particular, ΛA is
infinite and consists of infinitely many blocks as in (A.8).

Proof. Assume that A has only finitely many zeroes, say N many. Then the set ΛA
must consist of at most N + 1 blocks, and hence for each G ∈ MA the function
A−G has at most N + 2 zeroes.

For G ∈ MA let pG be the monic polynomial with the same zeroes as A −G.
Then the function

HG :=
A−G

A
· p0
pG

is real and entire, zero-free, and of bounded type in C+ and C−. Using, e.g.,
the product representation given in Theorem V.11 of [17], it follows that HG is
constant. This yields

G(z) =
A(z)

p0(z)

[
p0(z)−HGpG(z)

] ∈ A(z)

p0(z)
· {p ∈ C[z] : deg p ≤ N + 2}.

Since L = spanMA, we find dimL ≤ N + 3, a contradiction. �

We have reached the stage to actually construct the required function B. From
each of the blocks of ΛA in (A.8) choose one point. Then, by the interlacing
property in Corollary A.7 and the fact that there are infinitely many such blocks,
there exists a real and meromorphic function q0 with

Im q0(z) ≥ 0, z ∈ C+,

which has zeroes precisely at the zeroes of A and poles precisely at the chosen
points of ΛA (see, e.g., Theorem VII.1 in [17]). Now define B to be the real entire
function

B :=
1

q0
A.

Lemma A.9. For each G ∈ MA, the function Im A−G
B does not change sign

in C+.
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Proof. For the same reason as above we find a real and meromorphic function qG
with nonnegative imaginary part in C+ which has zeroes precisely at the zeroes
of A −G and poles precisely at chosen points of ΛA, i.e., at the zeroes of B. The
function A−G

B
1
qG

is real, entire, and zero-free. It can be written in the form

A−G

B

1

qG
=
(
1− G

A

)
q0

1

qG
,

and hence is of bounded type in C+. Thus, it is identically equal to some nonzero
real constant, say γG. This shows that

A−G

B
= γG · qG,

and hence its imaginary part has no sign changes in C+. �

It is now easy to establish the required properties of B.

Proof of Theorem 5.9. The properties (K1) hold by construction of B. For each
G ∈ MA we have the representation

G

B
= q0 − γG · qG.

This shows that G/B is of bounded type in C+ and C−, and that

lim
|y|→∞

1

iy

G(iy)

B(iy)
exists in R.

Since L = spanMA, both of these properties also hold for every function of L.
This proves (K2) and (K3’). The summability condition (K4’) holds by∑

x:B(x)=0

1

1 + x2
W (x)

B′(x)
=

1

rM

∑
x:B(x)=0

1

1 + x2

∣∣∣ A(x)
B′(x)

∣∣∣
=

1

rM

∑
x:B(x)=0

1

1 + x2
Res(q0;x) <∞,

remember here Theorem VII.2 in [17]. Finally, for the additional assertion, it
suffices to remember (A.1) and that a function with nonnegative imaginary part
in C+ is uniformly � |z| in each Stolz angle Γϑ = {z ∈ C : ϑ ≤ arg z ≤ π − ϑ},
ϑ ∈ (0, π/2). �
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