ESOC
2019

ESOC
2019
Vienna
July 14th – 18th, 2019

Institute of Applied Synthetic Chemistry
TU Wien
and
Institute of Organic Chemistry
University of Vienna
Austria

http://esoc2019.conf.tuwien.ac.at/
CONTENTS:

Welcome from the Conference Chairs
Plenary & Invited speakers
General information
Social program
Area maps
Time schedule
Session overview
- Sunday, 14th
- Monday, 15th
- Tuesday, 16th
- Wednesday, 17th
- Thursday, 18th
Abstracts
- Plenary lectures (PL-1 to PL-11)
- Invited lectures (IL-1 to IL-14)
- Oral presentations (OP-1 to OP-28)
Poster index
- Catalysis
 - PO-1 to PO-172
- Medicinal Chemistry and Chemical Biology
 - PO-173 to PO-253
- Organic Materials
 - PO-254 to PO-298
- Physical and Computational Organic Chemistry
 - PO-299 to PO-322
- Supramolecular Chemistry
 - PO-323 to PO-333
- Total Synthesis and Methodology
 - PO-334 to PO-556
- Late Poster
 - PO-557 to PO-561
Author index
Dear Colleagues,

It is our great pleasure to cordially welcome you to the 21st edition of the European Symposium on Organic Chemistry (ESOC), which will be held on July 14 – 18, 2019, at the Vienna Exhibition Center (Messe Wien). This latest edition of what has become the premier event in organic chemistry in Europe is organized jointly by the Institute of Applied Synthetic Chemistry of TU Wien (Vienna University of Technology) and the Institute of Organic Chemistry of the University of Vienna and in cooperation with the COST Action CHAOS (C-H activation in organic synthesis), which is organizing a special session on Tuesday the 16th.

ESOC looks back at a long tradition, starting exactly 40 years ago in 1979 in Cologne (Germany) and over the years has been held in many different cities in the continent and we are proud that the 21st ESOC is the first edition to be hosted in Austria. This current edition covers all aspects related to Organic Synthesis highlighting modern trends in Total Synthesis and Methodology, Catalysis, Medicinal Chemistry and Chemical Biology, Supramolecular Chemistry, Organic Materials and Physical and Computational Organic Chemistry.

The program was designed with the aim to provide a unique forum for exchange - besides 11 plenary and 13 invited lectures, there are 28 slots for short oral presentations (15 min) and more than 550 posters. It is also our great honour that the first “Dr. Margaret Faul Award for Women in Chemistry” will be presented at ESOC 2019.

Additionally, for the first time at ESOC 2019 we shall host a job fair for PhD students and Postdoctoral researchers, with company interviews on site. Participation is a free of charge add-on for our participants.

Ideally located in the center of Europe, Vienna has a long-standing tradition as a major conference site since the “Congress of Vienna” in 1815. Its unique atmosphere will provide inspiration for a fruitful scientific meeting, and the participants will have ample time to enjoy a wealth of culture and historical places in and around Austria’s capital city, not to forget the exquisite Viennese cuisine and Austrian wines. Join us in enjoying excellent science in a terrific environment together with true Viennese hospitality!

Sincerely,
Michael Schnürch and Nuno Maulide
(Conference Chairs)
opnMe.com
Molecules for free... Imagine the possibilities

Visit opnMe.com to discover all molecules...
INVITED SPEAKERS

PLENARY LECTURERS

Thorsten **BACH** *TU München, Germany*
Phil **BARAN** *The Scripps Research Institute, USA*
Alois **FÜRSTNER** *Max-Planck-Institut für Kohleforschung, Germany*
Lukas **GOOSSEN** *Ruhr-Universität Bochum, Germany*
Veronique **GOVERNEUR** *University of Oxford, UK*
Syuzanna **HARUTYUNYAN** *University of Groningen, The Netherlands*
Kenichiro **ITAMI** *Nagoya University, Japan*
Paolo **MELCHIORRE** *ICIQ Institut Catala d’Investigació Quimica, Spain*
Sir James Fraser **STODDART** *Northwestern University, USA*
Roderich **SÜßMUTH** *TU Berlin, Germany*
John **SUTHERLAND** *MRC Laboratory of Molecular Biology, UK*

INVITED LECTURERS

Roey **AMIR** *Tel Aviv University, Israel*
Tatiana **BESSET** *Université de Rouen, France*
Jesús **CAMPOS** *CSIC-University of Sevilla, Spain*
Denis **CHUSOV** *Russian Academy of Sciences, Russia*
Anna **HIRSCH** *Helmholtz Institute for Pharmaceutical research Saarland, Germany*
Thomas **MAGAUCER** *Universität Innsbruck, Austria*
Sarah **REISMAN** *California Institute of Technology, USA*
Jana **ROITHOVÁ** *Charles University in Prague, Czech Republic*
Sara **SATTIN** *Università degli Studi di Milano, Italy*
Troels R. **SKRYDSTRUP** *Aarhus University, Denmark*
Martin D. **SMITH** *University of Oxford, UK*
Marcin **STEPIEN** *University of Wroclaw, Poland*
Martin **OESTREICH** *Technische Universität Berlin, Germany*
Alexandros **ZOGRAFOS** *Aristotle University of Thessaloniki, Greece*
Gute Chemie.
Greater diversity, choice and value.

Gute Chemie – since our foundation in 1987, this means for us: good products and people, who get along together. From the request over the order to the delivery, we accompany you with competent specialists.

Welcome to abcr – your full-service provider for Gute Chemie.

Trading and Sourcing
- 300,000 specialty chemicals from grams to tons, for research and industry
- Sourcing and sales worldwide, bundling of exclusive sources

R&D and Production
- Custom syntheses and research projects in our own laboratories
- Process development and manufacture from scale-up to commercial quantities in our production facilities
COMMITTEES

ORGANIZING COMMITTEE

The conference is organized by the Institute of Applied Synthetic Chemistry at the TU Wien, the Institute of Organic Chemistry at the University of Vienna and co-organized by the COST Action CHAOS (C-H Activation in Organic Synthesis).

Conference Chairs: Michael SCHNÜRCH and Nuno MAULIDE

- Heinz A. KREBS
- Marko D. MIHOVILOVIC
- Florian RUDROFF
- Christian STANETTY
- Florian UNTERSTEINER

NATIONAL SCIENTIFIC COMMITTEE

- Rolf BREINBAUER, TU Graz
- Oliver KAPPE, University of Graz
- Wolfgang KROUTIL, TU Graz
- Mario WASER, JKU Linz
- Marko D. MIHOVILOVIC, TU Wien
- Darryl MCCONNELL, Boehringer Ingelheim

PAST MEETINGS

<table>
<thead>
<tr>
<th>Code</th>
<th>Location</th>
<th>Dates</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESOC 20</td>
<td>Cologne, Germany</td>
<td>July 2-6, 2017</td>
</tr>
<tr>
<td>ESOC 19</td>
<td>Lisbon, Portugal</td>
<td>July 12-16, 2015</td>
</tr>
<tr>
<td>ESOC 18</td>
<td>Marseille, France</td>
<td>July, 07-12, 2013</td>
</tr>
<tr>
<td>ESOC 17</td>
<td>Crete Greece</td>
<td>July, 10-15, 2011</td>
</tr>
<tr>
<td>ESOC 16</td>
<td>Prague, Czech Republic</td>
<td>July 12 – 16, 2009</td>
</tr>
<tr>
<td>ESOC 15</td>
<td>Dublin, Ireland</td>
<td>July 8 – 13, 2007</td>
</tr>
<tr>
<td>ESOC 14</td>
<td>Helsinki, Finland</td>
<td>July 4 – 8, 2005</td>
</tr>
<tr>
<td>ESOC 12</td>
<td>Groningen, Netherland</td>
<td>July 13 – 18, 2001</td>
</tr>
<tr>
<td>ESOC 11</td>
<td>Goteborg, Sweden</td>
<td>July 23-28, 1999</td>
</tr>
<tr>
<td>ESOC 10</td>
<td>Basel, Switzerland</td>
<td>June 22-27, 1997</td>
</tr>
<tr>
<td>ESOC 9</td>
<td>Warszawa, Poland</td>
<td>June 18-23, 1995</td>
</tr>
<tr>
<td>ESOC 8</td>
<td>Barcelona, Spain</td>
<td>August 29 - September 3, 1993</td>
</tr>
<tr>
<td>ESOC 7</td>
<td>Namur, Belgium</td>
<td>July 15-19, 1991</td>
</tr>
<tr>
<td>ESOC 5</td>
<td>Jerusalem, Israel</td>
<td>August 30 - September 3, 1987</td>
</tr>
<tr>
<td>ESOC 4</td>
<td>Aix-en-Provence, France</td>
<td>September 2-6, 1985</td>
</tr>
<tr>
<td>ESOC 3</td>
<td>Canterbury, England</td>
<td>September 5-9, 1983</td>
</tr>
<tr>
<td>ESOC 2</td>
<td>Stresa, Italy</td>
<td>June 1-5, 1981</td>
</tr>
<tr>
<td>ESOC 1</td>
<td>Cologne, Germany</td>
<td>August 20-23, 1979</td>
</tr>
</tbody>
</table>
New ideas... complete solutions

The sustainable solutions for laboratory heating & cooling

DrySyn heating & cooling system
no oil baths
no fires

CondenSyn waterless air condensers
no water
no floods

www.asynt.com
enquiries@asynt.com

collaborate | innovate | create
SPONSORS

The organizers would like to thank the following companies for generously sponsoring this meeting:

- FCIO - Fachverband der Chemischen Industrie Österreichs
 Tokyo Chemical Industry Co., Ltd.
- Boehringer Ingelheim
- Rectorate TU Wien
- Rectorate University of Vienna
- Austrian Airlines
- European Chemical Society (EuChemS)
- Grünenthal GmbH
- Idorsia Pharmaceuticals Ltd
- Novartis AG
- Patai online
- TU Wien alumni club
- Chemical Science
- European Journal of Organic Chemistry
- Organic Chemistry Frontiers
- Molecules – Open Access Journal
- Synthetic Reaction Updates
- Organic & Biomolecular Chemistry
- Georg Thieme Verlag KG

ACKNOWLEDGEMENTS

The organizers acknowledge the support given by the TU Wien, in particular by Sabine Seidler (rector) and the University of Vienna, in particular by Heinz Engl (rector).
More productive, greener purifications

Purification is a fundamental step in drug discovery – so who's a better partner than Biotage® – the pioneers of automated Flash Purification?

Our new purification platform, Biotage® Selekt, utilises a host of ease-of-use features and a brand new modern user interface all packaged within the smallest flash system on the market.

Our new Biotage® Sfär spherical silica columns give unrivalled performance, while reducing solvent consumption, making for faster, greener purifications.

Visit our website to learn more about how Biotage® Selekt can take your laboratory to the next level in purification productivity.

selekt.biotage.com
EXHIBITORS
“Searching made simple”
GENERAL INFORMATION

CONGRESS SITE
All lectures will take place in the main lecture hall at the Congress Center (cf. Venue Map, p31).

Reed Messe Wien GmbH
Congress Center

Messeplatz 1
A-1021 Wien

INTERNET-FACILITIES
Access to the internet will be provided by Wireless Lan. Please connect to the SSID “ESOC2019”.

REGISTRATION CENTER AND INFORMATION DESK
The registration and information desk will be located near the entrance on the ground floor of the Congress Center (cf. Venue Map, p 31), with the following business hours:

- Sunday, July 14th, 14:00 to 19:00
- Monday, July 15th, 8:00 to 17:00
- Tuesday, July 16th, 8:00 to 17:00
- Wednesday, July 17th, 8:00 to 13:00
- Thursday, July 18th, 8:00 to 13:00

INSTRUCTIONS FOR SPEAKERS
Speakers are requested to hand in their final version of their lecture on electronic media the day before their session. The slide center will be located on the ground floor of the conference center (cf. Venue Map, p 31) adjacent to the registration center.

Opening hours:
- Sunday, July 14th, 14:00 to 19:00
- Monday, July 15th, 8:00 to 17:00
- Tuesday, July 16th, 8:00 to 17:00
- Wednesday, July 17th, 8:00 to 13:00
- Thursday, July 18th, 8:00 to 13:00
Dispenser, Evaporators, Hoods, Reactors, Deep Well and Filter Plates and Glass for Chemistry
INSTRUCTIONS FOR POSTER PRESENTATION

The poster boards will be positioned in the area in front of the lecture hall. They will be numbered consecutively. Authors are requested to be in front of their poster during the official poster session hours.

The official sessions for poster presentations are:
- Monday, July 15th: Poster with odd numbers (PO-1, PO-3, PO-5, ..) Posters should be mounted by Sunday evening and must be removed at the beginning of the lunch break on Tuesday at the latest
- Tuesday, July 16th: Poster with even numbers (PO-2, PO-4, PO-6, ..) Posters should be mounted during the lunch break on Tuesday and must be removed on Thursday, 3pm, at the latest.

Posters that are not removed on time will be dismounted by staff members and can be re-claimed in the Slide Center until Thursday, 4pm (however, we do not take responsibility for any damage to the posters).

POSTER PRIZES

Poster prizes will be selected by public vote (no poster committee!). You can find your personal QR voting code on your registration card. Please note that you can vote for any poster besides posters from your own institution.

The voting will be closed on Thursday, July 18th, 2pm.

If you have not installed a QR-code reader on your mobile device please visit http://esoc2019.conf.tuwien.ac.at/vote/ and enter the code by hand. Contact the slide center in any case you need help.

REGISTRATION OFFICE AND TRAVEL AGENCY

Austropa Interconvention
Verkehrsbüro Business Travel GmbH
Lasallestrasse 3
A-1020 Vienna (Austria)
Tel.: +43 1 58800 516
Fax: +43 1 58800 520
Email: esoc2019@vb-mice.at
WWW: http://www.austropa-interconvention.at/

TRANSPORTATION

The best way to travel around in Vienna is by taking advantage of the very efficient public transportation system.
Would you like to know more about Elsevier products? Then please contact us and we gladly consult with you on following topics (amongst others):

- Reaxys
- Reaxys Medicinal Chemistry
- Machine Learning – Artificial Intelligence
- and more

Contacts:
Robert Niebergall, Customer Consultant
r.niebergall@elsevier.com
+49-(0)172-7202914

Joannis Telioridis, Solution Sales Manager
j.telioridis@elsevier.com
+33-38816-1720

About Elsevier

Elsevier is a world-leading provider of information solutions that enhance the performance of science, health, and technology professionals, empowering them to make better decisions, and deliver better care.
SOCIAL PROGRAM

WELCOME MIXER
All congress participants and their accompanying persons are cordially invited to the reception on Sunday evening, July 15th, 2019, 18:45. This informal get-together will take place within the Exhibition and Lunch Area of the Conference Center (cf Venue Map, p31).

CONFERENCE DINNER
Participants will experience a memorable evening in the Viennese "Heurigen" village "Neustift am Walde". Enjoy a few hours in a warm atmosphere with music, wine and home cooked local speciality food (non-alcoholic beverages and diet food can be served as an alternative).

Busses will leave after the closing ceremony, July 18th, in front of the main entrance of the Congress Center (cf Campus Area Map, p 29).

For the return trip busses are available starting at 22:00, the last bus will depart at 23:30.

Weingut Fuhrigassl-Huber
Neustift am Walde 68
1190 Vienna

LUNCH
Lunch on Monday, Tuesday and Thursday will be offered in the Exhibition & Lunch Area. Different meals and drinks are offered as self-service buffet.

LUNCH AT “PRATER ALM”
On Wednesday, July 17th, we will invite you to a Viennese restaurant, rich in tradition and inseparably linked with the Prater. The “Prater Alm” provides a large beer garden for outdoor seating and also beautiful and rustically indoor seating options in case of bad weather. A buffet of Austrian specialties will be served on each table.

You may choose any meal and drink from the menu card. For payment please use the voucher of your registration card.

The restaurant is in walking distance (8 min) from the Conference Venue, please follow the dotted line on the Campus Area Map (p 29).

EXCURSIONS
The busses for the excursions (“Historical Vienna”, “Kahlenberg - Klosterneuburg”, or “Viennese Impressions”) will depart at 14:00 in front of the Conference Venue.

Please leave the restaurant in time (not later than 13:45) and please bring your excursion voucher with you.
EuChemS, the European Chemical Society, aims to nurture a platform for scientific discussion and to provide a single, unbiased European voice on key policy issues in chemistry and related fields.

Representing more than 160,000 chemists from more than 40 Member Societies and other chemistry related organisations, EuChemS relies on a unique network of active researchers involved in all the fields of chemistry. Through this network, EuChemS organises several specialised academic conferences as well as the biannual EuChemS Chemistry Congress, the European congress of chemical sciences. EuChemS also promotes the role and image of the chemical sciences among the general public and policy-makers through social media, newsletters and through the organisation of conferences and workshops open to the society.

Through the promotion of chemistry and by providing expert and scientific advice, EuChemS aims to take part of the solution to today’s major societal challenges.

For more information about the European Chemical Society (EuChemS), please visit www.euchems.eu or contact us at:

EuChemS aisbl
Rue du Trône 62
1050 - Brussels
Belgium

Phone: +32 2289 25 67 | +32 2289 26 90

Email: secretariat@euchems.eu

http://on.fb.me/1B8QaOn
https://twitter.com/EuCheMS
WORKSHOPS

Benchtop NMR spectroscopy: Applications in academia and industry

Wednesday, July 17, 10-12
1st Floor, room: Schubert 1-2

Benchtop NMR system has become popular analytical lab instruments in the last years. With the recent launch of the Spinsolve Ultra the magnetic field homogeneity has been improved to match a line's shape that is comparable to superconducting magnets, while the Spinsolve 80 MHz system pushes the limits in chemical shift spreading and sensitivity for a benchtop system. During the workshop an overview of applications that can be addressed with benchtop NMR systems in academic and industrial environments will be given. There is as well a live system available for practical demonstrations.

Opening the editor's black box: Insider tips for successful submissions

Wednesday, July 17, 14-16
1st Floor, room: Schubert 1-2

This workshop with Editors of Angewandte Chemie and the European Journal of Organic Chemistry is specifically tailored to the needs of master and PhD students and postdocs.

Publishing papers in reputed journals is an integral part of the research cycle. In this workshop, we will open the Editor's black box by explaining how manuscripts are processed from submission to publication. In addition, we will discuss ethical aspects of publishing and give tips on how to prepare your manuscript for submission and improve your chances for successful publication. Topics to be covered include:

How do I simplify my writing and improve the presentation of my results?
How do I choose the right journal for submission?
What do Editors and referees look for?
How do I improve the visibility of my research?
Grüenenthal
Think innovation.
Feel life.®

Grüenenthal is a global leader in pain management and related diseases. As a science-based, privately-owned pharmaceutical company, we have a long track record of bringing innovative treatments and state-of-the-art technologies to patients worldwide. Our purpose is to change lives for the better – and innovation is our passion. We are focussing all of our activities and efforts on moving towards our vision of a world free of pain.

Grüenenthal is headquartered in Aachen, Germany, and has affiliates in 30 countries across Europe, Latin America and the US. Our products are available in more than 100 countries. In 2018, Grüenenthal employed around 4,900 people and achieved sales of € 1.3 bn.

More information: www.grunenthal.com
JOB FAIR

An additional benefit introduced for the first time at ESOC 2019 is a job fair for PhD and postdoc students, where Merck Sharp & Dohme, Patheon – Part of Thermo Fisher, and Johnson & Johnson (Janssen Pharmaceutica) will conduct interviews on side. Below you find a short description of the respective companies.

The interviews will take place in the 1st floor of the conference venue in Business Lounge 1.

JANSSEN

With $76.5 billion in 2017 sales, Johnson & Johnson is the world's most comprehensive and broadly-based manufacturer of health care products, pharmaceuticals and medical devices. The Janssen Pharmaceutical Companies of Johnson & Johnson conduct research and development in a variety of therapeutic areas to discover novel therapeutic approaches to address unmet medical conditions. From heart disease to HIV, Alzheimer’s disease to cancer, we are committed to issues that touch everyone’s lives.

Our mission is to transform individual lives and fundamentally change the way diseases are managed, interpreted, and prevented. We believe that challenging something is the best way to change it. So every day, in more than 150 countries, we bring cutting-edge science and the most creative minds in the industry together to think differently about diseases. We aim not only to innovate but also to empower people with the tools they need to make informed decisions and achieve the best possible results for their health. We are looking at a future where the world of healthcare will be challenged by informed and empowered patients.

Janssen has a rich portfolio of small and large molecules, as well as vaccines, driven by strong science and innovation. Within Discovery Product Development & Manufacturing Sciences (R&D), several hundreds of scientific researchers and specialized technicians are working together to discover, develop and supply the new chemical entities for tomorrow. Join us to contribute to save people lives.

MERCK & CO

MSD is a global health care leader with a diversified portfolio of prescription medicines, vaccines and animal health products. The difference between potential and achievement lies in the spark that fuels innovation and inventiveness; this is the space where MSD has codified its
ElectraSyn 2.0
/// Take your electrochemistry to the next level

www.ika.com
legacy for over a century. MSD’s success is backed by ethical integrity, forward momentum, and an inspiring mission to achieve new milestones in global healthcare. MSD is on a quest for cures and is committed to being the world’s premier, most research-intensive biopharmaceutical company. By capitalizing on MSD’s leading discovery capabilities and world-class small molecule and biologics R&D expertise, we aim to create breakthrough science that radically changes the way we approach serious diseases.

Our organization is currently seeking exceptional chemists for positions within our discovery and process chemistry departments. The successful candidate will join multidisciplinary, highly collaborative teams to invent and manufacture novel medicines by applying innovative synthetic chemistry, analytical techniques, and data analysis. A proven track record of solving complex problems is required. Candidates must also possess strong written and oral communication skills, and the ability to work effectively in a team environment. Your role at MSD is integral to helping the world meet new breakthroughs that affect generations to come, and we’re counting on your skills and inventiveness to help make meaningful contributions to global medical advancement. At MSD, we’re inventing for life.

The MSD London Discovery Centre aims to “speed up research to slow down diseases of aging” and will be a fully integrated Drug Discovery site, translating basic science through collaboration into medicines. We are looking to identify synergies and areas of complementary disease biology with MRL US, with an initial focus on mechanisms of cell homeostasis and resilience during aging that are associated with neurodegenerative disorders. To harness new thinking in disease biology, we are establishing collaborations with UK and European researchers, and building capabilities in cell biology, target discovery and drug discovery. The MSD Chemistry team will be initially based within the Francis Crick Institute in London, an institute founded by the Medical Research Council (MRC), Cancer Research UK, Wellcome, UCL, Imperial College London and King’s College London, and dedicated to understanding the fundamental biology underlying health and disease. We are currently recruiting for Medicinal Chemistry roles at the MSD site in London, and aim to have additional recruitment opportunities as we grow the group over the coming months. The MSD team will work closely with the wider Merck network to prosecute the best science and deliver on the portfolio, harnessing the capabilities, infrastructure, technologies and experience available across the network. If you are passionate about science and want to use that to help patients, we would love to hear from you.
More science – Bursting with ideas

The purpose of Idorsia is to discover, develop, and bring more innovative medicines to patients.

www.idorsia.com
THERMO FISHER SCIENTIFIC

Thermo Fisher Scientific is the world leader in serving science, generating more than $24 billion in annual revenue. Customers worldwide trust our products and services to help them accelerate innovation and enhance productivity. Together, we are advancing science to make a real difference. We do that by providing an unmatched combination of innovative technologies, purchasing convenience and comprehensive support through these and other product and service brands:

As part of Thermo Fisher Scientific’s fast-growing Pharma Services business, the Linz, Austria team features more than 750 colleagues, including 100 R&D professionals, dedicated to customized manufacturing of active ingredients (APIs) in all phases for emerging and global pharmaceutical clients.

All our scientists hold a PhD or PostDoc in Organic Chemistry. Most likely, you would start your professional career in our R&D team as a Process Chemist. In this role, you are responsible for the planning and execution of laboratory syntheses, as well as their smooth scale-up from the laboratory to large-scale production. This makes you an important interface between internal and external stakeholders.

At Thermo Fisher Scientific, each one of our 70,000 extraordinary minds has a unique story to tell. Join us and contribute to our singular mission—enabling our customers to make the world healthier, cleaner and safer.
Never Wait for Your NMR Spectra

80 MHz Spinsolve yields high quality spectra in your lab & ensures immediate NMR results

Proton, Carbon, Phosphorus and Fluorine options. 1D & 2D sequences

+49 241 92787270
sales@magritek.com
go.magritek.com/80
A Congress Venue (Messeplatz 1)
 Lecture Hall
B Departure for Conference Dinner on Thursday
C "Prater Alm" – Lunch on Wednesday
D Wiener Riesenrad – Giant Ferris Wheel
E “Praterstern”
 Railway and Underground Station
F Hotel Courtyard Marriott
G Underground Station purple line
 U2 – Messe
H Underground Station purple line
 U2 – Krieau

dotted line:
 way from from the the Conference Center to “Prater Alm” for lunch
Molecules (ISSN 1420-3049, CODEN: MOLEFW) provides an advanced forum for science of chemistry and all interfacing disciplines. The aim is to provide rigorous peer review and enable rapid publication of cutting-edge research to educate and inspire the scientific community worldwide. The Impact Factor for Molecules is 3.098 (2017 Journal Citation Reports® Science Edition, Clarivate Analytics, 2018).

34.6 days
average publication time in 2018

31 days
median publication time in 2018

13.6 days
submission to first decision provided to authors

4.7 days
acceptance to publication

The scope of Molecules includes (but are not limited to):

Organic Chemistry
Natural Products Chemistry
Medicinal Chemistry
Computational and Theoretical Chemistry
Green Chemistry
Photochemistry
Bioorganic Chemistry
Organometallic Chemistry
Inorganic Chemistry
Physical Chemistry
Analytical Chemistry
Nanochemistry
Chemical Biology
Materials Chemistry
Electrochemistry
Macromolecular Chemistry
A top quality Electronic Laboratory Notebook

10 REASONS TO LOOK NO FURTHER

1. Designed, developed, and tested by scientists
2. Web-based, no IT infrastructure required
3. Analytical data integration using the power of Mnova
4. More than 2,500 compounds in a preloaded database, with H&S sheets
5. User-configurable stockroom to locate your chemicals
6. Integrated compound and supplier inventory
7. Same responsive support and innovation services as Mnova
8. Open data export
9. Easily integrates with third party applications
10. Suitable for research and manufacturing

Intuitive

- Streamlined user interface
- Defined user’s roles
 - Group Manager
 - Project Manager
 - Bench Chemist
 - Administrator
 - Guest
- Simple chemistry workflow
 - Projects
 - Reactions
 - Experiments
- Automated or customized reports (pdf)

Chemistry centered

- Designed by chemists for chemists
- Analytical data integration
 - Process
 - Analyze
 - Store
 - Review and interact
- Integrated chemical compound database
- Embedded molecular sketcher
- Stoichiometric calculations done for you

Seamless collaboration

- Powerful searching tool (by structure and text)
- Cloud hosted solution with in-house option
- In-app messaging system
- No installation is required
- Automatic updates and maintenance
- Flexible architecture to customize yours needs
- Experiment supervision (witnessing and approval)
<table>
<thead>
<tr>
<th>Time</th>
<th>Sunday July 14</th>
<th>Monday July 15</th>
<th>Tuesday July 16</th>
<th>Wednesday July 17</th>
<th>Thursday July 18</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00</td>
<td>Opening</td>
<td>PL-3 K. Itami</td>
<td>PL-6 L. Gooßen</td>
<td>PL-9 V. Gouverneur</td>
<td>PL-10 R. Sülsmuth</td>
</tr>
<tr>
<td>10:00</td>
<td>IL-1 M. Stepen</td>
<td>IL-5 J. Roithova</td>
<td>IL-9 A. Hirsch</td>
<td>IL-11 R. Amir</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coffee Break</td>
<td>Coffee Break</td>
<td>Coffee Break</td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td>11:00</td>
<td>IL-2 Th. Magauer</td>
<td>IL-6 M.D. Smith</td>
<td>IL-10 M. Oestreich</td>
<td>IL-12 T. Besset</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OC-1 E. Wellin</td>
<td>OC-7 T. Akiyama</td>
<td>OC-13 Y. Takemoto</td>
<td>OC-18 A. Spilman</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OC-2 S. Coote</td>
<td>OC-8 Chr.J. Whiteoak</td>
<td>OC-14 D. Katsyev</td>
<td>OC-19 D.B. Wier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OC-3 R. Pollice</td>
<td>OC-9 J. Deska</td>
<td>OC-15 M.J. Fink</td>
<td>OC-20 C. Townley</td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td>OC-4 A. Gollner</td>
<td>OC-10 D. Kananovich</td>
<td>OC-16 V. Pace</td>
<td>OC-21 A. Giosello</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OC-5 D. Kolarzki</td>
<td>OC-11 G. Guru Rucheter</td>
<td>OC-17 M. Zanini</td>
<td>OC-22 A. Abell</td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
<td>Lunch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lunch @ Prateralm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td>IL-3 J. Campos</td>
<td>IL-7 S. Sattin</td>
<td>IL-13 T.R. Skydstrup</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td>Registration</td>
<td>Coffee Break</td>
<td>Coffee Break</td>
<td>OC-25 R. Greensaw</td>
<td>Coffee Break</td>
</tr>
<tr>
<td></td>
<td>OC-6 L. Capdevila</td>
<td>OC-12 P. Poeschauer</td>
<td></td>
<td>OC-26 H. Valkenier</td>
<td></td>
</tr>
<tr>
<td>16:00</td>
<td>PL-5 Th. Bach</td>
<td>PL-8 J. Sutherland</td>
<td>Excursion & Job Fair</td>
<td>OC-27 M. Lazzarotto</td>
<td>OC-28 A. Quinzavalla</td>
</tr>
<tr>
<td></td>
<td>PL-4 D. Chusov</td>
<td>IL-8 S. Reisman (M. Feul Awardee)</td>
<td></td>
<td></td>
<td>IL-14 A. Zografos</td>
</tr>
<tr>
<td>17:00</td>
<td>Opening</td>
<td>PL-1 Sir J.F. Stoddart</td>
<td>PL-11 P. Melchiorre</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PL-2 A. Fürstner (Patai Lecture)</td>
<td>Poster Session odd numbers</td>
<td>Poster Session even numbers</td>
<td>ESOC2021 OC/Poster Prizes Final Remarks</td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td>Welcome Reception</td>
<td>Speakers Dinner</td>
<td></td>
<td>Conference Dinner „Heuriger“</td>
<td></td>
</tr>
<tr>
<td>19:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21:00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Michael Stanek, Ph.D.
VP Business Management,
API Global Pharma Services
Linz, Austria

Find more at: thermofer.com/pathton

DELFERED
WITH
COMPASSION AND CHEMISTRY

AS A POWERFUL ORDER MANUFACTURER, WE NEVER LOSE SIGHT OF EMPLOYEE INVESTMENT.

For many companies, time and money are at the top of the agenda. At Thermo Fisher Scientific, we are aware that the stakes are much higher. The ideas and developments of our customers and employees influence the lives of many people. That is why we combine sophisticated scientific and technical strategies with industry-leading experience, and above all, our passion to make a difference.

Millions of patients are waiting every day for new treatments, medicines, and agents - and this is where our work begins. At the location in Linz, we specialize in process development and manufacturing of customized active ingredients that are an essential part of pharmaceutical production services. Our customers are global key players in pharmacy. More than 750 employees make a significant contribution to making this world healthier every day.

© 2019 Thermo Fisher Scientific Inc. All rights reserved.
Session Overview

ESOC 2019

Palm House

Located in the garden of Schloss Schönbrunn (built in 1881)
WIE BLUMEN LÄNGER FRISCH BLEIBEN?

Es gibt für alles eine Formel.

diechemie.at
Session overview

Sunday, July 14

17:00 Opening Ceremony

Chair: Nuno Maulide

17:15 Sir J.F. Stoddart
Northwestern University, Illinois, United States
PL-1 sponsored by FCIO

RADICAL CHEMISTRY IN THE DESIGN AND SYNTHESIS OF ARTIFICIAL MOLECULAR MACHINES

Chair: Ilan Marek

Patai-Rappoport Lecture

18:00 Alois Fürstner
Max-Planck-Institut für Kohleforschung, Mülheim/Ruhr, Germany
PL-2

SURPRISES WITH ALKYNES: A NEW REACTIVITY PARADIGM AND ITS APPLICATIONS

18:45 Welcome Reception

Monday, July 15

08:30 Opening

Chair: Nuno Maulide

09:00 Kenichiro Itami
Nagoya University, Nagoya, Japan
PL-3 sponsored by TCI

MAKING NEW FORMS OF NANOCARBONS

Chair: Wolfgang Kroutil

09:45 Marcin Stępień
University of Wroclaw, Wroclaw, Poland
IL-1

DONOR–ACCEPTOR OLIGOPYRROLES

10:15 Coffee Break sponsored by TCI

10:45 Thomas Magauer
University of Innsbruck, Innsbruck, Austria
IL-2

TOTAL SYNTHESIS OF POLYCYCLIC NATURAL PRODUCTS

11:15 Eric Welin
California Institute of Technology, Pasadena, USA
OC-1

CONCISE TOTAL SYNTHESES OF (−)-JORUNNAMYCIN A AND (−)-JORUMYCIN ENABLED BY ASYMMETRIC CATALYSIS
<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Title</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:30</td>
<td>Susannah Coote</td>
<td>4-π-PHOTOCYCLISATION OF DIHYDROPYRIDAZINES: ACCESS TO VERSATILE BICYCLIC DIAZETIDINES</td>
<td>Lancaster University, Bailrigg, UK</td>
</tr>
<tr>
<td>11:45</td>
<td>Robert Pollice</td>
<td>REACTION PROGRESS KINETIC ANALYSIS BY DIRECT ANALYSIS OF CONCENTRATION-TIME PROFILES</td>
<td>ETH Zürich, Zürich, Switzerland</td>
</tr>
<tr>
<td>12:00</td>
<td>Andreas Gollner</td>
<td>SEQUENTIAL MULTI-BOND FORMING REACTIONS APPLIED TO THE SYNTHESIS OF CONFORMATIONALLY RESTRICTED MDM2-p53 INHIBITORS SUITABLE FOR INTERMITTENT DOSING</td>
<td>Boehringer Ingelheim RCV GmbH and Co KG, Vienna, Austria</td>
</tr>
<tr>
<td>12:15</td>
<td>Dušan Kolarski</td>
<td>CONTROLLING THE CIRCADIAN CLOCK WITH HIGH TEMPORAL RESOLUTION THROUGH PHOTODOSIMETRY</td>
<td>University of Groningen, Groningen, The Netherlands</td>
</tr>
<tr>
<td>12:30</td>
<td></td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td>Jesús Campos</td>
<td>INTERACTION VS. FRUSTRATION IN BIMETALLIC COOPERATIVE SYSTEMS</td>
<td>Universidad de Sevilla, Sevilla, Spain</td>
</tr>
<tr>
<td>14:30</td>
<td>Syuzanna R. Harutyunyan</td>
<td>LEWIS ACID ENABLED NOVEL REACTIVITIES IN ASYMMETRIC COPPER CATALYSIS</td>
<td>University of Groningen, Groningen, The Netherlands</td>
</tr>
<tr>
<td>15:15</td>
<td></td>
<td>Coffee Break</td>
<td></td>
</tr>
<tr>
<td>15:45</td>
<td>Lorena Capdevila</td>
<td>CHEMO-DIVERGENT NICKEL(0)-CATALYZED ARENE C-F ACTIVATION WITH ALKynes: UNPRECEDENTED DOUBLE-INSERTION</td>
<td>Universitat de Girona, Girona, Spain</td>
</tr>
<tr>
<td>16:00</td>
<td>Thorsten Bach</td>
<td>ENANTIOSELECTIVE CATALYSIS OF PHOTOCHEMICAL REACTIONS</td>
<td>Technical University Munich, Garching, Germany</td>
</tr>
<tr>
<td>16:45</td>
<td>Denis Chusov</td>
<td>STRATEGY FOR SELECTIVE REDUCTIVE ADDITION</td>
<td>Russian Academy of Sciences, Moscow, Russia</td>
</tr>
<tr>
<td>17:15</td>
<td></td>
<td>Poster Session 1 odd numbers</td>
<td></td>
</tr>
</tbody>
</table>
Inspiring advances in organic chemistry

High level research for a broad audience

Our flagship journal

Chemical Science
Publishing significant findings in all areas of chemistry, this is an essential journal for readers around the world.

Free to read, and free to publish in, with no article processing charge.

[rsc.li/chemical-science]

Specialist and significant

Organic & Biomolecular Chemistry
A journal for rapid publication of organic synthesis, supramolecular chemistry, chemical biology and more.

[rsc.li/obc]

Organic Chemistry Frontiers
The international, high impact journal for cutting-edge research from all disciplines of organic chemistry. Co-owned with the Chinese Chemical Society, published in collaboration with the Shanghai Institute of Organic Chemistry (SIOC).

[rsc.li/frontiers-organic]

Primary source updates

Synthetic Reaction Updates
This literature updating service keeps you aware of recent developments and the latest transformations in chemical synthesis.

[rsc.li/synthetic-reaction-updates]
Tuesday, July 16

COST – Sessions Day

Chair: Michael Schnürch

09:00 Lukas Gooßen
PL-6
Ruhr-Universität Bochum, Bochum, Germany
CARBOXYLATES AS DIRECTING AND LEAVING GROUPS IN CATALYTIC BOND FORMATION

09:45 Jana Roithova
IL-5
Radboud University, Nijmegen, The Netherlands
TRAPPING OF REACTIVE INTERMEDIATES

10:15 Coffee Break sponsored by TCI

Chair: John Sutherland

10:45 Martin D. Smith
IL-6
University of Oxford, Oxford, UK
COUNTER-ION MEDIATED APPROACHES TO CONTROLLING AXIAL CHIRALITY

11:15 Takahiko Akiyama
OC-7
Gakushuin University, Tokyo, Japan
ENANTIOSELECTIVE FRIEDEL-CRAFTS ALKYLATION REACTION OF TRIFLUOROMETHYLATED N-H KETIMINE WITH HETEROARENES BY MEANS OF CHIRAL PHOSPHORIC ACID

11:30 Christopher J. Whiteoak
OC-8
Sheffield Hallam University, Sheffield, UK
ACCESS TO UNUSUAL HETEROCYCLIC COMPOUNDS UTILIZING A KEY COBALT-CATALYZED C-H FUNCTIONALIZATION APPROACH

11:45 Jan Deska
OC-9
Aalto University, Espoo, Finland
THE HUNT FOR ARTIFICIAL REACTIVITIES IN BIOCATALYSIS: FUNGAL COPPER-DEPENDENT METALLOPROTEINS AS MEDIATORS FOR PERICYCLIC REACTIONS

12:00 Dzmitry Kananovich
OC-10
Tallinn University of Technology, Tallinn, Estonia
QUEST FOR ASYMMETRIC KULINKOVICH REACTION: FROM MECHANISM TOWARDS ENHANCED ENANTIOSELECTIVITY

12:15 Olga García Mancheño
OC-11
University of Münster, Münster, Germany
RATIONAL DESIGN OF NEW, MORE POTENT ACRIDINIUM VISIBLE LIGHT ORGANO-PHOTOCATALYSTS BY C-H FUNCTIONALIZATION

12:30 Lunch
Labortechnik, die Sie unterstützt

Entdecken Sie leistungstarke, zuverlässige Funktionen.

Vakuumpumpen und Systeme
Flüssigkeitspumpen
Rotationsverdampfer

www.schmachtl.at
Tuesday, July 16

COST – Sessions Day

Chair: Adrian Minaard

14:00 Sara Sattin
Università degli Studi di Milano, Milan, Italy
TARGETING BACTERIAL PERSISTERS IN THE POST-ANTIBIOTIC ERA

14:30 Phil S. Baran
Scripps Research, La Jolla, USA
TRANSLATIONAL CHEMISTRY

15:15 Coffee Break

Chair: Rolf Breinbauer and Florian Rudroff

15:45 Peter Poechlauer
Thermo Fisher Scientific, Linz, Austria
DEVELOPMENT AND SCALE-UP OF CONTINUOUS FLOW PROCESSES FOR THE MANUFACTURE OF ACTIVE PHARMACEUTICAL INGREDIENTS

16:00 John D. Sutherland
MRC Laboratory of Molecular Biology, Cambridge, UK
ORIGINS OF LIFE SYSTEMS CHEMISTRY

Dr. Margaret Faul Award for Women in Chemistry

16:45 Sarah E. Reisman
California Institute of Technology, Pasadena, USA
NECESSITY IS THE MOTHER OF INVENTION: NATURAL PRODUCTS AND THE CHEMISTRY THEY INSPIRE

17:15 Poster Session 2 even numbers
MEET THE WATERS ACQUITY QDa DETECTOR

for easy and small scale purification and collection of your samples

www.waters.com

©2019 Waters Corporation. Waters and The Science of What’s Possible are trademarks of Waters Corporation.
Wednesday, July 17

Chair: Marko Mihovilovic

09:00 Véronique Gouverneur
University of Oxford, Oxford, UK

FLUORINE CHEMISTRY FOR APPLICATIONS IN MEDICINE

09:45 Anna K.H. Hirsch
Saarland University, Saarbrücken, Germany

DISCOVERY OF THE FIRST ANTIBACTERIAL AGENT INHIBITING THE ENERGY-COUPLING FACTOR (ECF) TRANSPORTERS BY STRUCTURE-BASED VIRTUAL SCREENING

10:15 **Coffee Break** sponsored by Boehringer Ingelheim

Chair: Véronique Gouverneur

10:45 Martin Oestreich
Technische Universität Berlin, Berlin, Germany

TRANSFER OF REACTIVE GASES FROM ONE MOLECULE TO ANOTHER

11:15 Yoshiji Takemoto
Kyoto University, Kyoto, Japan

TOTAL SYNTHESIS OF AVENAOL VIA ASYMMETRIC O-ALKYLATION USING CHIRAL AMMONIUM SALT

11:30 Dmitry Katayev
Swiss Federal Institute of Technology, Zürich, Switzerland

N-NITROHETEROCYCLES: EASILY ACCESSIBLE, BENCH-STABLE AND BROADLY APPLICABLE NITRATING REAGENTS

11:45 Michael J. Fink
Harvard University, Cambridge, USA

STORAGE OF INFORMATION USING SMALL ORGANIC MOLECULES

12:00 Vittorio Pace
University of Vienna, Vienna, Austria

DESIGNING NEW SYNTHETIC CONCEPTS FOR IMPARTING MOLECULAR COMPLEXITY WITH C-1 SOURCES

12:15 Margherita Zanini
Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain

GOLD-CATALYZED CROSS-COUPLING-TYPE REACTION OF Bromoalkynes WITH ALLYLISILANES THROUGH A CONCEALED REARRANGEMENT

12:30 **Lunch @Prater Alm**

14:00 **Excursion and Job Fair**
SAVE 20% ON WILEY BOOKS

Visit wiley.com using promo code C2020 to save 20% off* these titles and more!

*Discount valid until 18th August 2019

The Nature of the Mechanical Bond: From Molecules to Machines
Carson J. Bruns, J. Fraser Stoddart
ISBN 978-1-119-04400-0
December 2016

Organic Chemistry: Theory, Reactivity and Mechanisms in Modern Synthesis
Pierre Vogel, Kendall N. Houk
ISBN 978-3-527-34532-8
July 2019

The Organometallic Chemistry of the Transition Metals, 7th Edition
Robert H. Crabtree
ISBN 978-1-119-46588-1
August 2019

COMING SOON…
Modern Organosilicon Chemistry: Novel Approaches and Reactions
Tamejiro Hiyama, Martin Oestreich
ISBN 978-3-527-34453-6
October 2019

Enter our Prize Draw!

Complete our short questionnaire on Organic Reaction Mechanisms, an annual literature review series surveying the main classes of organic reaction mechanisms, for your chance to win $250 worth of Wiley books*.

Visit http://bit.ly/ORMsurvey and complete the questionnaire by 4th August, 2019 to be entered into our free prize draw and download your free eSampler featuring key content from the Organic Reaction Mechanisms Series.

*Terms and Conditions apply

Wiley is proud to sponsor the Patai-Rappoport Lecture at ESOC!

Patai’s Chemistry of Functional Groups covers all aspects of the chemistry of functional groups.

Visit wileyonlinelibrary.com/ref/patai to browse topics, table of contents and download free sample articles.

For more information on how Wiley can help you build your skills, visit our Professional Sciences Resource page. www.wiley.com/learn/professionalscience
Thursday, July 18

Chair: Mario Waser

<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Institution</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00</td>
<td>Roderich D. Süßmuth</td>
<td>Technical University of Berlin, Berlin, Germany</td>
<td>PEPTIDE DRUGS FROM NATURE – STRUCTURAL AND (BIO)SYNTHETIC ASPECTS OF NEW ANTIBIOTICS</td>
</tr>
<tr>
<td>09:45</td>
<td>Roey Amir</td>
<td>Tel-Aviv University, Tel-Aviv, Israel</td>
<td>THE FINE BALANCE BETWEEN STABILITY AND ENZYMATIC DEGRADABILITY OF POLYMERIC CARRIERS - THE IMPORTANCE OF MOLECULAR PRECISION</td>
</tr>
<tr>
<td>10:15</td>
<td>Coffee Break</td>
<td></td>
<td>sponsored by TU Wien</td>
</tr>
<tr>
<td>10:45</td>
<td>Tatiana Besset</td>
<td>Normandie Université, Rouen, France</td>
<td>RECENT ADVANCES TO ACCESS FLUORINATED SCAFFOLDS</td>
</tr>
<tr>
<td>11:15</td>
<td>Alex Szpilman</td>
<td>Ariel University, Ariel, Israel</td>
<td>NOVEL REACTIONS VIA ELECTROPHILIC ENOLONIUM SPECIES</td>
</tr>
<tr>
<td>11:30</td>
<td>Daniel B. Werz</td>
<td>TU Braunschweig, Braunschweig, Germany</td>
<td>SYNERGISTIC CATALYSIS IN DONOR-ACCEPTOR CYCLOPROPANE CHEMISTRY</td>
</tr>
<tr>
<td>11:45</td>
<td>Chloe Townley</td>
<td>University of Leeds, Leeds, United Kingdom</td>
<td>A TOP-DOWN APPROACH TO DIVERSE LEAD-LIKE SCAFFOLDS</td>
</tr>
<tr>
<td>12:00</td>
<td>Antimo Gioiello</td>
<td>Universita di Perugia, Perugia, Italy</td>
<td>EXPANDING THE BILE ACID CHEMICAL SPACE: SYNTHETIC STRATEGIES FOR LEAD DISCOVERY AND DEVELOPMENT</td>
</tr>
<tr>
<td>12:15</td>
<td>Andrew Abell</td>
<td>University of Adelaide, Adelaide, Australia</td>
<td>THE SYNTHESIS AND OPTIMISATION OF NEW ANTIBIOTICS</td>
</tr>
<tr>
<td>12:30</td>
<td>Lunch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Unsere Chemikalien-Marken: Qualität aus eigener Produktion
Thursday, July 18

Chair: Roderich Süßmuth

<table>
<thead>
<tr>
<th>Time</th>
<th>Presenter</th>
<th>Title</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:00</td>
<td>Troels Skrydstrup</td>
<td>RECENT DEVELOPMENTS IN LOW PRESSURE CARBONYLATIONS</td>
<td>Aarhus University, Aarhus, Denmark</td>
</tr>
<tr>
<td>14:30</td>
<td>Davide Audisio</td>
<td>DYNAMIC CARBON ISOTOPE EXCHANGE OF PHARMACEUTICALS WITH LABELED CO₂</td>
<td>Université Paris-Saclay, Gif-sur-Yvette, France</td>
</tr>
<tr>
<td>14:45</td>
<td>Josep Cornella</td>
<td>LOW-VALENT Bi(I)→Bi(III) REDOX CATALYSIS</td>
<td>Max-Planck-Institut für Kohleforschung, Mülheim/Ruhr, Germany</td>
</tr>
<tr>
<td>15:00</td>
<td>Rebecca Greenaway</td>
<td>HYBRID DISCOVERY WORKFLOW FOR ORGANIC MATERIALS AND SUPRAMOLECULAR SELF-ASSEMBLIES</td>
<td>University of Liverpool, Liverpool, United Kingdom</td>
</tr>
<tr>
<td>15:15</td>
<td>Coffee Break</td>
<td>sponsored by University of Vienna</td>
<td></td>
</tr>
<tr>
<td>15:45</td>
<td>Hennie Valkenier</td>
<td>MACROCYCLIC ANION CARRIERS</td>
<td>Université libre de Bruxelles, Bruxelles, Belgium</td>
</tr>
<tr>
<td>16:00</td>
<td>Mattia Lazzarotto</td>
<td>ORGANO- AND BIOCATALYSIS FOR LIGNAN NATURAL PRODUCT SYNTHESIS</td>
<td>University of Graz, Graz, Austria</td>
</tr>
<tr>
<td>16:15</td>
<td>Arianna Quintavalla</td>
<td>1,2-DIOXANES AS POTENTIAL ANTI-LEISHMANIAL DRUGS</td>
<td>University of Bologna, Bologna, Italy</td>
</tr>
<tr>
<td>16:30</td>
<td>Alexandros Zografos</td>
<td>DIVERGENT SYNTHESIS OF NATURAL SESQUITERPENE LACTONES: ONE PLAN, MANY PITFALLS TO AVOID</td>
<td>Aristotle University of Thessaloniki, Thessaloniki, Greece</td>
</tr>
<tr>
<td>17:00</td>
<td>Paolo Melchiorre</td>
<td>ORGANIC SYNTHESIS IN THE EXCITED STATE</td>
<td>Institut Català d’Investigació Química (ICIQ), Tarragona, Spain</td>
</tr>
<tr>
<td>17:15</td>
<td>Closing Ceremony</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:30</td>
<td>Conference Dinner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Publish your Chemistry research with us

Aiming to give you the best publishing experience at every step of your research career

- Personalized support of editors and reviewers who add value by working closely with authors to improve their papers
- Fast and high quality service with close attention to detail
- Wide and established readership which ensures that your research reaches the greatest possible audience

Find out more about our Chemistry programme: springer.com/gp/chemistry
Plenary Lectures

Johann Strauss Monument

Johann Strauss (Son, 1825-1899), Austrian composer
RADICAL CHEMISTRY IN THE DESIGN AND SYNTHESIS OF ARTIFICIAL MOLECULAR MACHINES

Sir James Fraser Stoddart

Northwestern University, Department of Chemistry, Evanston, IL 60208, USA

Sir James Fraser Stoddart works in the area of supramolecular chemistry and nanotechnology. Stoddart has developed highly efficient syntheses of mechanically-interlocked molecular architectures such as molecular Borromean rings, catenanes and rotaxanes utilizing molecular recognition and molecular self-assembly processes. He has demonstrated that these topologies can be employed as molecular switches. His group has even applied these structures in the fabrication of nanoelectronic devices and nanoelectromechanical systems (NEMS).

Stoddart shared the Nobel Prize in Chemistry together with Ben Feringa and Jean-Pierre Sauvage in 2016 for the design and synthesis of molecular machines. [1]

SURPRISES WITH ALKYNES:
A NEW REACTIVITY PARADIGM AND ITS APPLICATIONS

Alois Fürstner

Max-Planck-Institut für Kohlenforschung, Mülheim/Ruhr, Germany
fuerstner@kofo.mpg.de

Metal catalyzed hydrogenation reactions invariably result in cis-delivery of the two H-atoms of H₂ to the π-bond of a given substrate. This canonical course, however, is violated in reactions of internal alkynes catalyzed with [Cp*Ru]-based complexes, which afford E-alkenes by direct trans-hydrogenation. Connected to this unorthodox transformation is an even more surprising reactivity mode, in which both H-atoms of H₂ are delivered to one and the same C-atom of the triple bond with concomitant formation of discrete metal carbene complexes; such geminal hydrogenation of stable carbogenic compounds is without precedent.

In this lecture I intend to describe the current state of the art and summarize our growing mechanistic understanding [1]. At the same time, it will be shown that trans-hydrogenation is by no means a singularity: rather, the underlying principle is also manifest in trans-hydroboration, trans-hydrosilylation and trans-hydrostannination reactions. These transformations are particularly robust and functional group tolerant and have already stood the test of natural product synthesis. A few selected examples will be presented to showcase scope and limitations of this novel catalytic reactivity paradigm.

MAKING NEW FORMS OF NANOCARBONS

Kenichiro Itami

aInstitute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya 464-8602, Japan
bDepartment of Chemistry, Nagoya University, Nagoya 464-8602, Japan
cJST-ERATO Itami Molecular Nanocarbon Project, Nagoya 464-8602, Japan

Our group is trying to create a range of structurally uniform nanocarbons of fundamental and practical importance by bottom-up chemical synthesis (Nature Rev. Mater. 2016). Representative achievements include: (1) the development of single-step aromatic π-extension (APEX) methods for the rapid and programmable synthesis of nanocarbon molecules (Science 2018, Nature Commun. 2015, Nature Chem. 2015); (2) the synthesis of carbon nanorings, nanobelts and pure nanotubes (ACIE 2009, Science 2017, Nature Chem. 2013, Nature Commun. 2018); (3) the first precision synthesis of graphene nanoribbons controlling width, edge structure, and even length (Nature, in press); and (4) the synthesis of topologically unique nanocarbons such as warped nanographenes, carbon nanocages, all-benzene catenanes, and trefoil knots (Nature Chem. 2013, etc).

In this talk, most recent beautiful molecular nanocarbons as well as our recently initiated nanocarbon biology project will be presented.
Our research program [1-7] is aimed at the development of novel catalysis concepts for the asymmetric synthesis of chiral functional molecules. In 2011 we introduced an entirely new role for Cu(I)-based catalysts, facilitating highly enantioselective carbon-carbon bond forming reactions between organometallics and enolisable carbonyl as well as imine compounds. Following this initial discovery, we established Cu(I)-catalysis, in combination with Lewis acids/Grignard reagent, as a powerful tool to tackle the reactivity of inherently unreactive substrates for carbon-carbon bond forming reactions. In this lecture I will focus on how we can use these concepts to access valuable chiral heteroarenes and amides, as well as tertiary alcohols and amines, in catalytic and enantioselective fashion. Recent results involving Lewis acid strategy that enabled dearomatisations as well as tackling the reactivity of unprotected carboxylic acids will also be presented.
The creation of chirality is one of the most fundamental challenges in synthetic organic chemistry. Our group has worked for some time on enantioselective catalytic photochemical reactions [1] mediated by triplet energy transfer and by chromophore activation. The first approach is based on a triplet energy transfer by chiral hydrogen-bonding catalysts [2] which in turn are derived from a previously described template. The second approach relies on the use of Brønsted or Lewis acids which change the photophysical properties of the chromophore [3] and ideally allow for a selective excitation in the chiral environment they provide. Beyond [2+2] photocycloaddition chemistry, our studies are directed towards photochemical rearrangement and deracemization reactions with a potential for synthetic applications. The background of the above-mentioned experiments will be discussed and the latest results of our research efforts in this area will be presented.

CARBOXYLATES AS DIRECTING AND LEAVING GROUPS IN CATALYTIC BOND FORMATION

Lukas J. Gooßen, G. Zhang, A. Biafora, L. Huang, Y. Gao

Ruhr-Universität Bochum, Lehrstuhl für Organische Chemie I, Bochum, Germany
lukas.goossen@rub.de

Carboxylic acids are versatile substrates for catalytic C-C and C-X bond formations.[1] A new concept is the use of carboxylates as deciduous directing groups, which stay in place just long enough to direct a C–H functionalization reaction into a specific position and are shed tracelessly as soon as the new C–C or C–heteroatom bond has formed.

In the carboxylate-directed, Ag/Cu-catalyzed C–H alkoxylation,[2] an alkoxide group is introduced selectively in the ortho position of aromatic carboxylates. The new substituent destabilizes the C–COOH bond to an extent that swift protodecarboxylation occurs, precluding further substitution of the second ortho-C–H bond. A similar reaction concept is utilized in a Ru-catalyzed decarboxylative hydroarylation of alkynes with formation of vinyl arenes[3] and a regiospecific synthesis of 1,1-disubstituted alkenes from α,β-unsaturated carboxylic acids.[4] In the presence of a Rh/In catalyst, benzoic acids react with α,β-unsaturated ketones with formation of two new C–C bonds along with the selective cleavage of non-activated C–H, CO–OH and C–COR bonds to give indanones.[5]

There can be no more noble undertaking than the invention of medicines. Chemists that make up the engine of drug discovery are facing incredible pressure to do more with less in a highly restrictive and regulated process that is destined for failure more than 95% of the time. How can academic chemists working on natural products help these heroes of drug discovery – those in the pharmaceutical industry? With selected examples from our lab and others, this talk will focus on that question highlighting interesting findings in fundamental chemistry and new approaches to scalable chemical synthesis.

How can chemistry morph into biology? This is the key question about the origin of life, be it on our planet several billion years ago, or elsewhere and so we need to think about chemistry in the context of planetary science if we want to know where we came from and whether or not we are likely to be alone in the Universe.

The chemistry used by biology to fabricate its various components is by and large hopelessly inefficient in the absence of enzyme catalysts, so we need to look for different chemistry that can make the same componentry efficiently without enzymes. But where do we look?

One approach is to guess at the environment and then use laboratory simulation to investigate its chemistry. The problem with this is the guesswork – there were presumably many different environments on early Earth and it is not obvious what chemistry they might be associated with. An alternative approach is to explore chemistry in a pretty much unconstrained way to try and find out if all the molecules needed to kick-start biology can be made under similar conditions from plausible feedstocks. If they can and the conditions required correspond to a particular environment on early Earth then that environment is strongly implicated and can further guide chemical investigations. In this lecture, I will present the results of this latter approach and demonstrate how hellish conditions on Hadean-Archean Earth could have set the stage for the transition from chemistry to biology.
The invention of chemical reactions to create fluorine-containing molecules is an important aspect of modern medicine. Positron Emission Tomography (PET) with short-lived \(^{18}\text{F}\)-radiotracers is an imaging modality that can diagnose diseases, and monitor how patients respond to therapy. Moreover, the stable isotope \(^{19}\text{F}\) is commonly used in drug discovery to identify lead molecules and improve their properties. In this lecture, we will provide an overview of the key reactions we have developed to advance fluorine-based medicine, a rewarding process that has enhanced our fundamental understanding of fluorine chemistry, more specifically fluoride reactivity.
PEPTIDE DRUGS FROM NATURE – STRUCTURAL AND (BIO)SYNTHETIC ASPECTS OF NEW ANTIBIOTICS

Roderich D. Süssmuth

Institut für Chemie, Strasse des 17. Juni 124, Technische Universität Berlin, 10623 Berlin, Germany

Recently, peptides have gained increased interest as drugs, since they display properties which are unmet by small molecules or biologics. In nature, ribosomal (RiPPs) [1] and non-ribosomal peptides (NRPs) [2] from bacteria and fungi provide an enormous structural diversity which is linked to remarkable bioactivities, e.g. antibacterial, antifungal, anticancer and others. Next to classical screening approaches, the discovery of new bioactive peptides from nature meantime has embraced genome mining.

The lecture presents recent findings on the discovery, structure elucidation and biosynthesis of new peptide natural products with the potential to be developed as antibacterial drugs. These are the lipolanthines [3] and albicidin [4, 5], unusual RiPP and NRP structures with a remarkable activity against multi-resistant Gram-positive and Gram-negative bacteria of the ESKAPE-group. Furthermore, we will report on the biosynthetic and synthetic assembly of these compounds, as well as bioactivity and resistance mechanisms. In addition, the past years have seen an enormous progress in the understanding of biosynthetic assembly, e.g. unexpected biosynthetic findings for peptide backbone N-methylation [6], which also could impact the engineering and (re)design of structural diversity e.g. by combinatorial biosynthesis approaches.

ORGANIC SYNTHESIS IN THE EXCITED STATE

Paolo Melchiorre

ICIQ - Institute of Chemical Research of Catalonia, Avinguda Països Catalans, 16
43007 (Tarragona, Spain)

pmelchiorre@iciq.es

The chemical reactivity of electronically excited molecules differs fundamentally from that in the ground state. This is the underlying reactivity concept of photochemistry,[1] which has traditionally allowed the development of unique chemical transformations not achievable via conventional ground-state pathways.[2] For example, an excited-state molecule is both a better electron-donor (i.e. a better reductant) and electron-acceptor (i.e. a better oxidant) than in the ground state. This explains why the light excitation of organic molecules can unlock unconventional reactivity manifolds. In this context, our laboratory has been exploring the potential of some organocatalytic intermediates to directly reach an electronically excited state upon visible-light absorption to then switch on novel catalytic functions unavailable to ground-state organocatalysis.[3] Here, the new synthetic possibilities, opened up by the excited-state reactivity of organocatalytic intermediates,[4] will be discussed.[5]

[5] Acknowledgement: Research supported by MINECO (project CTQ2013-45938-P), and the European Research Council (ERC 681840 - CATA-LUX).
Invited Lectures

ESOC 2019

St. Stephen’s Cathedral
Vienna’s landmark
Systematic tuning of optical bandgaps in organic molecules can be achieved by homologation (oligomerization) of linear π-conjugated motifs, by ring expansion of π-conjugated macrocycles, and by extension of fused ring systems in two dimensions. A complementary approach relies on combining donor and acceptor (D–A) moieties, with diverse recent applications in small-molecule and polymer chemistry. The D–A paradigm is particularly suitable for the development of tunable building blocks, which can be constructed by judicious merging of existing electron-deficient and electron-rich motifs. A simple and potentially productive design of such a hybrid structure is achieved by combining naphthalenemonoimide (NMI, red) and pyrrole (blue), as shown below [1,2]. We will discuss the application of such pyrroles as building blocks for the synthesis of diverse polycyclic aromatics, including macrocycles [2], nanographenoids [3,4], and bipyrroles [5,6], some of which are characterized by persistent helicene-like chirality. These systems reveal rich redox chemistry, spanning multiple oxidation levels, as well as tunable optical signatures extending into the near infrared.

TOTAL SYNTHESIS OF POLYCYCLIC NATURAL PRODUCTS

Thomas Magauer, Matthias Schmid, Franz L. Haut, Christoph Habiger, Lukas Wein, Gabriele Prina Cerai, Christian Steinborn, Julian Feilner, Lukáš Maier, Kevin Sokol, Sofia Torres Venegas and Ivica Zamarija

Institute of Organic Chemistry, University of Innsbruck, 6020 Innsbruck, Austria

Natural products constitute a vast and largely unexplored library of complex molecular architectures, and are a fundamental source for novel bioactive agents. However, the complex architecture of these molecules often prevent their application in medicinal chemistry. For us, this is an inspiration to think about innovative retrosynthetic bond disconnections which enable rapid access to the target compounds. We want to discover, design and develop powerful transformations such as cationic cyclizations and ring-expansions and apply them to the synthesis of biologically relevant complex natural products and simplified analogs thereof. The goal of these projects is to shed light on proposed biosynthetic processes, to identify new molecular targets and ultimately provide new lead compounds for the treatment of human diseases.
INTERACTION VS. FRUSTRATION IN BIMETALLIC COOPERATIVE SYSTEMS

Jesús Campos

In the early 80s Chisholm proposed that “all the types of reactions which have been studied for mononuclear transition metal complexes will also occur for dinuclear transition metal complexes”.\[1\] Almost 40 years later, continued research on the area of bimetallic systems has proven that claimed and gone beyond. Regarding catalytic applications, there are many important transformations that require the concerted action of pairs of active metal sites, paralleling what is often found in metalloenzymes. We recently started to investigate late-transition bimetallic systems characterized by the use of novel sterically hindered phosphine ligands, which has allowed us to kinetically stabilize many uncommon low-coordinated structures.\[2\] In the last two years, we have focused on the competition between the formation of M-M bonds versus M···M frustration and investigated the reactivity derived from a variety of bimetallic systems, an example of which is depicted in the Figure below.\[3\] Our results pertaining their reactivity and potential in catalysis will be discussed.

STRATEGY FOR SELECTIVE REDUCTIVE ADDITION

Denis Chusova, Oleg I. Afanasyeva, Sofiya Runikhinaa, Olga Chusovab,
Alexei Tsygankova, Ekaterina Kuchuka, Evgeniya Podyachevaa

aA.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
bRUDN University, 6 Miklukho-Maklaya Street, Moscow 117198, Russia
Denis.chusov@gmail.com

Herein we present the concept of using carbon monoxide for atom economical reductive addition without external hydrogen source [1-9]. Following this concept, we have shown that N-H, O-H and C-H bonds of the reagents could be used as hydrogen source. The process proceeds with high selectivity. Such approach can widely use for synthesis of heterocycles.

This work was supported by Russian Foundation for Basic Research (18-33-20065) and the RUDN “5-100” program.
TRAPPING OF REACTIVE INTERMEDIATES

Jana Roithová

Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

Identification of reactive intermediates is the key step towards understanding chemical reactions. Often, controversies exist about reaction mechanisms, about the nature of rate-determining transition states or about the role of intermediates. We are developing methods to identify the intermediates and to investigate their structure. We are using mass spectrometry which is a unique method among other analytical techniques in its sensitivity and thus in detection of low abundant species in an ionic form. We trap these ions and study their properties by infrared and visible photodissociation spectroscopy. This techniques allows us to investigate, for example, highly reactive metal complexes or elusive intermediates in organic reactions or short lived intermediates in photocatalytic reactions. I will show and discuss examples of trapping elusive intermediates in phosphate chemistry and in flavinium-catalyzed photooxidation reactions.
Counter-ions affect both the reactivity and selectivity of anionic reactions. In this lecture I will describe my group’s work on counter-ion-directed cyclization and mechanism and demonstrate how lessons learned in this area can be applied in the development of new enantioselective methods, with a particular focus on controlling axial chirality.[2-5]

Extension of this chemistry to complexity-generating reactions will also be outlined.

TARGETING BACTERIAL PERSISTERS IN THE POST-ANTIBIOTIC ERA

Sara Sattin

Department of Chemistry, Università degli Studi di Milano, via Golgi, 19, 20133, Milan, Italy

Persister cells[1] are a dormant bacterial phenotype temporary tolerant to antibiotic treatment; this distinctive trait distinguishes them from well-known genetically resistant variants, and hints their role in chronic and recurrent infections. Inhibition of the intracellular accumulation of guanosine tetra- or pentaphosphate ((p)ppGpp), the triggering event of the signalling cascade that allows bacteria to activate this phenotypic switch (i.e. the stringent response), may prevent the insurgence of persisters and therefore the incomplete sterilization that is often responsible of relapsing infections[2].

In particular, we aim to interfere with (p)ppGpp production by gaining control of the key upstream regulatory proteins RSH (RelA/SpoT-Homologue superfamily, a.k.a. Rel). To this end, we are adopting a multidisciplinary approach, comprising computational studies,[3] synthesis[4] and ligand-protein interaction assays. Our recent insights into the many facets of this problem will be presented.

NECESSITY IS THE MOTHER OF INVENTION: NATURAL PRODUCTS AND THE CHEMISTRY THEY INSPIRE

Sarah E. Reisman

California Institute of Technology
Division of Chemistry and Chemical Engineering
1200 E. California Blvd, MC 101-20, Pasadena CA 91125
reisman@caltech.edu

The chemical synthesis of natural products provides an exciting platform from which to conduct fundamental research in chemistry and biology. Our group is currently pursuing the synthesis of a number of structurally complex natural products, including the diterpenoids perseanol and talatisamine. The densely-packed arrays of heteroatoms and stereogenic centers that constitute these polycyclic targets challenge the limits of current technology and inspire the development of new synthetic strategies and tactics. This seminar will describe the latest progress in our methodological and target-directed synthesis endeavors.
DISCOVERY OF THE FIRST ANTIBACTERIAL AGENT INHIBITING THE ENERGY-COUPLING FACTOR (ECF) TRANSPORTERS BY STRUCTURE-BASED VIRTUAL SCREENING

Anna K. H. Hirsch

Helmholtz Institute for Pharmaceutical Research (HIPS) – Helmholtz Centre for Infection Research (HZI), Department for Drug Design and Optimization and Department of Pharmacy, Saarland University, Campus Building E 8.1, D-66123, Saarbrücken, Germany

The emergence of drug resistance against important pathogens poses an ever-growing health threat. The pipeline of novel drug candidates should be filled with molecules featuring an unprecedented mode of action and a novel chemical structure. We tackle both challenges by adopting several established and unprecedented hit-identification strategies such as structure-based design, virtual screening and dynamic combinatorial chemistry\(^1\) on an unexplored anti-infective target.\(^2\) ECF transporters are a class of ATP-binding cassette (ABC) transporters that mediate the uptake of vitamins in prokaryotes. They consist of an energizing module and a substrate-binding protein (S-component). Different S-components can interact with the same energizing module.\(^3\)

We embarked on a structure based drug design (SBDD) of thiamine analogue as binders of the integral membrane protein ThiT, the S-component for thiamine. We designed and synthesized thiamine analogues in order to elucidate the mechanism of substrate binding and transport. The new compounds bind with high affinity to ThiT (\(K_d = 4–660\) nM) and the predicted binding mode was confirmed by co-crystallization studies.\(^4,5\)

A structure-based virtual screening campaign afforded the first allosteric inhibitors of the transporter for folate.\(^6\) We synthesized a series of derivatives that display good \textit{in vitro} activity, excellent ADMET properties and antibacterial activity (MIC = 4 M) against a range of pathogenic Gram positive bacteria (\textit{Staphylococcus aureus, Enterococcus faecium} and \textit{Streptococcus pneumoniae}).\(^7\) A pharmacokinetic study showed them to be present in plasma at high concentration. Thus, the inhibitors constitute an excellent starting point for the development of novel antibiotics and are currently being investigated in an \textit{in vivo} infection model.\(^7\)

TRANSFER OF REACTIVE GASES FROM ONE MOLECULE TO ANOTHER

Martin Oestreich

Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany

This talk tells the story of how our work on tamed silicon cations [1–3] led us to introduce the new concept of ionic transfer hydrosilylation [4], even with monosilane [5]! The electron-deficient boron Lewis acid tris(pentafluorophenyl)borane catalyzes the release of hydrosilanes from cyclohexa-2,5-dien-1-yl-substituted silanes. The same boron catalyst will then activate the Si–H bond for the reaction with representative π- and σ-donating substrates. The net transformation is a transfer hydrosilylation. That strategy also enables the related hydrogenation [6] and even transfer hydrocyanation [7], and has been extended to Brønsted acid-catalyzed transfer hydrohalogenation processes [8].

![Concept of cyclohexadiene-based ionic transfer reactions](image)

(El = electrofuge and Nu = nucleofuge)

THE FINE BALANCE BETWEEN STABILITY AND ENZYMATIC DEGRADABILITY OF POLYMERIC CARRIERS – THE IMPORTANCE OF MOLECULAR PRECISION

Roey J. Amira,b,c

aDepartment of Organic Chemistry, School of Chemistry
bThe Tel Aviv University Center for Nanoscience and Nanotechnology
cThe Blavatnik Center for Drug Discovery, Tel-Aviv University, Tel-Aviv 6997801, Israel

Deep understanding of the factors that define the stability and degradability of polymeric assemblies is crucial for the development of biodegradable materials for biomedical applications ranging from drug delivery systems to tissue engineering. The poor accessibility of lipophilic substrates that may be hidden inside hydrophobic domains to the degrading enzymes seems to be one of the key parameters that determine enzymatic degradability. In the past several years, we designed and synthesized well-defined amphiphilic PEG-dendron hybrids with enzymatically cleavable hydrophobic end-groups. The high molecular precision of the hydrophobic dendritic block, enabled us to observe how precise minor changes of the hydrophobic blocks significantly affect the stability and degradation rates of polymeric assemblies [1]. Furthermore, we demonstrated that the micellar stability in serum may result in different internalization mechanism of the polymeric assemblies into living cells [2].

Our results strongly imply that the enzymatic degradation of polymeric amphiphiles occurs at their monomeric state outside of the micelle through the micelle-monomer exchange. This equilibrium-based mechanism may explain the poor degradability that is often reported for many polymeric assemblies. Based on our molecular understanding, we recently started to design novel multi-responsive polymeric assemblies that can overcome the challenge of designing stable and yet enzymatically degradable polymeric assemblies [3].

RECENT ADVANCES TO ACCESS FLUORINATED SCAFFOLDS

Tatiana Besset

Normandie Univ, INSA Rouen UNIROUEN, CNRS, COBRA (UMR 6014), 76000 Rouen, France

Over the last years, the organofluorine research field has known a fast expansion, [1] as shown by the plethora of pharmaceuticals and agrochemicals containing at least one fluorine atom [2]. Consequently, a special attention was paid to the development of modern strategies in organofluorine chemistry. Besides, transition metal catalyzed direct C-H bond functionalization has known tremendous progress over the last decade allowing new retrosynthetic disconnections and innovative approaches [3]. In that context, we focused on the development of new methodologies to introduce fluorinated groups onto molecules based on the combination of organofluorine chemistry and transition metal catalyzed C-H bond functionalization. Besides, a special attention was paid to the design of original electrophilic reagents [4].

RECENT DEVELOPMENTS IN LOW PRESSURE CARBONYLATIONS

Troels Skrydstrup

Carbon Dioxide Activation Center, Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark

Carbon monoxide (CO) represents an important C1 building block for the construction of some of the most fundamental chemical functionalities carrying a carbon-oxygen single or double bond. Transition metal catalysis plays a key role in promoting such transformations with CO. We have earlier shown that the combination of palladium catalysis with CO releasing molecules and the two-chamber reactor, COware, provides both a convenient and safe means for performing traditional but low pressure Pd-catalyzed carbonylative couplings, and a platform for discovering new carbonylation reactions and carbon isotope labeling techniques [1–3]. In this talk, I provide a short overview of our latest findings in this area, but also discuss our efforts to develop viable Ni-mediated carbonylations with alkyl substrates [4].

\[\text{CO} (1.5 \text{ equiv.}) \]

\[R' \text{M} \]

\[R'' \text{X} \]

\[\text{Ni}^{II} \text{Cl} \]

\[\text{NR}_2 \text{(cat.)} \]

\[\text{DBU} \]

\[\text{Ni}^{II} \text{Cl} \]

\[\text{NR}_2 \text{(cat.)} \]

\[\text{CO} (1.5 \text{ equiv.}) \]

\[R'' \text{X} \]

\[\text{Ni(COD)}_2 \]

\[\text{Ts} \]

\[\text{NH} \]

\[\text{O} \]

\[13\text{CO} \text{(1.5 equiv.)} \]

from Si13COgen

\[R'' \text{X} \]

\[\text{Ts} \]

\[\text{NH} \]

\[\text{O} \]

\[13\text{CO} \text{(1.5 equiv.)} \]

from 13COgen

\[R'' \text{X} \]

\[\text{DBU} \]

\[\text{Ni(COD)}_2 \]

\[\text{Ts} \]

\[\text{NH} \]

\[\text{O} \]

\[13\text{CO} \text{(1.5 equiv.)} \]

from 13COgen

DIVERGENT SYNTHESIS OF NATURAL SESQUITERPENE LACTONES: ONE PLAN, MANY PITFALLS TO AVOID

Alexandros L. Zografos

Aristotle University of Thessaloniki, Department of Chemistry, Laboratory of Organic Chemistry, University Campus, Thessaloniki, 54124, Greece
alzograf@chem.auth.gr - http://users.auth.gr/~alzograf/index.htm

The emergence of preparing diverse natural product scaffolds is firmly associated with the need of our society for more potent and selective biomodulators. In response, nowadays, divergent synthesis utilizing common synthetic scaffolds that can be readily transformed to an array of diverse natural compounds is progressively gaining ground in drug discovery.\(^1\) The lecture will focus on drawbacks and solutions towards the development of a unified synthetic plan for accessing highly cytotoxic sesquiterpene lactones.\(^2\)\(^-\)\(^4\)

![Diagram]

Oral Contributions

ESOC 2019

Vienna State Opera
First major building on the Vienna Ringstrasse, completed in 1869
The bis-tetrahydroisoquinoline (bis-THIQ) natural products have been studied intensively over the past four decades for their exceptionally potent anticancer activity, in addition to strong Gram-positive and Gram-negative antibiotic character. Synthetic strategies toward these complex polycyclic compounds have relied heavily on electrophilic aromatic chemistry, such as the Pictet–Spengler reaction, that mimics their biosynthetic pathways. Herein, we report an approach to two bis-THIQ natural products, jorunnamycin A and jorumycin, that instead harnesses the power of modern transition-metal catalysis for the three major bond-forming events and proceeds with high efficiency (15 and 16 steps, respectively). By breaking from biomimicry, this strategy allows for the preparation of a more diverse set of nonnatural analogs.
4-π-PHOTOCYCLISATION OF DIHYDROPYRIDAZINES: ACCESS TO VERSATILE BICYCLIC DIAZETIDINES

Thomas K. Brittena, Susannah C. Cootea, Paul D. Kemmittb and Nathan R. Halcovitcha

aDepartment of Chemistry, Lancaster University, Bailrigg, LA1 4YB, UK
bOncology, IMED Biotech Unit, AstraZeneca, Cambridge, CB10 1XL, UK

Despite their utility in a wide variety of applications, the synthesis of four-membered carbo/heterocycles is often difficult, especially if specific substituent patterns are required. Recently, we have shown that bicyclic diazetidines 2 can be easily accessed on multigram scale through the 4-π-photocyclisation of 1,2-dihydropyridazines 1 \cite{1,2}, an intriguing reaction that has been studied only sporadically since its first introduction in 1968 \cite{3}. Bicyclic diazetidines 2 are highly strained but bench-stable, and are not only interesting target molecules in themselves but also valuable synthetic intermediates – the straightforward conversion of 2 to a variety of novel building blocks (examples given in the scheme below) will be presented.

\begin{center}
\begin{tikzpicture}
\end{tikzpicture}
\end{center}

\begin{thebibliography}{9}
\end{thebibliography}
REACTION PROGRESS KINETIC ANALYSIS BY DIRECT ANALYSIS OF CONCENTRATION-TIME PROFILES

Robert Pollice
Laboratorium für Organische Chemie, ETH Zürich, 8093, Switzerland

The rapid development of analytical methods have rendered reaction-monitoring to obtain kinetic data a routine step in the development of new chemical reactions and the study of reaction mechanisms. However, analysis and interpretation of kinetic profiles have not enjoyed a parallel development. Only in recent years, with the advent of the Reaction Progress Kinetic Analysis (RPKA) model, introduced by Blackmond, the systematic use of the wealth of information available from kinetic profiles has become commonplace [1]. Recently, Burés furthered the approach by introducing Time Normalization Analysis (TNA) [2,3], which utilizes concentration-time data directly, instead of rate-time data, to determine partial reaction orders of reactions. However, still not all the information contained in kinetic profiles is utilized. Additionally, most of the current analysis methods are not suitable for automatic analysis required for high-throughput experimentation in machine-driven laboratories as they require significant human intervention. Herein, we report on a new general method, which we term Order Fitting Analysis (OFA), to analyze full concentration-time profiles of chemical reactions and extract information regarding the reaction order with respect to substrates, the presence of multiple kinetic regimes, and the presence of kinetic complexities, such as catalyst deactivation, product inhibition, and substrate decomposition. Being in its essence a simple nonlinear fitting approach, it has the potential to be straightforwardly implemented in automated high-throughput kinetic analysis procedures.

MDM2 is a main and direct inhibitor of the crucial tumor suppressor p53. Reports from initial clinical trials showed that blocking this interaction with an inhibitor can be of great value in the treatment of p53 wild-type tumors. Dose-limiting hematological toxicities and drug-induced resistance have been identified as main issues in the clinic. We aimed for an inhibitor with superior potency and pharmacokinetic properties to ultimately achieve full efficacy with less-frequent dosing schedules.

The discovery and optimization of novel, chemically stable spiro-oxindole compounds that are not prone to epimerization as observed for other MDM2-p53 inhibitors will be presented. Structure based optimization accompanied by conformational restriction served as guiding optimization principal and led to complex fused ring systems. The complex structures were prepared efficiently by the application of various multi-bond forming reactions (e.g.: cycloadditions, reductive cyclisation cascades, Davis-Beirut reactions) to enable accelerated optimization. In vivo efficacy in disease relevant xenograft models even when given as low single doses will be presented exemplified by the development candidate BI-0282.

CONTROLLING THE CIRCADIAN CLOCK WITH HIGH TEMPORAL RESOLUTION THROUGH PHOTODOSIMETRY

D. Kolarska, A. Sugiyama, G. Breton, C. Rakers, A. Schulte, F. Tama, K. Itami, W. Szymanska, T. Hirota, and B. L. Feringa*

aCentre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
bInstitute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8601, Japan
cDepartment of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St, MSB 4.216, 77030 Houston, US
dGraduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
eUniversity Medical Center Groningen, Department of Radiology, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands

Inspired by the crucial role of circadian clock disruption in disease development,[1] during the last decade chemical biology studied how to adjust cellular clocks using small molecule modifiers.[2] Unfortunately, these modifiers are still facing a big drawback when in vivo application is needed: due to the similarity in cellular regulation of clocks, besides curing the disrupted biological rhythm they would affect all the others, healthy rhythms in other cells. To overcome this problem, a potential strategy would be photocaging - based on the regulation of a compound’s bioactivity with light, which can be delivered precisely in space and time.[3]

Here, we show for the first time the possibility to control the circadian rhythm with high temporal resolution. Lengthening of the circadian period was achieved in mammalian cells, tissue, and zebrafish just by choosing an interval of visible light irradiation (400 nm) in order to release longdaysin – a known CKI inhibitor and compound that exhibits a drastic effect on the circadian period.[4]

![Scheme 1](image.png)

Scheme 1. a) Photo-deprotection of the protected longdaysin; b) correlation diagram of period lengthening, concentration, and light exposure time in cells and tissue explant.

Fluorinated compounds are key structural moieties in numerous areas of chemistry, with applications to catalysis, medicine and material sciences.[1] The introduction of fluorinated motifs changes properties of a given molecule, and in the pharmaceutical industry context, improves the stability and lifetime of F-containing pharmaceuticals. However, the stability is often too pronounced and the lead compound is frequently poorly biodegradable. Therefore, it is furthermore desirable to develop new sustainable methods for the functionalization of aromatic C-F bonds, as a useful strategy to establish novel chemical transformation of aryl fluorides. Transition metal-catalyzed Ar–F functionalization is considerably more challenging than classical Ar–H or Ar–Hal (Hal = I, Br, Cl) activation, generally showing low selectivities and requiring electronically biased polyfluorinated substrates.[2] In particular, C–C formation reaction via C–F cleavage of fluoroarenes using nickel catalyst has been reported using activated aryl nucleophiles, such as highly reactive Grignard reagents, zincates and boronic acids as the coupling partner for C–C formation via transmetallation [3]. Herein we show Nickel-catalyzed C–F activations enabled chemo-divergent C–C formation with alkynes by chelation assistance. The judicious choice of the alkynes electronic properties thus allowed the selective synthesis of alkyne mono-annulation or double-insertion aromatic homologation products. A key unprecedented 9-membered nickelocyclic intermediate species was isolated and crystalized, unravelling the mechanistic pathway to the aromatic homologation product by challenging double C-F/C-H activation.

Construction of α-trifluoromethylated amines in optically pure form is one of the important topics of research interest because of its interesting biological activity. Nucleophilic addition to N-protected trifluoromethylated ketimine, and subsequent deprotection of the N-protecting group will furnish α-trifluoromethylated N-free amines.\(^\text{[1]}\) Trifluoromethylated N-H ketimine is known to be relatively stable among N-H ketimines. Nucleophilic addition toward trifluoromethyl N-H ketimine will provide a straightforward method for the preparation of α-trifluoromethylated N-free amines because deprotection of the N-protecting group is obviated. As part of our continued interest in the chiral phosphoric acid catalysis, we investigated Friedel-Crafts alkylation reaction of heteroarenes, such as indole and pyrrole, with trifluoromethylated N-H ketimines by means of chiral phosphoric acid. Corresponding α-trifluoromethylated amines were obtained in good yields and with good to excellent enantioselectivity (Schemes 1 and 2)\(^\text{[1]}\). Interestingly, N-PMP (\(p\)-methoxyphenyl) substituted ketimine did not participate in the reaction and the corresponding N-PMP amine was not obtained (Scheme 3). It was found that N-H ketimines are more reactive than N-PMP ketimine.

ACCESS TO UNUSUAL HETEROCYCLIC COMPOUNDS UTILIZING A KEY COBALT-CATALYZED C-H FUNCTIONALIZATION APPROACH

Christopher J. Whiteoak, Alex Hamilton, and Paula Chirila

Bimolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, UK

Since the publication of Matsunaga and Kanai in 2013 demonstrating the potential of Cp*Co[III]-type catalysts in C-H functionalization protocols[1], the field has rapidly expanded and engaged the interest of a large number of researchers[2]. In general, these reports can be divided into two key areas; (a) linear couplings and (b) new/efficient routes to heterocycle formation. The latter of these areas is of significant interest as most of the small molecule drugs approved by the FDA in 2017 contained complex heterocyclic motifs[3] and as a result novel, improved methods for their synthesis is likely to be an important innovation. In this context, we have engaged in the use of Cp*Co[III] catalysts, with readily available benzamide substrates, for the preparation of some more unusual heterocyclic compounds through either a cascade reaction[4] or a two-step sequential one-pot protocol[5] using C-H functionalization as the key step in both cases. In addition to these synthetic results, studies of their mechanisms using DFT have revealed key aspects of the catalytic cycles, allowing for a fuller understanding of the observed selectivities and reactivities. In summary, this contribution showcases the potential for rapidly building up molecular complexity exploiting efficient and sustainable first-row transition metal catalysis as the key tool.

Biocatalysis is increasingly gaining ground as a powerful module in the organic chemist's toolbox for the synthesis of well-defined building blocks, thanks to unrivalled selectivities and good availability of stable and optimized enzyme preparations. The lack of biosynthetic precedence for numerous synthetically relevant reactions and the consequent lack of biocatalysts to promote those reactions need to be considered a major drawback, since this prevents an even broader application of enzyme catalysts in classical synthetic chemistry. For many years, catalytic promiscuity, the enzymes' capability to catalyze fundamentally different chemical interconversions, has been in the scientific focus,[1] however, just recently entirely abiotic transformations came within reach by means of specialized, evolved proteins.[2-4]

In our search of biological catalysts with abilities to address synthetically important reactions beyond the biosynthetic repertoire, various wild-type metalloenzymes were identified as effective promoters in a range of unnatural transformations for the synthesis of O-heterocyclic compounds.[5-7] In this presentation, our most recent discoveries exploiting copper-proteins will be disclosed that emerged as versatile biocatalysts in pericyclic reactions. On one side, copper-dependent oligosaccharide-degrading oxidoreductases are introduced as powerful mediators in sigmatropic rearrangements enabling the preparation of complex tetrahydrofurans in high stereoselectivities.[8] Moreover, the synthesis of stereodefined N-heterocycles by means of blue multicopper enzymes through ene-type rearrangements will be discussed.

QUEST FOR ASYMMETRIC KULINKOVICH REACTION: FROM MECHANISM TOWARDS ENHANCED ENANTIOSELECTIVITY

Maryia Barysevicha,b, Marharyta Iskryka,b, and Dzmitry Kananovichb

aInstitute of Bioorganic Chemistry, National Academy of Science of Belarus, 220141, Minsk, Belarus
bDepartment of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia

Discovery of titanium-catalyzed cyclopropanation of carboxylic esters in the late 1980s by the group of Kulinkovich commenced the era of titanacyclopropanes in organic synthesis. Despite the high synthetic value of the Kulinkovich reaction and its congeners, asymmetric version remains an unsolved challenge. The latest advances were possible due to ingenious insight that pentacoordinated titanium ate complexes, rather than tetracoordinated titanium species, mediate the process \cite{1}. Mechanistic and solution NMR studies strongly support the idea of ate complex intermediates as a prerequisite of high enantiocontrol, while degradation of ate species result in dramatic erosion of enantioselectivity. Based on these findings, an improved protocol has been development for asymmetric Kulinkovich reaction, allowing preparation of (1S,2S)-cyclopropanols with up to 90\% ee by using titanium (4R,5R)-TADDOLates. Expansion of the same methodology to hydroxycyclopropanation of prochiral olefins via a more convenient olefin ligand exchange method will be also presented \cite{2}.

\begin{equation}
R^2\text{C}═\text{C}-(\text{CH}_2)\text{CCl}_2\text{Br}, \quad \{\text{TADDOL} \}_\text{Ti}(\text{Oi-Pr})_2
\end{equation}

\begin{equation}
R^1\text{C}═\text{C}-(\text{CH}_2)\text{CCl}_2\text{Br}, \quad \{\text{TADDOL} \}_\text{Ti}(\text{Oi-Pr})_2
\end{equation}

\begin{equation}
\text{up to 84\% ee}
\end{equation}

\begin{equation}
\text{up to 90\% ee}
\end{equation}

\begin{equation}
\text{titanacyclopropane ate complex}
\end{equation}

\begin{equation}
\text{titanacyclopropane ate complex}
\end{equation}

RATIONAL DESIGN OF NEW, MORE POTENT ACRIDINIUM VISIBLE LIGHT ORGANO-PHOTOCATALYSTS BY C-H FUNCTIONALIZATION

O. Garcia Mancheño

Münster University, Organic Chemistry Institute, Corrensstr. 40, 48149 Münster, Germany

In recent years, visible-light organo-photoredox catalysis was found as a valid and potent alternative for the commonly used photoredox catalysts based on ruthenium and iridinium complexes.[1] In this regard, the acridinium-based photoredox catalysts have attracted a vast interest, especially in the form of the corresponding 9-mesityl derivatives.[2] Indeed, from the pioneering work of Fukuzumi and co-workers,[2a] the 9-mesityl N-methyl acridinium salt was found as one of the most powerful photoredox catalysts. However, it still presents substantial reactivity and stability limitations, for which more stable and active structures are needed. Aiming at solving some of the current limitations, and based on our expertise in acridane oxidative Csp3-H functionalization,[3] we have developed an innovative one-pot strategy towards C9-substituted acridinium salts, in which an oxidative Ugi-type process is involved as key step.[4]

We present herein a new class of easily tunable acridine-based structures with enhanced photoredox catalytic activity respect to the well-established C9-mesityl acridinium salt.[4] Various applications in photoredox-catalysis will be presented.[4][5] Moreover, based on DFT-calculations, fluorescence and quenching studies, the reasons of their superior performance are unveiled and discussed.

DEVELOPMENT AND SCALE-UP OF CONTINUOUS FLOW PROCESSES FOR THE MANUFACTURE OF ACTIVE PHARMACEUTICAL INGREDIENTS.

Paul Kohls, Peter Poechlauer, Christian Schuster, Maria Vasiloiu
Thermo Fisher Scientific, Linz, Austria

An increasing fraction of new „small molecule“ active pharmaceutical ingredients (APIs) is discovered by small companies that focus on library synthesis and screening. The actual synthesis development, manufacturing and formulation is done by “custom development and manufacturing organizations” (CDMOs). Patheon, part of Thermo Fisher Scientific is among the biggest CDMOs worldwide.

Synthetic routes used in library synthesis are designed to allow for maximum substrate variability, but not for scalability and efficiency. Our first task as a CDMO is to scout for a synthetic route that can be developed into an efficient and reliable large-scale process: We investigate and compare details of the chemistry, the kinetics and thermodynamics of candidate routes and develop options to scale up the selected reaction sequence.

The lecture focuses on

• Criteria to select routes for scale-up, based on safety, materials efficiency and product quality.
• Ways to develop such routes into reliable processes using state-of-the-art process technology and analytics.

We pay specific attention to the development and application of continuous flow processes and their role in pharmaceutical manufacturing. Several large-scale examples have demonstrated the virtues of continuous processing in this field. Here we give examples to illustrate our way of identifying, developing and implementing continuous flow processes to render processes scalable and safe even if they require extreme process conditions such as low temperatures.

We give details on the chemistry, our considerations on analytics, on suitable reactors, and on options and methods for continuous improvement of such processes, with a focus on the multidisciplinary nature of such development tasks.
TOTAL SYNTHESIS OF AVENAOL VIA ASYMMETRIC O-ALKYULATION USING CHIRAL AMMONIUM SALT

Motohiro Yasui, Ayano Yamada, Chihiro Tsukano, and Yoshiji Takemoto

Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

Strigolactones (SLs) constitute a new class of plant hormones of increasing importance in plant science. Avenaol, isolated from the allelopathic plant black oat, is the first C20 germination stimulant related to SLs, and consists of a bicyclo[4.1.0]heptanone skeleton containing a cyclopropane ring bearing three main chains projecting in the same direction. We have completed the first total synthesis of (±)-avenaol using a robust strategy involving the formation of an all-cis-substituted cyclopropane via an alkylidenecyclopropane [1]. The key factors in the success of the synthesis include the Rh-catalysed intramolecular cyclopropanation of allene (1→2), an Ir-catalysed diastereoselective double-bond isomerization (3→4), and the differentiation of two prochiral hydroxymethyl groups (5→6). Furthermore, we have explored the enantioselective O-alkylation of enols with racemic chloro butenolide 8 using chiral PTC-1. The application of this method to racemic synthetic intermediate 7 successfully provides optically active avenaol via 2’-acetal 9 [2]. This study confirms the proposed structure of avenaol, including its unique all-cis-substituted cyclopropane moiety.

N-NITROHETEROCYCLES: EASILY ACCESSIBLE, BENCH-STABLE AND BROADLY APPLICABLE NITRATING REAGENTS

Dmitry Katayev

Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, 8059 Zürich, Switzerland

Nitro compounds are essential constituents of drugs and intermediates in the synthesis of biorelevant molecules, agrochemicals and materials. The most frequently exploited synthetic method for the nitration of various C–H bonds involves the use of a mixture of concentrated nitric and sulphuric acid. The methodology is limited in its application in the synthesis of complex molecules, since such harsh conditions do not tolerate acid-sensitive functionalities, and results in numerous by-products. Herein, we report the design, synthesis and applications of one of the first, bench-stable non-metal based, organic nitrating reagents, which can be prepared from cheap, commercially available chemicals in one-step on a large scale [1]. These reagents act as a controllable source of both the nitronium ion using Lewis acid catalysis and the nitryl radical species using photoredox catalysis. In the first case, broad range of Lewis acids were found to be efficient catalysts to promote an electrophilic nitration through the direct or ipso-substitution reaction of aromatic and heteroaromatic compounds. Due to the reagent’s excellent reactivity and the very mild and neutral conditions of methods, reactions exhibit an unprecedentedly broad substrate scope, and were successfully used for the nitration of various pharmaceuticals and biorelevant molecules. Furthermore, a single-electron reduction enables the formation of NO₂ radicals in a controlled and selective fashion under visible-light photocatalytic conditions, allowing access to nitrated molecules such as nitroolefins, β-nitrohydrines and 3-acylisoxazoles [2].

Digital information grows exponentially, while societal requirements and individual desires to store it for long times do not subside. Current technology creates an increasingly large burden in power consumption and other efforts required to keep information intact over long periods of time at low cost (e.g., spinning hard disks in idle, refrigerating and copying magnetic tapes every few years). We have developed a fundamentally new concept to store digital information, using mixtures of small molecules. The presence or absence of a readily available, stable, low-molecular-weight organic compound (MolBit) in a mixture indicates a “1” or “0” in a string of binary digits, and a molecular property (e.g., mass) determines the sequence of information. The mixtures are stored as arrayed spots on metallic or polymeric surfaces. Using a library of 32 oligopeptides for a demonstration, we have encoded, written, stored, and read a total of approximately 400 kilobits (with greater than 99% recovery of information, written at 8 bits/s, read at 20 bits/s). We project that MolBits are as stable as, but 10⁶-fold more efficient in cost and writing speed than DNA-based storage and can plausibly be scaled to write terabytes per day.
DESIGNING NEW SYNTHETIC CONCEPTS FOR IMPARTING MOLECULAR COMPLEXITY WITH C-1 SOURCES

Vittorio Pace

Department of Pharmaceutical Chemistry, University of Vienna, Althanstrasse 14, 1090 Vienna (Austria).
vittorio.pace@univie.ac.at - https://drugsynthesis.univie.ac.at

The direct transfer of a reactive nucleophilic CH₂X unit into an existing linkage enables the formal introduction of the moiety with the precisely defined degree of functionalization. Upon the fine tuning of the reaction conditions governing the transformation, the initial homologation event can serve as the manifold for triggering unusual rearrangement sequences leading to complex architectures through a unique synthetic operation. The direct – full chemoselective - conversion of a ketone into the homologated all-carbon quaternary aldehyde (via a)² and, the telescoped homologation of imine-surrogates to quaternary aziridines (via b)³ will illustrate these unprecedented concepts. Additionally, the one-step mono-fluoromethylation of carbon electrophiles with extremely labile fluoromethylolithium reagents will provide a novel entry to valuable fluorinated building-blocks without the needing of using protecting elements for fluoro-containing carbanions (via c).⁴

GOLD-CATALYZED CROSS-COUPLING-TYPE REACTION OF BROMOALKYNES WITH ALLYLSILANES THROUGH A CONCEALED REARRANGEMENT

Margherita Zanini,a,b M. Elena de Orbe,a,b Ophélie Quinonero,a and Antonio M. Echavarren,a,b

a Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
b Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, C/Marcel·li Domingo s/n, 43007 Tarragona, Spain

Recent advances in homogeneous gold(I) catalysis show the versatility of vinylidenes intermediates. These species are usually formed starting from a gold(I) acetylide precursors or via alkyne-vinylidene isomerization.[1]

Our group reported the gold(I)-catalyzed [2+2] intermolecular cycloaddition of terminal alkynes with alkenes to form cyclobutenes.[2] In contrast, the gold(I)-catalyzed reaction of bromoalkynes with alkenes leads to a novel way of access to gold(I) vinylidenes. The reaction occurs via transformation of the cyclopropyl gold(I) carbene into an unprecedented cyclic bromonium intermediate and a subsequent bromine migration. Mechanistic studies revealed that linear gold(I) vinylidenes can be involved in hydroarylation reaction, while aryl substituted gold(I) vinylidene are distorted towards a vinylidenephononium-gold(I) cation allowing a concealed 1,2-aryl-migration to form 1,4-enynes in a cross-coupling-type reaction.

\[\text{Br}^+ \text{AuL} \rightarrow \text{Br}^+ \text{R} \]

NOVEL REACTIONS VIA ELECTROPHILIC ENOLONIUM SPECIES

Alex M. Szpilman

Department of Chemical Sciences, Ariel University, Israel

Nucleophilic Enolates and enol ethers of carbonyl compounds is mainstay of classical organic synthesis. Recently, we have reported on the umpolung of ketone enolates to discrete electrophilic Enolonium Species using hypervalent iodine. The ability to prepare these enolonium species in a discrete manner has made their reaction with a large number of previously incompatible nucleophiles possible. We will give an overview of the development, scope and mechanistic studies of enolonium species in alkylation, allylation, arylation, N-heteroarylation, azidation as well in coupling with enolates. Furthermore, we will report on the first Umpolung Morita-Baylis-Hillman reaction (unpublished results). The resulting α-products should find great utility in the synthesis of functional molecules.

\[
\begin{align*}
\text{Enolonium Species} & \text{ Zn(Alk)₂} \\
\text{OTMS} & \text{Ph} \\
\text{R¹} & \text{R²} \\
\text{O} & \text{R³} \\
\text{Alk} & \\
\end{align*}
\]

Angew. Chem. Int. Ed. 2017, 56, 2599

Org. Lett. 2017, 19, 6312

Org. Lett. 2015, 17, 282

Org. Biomol. Chem. 2015, 13, 2546

Beilstein J. Org. Chem. 2018, 14, 992
SYNERGISTIC CATALYSIS IN DONOR-ACCEPTOR CYCLOPROPANE CHEMISTRY

Daniel B. Werz

Institute of Organic Chemistry, TU Braunschweig, 38106 Braunschweig, Germany

Donor-acceptor cyclopropanes (DACs) are highly strained entities which are unique building blocks for hetero- and carbocyclic systems [1,2]. For the last decade, we have been developing novel methodologies starting from these type of three-membered rings leading to oligopyrroles, chalcogen-containing heterocycles, and 1,3-bisfunctionalized products [3], just to name a few. To get deeper insights into their intrinsic reactivity in-depth physical organic studies were performed recently [4].

In this contribution, we will present our newest contributions using cyclopropanes in synergistic catalytic reactions. Commonly, DACs require the activation by Lewis acids. However, the other component to react with might be generated as a fleeting intermediate in situ by a second catalytic system. Two examples, one using Lewis acid and Rh catalysis (affording intermediate carbonyl ylides) [5] and another using Lewis acid and redox catalysis are presented [6]. In the former example highly substituted pyranes are generated, in the latter unusual fulvene-type dyes.

\[\text{DAC} \xrightarrow{\text{Lewis Acid & Rhodium(II) Catalysis}} \text{Pyranes} \]

\[\text{DAC} \xrightarrow{\text{Lewis Acid & Redox Catalysis}} \text{Fulvene-Type Dyes} \]

Control of molecular properties is essential in the design of new bioactive compounds, due to the inherent link between molecular properties of lead compounds and their successful progression through the stages of clinical development. Through the optimization process compounds tend to gain in molecular weight, lipophilicity and complexity, therefore a set of guidelines have been established to aid the design of lead-like molecules. In order to realise efficient lead-oriented synthesis a “top-down” approach has been employed whereby complexity is encoded to give a key polycyclic intermediate. It is vital that this intermediate contains functionality that can facilitate annulations, ring contractions and ring cleavage reactions. The use of this approach will be demonstrated using [5+2] cycloaddition chemistry as the complexity generating reaction in the synthesis of a library of highly 3-dimensional compounds, which have the correct properties to target lead-like chemical space. A toolkit of reactions has been applied to the parent compound creating a diverse range of lead-like scaffolds. Each scaffold contains a number of functional handles which can be decorated to create a large number of lead-like screening compounds.
EXPANDING THE BILE ACID CHEMICAL SPACE: SYNTHETIC STRATEGIES FOR LEAD DISCOVERY AND DEVELOPMENT

Antimo Gioiello,a Bruno Cerra,a Shiva Tali Shandiz,a Roberto Pellicciari b

a Department of Pharmaceutical Sciences, University of Perugia, 06122 Perugia, Italy
b TES Pharma, 06121 Perugia Italy

Bile acid-responsive receptors are widely recognized as relevant targets for drug discovery. The key members of this family, namely FXR and TGR5, are exploited for the treatment of several liver and metabolic diseases including non-alcoholic steatohepatitis (NASH) and diabesity.[1] Following the success of obeticholic acid (Ocaliva™),[2] in the last years our efforts have been devoted to exploring the structure–activity relationships of bile acids as FXR/TGR5 ligands, to identifying functional hot spots responsible for selectivity and efficacy, and to disclosing powerful chemical probes for phenotypic studies in biochemical, cell-based and animal models. The development of these compounds has also revealed how apparently minor chemical modifications of the steroidal cholanoic scaffold greatly influence the physicochemical, pharmacokinetic, and biodistribution profile of the resulting molecules thereby determining their fate in clinical settings of metabolic disorders.[3]

Unquestionably, an important challenge for the discovery and development of new bile acids with improved properties is to solve synthesis designs that enable to expand the bile acid chemical space and simultaneously ensure the synthetic accessibility of unexplored ‘hidden’ positions of the biliary scaffold. In this communication, case studies related with the synthesis and optimization of novel, nature-inspired bile acid lead candidates are reported and discussed.

The rise of antibiotic-resistant micro-organisms is a major threat for healthcare providers across the world and new classes of antibiotic are desperately required. One emerging target for the development of such antibiotics is the essential metabolic enzyme, biotin protein ligase (BPL). BPL catalyses protein biotinylation through the formation of the adenylated reaction intermediate, biotinyl-5’AMP, from its substrates biotin and ATP. Here we report the rational design, synthesis and evaluation of chemical analogues of biotinyl-5’AMP that function as inhibitors of the BPLs from pathogenic bacteria such as *Escherichia coli*, *Staphylococcus aureus* and *Mycobacterium tuberculosis*.

Detailed studies are presented on *in situ* synthesis optimization of inhibitors using the target enzyme as a template; the importance of halogenation in optimising antimicrobial activity; protein crystallography, computation and simulation to optimize inhibitor design, synthesis, and biological profile; and the synthesis and development of fluorescent probes for super-imaging fluorescence microscopy. The fluorescent probes provide new insights into the mechanism of uptake, efflux and metabolism of BPL inhibitors in *S. aureus*. Studies on developing a photoswitchable antibiotic to minimise toxicity and resistance will also be presented.
DYNAMIC CARBON ISOTOPE EXCHANGE OF PHARMACEUTICALS WITH LABELED CO₂

Gianluca Destro, Olivier Loreau, Elodie Marcon, Frédéric Taran, Thibault Cantat, Davide Audisio

Service de Chimie Bio-organique et Marquage (SCBM), CEA/DRF/JOLIOT, Université Paris Saclay, F-91191, Gif-sur-Yvette, France
NIMBE, CEA, CNRS, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

Carbon-14 radiolabeling is a unique tool that, in association with β-counting and β-imaging technologies, provides vital knowledge on the fate of synthetic organic molecules such as pharmaceuticals and agrochemicals [1]. Traditional multistep synthesis and the associated costs have limited its utilization. Hydrogen isotope exchange reactions are routinely utilized for deuterium and tritium labeling; however, in the field of carbon isotope labeling, this concept has remained unexplored until recently [2]. We report a dynamic carbon isotope exchange with ¹⁴CO₂, the most fundamental and readily available source of radiocarbon [3]. This new process expands the concept of late-stage carbon radiolabeling with substrates bearing Csp² carboxylic acids and provides a direct access to end-use labeled pharmaceuticals.

LOW-VALENT BiI ⇄ BiII REDOX CATALYSIS

Feng Wang, Oriol Planas, and Josep Cornella

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany

A catalytic transfer-hydrogenation utilizing a well-defined Bi(I) complex as catalyst and ammonia-borane as transfer agent has been developed. This transformation represents a unique example of low-valent pnictogen catalysis cycling between oxidation states I and III, and proved useful for the hydrogenation of azoarenes and the partial reduction of nitroarenes. Interestingly, the bismuthinidene catalyst performs well in presence of low-valent transition-metal sensitive functional groups and presents orthogonal reactivity compared to analogous phosphorous-based catalysis. Mechanistic investigations suggest the intermediacy of an elusive bismuthine species, which is proposed to be responsible for the hydrogenation and the formation of hydrogen
HYBRID DISCOVERY WORKFLOW FOR ORGANIC MATERIALS AND SUPRAMOLECULAR SELF-ASSEMBLIES

Rebecca L. Greenawaya, Valentina Santolinib, Enrico Berardob, Michael J. Bennisona, Ben Alstona, Chloe Pugha, Marc A. Littlea, Rachel Kearseya, Marcin Miklitzb, Michael E. Briggsa, Kim E. Jelfsb, and Andrew I. Coopera

aMaterials Innovation Factory, University of Liverpool, Liverpool, L7 3NY, UK
bDepartment of Chemistry, Imperial College London, London, SW7 2AZ, UK

Supramolecular synthesis is a powerful tool for assembling complex organic molecules, such as macrocycles, cages, and catenanes. However, targeted design of such molecules can be challenging, especially as the systems become more elaborate. High-throughput automation can be used to screen a broad synthetic space, but when applied blindly, this approach is inefficient. We have developed a hybrid discovery workflow that fuses computational screening with robotic synthesis for discovering new organic cages – a class of self-assembled molecule that contain permanent intrinsic cavities accessible through windows, and by extension, other supramolecular assemblies [1]. By fusing our computational toolkit to predict the most likely topology and shape-persistence based on the precursors used, with a robust synthetic route which made translation onto an automated synthesis platform possible, the hybrid workflow led to the synthesis of 49 new cages, rapidly accelerating the discovery process. Furthermore, it led to the serendipitous discovery of a unique cage topology – covalently bridged cage catenanes, and has been applied in the discovery of a number of other organic materials and supramolecular assemblies, such as completely unsymmetrical cages [2], socially self-sorted pots and dumbbells, and porous liquids.

Absence or malfunction of membrane proteins forming anion channels is the cause of several channelopathies, such as cystic fibrosis. Synthetic anion carriers have the potential to take over part of the function of these proteins [1]. Such carriers extract the anion from the aqueous phase, move it across the apolar interior of the lipid bilayer while shielding its charge, to then release it on the other side of the membrane.

Macrocyclic receptors are preorganised in a particular way, often leading to remarkable selectivities in binding and hence unique behaviour in anion transport. A first example are bambus[6]uril macrocycles, which are highly efficient in exchanging Cl\(^-\) and HCO\(_3^-\) [2], while related biotin[6]urils do not show any transport of HCO\(_3^-\) [3]. This can be rationalised based on the different affinities and binding modes that these macrocycles have for the different anions [2,3]. Another example are calix[6]arene tris(thio)ureas, of which the cavity can be exploited to transport organic ion pairs [4].

Figure 1. Liposomes with the dye lucigenin encapsulated (a) were used to study anion exchange by bambus[6]urils (b), biotin[6]urils (not shown), and calix[6]arenes (c).

Lignan natural products are a large class of polyphenols produced by plants that exhibit important antiviral, anti-cancer and antimicrobial bioactivities.

Chiral phosphoric acids like 3,3′-Bis(2,4,6-trisopropylphenyl)-1,1′-binaphthyl-2,2′-diyl hydrogenphosphate (TRIP) can provide catalytic stereoinduction on the allylation of benzaldehydes. This methodology was applied for the synthesis of (-)-hydroxymatairesinol [1]. We have extended the short total synthetic procedure to other four lignans, namely (+)-yatein, (-)-α-conidendrin, (+)-iso- and (+)-neoisostegane with high overall yields and enantiomeric purity via only four steps.

In addition, a chemoenzymatic approach has been used to target podophyllotoxin. The asymmetric information has been given by a 2-oxoglutarate dependent dioxygenase from *Podophyllum hexandrum* that performs a biocatalytic kinetic resolution of the rac-4-hydroxyyatein substrate thus achieving the aryltetralin scaffold. Enantiopure deoxy-, isodeoxy-, epi- and podophyllotoxin have been obtained. With the same approach new potential APIs, namely dihydroxy-dibenzylbutyrolactones have been produced.

1,2-DIOXANES AS POTENTIAL ANTI-LEISHMANIAL DRUGS

Marco Lombardoa, Margherita Ortallib, Arianna Quintavallaa, Claudio Trombinia, and Stefania Varanib

aUniversity of Bologna, Department of Chemistry “G. Ciamician”, V. Selmi 2, 40126 Bologna, Italy
arianna.quintavalla@unibo.it

bUniversity of Bologna, Department of Experimental, Diagnostic and Specialty Medicine, Via Massarenti 9, 40138 Bologna, Italy

Leishmaniasis is one of the most important neglected tropical diseases, endemic in around 100 countries, with more than 350 million people living at risk of infection and over 20000 deaths estimated annually. Leishmaniasis, caused by protozoa of the genus \textit{Leishmania}, can manifest as tegumentary or visceral leishmaniasis, the latter being fatal if untreated. The currently available drugs are not only expensive and toxic, but are beginning to lose efficacy due to the increasing of parasitic resistance. Thus, the design of novel, efficient and safer drugs is of uttermost importance. The natural peroxide artemisinin (1) and its derivatives have shown good efficacy against parasites such as \textit{Plasmodium}, and are widely used for the malaria treatment. Some synthetic peroxides, \textit{i.e.} tetraoxanes (2) or trioxolanes (3), are now considered valid anti-malarials. Much less is known about the anti-leishmanial properties of peroxides. We recently proposed a novel family of synthetic simple 1,2-dioxanes (4) as potential anti-malarials [1]. Here we report our studies on the synthesis and the anti-leishmanial bioactivity of a selected group of 1,2-dioxanes [2]. 13 compounds showed a good \textit{in vitro} inhibitory activity on \textit{L. donovani} promastigotes (IC\textsubscript{50} range = 1.6 - 16.4 μM). Moreover, the 6 compounds exhibiting the best selectivity index proved to be active also against \textit{L. tropica}, \textit{L. major} and \textit{L. infantum} promastigotes and against \textit{L. donovani} amastigotes, highlighting their potential as hits for lead optimization.

\[\text{Promastigotes:} \]
- \(C_{50} (\text{L. donovani}) = 4.4 \text{ μM} \)
- \(S = 35.0 \)
- \(C_{50} (\text{L. major}) = 3.2 \text{ μM} \)
- \(C_{50} (\text{L. tropica}) = 2.0 \text{ μM} \)
- \(C_{50} (\text{L. infantum}) = 2.6 \text{ μM} \)

\[\text{Amastigotes:} \]
- \(IC_{50} (\text{L. donovani}) = 10.5 \text{ μM} \)

Poster Index

ESOC 2019

Gloriette

Built in 1775 in the Schönbrunn Palace Garden
Catalysis

<table>
<thead>
<tr>
<th>Presenter</th>
<th>Institution</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eman Abdelraheem</td>
<td>Delft University of Technology, Delft, The Netherlands</td>
<td>ENANTIOSELECTIVE SEQUENTIAL ALDOL CONDENSATION</td>
</tr>
<tr>
<td>Nurtalya Alandini</td>
<td>Institut Català d’Investigació Quimica (ICIQ), Tarragona, Spain</td>
<td>PHOTOREDOX / NICKEL-CATALYZED CARBAMOYLATION OF (HETERO)ARYL BROMIDES</td>
</tr>
<tr>
<td>Łukasz Albrecht</td>
<td>Lodz University of Technology, Lodz, Poland</td>
<td>VINYLOGY CONCEPT IN THE SYNTHESIS OF SELECTED CARBO- AND HETEROCYCLES</td>
</tr>
<tr>
<td>Anna Albrecht</td>
<td>Lodz University of Technology, Lodz, Poland</td>
<td>DECARBOXYLATIVE, AMINOCATALYTIC CASCADES IN THE SYNTHESIS OF 3,4-DIHYDROCOUMARINS</td>
</tr>
<tr>
<td>Teresina Ambrosio</td>
<td>GSK Carbon Neutral Laboratories for Sustainable Chemistry, Nottingham, UK</td>
<td>BIOMIMETIC HALOGENATIONS AT UNACTIVATED C-H BONDS</td>
</tr>
<tr>
<td>Mariarosa Anania</td>
<td>Charles University, Prague, Czech Republic</td>
<td>REACTION INTERMEDIATES IN PALLADIUM-CATALYZED CARBONYLATION OF OLEFINS</td>
</tr>
<tr>
<td>Julien Annibaletto</td>
<td>Normandie Université, Rouen, France</td>
<td>MULTICOMPONENT ORGANOCATALYTIC SYNTHESIS OF ISOXAZOLIDIN-5-ONES</td>
</tr>
<tr>
<td>Soumitra Athavale</td>
<td>University of Illinois, Urbana, United States</td>
<td>DEMYSTIFYING THE SOAI REACTION</td>
</tr>
<tr>
<td>Tomasz Bauer</td>
<td>University of Warsaw, Warsaw, Poland</td>
<td>ZIRCONIUM IN THE CROWN. ENANTIOSELECTIVE ALKENYLATION OF ALDEHYDES WITH PROTECTED PROPARGYLIC ALCOHOLS IN THE PRESENCE OF CROWN ETHER: A NOVEL APPROACH TO THE INHIBITION OF ACHIRAL BACKGROUND REACTIONS</td>
</tr>
<tr>
<td>Yann Baumgartner</td>
<td>University of Basel, Basel, Switzerland</td>
<td>ONE-POT ALKENE HYDROBORATION/MIGRATORY SUZUKI-MIYAUERA CROSS-COUPLING</td>
</tr>
<tr>
<td>Srikrishna Bera</td>
<td>Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland</td>
<td>BORON DIRECTED, NI-CATALYZED REDUCTIVE COUPLING OF UNACTIVATED ALKYL AND ARYL HALIDES WITH INTERNAL ALKENES</td>
</tr>
<tr>
<td>Brigitte Bibal</td>
<td>Université de Bordeaux, Talence cedex, France</td>
<td>PHOTOREDUCTIBLE Au(III) COMPLEXES FOR CATALYSIS</td>
</tr>
<tr>
<td>Jacqueline Bitai</td>
<td>University of St. Andrews, St. Andrews, Scotland</td>
<td>TANDEM CATALYTIC FORMATION AND ENANTIOSELECTIVE [2,3]-REARRANGEMENT OF FUNCTIONALISED ALLYLIC AMMONIUM YLIDES</td>
</tr>
</tbody>
</table>
Clemens Blasius
Ruprecht-Karl-University Heidelberg, Heidelberg, Germany
HIGHLY ENANTIOSELECTIVE IRON-CATALYZED REDUCTION OF FUNCTIONALIZED KETONES AND NON-PRIVILEGED IMINES

Lea T. Brechmann
Technische Universität Berlin, Berlin, Germany
USING H2 AS A HYDRIDE SOURCE - A CHEMO- AND REGIOSELECTIVE REDUCTIVE COUPLING REACTION/ALLYLIC REDUCTION

Jean-François Brière
Normandie Université, Rouen, France
C5-DISUBSTITUTED MELDRUM’S ACID DERIVATIVES AS PLATFORM FOR THE ORGANO CATALYTIC SYNTHESIS OF C3-ALKYLATED DIHYDROCOUMARINS

Aleksandra Brzozowska
RWTH Aachen University, Aachen, Germany
METAL-LIGAND CATALYZED HETERO CYCLIZATION OF ALLENIC ALCOHOLS

Aleksandra Błocka
Polish Academy of Science, Warsaw, Poland
TANDEM PALLADIUM-CATALYZED INTRAMOLECULAR ADDITION OF ACTIVE METHYLENE COMPOUNDS TO ALKYNES FOLLOWED BY COUPLING WITH (HETERO)ARYL BROMIDES

Ilaria Caivano
Charles University of Prague, Prague, Czech Republic
SYNTHESIS OF 2,4-DISUBSTITUTED 9,9'-SPIROBIFLUORENES AND FLUORO DISPIROINDENO[2,1-C]FLUORENES THROUGH CATALYTIC [2+2+2] CYCLOTRIMERIZATION

Wojciech Chataladaj
Polish Academy of Science, Warsaw, Poland
Pd-CATALYZED REDUCTIVE CARBOPERFLUOROALKYLATION OF ALKYNES WITH PERFLUOROALKYL AND ARYL IODIDES VIA BOROPERFLUOROALKYLATION

Mu-Yi Chen
Normandie Université, Rouen, France
Pd-CATALYZED TRIFLUOROMETHYLTHIOLATION OF ACRYLAMIDES AND AROMATIC AMIDES BY C-H BOND ACTIVATION

Paula Chirila
Sheffield Hallam University, Sheffield, UK
ONE-POT PREPARATION OF 1,2,3-BENZOTRIAZIN-4(3H)-ONES AND ACETYL BENZOTRIAZOLES USING A KEY Cp*Co(III)-CATALYZED C-H AMIDATION STEP

Hong Sub Choi
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
NICKEL CATALYZED HYDROXYCARBONYLATION OF ACETYLENE TO ACRYLIC ACID

Patrícia Čmelová
Comenius University Bratislava, Bratislava, Slovakia
STEREOSELECTIVE MICHAEL ADDITION OF ALDEHYDES TO HETERO CYCLIC NITROALKENES CATALYZED BY HYBRID PEPTIDE-THIOUREA CATALYSTS

Hugo Collin
Aarhus University, Aarhus, Denmark
COTab: A SIMPLE AND PRACTICAL SETUP FOR Pd-CATALYZED CARBONYLATION CHEMISTRY

Nicola Della Ca’
Università di Parma, Parma, Italy
SITE-SELECTIVE CARBONYLATIVE ROUTES TO FUSED POLYHETEROCYCLIC STRUCTURES
Antonin Desmecht
Université Catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
SYNTHESIS AND CATALYTIC APPLICATIONS OF DENDRIMER-CARBON NANOTUBES HYBRIDS

Vasudevan Dhayalan
University of the Negev, Beer-Sheva, Israel
ENANTIOSELECTIVE BENZOIN REACTION CATALYZED BY N-HETEROCYCLIC CARBENE BORONIC ESTERS (NHC-BE)

Davide Di Francesco
Stockholm University, Stockholm, Sweden
LIGNIN VALORIZATION BY COBALT-CATALYZED FRACTIONATION OF LIGNOCELLOUSE TO YIELD MONOPHENOLIC COMPOUNDS

Aske Skyum Donslund
University of Aarhus, Aarhus, Denmark
DIRECT ACCESS TO β-KETONITRILES VIA NICKEL-CATALYZED CARBONYLATIVE COUPLING OF α-BROMONITRILES WITH ALKYLZINC REAGENTS

Qingwei Du
Southern University of Science and Technology, Shenzhen, China
ENANTIOSELECTIVE SYNTHESIS OF HETERO CYCLIC NUCLEOSIDES THROUGH ASYMMETRIC [3+2] ANNULATION OF α-PURINE-SUBSTITUTED ACRYLATES WITH NITRONES

Krzysztof Dzieszkowski
Nicolaus Copernicus University, Toruń, Poland
ENANTIOSELECTIVE SYNTHESIS OF CHROMANONES WITH QUARTERNARY STEREOGENIC CENTER VIA NHC ORGANOCATALYSIS

Andreas Eitzinger
Johannes Kepler University Linz, Linz, Austria
HIGHLY ENANTIOSELECTIVE PHASE-TRANSFER CATALYZED ADDITION OF ISOXAZOLIDIN-5-ONES TO MBH CARBONATES AND PARA QUINONE METHIDES: ACCESS TO FUNCTIONALIZED β²,2-AMINO ACIDS

Hasnaa El Said El Sayed
University of Twente, Enschede, The Netherlands
LIGHT-RESPONSIVE LIGANDS CONTROLLING BIMETALLIC CATALYSTS FORMATION

Firas El-Hage
Leibniz Institute for Catalysis, Rostock, Germany
PHOTO-MEDIATED INTERMOLECULAR HYDROAMINATION OF ACTIVATED OLEFINS USING UNPROTECTED PRIMARY AMINES

Daniele Fiorito
University of Geneva, Geneva, Switzerland
COPPER-CATALYZED BORYLATION OF OLEFINS: A QUEST FOR REACTIVITY AND SELECTIVITY

Ivana Fleischer
University of Tübingen, Tübingen, Germany
CATALYTIC FORMATION OF C-S BONDS

Steven Frippiat
Normandie Université, Rouen, France
Pd(0)-CATALYZED DIRECT INTER- AND INTRAMOLECULAR C₂ OR C₅-H FUNCTIONALIZATION OF 4-CARBOXYIMIDAZOLES

Mateusz Garbcz
Polish Academy of Science, Warsaw, Poland
AN ENTRY TO ENANTIOENRICHED ALLYLAMINES VIA PHOTOCHEMICAL CROSS-COUPLING AND ICHIKAWA REARRANGEMENT
Irma García-Monzón
Instituto de Productos Naturales y Agrobiología, San Cristóbal de La Laguna, Spain
REUSABLE POLYSTYRENE-SUPPORTED ORGANOCATALYSTS

Víctor García-Vázquez
Stockholm University, Stockholm, Sweden
BASE-CATALYZED STEREOSPECIFIC ISOMERIZATION OF ALLYLIC HALIDES

Mariana Gavendova
Waterford Institute of Technology, Waterford, Ireland
NOVEL ε-AMINO ACID DERIVED ASYMMETRIC ORGANOCATALYSTS TOWARDS 3,3-DISUBSTITUTED-2-OXINDOLES'

Martin Gazvoda
University of Ljubljana, Ljubljana, Slovenia
THE REVISED MECHANISM OF COPPER-FREE SONOGASHIRA CROSS-COUPLING REACTION

Paul Gehrtz
Weizmann Institute, Rehovot, Israel
CROSS-COUPLING OF CHLORO(HETERO)ARENES WITH THIOLATES EMPLOYING A NI-PRECATALYST

Kron Kumar Ghosh
Westfälische Wilhelms-Universität Münster, Münster, Germany
C(sp³)–H ACETOXYLATION OF FREE CARBOXYLIC ACIDS

Tim Glaesel
Johannes Kepler University Linz, Linz, Austria
NOVEL APPROACH TO HETEROCYCLES BY TRANSITION METAL CATALYZED [2+2+2] CYCLOADITIONS

Melania Gómez-Martínez
University of Münster, Münster, Germany
HIGHLY ENANTIOSELECTIVE DEAROMATIZATION OF PYRYLIUM DERIVATIVES WITH A HELICAL MULTIDENTATE ANION-BINDING CATALYST

Matija Gredicak
Rudjer Boskovic Institute, Zagreb, Croatia
AN ANION-DIRECTED APPROACH TO ENANTIOENRICHED α-TRIARYL AMINES

Yiting Gu
The Barcelona Institute of Science and Technology, Tarragona, Spain
A MILD AND DIRECT SITE-SELECTIVE sp² C-H SILYLATION OF (POLY)AZINES

Mahmoud Hachem
Normandie Université, Rouen, France
NEW METHODS OF DIRECT CATALYTIC ALKELENATION OF HETEROCYCLES

Victoria Haider
Johannes Kepler University Linz, Linz, Austria
SYNTHESIS AND APPLICATIONS OF CHIRAL QUATERNARY AMMONIUM SALT HYDROGEN BOND DONOR CATALYSTS

Ulf Hanefeld
Technische Universität Delft, Delft, The Netherlands
REPLACING Cr(VI) WITH AN ENZYME: CLEAN OXIDATIONS

Natalie Hofmann
University of Vienna, Vienna, Austria
SWITCHABLE BASE METAL CATALYZED HYDROGEN BORROWING PROCESSES
Fung-E Hong
National Chung Hsing University, Taichung, Taiwan
AMIDO-GROUPS AS REMOVABLE DIRECTING GROUPS IN PALLADIUM CATALYZED CARBON-HYDROGEN BOND FUNCTIONALIZATION OF BENZOQUINONE DERIVATIVES

Longcheng Hong
Justus Liebig University Giessen, Giessen, Germany
BORYL RADICAL MEDIATED LIGNIN DEGRADATION: DEPOLYMERIZATION AND RECONNECTION

Fabian M. Hörmann
Technical University Munich, Garching, Germany
EVIDENCE FOR TRIPLET SENSITIZATION IN THE VISIBLE-LIGHT-INDUCED [2+2]-PHOTOCYCLOADDITION OF ENIMINIUM IONS

Huan-Ming Huang
Westfälische Wilhelms-Universität Münster, Münster, Germany
DIALKYLATION OF 1,3-DIENES BY DUAL PHOTOREDOX AND CHROMIUM CATALYSIS

Long Huang
RWTH Aachen University, Aachen, Germany
DIRECT CROSS-COUPLING OF ALLYLIC C(sp3)–H BONDS WITH ARYL- AND VINYLBROMIDES BY COMBINED NICKEL AND VISIBLE-LIGHT CATALYSIS

Viktor Iaroshenko
Polish Academy of Sciences, Łódź, Poland
REGIOSELECTIVE C–H ARYLATION OF NITRO HETEROCYCLES AND FURTHER TRANSFORMATION OF MANIPULABLE NITRO GROUP

Ester Iniesta
The Barcelona Institute of Science and Technology, Tarragona, Spain
SUPRAMOLECULARLY REGULATED COPPER-BISOXAZOLINE CATALYSTS FOR THE EFFICIENT INSERTION OF CARBENOID SPECIES INTO HYDROXYL BONDS

Axel Jacobi von Wangelin
University of Hamburg, Hamburg, Germany
STEREOSELECTIVE ADDITIONS TO ALKYNES BY IRON AND COBALT CATALYSTS

Yoon-kyung Jang
RWTH Aachen University, Aachen, Germany
MANGANESE CATALYZED ALKYLATION OF AMIDES AND ESTERS

Liyin Jiang
CATALYTIC CLEAVAGE OF C(sp2)–C(sp3) BONDS WITH METAL-CARBYNOLS

Martin Johansen
Aarhus University, Aarhus, Denmark
COPPER CATALYSED AND ADDITIVE FREE DECARBOXYLATIVE TRIFLUOROMETHYLATION OF (HETERO)AROMATIC IODIDES

Benyapa Kaewmee
Technische Universität Berlin, Berlin, Germany
NI-CATALYZED E-SELECTIVE ALKYNE SEMIHYDROGENATIONS

Anna Kajetanowicz
University of Warsaw, Warsaw, Poland
ISOMERIZATION IN METATHESIS REACTIONS: UNDESIRABLE SIDE PROCESS OR USEFUL TRANSFORMATION

Nikolaos Kaplaneris
Georg-August-Universität, Göttingen, Germany
LATE-STAGE DIVERSIFICATION THROUGH MANGANESE-CATALYZED C–H ACTIVATION: ACCESS TO ACYCLIC, HYBRID, AND STAPLED PEPTIDES
Prasad Mahesh Kathe
University of Tübingen, Tübingen, Germany
PALLADIUM-CATALYZED TANDEM ISOMERIZATION/HYDROTHIOLATION OF ALLYL ARENES

Salman Khan
Indian Institute of Technology Bombay, Mumbai, India
BRØNSTED ACID CATALYZED C-H FUNCTIONALIZATION OF ARYL SULFOXIDES VIA A CHARGE ACCELERATED [3,3]-SIGMATROPIC REARRANGEMENT OF BUTADIENYL SULFONIUM CATION INTERMEDIATES

Sung-Gon Kim
Kyonggi University, Suwon, Republic of Korea
ASYMMETRIC BRØNSTED ACID-CATALYZED FRIEDEL-CRAFTS REACTION OF CYCLIC N-SULFINIMINES AND METHAMIDATES WITH INDOLES

Christoforos Kokotos
National and Kapodistrian University of Athens, Athens, Greece
PHENYLGLYOXYLIC ACID AS THE CATALYST FOR PHOTOCHEMICAL TRANSFORMATIONS

Martin Kotora
Charles University of Prague, Prague, Czech Republic
CATALYTIC C-C/C-H ACTIVATION RELAY: SYNTHESIS OF NAPHTHOQUINOLIZINIUM SALTS FROM 1-AZABIPHENYLENE

Dominik Krisch
Johannes Kepler University Linz, Linz, Austria
FLUOROFUNCTIONALIZATION OF METAL CORROLES

Steffan K. Kristensen
Aarhus University, Aarhus, Denmark
GOLD-PROMOTED ANTI-MARKOVNIKOV HYDROTHIOLATION OF OLEFINS USING EX SITU GENERATED METHANETHIOL

Wolfgang Kroutil
University of Graz, Graz, Austria
ASYMMETRIC BIOCATALYTIC PICTET-SPENGLER REACTION TO SHORTCUT ORGANIC SYNTHESIS

Marios Kydonakis
University of Crete, Heraklion, Greece
REGIOSELECTIVE DISILYLATION OF ALLENES BY DIHYDROSILANE CATALYZED BY GOLD NANO PARTICLES

Marco Lessi
Università di Pisa, Pisa, Italy
A PRELIMINARY STUDY ON THE REGIOSELECTIVE C-HARYLATION OF IMIDAZO[2,1-b]THIAZOLE

Guillaume Levitre
Université Paris-Saclay, Gif-sur-Yvette, France
ASYMMETRIC ORGANO CATALYSIS - SYNTHESIS OF CYCLOHEPTA[B]INDOLES BY (4+3) CYCLOADDITION

Zhong-Liang Li
Southern University of Science and Technology, Shenzhen, China
RADICAL MIGRATION FOR SYNTHESIS OF MEDIUM-SIZED RINGS

Dawid Lichosyt
University of Strasbourg, Strasbourg, France
DUAL-CATALYTIC TRANSITION METAL SYSTEMS FOR FUNCTIONALIZATION OF UNREACTIVE SITES OF MOLECULES
Terry Shing-Bong Lou
University of Oxford, Oxford, UK
PALLADIUM-CATALYSED SYNTHESIS OF MULTIFUNCTIONAL ALKENYL SULFONYL FLUORIDES

Ildikó Madarász
AVICOR Ltd., Szeged, Hungary
STEREOSELECTIVE ACID-CATALYZED C(sp³)-C(sp³) BOND FORMATION IN THE INTRAMOLECULAR SYNTHESIS OF cis-1,2-DIARYL CYCLOPROPAINES

Giovanni Maestri
Università di Parma, Parma, Italy
A BIO-INSPired POLYCYCLIZATION OF DIEN-N-YNES DRIVEN BY VISIBLE LIGHT

Giandomenico Magagnano
Institut Català d’Investigació Química (ICIQ), Tarragona, Spain
ENANTIOSELECTIVE PHOTOCHEMICAL ORGANOCASCADE CATALYSIS

Christopher Mairhofer
Johannes Kepler University Linz, Linz, Austria
DACH-BASED BIFUNCTIONAL UREA/AMMONIUM SALT CATALYZED ASYMMETRIC α-HYDROXYLATION OF β-KETOESTERS

Jere Mannisto
University of Helsinki, Helsinki, Finland
ONE-STEP SYNTHESIS OF SUBSTITUTED 2-OXAZOLIDINONES VIA BASE-CATALYZED CO₂-FIXATION AND AZA-MICHAEL ADDITION

Beata Marcol-Szumilas
University of Silesia, Katowice, Poland
PROCESS FOR OBTAINING LOW AND HIGH BOILING 1-PROPENYL AND BIS(1-PROPENYL) ETHERS AND SULPHIDES TOWARDS RENEWABLE CATALYTIC SYSTEMS

Tatenda Mareya
Waterford Institute of Technology, Waterford, Ireland
BIOTRANSFORMATIONS EMPLOYING NITRILE HYDROLYZING ENZYMES TOWARDS THE ENANTIOSELECTIVE SYNTHESIS OF β-AMINO ACIDS

Gilles Marghem
Université Catholique de Louvain (UCL), Louvain-la-Neuve, Belgium
COPPER CATALYZED 1,4-BROOK REARRANGEMENT OF α,β-UNSATURATED ACYLSILANE

Raul Martin-Montero
Institute of Chemical Research of Catalonia (ICIQ), Tarragona, Spain
NICKEL CATALYZED REDUCTIVE DEAMINATIVE ARYLATION AT sp² CARBON CENTERS

Daniele Mazzarella
Institut Català d’Investigació Química (ICIQ), Tarragona, Spain
ASYMMETRIC PHOTOCATALYTIC C-H FUNCTIONALIZATION OF TOLUENE AND DERIVATIVES

Roisin McCarthy
University College Dublin, Dublin, Ireland
APPLICATIONS OF (THIO)OXALAMIDES IN ORGANOCATALYSIS: SYNTHESIS AND ACTIVITY OF OXALIC DERIVATIVES

Calum McLoughlin
University of St. Andrews, St. Andrews, Scotland
INTERMOLECULAR CATALYST TURNOVER IN ENANTIOSELECTIVE AMMONIUM ENOLATE CATALYSIS: A SYNTHETIC AND MECHANISTIC STUDY
Andrea Menichetti PO-94
University of Pisa, Pisa, Italy
DEVELOPING NEW WAYS TO INTRODUCE THE BORON ATOM IN ORGANIC MOLECULES BY RING-OPENING REACTIONS

Luuk Mestrom PO-95
Delft University of Technology, Delft, The Netherlands
ANOMERIC CONTROL FOR TREHALOSE TRANSFERASE

Tjark H. Meyer PO-96
Georg-August-Universität, Göttingen, Germany
RESOURCE ECONOMY BY COBALTIAELECTROCATALYSIS: MERGING ELECTROCHEMISTRY AND C–H ACTIVATION

Mateja Mihelač PO-97
University of Ljubljana, Ljubljana, Slovenia
PALLADIUM CATALYZED INTERMOLECULAR IMINE FORMATION

Jun Miyatake Ondozabal PO-98
University of London, London, United Kingdom
PHOTOCATALYTIC TRANSFORMATIONS OF ALKENES: STUDIES ON PHOTOREDUCTION AND E→Z ISOMERIZATION

Jasper Möhler PO-99
ETH Zürich, Zürich, Switzerland
CONTROL OVER ENAMINE PYRAMIDALIZATION GIVES ACCESS TO N-HETEROCYCLIC SUBSTITUTED γ-NITROALDEHYDES

Arup Mondal PO-100
Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany
DUAL LIGAND-ENABLED NONDIRECTED C-H CYANATION OF ARENES

Daniel Moock PO-101
Westfälische Wilhelms-Universität Münster, Münster, Germany
HYDROGENATION OF BORYLATED ARENES

Brigita Mudráková PO-102
Comenius University Bratislava, Bratislava, Slovakia
DIASTEREOSELECTIVE PALLADIUM-CATALYZED C–H ARYLATION OF FERROCENYLMETANEAMINES WITH ARYLBORONIC ACIDS AND PINACOL ESTERS

Francesco Mutti PO-103
University of Amsterdam, Amsterdam, The Netherlands
RECENT DEVELOPMENTS IN BIOCATALYTIC REDOX REACTIONS

Agnieszka Nawara-Hultzsch PO-104
University of Vienna, Vienna, Austria
UNSYMETRICAL Mn(I) PNNOP PINCER CATALYSTS FOR HYDROGEN BORROWING REACTIONS

Andrea Nikolic PO-105
University of Belgrade, Belgrade, Serbia
PALLADIUM CATALYZED N-ARYLATION OF 1H-TETRAZOLE-5-AMINES

Hidetoshi Noda PO-106
Institute of Microbial Chemistry (BIKAKEN), Tokyo, Japan
SYNTHESIS OF UNPROTECTED, BICYCLIC AND SPIROCYCLIC β-AMINO ACIDS

Ryan O’Gara PO-107
University College Dublin, Dublin, Ireland
LIGAND DESIGN IN THE ASYMMETRIC SYNTHESIS OF TERTIARY ALCOHOLS
Gerardo M. Ojeda
University of Leuven, Leuven, Belgium
DEALING WITH CYCLIZATION IN THE SYNTHESIS OF SPIROINDOL(EN)INES AND TETRAZOLE-ISOQUINOLONES/PYRIDONES HYBRID

Patrizio Orecchia
Technische Universität Berlin, Berlin, Germany
TRANSFER HYDROCYANATION OF α- AND α,β-SUBSTITUTED STYRENES CATALYZED BY BORON LEWIS ACIDS

Marlyn Ortiz
Universidad Industrial de Santander, Piedecuesta, Colombia
SYNTHESIS OF C-1 ALKYNYL TETRAHYDROISOQUINOLINE DERIVATIVES THROUGH THE A² REDOX-NEUTRAL COUPLING USING COPPER-CATALYSIS AND PHOTOCATALYSIS

Bünyamin Özkaya
RWTH Aachen University, Aachen, Germany
ELECTRON-HOLE CATALYZED ORTHO-HYDROARYLATION

Benedetta Palucci
Universitat Rovira i Virgili, Tarragona, Spain
Pd-CATALYZED HYDROFORMYLATION USING FORMALDEHYDE AS SYNGAS SURROGATES

Ádám Márk Pálvolgyi
TU Wien, Vienna, Austria
NOVEL CARBAMATE-BASED P,O-LIGANDS IN ASYMMETRIC ALLYLIC ALKYLATIONS

Naziya Parveen
Indian Institute of Technology Madras, Chennai, India
STABLE AND REUSABLE Pd-BNPs CATALYSED STEREOSELECTIVE SYNTHESIS OF (E)-3-ALKYLIDENE OXINDOLES

Martin Pauze
University of the Basque Country, Donostia/San Sebastian, Spain
UNPRECEDENTED MULTICOMPONENT ORGANOCATALYTIC SYNTHESIS OF PROPARGYLIC ESTERS VIA CO₂ ACTIVATION

Marie-Ildrissa Picher
University of Stuttgart, Stuttgart, Germany
IRON-CATALYZED CYCLOPROPANATION OF 1,3-ENynes UNDER THERMAL OR PHOTOCHEMICAL CONDITIONS

Giovanni Poli
Sorbonne Universités, Paris, France
STUDIES ON THE Ru-CATALYZED CARBONYLATIVE MURAI REACTION

Simona Pompei
University of Graz, Graz, Austria
REGIOSELECTIVITY IN BIOCATALYTIC O-METHYLATION OF CATECHOLS

Martin H. G. Prechtl
Roskilde Universitet, Roskilde, Denmark
PARADIGMS OF COOPERATIVE VS. NON-COOPERATIVE LIGANDS IN METAL PINCER COMPLEXES IN (DE)HYDROGENATION REACTIONS

Mahesh Puthanveedu
Max-Planck-Institute for Molecular Physiology, Dortmund, Germany
CATALYTIC METAL-FREE CROSS-COUPLING OF HETEROAROMATIC N-OXIDES WITH ORGANOSILANES
<table>
<thead>
<tr>
<th>Poster Index</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>121 PO</td>
<td>Deyun Qian, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland. ENANTIOSELECTIVE SYNTHESIS OF CHIRAL SULFONES BY BASE METAL-CATALYZED ASYMMETRIC CROSS-COUPLING REACTION.</td>
</tr>
<tr>
<td>122 PO</td>
<td>Shen Qu, University of St. Andrews, St. Andrews, Scotland. ISOTHIOUREA-CATALYSED REGIOSELECTIVE ACYLATIVE KINETIC RESOLUTION OF AXIALLY CHIRAL BIARYL DIOLS.</td>
</tr>
<tr>
<td>123 PO</td>
<td>Maria-João R.P. Queiroz, Universidade do Minho, Braga, Portugal. PEG400 AS SOLVENT IN THE SYNTHESIS OF NEW 7-[4-ALKYL OR (HET)ARYL-1H-1,2,3-TRIAZOL-1-YL]THIENO[3,2-b]PYRIDINES BY Cu(I)-CATALYZED AZIDE-ALKyne CYCLOADDITION.</td>
</tr>
<tr>
<td>124 PO</td>
<td>Mirae Ra, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea. A POTENTIAL N-HETEROCYCLIC BASED LIQUID ORGANIC HYDROGEN CARRIERS.</td>
</tr>
<tr>
<td>125 PO</td>
<td>Adam Rajkiewicz, University of Warsaw, Warsaw, Poland. IODONIUM SALTS AS GROUP TRANSFER REAGENTS - N-HETEROCYCLIC CARBENE-CATALYZED SYNTHESIS OF VINYL AND PROPARGYL KETONES.</td>
</tr>
<tr>
<td>126 PO</td>
<td>Fabian Rami, University of Stuttgart, Stuttgart, Germany. IRON-CATALYSED HYDROBORATION OF UNSATURATED C-C BONDS: BORON-SOURCE CONTROLLED SELECTIVITY.</td>
</tr>
<tr>
<td>127 PO</td>
<td>Xavi Ribas, Universitat Autònoma de Barcelona, Bellaterra, Spain. OXIDANT-FREE Au(I)/Au(III) C-HETEROATOM CROSS-COUPLING CATALYSIS.</td>
</tr>
<tr>
<td>128 PO</td>
<td>Saara Riuttamäki, University of Jyväskyla, Jyväskyla, Finland. CARBOXYLATE CATALYSED ISOMERISATION OF UNSATURATED NAC-THIOESTERS.</td>
</tr>
<tr>
<td>129 PO</td>
<td>Sylvain Roland, Sorbonne Universités, Paris, France. BORYLATION OF ALKynes WITH CYCLODEXTRIN-ENCAPSULATED N-HETEROCYCLIC CARBENE COPPER COMPLEXES.</td>
</tr>
<tr>
<td>130 PO</td>
<td>Tamal Roy, University of Copenhagen, Copenhagen, Denmark. CARBON DIOXIDE-CATALYZED STEREOSELECTIVE CYANATION OF COUMARINS.</td>
</tr>
<tr>
<td>131 PO</td>
<td>Daniel Sack, Karlsruhe Institute of Technology, Karlsruhe, Germany. SHORT PEPTIDES WITH PHOTOCATALYTIC ACTIVITY FOR THE NUCLEOPHILIC ADDITION OF METHANOL TO STYRENE DERIVATIVES.</td>
</tr>
<tr>
<td>132 PO</td>
<td>Aleksi Sahari, University of Helsinki, Helsinki, Finland. ASYMMETRIC LACTONE SYNTHESIS BY REDUCTIVE OLEFIN ACTIVATION AND CO₂-FIXATION.</td>
</tr>
<tr>
<td>133 PO</td>
<td>Aitor Sainz Martinez, TU Wien, Vienna, Austria. CONTINUOUS TRANSFORMATION OF CARBON DIOXIDE USING SUPPORTED IONIC LIQUIDS.</td>
</tr>
</tbody>
</table>
ENANTIOSELECTIVE SYNTHESIS OF FLUORADENES BY C(sp²)-H ARYLATION AND APPLICATION TO THE SYNTHESIS OF BUCKYBOWLS

ASYMMETRIC TRANSFER HYDROGENATION OF ENONES VIA COUNTERANION ENHANCED CATALYSIS

DUAL PHOTOREDOX CATALYSED sp²-sp² CROSS-ELECTROPHILE COUPLING IN A SELF-DESIGNED AND 3D PRINTED PHOTOREACTOR

HIGHLY ENANTIOSELECTIVE CHROMIUM(II) PINCER CATALYZED HYDROSILYLATION OF KETONES

CY-SUBSTITUENTS AS TOOLS TO INFLUENCE THE REACTIVITY AND STEREOSELECTIVITY OF PROLINE BASED CATALYSTS

TETRAALKYLAMMONIUM SALTS AS SURROGATES FOR OLEFINS IN C-H ACTIVATION

CONSECUTIVE INTRAMOLECULAR DEHYDRO-DIELS-ALDER REACTIONS OF HETEROATOM-TETHERED TETRAYNES FOR THE SYNTHESIS OF HETEROLE-CONTAINING POLYCYCLIC COMPOUNDS

DIASTEREODIVERGENT SYNTHESIS OF ENANTIOENRICHED α,β-DISUBSTITUTED γ-BUTYROLACTONES VIA COOPERATIVE CATALYSIS

ENANTIOSELECTIVE C-H ACTIVATION WITH Rh(I)JasCp COMPLEXES

TERPHENYL PHOSPHANES: A NEW GENERATION OF LIGAND FOR PALLADIUM-CATALYZED AMINATION OF ARYL HALIDES WITH PRIMARY AND SECONDARY ARYL AMINES

PHOTOREDOX MEDIATED SYNTHESIS OF SULFINATE ESTERS FROM TOSYLHYDRAZONE SUBSTRATES

DINICKEL OXIDATIVE ADDITION COMPLEXES IN C-O CLEAVAGE: RELEVANCE IN CATALYTIC C–Si BOND-FORMATION

VISIBLE-LIGHT-MEDIATED α-OXYGENATION OF 3-(N,N-DIMETHYLAMINOMETHYL)-INDOLES TO ALDEHYDES
N. Sundaravelu
Indian Institute of Technology Madras, Chennai, India
THIOL–COORDINATED IODONIUM ION CATALYSIS: A DOMINO SYNTHESIS OF Z-SELECTIVE α,β-DIPHENYLTHIO ENONES FROM EASILY ACCESSIBLE SECONDARY ALCOHOLS

Redouane Tabti
University of Strasbourg, Strasbourg, France
AMINO-IMIDAZOLONES AS NOVEL CHELATORS FOR METAL IONS: SYNTHESIS, SOLUTION POTENTIOMETRIC STUDY

Hideaki Takano
Waseda University, Tokyo, Japan
RHODIUM-CATALYZED REGIOSELECTIVE ACTIVATION OF STERICALLY HINDERED C-C BOND OF BIPHENYLENE

Tobias Täufer
Leibniz Institute for Catalysis, Rostock, Germany
SYNTHESIS OF ACYCLIC DIALKYL AMINES VIA BUCHWALD-HARTWIG AMINATION

Gaël Tran
University of Geneva, Geneva, Switzerland
ENANTIOSELECTIVE NICKEL-CATALYZED AMINATION OF 2-SUBSTITUTED 1,3-DIENES

Ierasia Triandafillidi
National and Kapodistrian University of Athens, Athens, Greece
PHOTOCATALYTIC SYNTHESIS OF ϖ-LACTONES FROM ALKENES: HIGH RESOLUTION MASS SPECTROMETRY AS A TOOL TO STUDY PROTOREDOX REACTIONS

Paz Trillo
Umeå University, Umeå, Sweden
STRAIGHTFORWARD SYNTHESIS OF α-AMINO NITRILES THROUGH Mo(CO)₆ -CATALYZED REDUCTIVE FUNCTIONALIZATION OF CARBOXAMIDES

Matic Urlep
University of Ljubljana, Ljubljana, Slovenia
SYNTHESIS, CHARACTERIZATION AND REACTIVITY OF Pt(II) PCP PINCER COMPLEXES

Erik Van der Eycken
Katholieke Universiteit Leuven, Leuven, Belgium
GOLD-TRIGGERED DEAROMATIZATION CASCADES

Greta Vastakaite
ETH Zürich, Zürich, Switzerland
CATALYTICALLY ACTIVE PEPTIDES FOR CONJUGATE ADDITION REACTIONS

Tomas Vojkovsky
Okinawa Institute of Science and Technology Graduate University, Onna, Japan
CYCLOPROPANATION OF ALIPHATIC ESTERS AND ALCOHOLS EXTENDED TO ONE-STEP CATALYTIC LINEAR SULFONE

Michael Winter
Johannes Kepler University Linz, Linz, Austria
UMPOLUNG REACTIONS OF IMINES FOR THE SYNTHESSES OF α-TRIFLUOROMETHYLATED AMINO ACIDS

Sina Witzel
Heidelberg University, Heidelberg, Germany
RECENT ADVANCES IN "ONLY" GOLD-CATALYZED PHOTOCHEMISTRY

Jiufeng Wu
University of St. Andrews, St. Andrews, UK
PROBING THE REACTIVITY OF α,β-UNSATURATED ACYL AMMONIUM INTERMEDIATES
<table>
<thead>
<tr>
<th>Poster index</th>
</tr>
</thead>
</table>
| Shaohua Xiang | **PO-161**
Southern University of Science and Technology, Shenzhen, China
ORGANOCATALYTIC ASYMMETRIC SYNTHESIS OF ATROPISOMIC BIARYLS |
| Shoko Yamazaki | **PO-162**
Nara University of Education, Nara, Japan
INTRA- AND INTERMOLECULAR STEREOSELECTIVE [2+2] CYCLOADDITION REACTIONS OF ETHENETRICARBOXYLATES AND STYRENES |
| Kosuke Yasui | **PO-163**
Osaka University, Osaka, Japan
N-HETEROUCYCLIC CARBENE-CATALYZED CONCERTED NUCLEOPHILIC AROMATIC SUBSTITUTION OF ARYL FLUORIDES BEARING α,β-UNSATURATED CARBONYL MOIETY |
| Jian-Heng Ye | **PO-164**
Westfälische Wilhelms-Universität Münster, Münster, Germany
Cp*Ir(Ill) CATALYZED BRANCH SELECTIVE ALLYLIC AMIDATION OF UNACTIAVTED OLEFINS |
| Congjun Yu | **PO-165**
RWTH Aachen University, Aachen, Germany
Cu(II)-CATALYZED CROSS-DEHYDROGENATIVE ORTHO-AMINOMETHYLATION OF PHENOLS |
| Yu-Chao Yuan | **PO-166**
Université de Rennes 1, Rennes, France
SELECTIVE FUNCTIONALIZATION OF CYCLIC IMIDES AND AMIDES WITH RUTHENIUM CATALYSTS |
| Lei Zhang | **PO-167**
Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
PHOTOELECTROCATALYTIC ARENE C-H AMINATION |
| Zhikun Zhang | **PO-168**
Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
ALKENE HYDROSILYLATION CATALYZED BY EASILY ASSEMBLED Ni(II)-CARBOXYLATE MOFs |
| Birte M. Zimmermann | **PO-169**
Technische Universität Berlin, Berlin, Germany
CHEMOSELECTIVE COPPER(I)-CATALYZED CONJUGATE REDUCTIONS OF ENOATES USING H₂ |
| Christoph Zippel | **PO-170**
Karlsruhe Institute of Technology, Karlsruhe, Germany
RHODIUM CATALYZED CYCLOPROPANATION WITH α-ALKYL-α-DIAZO ESTERS |
| Viktoriaa Zubar | **PO-171**
RWTH Aachen University, Aachen, Germany
CO₂-DERIVED CARBONATES AND POLYCARBONATES TO METHANOL AND DIOLS VIA METAL LIGAND COOPERATIVE CATALYSIS |
| Erna Zukic | **PO-172**
TU Wien, Vienna, Austria
FROM RENEWABLE TO USABLE - BIOTRANSFORMATION FROM CARVONE TO CARVOLACTONE AND ITS COPOLYMERISATION WITH LACTIDE |
Medicinal Chemistry and Chemical Biology

Dan Adolfsson
Umeå University, Umeå, Sweden
SYNTHESIS OF MULTI RING-FUSED PEPTIDOMIMETICS INTERACTING WITH α-SYNUCLEIN FIBRILS

Eirin Alme
University of Bergen, Bergen, Norway
SYNTHESIS AND OPTIMIZATION OF 10H-PHENOTHIAZINE ANALOGUES FOR THE INHIBITION OF AUTOPHAGY

Usama Ammar
Korea Institute of Science and Technology, Seoul, Republic of Korea
ANTICANCER PROFILE OF NEWLY SYNTHESIS B-RAF INHIBITORS POSSESS 5(PYRIMIDIN-4-YL)IMIDAZO[2,1-b]OXAZOLE SCAFFOLD

Francesco Angelucci
University of Bergen, Bergen, Norway
DEVELOPING NOVEL PET TRACERS FOR HYPOXIA

Ove Alexander Høgmoen Åstrand
University of Oslo, Oslo, Norway
OVERCOMING METALLO-β-LACTAMASE MEDIATED RESISTANCE IN BACTERIA

Fadi M. Awadellah
Cairo University, Cairo, Egypt
INHIBITION STUDIES ON A PANEL OF HUMAN CARBONIC ANHYDRASES WITH N1-SUBSTITUTED SECONDARY SULFONAMIDES INCORPORATING THIAZOLINONE OR IMIDAZOLONE-INDOLE TAILS

Aleksandra Balliu
Stockholm University, Stockholm, Sweden
SYNTHESIS AND CHEMICAL MODIFICATIONS OF PEPTIDE CONJUGATES: INVESTIGATING PEPTIDE-PROTEIN INTERACTIONS

Christine Beemelmanns
Hans-Knöll Institute (HKI), Jena, Germany
UNLOCKING NATURES CHEMICAL TREASURE TROVE - NOVEL NATURAL PRODUCTS FROM MICROBIAL SYMBIOTNS

Dattatry Bhosale
Veterinary Research Institute, Brno, Czech Republic
SYNTHESIS, CHARACTERIZATION AND EVALUATION OF AMINOXY AND IONIZABLE LIPIDS FOR THE MODULAR ASSEMBLY OF LIPID-BASED NANOPARTICLES FOR EFFICIENT DELIVERY OF THERAPEUTIC NUCLEIC ACIDS

Karol Biernacki
Gdansk University of Technology, Gdansk, Poland
NEW POTENT STEROID SULFATASE (STS) INHIBITORS BASED ON FLUORINATED 4-(1-PHENYL-1H-[1,2,3]TRIAZOL-4-YL)-PHENYL SULFAMATES. SYNTHESIS AND BIOLOGICAL EVALUATION

Spyridon Bousis
Saarland University, Saarbrücken, Germany
ENERGY-COUPLING FACTOR TRANSPORTER, A NOVEL TARGET FOR ANTIBIOTIC DEVELOPMENT

Glen Brodie
University of Glasgow, Glasgow, United Kingdom
BACTACS: A POTENTIAL STRATEGY FOR THE SELECTIVE DEGRADATION OF PROTEINS WITHIN PROKARYOTES
<table>
<thead>
<tr>
<th>Poster index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ana T. Carmona</td>
</tr>
<tr>
<td>Universidad de Sevilla, Sevilla, Spain</td>
</tr>
<tr>
<td>INHIBITION OF LYOSOMAL GLYCOSIDASES BY MULTIMERIC PRESENTATIONS OF PYRROLIDINE-BASED IMINOSUGARS</td>
</tr>
<tr>
<td>Tomás Chávez</td>
</tr>
<tr>
<td>University of Chile, Santiago, Chile</td>
</tr>
<tr>
<td>ERINE 2425.46 AND ALANINE 2225.46 AS DETERMINANTS OF 5-HT2A/2C SELECTIVITY</td>
</tr>
<tr>
<td>Slim Chiha</td>
</tr>
<tr>
<td>University of Cologne, Cologne, Germany</td>
</tr>
<tr>
<td>MAKING THE UNDRUGGABLE DRUGGABLE: SYNTHETIC PROLIN-DERIVED MODULES (ProMs) AS BUILDING BLOCKS FOR RATIONAL AND LIBRARY-BASED DRUG DEVELOPMENT</td>
</tr>
<tr>
<td>Daniela Cintulova</td>
</tr>
<tr>
<td>TU Wien, Vienna, Austria</td>
</tr>
<tr>
<td>SYNTHESIS AND BIOLOGICAL PROFILING OF MEPHEDRONE METABOLITES</td>
</tr>
<tr>
<td>Davide Cirillo</td>
</tr>
<tr>
<td>University of Bergen, Bergen, Norway</td>
</tr>
<tr>
<td>DRUG REPURPOSING: SULFASALAZINE AS A NEW ANTICANCER TREATMENT. STUDY OF TUMOUR DRUG DISTRIBUTION THROUGH PET AND MRI IMAGING</td>
</tr>
<tr>
<td>Rafaela Conceicao</td>
</tr>
<tr>
<td>TU Wien, Vienna, Austria</td>
</tr>
<tr>
<td>SYNTHESIS OF DOUBLE-CLICK AZOBENZENES FOR AN EASY FUNCTIONALIZATION OF BIOMOLECULES</td>
</tr>
<tr>
<td>Toan Dao-Huy</td>
</tr>
<tr>
<td>Hanoi University of Science and Technology, Hanoi, Vietnam</td>
</tr>
<tr>
<td>SYNTHESIS OF BENZO-FUSED NEOLIGNANS AS POTENTIAL ANTI-INFLAMMATORY AGENTS</td>
</tr>
<tr>
<td>Alice Di Pasquale</td>
</tr>
<tr>
<td>University of Birmingham, Birmingham, United Kingdom</td>
</tr>
<tr>
<td>SYNTHESIS OF BENZOBOROXOLE DERIVATIVES AS RECEPTORS FOR SIALIC ACID</td>
</tr>
<tr>
<td>Clemens Dialer</td>
</tr>
<tr>
<td>Ludwig-Maximilians University, Munich, Germany</td>
</tr>
<tr>
<td>A CLICK-CHEMISTRY LINKED 2’3’-cGAMP ANALOGUE</td>
</tr>
<tr>
<td>Tamas Farkas</td>
</tr>
<tr>
<td>PROGRESSIO Engineering Bureau Ltd., Budapest, Hungary</td>
</tr>
<tr>
<td>SYNTHESIS AND BIOLOGICAL EVALUATION OF THE PRECURSOR OF RADIOACTIVE IODINELABELED BIOACTIVE COMPOUND</td>
</tr>
<tr>
<td>Minghao Feng</td>
</tr>
<tr>
<td>Université Paris-Saclay, Gif-sur-Yvette, France</td>
</tr>
<tr>
<td>REGIOSELECTIVE CHLORINATION OF IMINOSYDNONE FOR ULTRAFAST CLICK AND RELEASE</td>
</tr>
<tr>
<td>Riham George</td>
</tr>
<tr>
<td>Cairo University, Cairo, Egypt</td>
</tr>
<tr>
<td>SYNTHESIS, ANTI-PROLIFERATIVE ACTIVITY AND 2D-QSAR STUDY OF SOME 8-ALKYL-2,4-BISBENZYLIDENE-3-NORTROPINONES</td>
</tr>
<tr>
<td>Sascha Heinrich</td>
</tr>
<tr>
<td>Ruhr-Universität Bochum, Bochum, Germany</td>
</tr>
<tr>
<td>SEMISYNTHESIS OF NOVEL MACROLIDE-BASED ANTIBIOTICS</td>
</tr>
<tr>
<td>Fabian Hogenkamp</td>
</tr>
<tr>
<td>Heinrich-Heine-University Düsseldorf, Jülich, Germany</td>
</tr>
<tr>
<td>SYNTHESIS OF PHOTOCAGED CARBOHYDRATES</td>
</tr>
</tbody>
</table>
Maria Teresa Iorio
TU Wien, Vienna, Austria
NEW MODIFICATIONS OF AN OLD SCAFFOLD: PYRAZOLOQUINOLINONE DERIVATIVES AND ANALOGUES AS ACTIVE COMPOUNDS ON GABA_α RECEPTORS

Ivanka Jeric
Ruder Bošković Institute, Zagreb, Croatia
SYNTHESIS OF 1,2-DIAZETIDIN-3-ONES VIA THE UGI REACTION COMPRISING α-HYDRAZINO ACIDS

M. Consuelo Jiménez
Universitat Politècnica de València, València, Spain
PHOTOBINDING OF TRIFLUSAL TO HUMAN SERUM ALBUMIN INVESTIGATED BY FLUORESCENCE, PROTEOMIC ANALYSIS AND COMPUTATIONAL STUDIES

Kwan-Young Jung
Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
NICLOSAMIDE DERIVATIVES INHIBIT CIP2A AND REACTIVATE TUMOR SUPPRESSOR PROTEIN PHOSPHATASE 2A IN NON-SMALL CELL LUNG CANCER CELLS

Zoltan Kaleta
PROGRESSIO Engineering Bureau Ltd., Budapest, Hungary
SI-SUBSTITUTED XANTHENE FLUORESCENT DYES WITH NEAR-INFRARED EMISSION

Prashant Khirsariya
Masaryk University, Brno, Czech Republic
NOVEL CHK1 INHIBITOR MU380 EXHIBITS SIGNIFICANT SINGLE-AGENT ACTIVITY IN TP53-MUTATED CHRONIC LYMPHOCYTIC LEUKEMIA CELLS

Susanne Kirchner
Karlsruhe Institute of Technology, Karlsruhe, Germany
PHOTOCHROMIC PEPTIDES FOR LIGHT-TRIGGERED DRUG DELIVERY AND BEYOND

Philipp Klahn
Technical University of Braunschweig, Braunschweig, Germany
SYNTHESIS AND BIOCHEMICAL EVALUATION OF AN ARTIFICIAL, FLUORESCENT GLUCOSINOLATE (GSL)

Eva Korytiaková
Ludwig-Maximilians University, Munich, Germany
INVESTIGATION OF ACTIVE DEMETHYLATION OF 5-METHYL-2'-DEOXYCYTIDINE

George Koutoulogenis
National and Kapodistrian University of Athens, Athens, Greece
SYNTHESIS OF NITRO DERIVATIVES AND FATTY ACID ESTERS OF RICINOLEIC ACID STARTING FROM CASTOR OIL

Frank Kraus
University of Stuttgart, Stuttgart, Germany
A SHORT SYNTHETIC APPROACH TO A LIBRARY OF NON NATURAL PPAP DERIVATIVES WITH ANTIMICROBIAL PROPERTIES AND INSIGHTS INTO THEIR ANTIBIOTIC MECHANISM

Bernhard Markus Krause
University of Cologne, Cologne, Germany
ENZYME-TRIGGERED CO-RELEASING MOLECULES (ET-CORMs) AS VERSATILE AND POWERFUL MEDICINAL AGENTS

Mounsef Lahboubi
Université libre de Bruxelles, Bruxelles, Belgium
A BROADLY APPLICABLE AND STRAIGHTFORWARD ENTRY TO SELECTIVELY DEUTERATED AMINES
Poster index

Tlabo Leboho
University of the Witwatersrand, Johannesburg, South Africa
THE ACID-CATALYSED SYNTHESIS OF 7-AZAINDOLES FROM 3-ALKINYL-2-AMINOPYRIDINES AND THEIR ANTIMICROBIAL ACTIVITY

Daniel Leichnitz
Hans-Knöll Institute (HKI), Jena, Germany
EFFICIENT SYNTHESIS OF SPHINGOLIPID AND SPHINGOSINE-TYPE CHEMICAL MEDIATORS OF MICROBIAL ORIGIN

Dimas Lima
Federal University of Alagoas
SYNTHESIS AND EVALUATION OF THE LARVICIDAL ACTIVITY OF THE DERIVATIVES OF THE CINNAMIC ACID IN THE COMBAT TO Aedes aegypti

Priscila López Rojas
Universidad de La Laguna, La Laguna, Spain
SYNTHESIS OF ANTHRAQUINONES AS HUMAN PROTEIN KINASE CK2 INHIBITORS

Frida Lundevall
University of Bergen, Bergen, Norway
SYNTHESIS AND INVESTIGATION OF Ag-NHC COMPLEXES WITH CYTOTOXIC PROPERTIES TOWARDS CELL LINES MODELLING ACUTE MYELOID LEUKEMIA

Antonin Lycka
Research Institute for Organic Syntheses (VUOS), Pardubice, Czech Republic
IMIDAZO[1,2-c][1,2,4]TRIMETHENETHION[5(6H)]-ONE AS A NOVEL CORE OF CYCLINDEPENDENT KINASE 2 INHIBITORS

Pratibha Magar
University of Pardubice, Pardubice, Czech Republic
SYNTHESIS AND ANTICANCER ACTIVITY OF NOVEL SALICYLAMIDE DERIVATIVES

Bruno Aleksander Martek
University of Ljubljana, Ljubljana, Slovenia
1H–15N HMBC NMR AS A TOOL FOR RAPID IDENTIFICATION OF AZAINDOLE CANNABINOID DRUGS

Michal Maryška
University of Chemistry and Technology, Prague, Czech Republic
DESIGN, SYNTHESIS AND EVALUATION OF NOVEL INHIBITORS OF KYNURENINE AMINOTRANSFERASE II

Viktoras Masevicius
Vilnius University, Vilnius, Lithuania
NOVEL FUNCTIONALITYS OF ADOMET ANALOGS FOR NUCLEIC ACIDS LABELING

Ján Matyašovský
Academy of Science of the Czech Republic, Prague, Czech Republic
2-SUBSTITUTED dATP DERIVATIVES AS BUILDING BLOCKS FOR ENZYMATIC SYNTHESIS OF DNA MODIFIED IN THE MINOR GROOVE

Lukas Mikulu
University of Chemistry and Technology, Prague, Czech Republic
SYNTHETIC DERIVATIVES OF PHYTOCANNABINOIDS

Takashi Misawa
National Institute of Health Sciences, Kanagawa, Japan
DEVELOPMENT OF AMPHIPATHIC CELL-PENETRATING FOLDAMERS FOR DELIVERY OF BIOMACROMOLECULES

Antonio J. Moreno-Vargas
Universidad de Sevilla, Sevilla, Spain
CYSTEINE–SPECIFIC DUAL LABELLING OF PROTEINS USING STRAINED [2.2.1]AZABICYCLIC VINYL SULFONES
Viktoria Mrđen Debono
Georg-August-Universität, Göttingen, Germany
SYNTHESIS OF FLUOROGENIC PROBES FOR STABILIZATION OF SUPEROXIDE DISMUTASE (SOD1)

Zeeshan Muhammad
University of Bergen, Bergen, Norway
SYNTHESIS AND STRUCTURE-BASED STUDIES OF FMN RIBOSWITCH LIGANDS: EXPLORING FMN RIBOSWITCH TARGET TO FIND NEW ANTIBIOTICS

Hayate Nagabuchi
Fukuoka University, Fukuoka, Japan
SYNTHETIC STUDIES OF NOVEL SPIRO PYRAZOL-3-ONES CONTAINING QUINAZOLINE AND/OR OXIRANE MOIETY

Sebastian Neidig
Ludwig-Maximilians University, Munich, Germany
EN ROUTE TO NEISSERIA MENINGITIDIS SEROGRUP Y FULLY SYNTHETIC VACCINE CANDIDATES

Michał Nowak
Gdansk University of Technology, Gdansk, Poland
SYNTHESIS AND ANTIFUNGAL ACTIVITY STUDY OF TRIMETHYL LOCK-MODIFIED GLUCOSAMINE-6-PHOSPHATE SYNTHASE INHIBITOR

Ephraim Okolo
University of Leeds, Leeds, United Kingdom
A "TOP DOWN" APPROACH TO THE SYNTHESIS OF COMPLEX, DIVERSE LEAD-LIKE SCAFFOLDS

Stuart Pearson
AstraZeneca, Macclesfield, United Kingdom
RECENT ADVANCES IN HETEROCYCLIC SYNTHESIS IN AstraZeneca ONCOLOGY

Karine Porte
Université Paris-Saclay, Gif-sur-Yvette, France
CONTROLLED RELEASE OF MICELLE PAYLOAD VIA SEQUENTIAL ENZYMATIC AND BIOORTHOGONAL REACTIONS IN LIVING SYSTEMS

Monireh Pourghasemi Lati
Stockholm University, Stockholm, Sweden
SYNTHESIS OF A NOVEL CYCLIC PEPTIDE LIBRARY ENABLED BY C-H FUNCTIONALIZATIONS AND THE DNA-ENCODED LIBRARY TECHNOLOGY

Maja Przybyłowska
Gdańsk University of Technology, Gdańsk, Poland
SYNTHESIS OF PHOSPHORUS TACRINE ANALOGUES AS A NEW POTENTIAL ANTI-ALZHEIMER'S DISEASE AGENTS

Luka Raguž
Hans-Knöll Institute (HKI), Jena, Germany
TOTAL SYNTHESIS OF SPHINGOLIPIDS AND SPHINGOSINE-TYPE SIGNALING MOLECULES OF MICROBIAL ORIGIN

Kheironnesae Rahimidashaghoul
Academy of Science of the Czech Republic, Prague, Czech Republic
RADICAL FLUOROALKYLATION OF NITROGEN HETEROCYCLES AND AROMATIC AMINO ACID RESIDUES IN PEPTIDES AND PROTEINS

Gemma Maria Rodriguez-Muñiz
Universitat Politécnica de València, València, Spain
SYNTHESIS OF A POTENTIAL COMPOUND BASED ON A DIAMINODIPHENYLBUTADIENE TO REPAIR DNA-LESIONS
<table>
<thead>
<tr>
<th>Poster index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laura G Sarbu</td>
</tr>
<tr>
<td>Alexandru Ioan Cuza University of Iasi, Iasi, Romania</td>
</tr>
<tr>
<td>TRICYCLIC FLAVONOIDS WITH 1,3-DITHIOLIUM SUBSTRUCTURE: SYNTHESIS AND ANTIBACTERIAL ACTIVITY</td>
</tr>
<tr>
<td>Souvik Sarkar</td>
</tr>
<tr>
<td>Umeå University, Umeå, Sweden</td>
</tr>
<tr>
<td>DESIGN, SYNTHESIS AND EVALUATION OF NOVEL 1,2-THIAZOLINO 2-PYRIDONE DERIVATIVES AS MYCOBACTERIUM TUBERCULOSIS TOLERANCE INHIBITORS</td>
</tr>
<tr>
<td>Robert Schirmacher</td>
</tr>
<tr>
<td>CBIN Göttingen, Göttingen, Germany</td>
</tr>
<tr>
<td>THE SYNTHESIS OF 2,5-DISUBSTITUTED PYRROLES FOR THE INHIBITION OF SOD1 AGGREGATION IN ALS</td>
</tr>
<tr>
<td>Inga Shchelik</td>
</tr>
<tr>
<td>University of Zurich, Zurich, Switzerland</td>
</tr>
<tr>
<td>CAGING AND CONTROLLED RELEASE OF AN ANTIBACTERIAL DRUG BY CELL SURFACE FUNCTIONALIZATION</td>
</tr>
<tr>
<td>Benjamin Smith</td>
</tr>
<tr>
<td>Stanford University, Stanford, USA</td>
</tr>
<tr>
<td>IDENTIFICATION OF ONCOGENE CONTROLLED SIALOSIDES</td>
</tr>
<tr>
<td>Rufus Smits</td>
</tr>
<tr>
<td>Latvian Institute of Organic Synthesis, Riga, Latvia</td>
</tr>
<tr>
<td>SYNTHESIS OF CURCUMIN HETEROCYCLIC DERIVATIVES</td>
</tr>
<tr>
<td>Łukasz Tomorowicz</td>
</tr>
<tr>
<td>Medical University of Gdańsk, Gdańsk, Poland</td>
</tr>
<tr>
<td>SYNTHESIS AND ANTICANCER ACTIVITY OF 2-(1,3,5-TRIAZIN-2-YLMETHYLTHIO)-N-(IMIDAZOLIDIN-2-YLIDENE)-5-METHYL BENZENESULFONAMIDE DERIVATIVES</td>
</tr>
<tr>
<td>Eric S.E. van Beelen</td>
</tr>
<tr>
<td>Waters Corporation, Milford, USA</td>
</tr>
<tr>
<td>THE EFFECTS OF SFC PREPARATIVE SCALE-UP ON THROUGHPUT, PURITY AND RECOVERY OF AN IMPURITY IN AN API MIXTURE</td>
</tr>
<tr>
<td>Eric S.E. van Beelen</td>
</tr>
<tr>
<td>Waters Corporation, Milford, USA</td>
</tr>
<tr>
<td>SMALL SCALE COMPOUND ISOLATION USING MASS DIRECTED PURIFICATION</td>
</tr>
<tr>
<td>Tomáš Vašiček</td>
</tr>
<tr>
<td>Academy of Science of the Czech Republic, Prague, Czech Republic</td>
</tr>
<tr>
<td>3,3'-DISUBSTITUTED THIOGALACTOSIDES AS INHIBITORS OF GALECTINS</td>
</tr>
<tr>
<td>Blanca Angelica Vega Alanis</td>
</tr>
<tr>
<td>TU Wien, Vienna, Austria</td>
</tr>
<tr>
<td>SELECTIVITY OF PYRAZOLOQUINOLINONE DERIVATIVES TOWARDS THE ALPHA1+/BETA1- INTERFACE OF THE GABA\textsubscript{A} RECEPTOR</td>
</tr>
<tr>
<td>Lucia Veselovska</td>
</tr>
<tr>
<td>Academy of Science of the Czech Republic, Prague, Czech Republic</td>
</tr>
<tr>
<td>SYNTHESIS OF NOVEL HETERO-FUSED 7-DEAZAPURINE RIBONUCLEOSIDES</td>
</tr>
<tr>
<td>Maximillian Viera</td>
</tr>
<tr>
<td>National University of Singapore, Singapore, Singapore</td>
</tr>
<tr>
<td>SYNTHESIS OF A CHONDROITIN SULFATE PROBE AND ITS APPLICATION IN PROSTATE CANCER CELLS</td>
</tr>
<tr>
<td>Tristan Wegner</td>
</tr>
<tr>
<td>Westfälische Wilhelms-Universität Münster, Münster, Germany</td>
</tr>
<tr>
<td>NOVEL ADDRESSABLE CHOLESTEROL ANALOGUES FOR LIVE IMAGING OF CELLULAR MEMBRANES</td>
</tr>
</tbody>
</table>
Martin Wilkovitsch
TU Wien, Vienna, Austria
HIGHLY REACTIVE DIENOPHILES FOR BIOORTHOGONAL TETRAZINE LIGATIONS
Poster index

Organic Materials

Mandeep K. Bal
Manchester Metropolitan University, Manchester, United Kingdom
METABOLISM MIMICRY: AN ELECTROSYNTHETIC METHOD FOR THE SELECTIVE DEETHYLATION OF TERTIARY BENZAMIDES

Nico Balzer
Karlsruhe Institute of Technology, Karlsruhe, Germany
SYNTHESIS OF FUNCTIONALIZED MOLECULAR TRIPODS FOR SURFACE APPLICATIONS

Paulina Bartos
University of Lodz, Lodz, Poland
NEW ACCESS TO PLANAR BLATTER RADICALS: \(\pi \) EXTENDED HETEROCYCLES WITH HIGH SPIN DELOCALIZATION

Denis Borisov
Russian Academy of Sciences, Moscow, Russia
1,2-ZWITTERIONIC Ga COMPLEXES OF METHYLIDENEMALONATES AND THEIR REACTIONS WITH ACETYLENES

Nikos Chronakis
University of Cyprus, Nicosia, Cyprus
TETHER-DIRECTED REGIOSELECTIVE SYNTHESIS OF AN EQUATORIALFACE BISADDUCT OF AZAFULLERENE USING CYCLO-[2]-OCTYLMALONATE

Mowpriya Das
Westfälische Wilhelms-Universität Münster, Münster, Germany
MOLECULAR ADSORBATES SWITCH ON HETEROGENEOUS CATALYSIS: INDUCTION OF REACTIVITY BY N-HETEROCYCLIC CARBENES

Isabella Eder
Johannes Kepler University Linz, Linz, Austria
A NEW APPROACH TO PREPARE \(\alpha \)-FLUORINATED \(\beta \)-AMINO ACIDS, BEARING A TETRASUBSTITUTED STEREOGENIC CENTER

Jomana Elaridi
Lebanese American University, Beirut, Lebanon
CYCLOTRIMERIZATION OF NUCLEOBASE-LINKED NITRILES FOR THE PRODUCTION OF NOVEL S-TRIAZINES

Leonid Fershat
N.D. Zelinsky Institute of Organic Chemistry, Moscow, Russia
NEW DIRECTIONS IN THE HETARENE \(\text{M-OXides} \) CHEMISTRY

Sarah R. Geenen
Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
MONO- AND DISUBSTITUTED PSORALENS FOR INTERCALATION AND PHOTOOXIDATION INTO DNA

Benjamin Günther
Heidelberg University, Heidelberg, Germany
SYNTHESIS AND CHARACTERIZATION OF NON-PLANAR TETRAAZAPEROPYRENES (TAPPS) VIA BAY-SUBSTITUTION

Brigitte Holzer
TU Wien, Vienna, Austria
SYNTHESIS AND CHARACTERIZATION OF SELENOPHENE-BASED ORGANIC SEMICONDUCTORS

Sebastian Intorp
Ruprecht-Karl-University Heidelberg, Heidelberg, Germany
COLOR TUNING OF ELECTROCHROMIC HETEROPHENOQUINONES
Mingyeong Jeong
Kwangwoon University, Seoul, Korea
Ru(II) COMPLEXES CONTAINING EXTENDED \(\pi \)-CONJUGATION BIPYRIDYL ANCILLARY LIGAND: SYNTHESIS AND APPLICATION FOR DSSCs

Soon Kwan Jeong
Korea Institute of Energy Research, Daejeon, Korea
CHEMICAL REGENERATION OF AMINE SOLVENTS USING CALCIUM HYDROXIDE FOR CO\(_2\) CAPTURE PROCESS

In Hwan Jung
Kookmin University, Seoul, Republic of Korea
DEVELOPMENT OF ORGANIC POLYMER DONOR FOR EFFICIENT TERNARY ORGANIC SOLAR CELLS

Thomas Kader
TU Wien, Vienna, Austria
PLANARIZED PYRIDINE-BASED TRIARYLAMINES FOR FUNCTIONAL ORGANIC MATERIALS

Zigfrids Kapilinskis
Riga Technical University, Riga, Latvia
SYNTHESIS OF AMORPHOUS FLUORESCENT PURINE HYBRIDS CONTAINING FIVE-MEMBERED HETEROCYCLES

Gabriella Kervefors
Stockholm University, Stockholm, Sweden
REGIOSPECIFIC N-ARYLATION OF ALIPHATIC AMINES UNDER MILD AND METAL-FREE REACTION CONDITIONS

Aisha Khalifa
University College Dublin, Dublin, Ireland
THE DOUBLE REDUCTION OF CYCLIC BENZO-FUSED SULFONAMIDES

Attila Kunfi
Hungarian Academy of Sciences, Budapest, Hungary
CONSTRUCTION OF HETEROGENEOUS CATALYSTS AND DYNAMIC INTERFACES ON A POLYDOPAMINE PLATFORM

Aneta Kurpanik
University of Silesia, Katowice, Poland
NEW POSSIBILITIES OF 3,9-DIAMINOSUBSTITUTED PERYLENES CORE EXTENSION VIA DIELS-ALDER CYCLOADDITION TO BAY REGION

Hyejeong Lee
Dong-A University, Busan, Republic of Korea
TANDEM INDIUM-MEDIATED REDUCTIVE REACTION/N-ANNULATION REACTION: SYNTHESIS OF BIS-PYRROLEARENE DERIVATIVES FROM ELECTRON DEFICIENT NITROANILINEs

Zsófia Makra
AVIDIN Ltd., Szeged, Hungary
IBX/NIS INDUCED OXIDATIVE INTRAMOLECULAR ANNULATION

Laura Mayer
Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
DIVERSITY-ORIENTED SYNTHESIS OF DIARYL SUBSTITUTED HETEROCYCLES VIA SEQUENTIAL PALLADIUM CATALYSIS

Kasjan Misztal
Saule Research Institute Foundation, Wroclaw, Poland
SYNTHESIS, CHARACTERIZATION AND APPLICATION OF NOVEL FULLERENE DERIVATIVES IN PEROVSKITE SOLAR CELLS
Monica-Irina Nan
"Babes Bolyai" University, Cluj-Napoca, Romania
SYNTHESIS AND CHARACTERIZATION OF NOVEL PYRENE AND PHENOTHIAZINE BASED BUILDING BLOCKS FOR ORGANIC SOLAR CELLS AND MOLECULAR ELECTRONICS

Jonas S. Niedballa
Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
ONE-POT MULTI-COMPONENT COUPLING-ADDITION SYNTHESIS OF HYDROXYPYRAZOLEs, ALKOXYPYRAZOLEs, AND β-AMINO ENOATES

Jela Nociarová
Comenius University Bratislava, Bratislava, Slovakia
DONOR-SUBSTITUTED PYRIDOBENZO(BIS)THIAZOLES AS TWO PHOTON ABSORBING FLUOROFIRES FOR BIOIMAGING

Eric Pasquinet
CEA, Monts, France
NITRENE-BASED N-N BOND FORMATION: AN EFFICIENT METHOD TOWARDS NITROGEN-RICH TRICYCLIC TRIAZAPENTALENES

Raúl Pérez-Ruiz
Universitat Politècnica de València, València, Spain
BORYLATION OF THIOPHENES DRIVEN BY PHOTOCATALYST-FREE VISIBLE LIGHT

Apurba Ranjan Sahoo
TU Wien, Vienna, Austria
SYNTHESIS, CHARACTERIZATION, AND APPLICATIONS OF SUPPORTED POLYMERIC IONIC LIQUIDS (SILPS)

Finn Schulz
University of Stuttgart, Stuttgart, Germany
FLUOROPHOBIC EFFECT LEADS TO NOVEL LIQUID CRYSTALLINE DONOR ACCEPTOR DYES

Manuel Schupp
Karlsruhe Institute of Technology, Karlsruhe, Germany
CONDUCTIVITY STUDIES OF DIARYLETHYLENE-MODIFIED DNA VIA SCANNING TUNNELING MICROSCOPY

Armands Sebris
Riga Technical University, Riga, Latvia
AMORPHOUS PURINE-AZOLE CONJUGATES AND THEIR PHOTOPHYSICAL PROPERTIES

Philipp Seubert
University of Stuttgart, Stuttgart, Germany
CROWN ETHER-BASED MESOGENS WITH BRANCHED ALKYL CHAINS

Yushin Shibuya
Kobe University, Kobe, Japan
SYNTHESIS AND STRUCTURE OF REGIOREGULAR POLY(1,4-POLY-ARYLENE)

Pavel Šimon
University of Pardubice, Pardubice, Czech Republic
SYNTHESIS AND CHARACTERIZATION OF NEW HIGHLY FLUORINATED DIAMINES SUITED FOR POLYMERIZATION

Maroš Smoliček
Comenius University Bratislava, Bratislava, Slovakia
BENZOTHIAZOLE ANALOGUES OF BODIPY DYES WITH A QUADRUPOLAR (D-π-A-π-D) ARCHITECTURE FOR BIOIMAGING
Irena G. Stará
Czech Academy of Sciences, Prague, Czech Republic
DIASTEROEO- AND ENANTIOPURE HELICENE 2,2'-BIPYRIDINES: A NEW TYPE OF CHIROPTICAL SWITCHES

Jiří Túma
University of Chemistry and Technology, Prague, Czech Republic
MECHANOCHEMICALLY INDUCED SWITCHING OF SPIROPYRANS

Carlijn L. F. van Beek
University of Groningen, Groningen, The Netherlands
CONTROL OVER SURFACE WETTABILTY BY SURFACE-IMMOBILISED MOLECULAR MOTORS

Miha Virant
University of Ljubljana, Ljubljana, Slovenia
TOWARDS THE TRIARYLATED TRIAZOLIUM SALTS

Ming-Ming Wang
Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
DIVERGENT 1,3-DIFUNCTIONALIZATION OF AMINOCYCLOPROPANES

Expédite Yen-Pon
Université Paris-Saclay, Gif-sur-Yvette, France
SYDNONE-BASED APPROACH TO HETEROHELICENES THROUGH 1,3-DIPOLAR-CYCLOADDITIONS
Physical and Computational Organic Chemistry

Shar Saad Al-Shihry
King Faisal University, Hufuf, Saudi Arabia
DESIGN AND ASSESSMENT OF NOVEL POLYMERS BASED ON 5-DIHYDRAZINYL-1, 3,4-THIADIAZOLE AS INHIBITORS FOR STEEL PIPELINES CORROSION IN CO₂-SATURATED OILFIELD

Ivana Antol
The Ruđer Bošković Institute, Zagreb, Croatia
A DFT STUDY OF REGIOSELECTIVITY IN DIELS-ALDER CYCLOADDITION OF E-BENZILIDENEGUANIDINE WITH 4,5-, 5,6- AND 6,7-INDOLynes

Nicholas Beattie
University of Manchester, Manchester, United Kingdom
COMPUTATIONAL INVESTIGATIONS INTO ENANTIOSELECTIVE SAMARIUM DIODIDE-MEDIATED RADICAL CYCLISATION REACTIONS

Christoph Bickmann
Karlsruhe Institute of Technology, Karlsruhe, Germany
DNA FROM AN ELECTRICAL POINT OF VIEW - POTENTIAL BUILDING BLOCKS FOR MOLECULAR ELECTRONICS

Alba Carretero-Cerdán
Stockholm University, Stockholm, Sweden
BASE-CATALYZED ISOMERIZATION OF DIENYL ALKYL ETHERS AND DIENOLS: DFT STUDIES

Monica Civera
Università degli Studi di Milano, Milan, Italy
A CHIMERA MODEL OF RelSeq PRE-CATALYTIC STATE

Harvey Dale
The University of Edinburgh, Edinburgh, UK
TAMING AMBIDENT TRIAZOLE NUCLEOPHILES: REGIOSELECTIVE ION-PAIRING AND PHASE-TRANSFER ORGANOCATALYSIS

Louis Evans
University of Greenwich, Chatham Maritime, U.K.
MECHANISTIC INSIGHTS INTO THE SILYL-PRINS REACTION

Nico Fleck
Universität Bonn, Bonn, Germany
C-C CROSS COUPLING OF TRITYL RADICALS: REACTIVITY AND SPIN DENSITY DELOCALIZATION

Francesca Fontana
University of Bergamo, Bergamo, Italy
SYNTHESIS AND CHARACTERIZATION OF SERS-ACTIVE HETEROAROMATIC MOLECULES

Zoran Glasovac
Ruđer Bošković Institute, Zagreb, Croatia
COMPUTATIONAL DESIGN OF NOVEL BICYCLO[2.2.2]OCTANE BASED PROTON SPONGES

Imre Gyűjtő
Budapest University of Technology and Economics, Budapest, Hungary
REARRANGEMENT OF 1,2,3-BENZOTHIADIAZINES

Karol Kraszewski
University of Warsaw, Warsaw, Poland
MECHANISTIC STUDIES ON OXIDATIVE DEAROMATIZATION OF PHENOLS PROMOTED BY HYPERVALENT IODINE SPECIES
Marole Maluleka
University of South Africa, Florida, South Africa
POTENTIALLY TAUTOMERIC 3-ARYLQUINOLIN-4(1H)-ONES VERSUS 3-ARYLQUINOLIN-4-OLS: SPECTROSCOPIC, DFT AND X-RAY ANALYSES

Boris Maryasin
University of Vienna, Vienna, Austria
COMPUTATIONAL CHEMISTRY AND ORGANIC SYNTHESIS: LET US BUILD A BRIDGE

Toni Metsänen
University of Jyväskyla, Jyväskyla, Finland
SYNTHETIC KETOREDUCTASE MIMICS

Jihye Na
Kwangwoon University, Seoul, Korea
MORPHOLOGICAL CHANGES OF ORGANIC PHOTOVOLTAICS: MOLECULAR DYNAMICS SIMULATION STUDIES

Sebastián Richter-Morales
Universidad de Chile, Santiago, Chile
A BONDING EVOLUTION THEORY PERSPECTIVE OF THE aza-SNAr MECHANISM

Steven Roldan-Gomez
Universitat de Girona, Girona, Spain
COMPUTATIONAL "DIVE" INTO A NICKEL(0)-CATALYZED ARENE C-F ACTIVATION WITH ALKynes

Alexey Salin
Kazan Federal University, Kazan, Russia
UNUSUAL SECONDARY KINETIC ISOTOPE EFFECTS IN REACTION OF TERTIARY PHOSPHINES WITH ELECTRON-DEFICIENT ALKENES

Lia Sotorrios
University of the Basque Country, Donostia/San Sebastian, Spain
MECHANISTIC INVESTIGATION OF AN OXIME ETHER ELECTROCYCLIZATION

Nicola Tonge
Mestrelab Research S.L., Santiago de Compostela, Spain
SPECTROSCOPIC DATA TO ASSIST CHEMICAL SYNTHESIS

Simon Turega
Sheffield Hallam University, Sheffield, UK
INVESTIGATING MONOAmine OXIDASE ISOFORM SELECTIVITY FOR NEUROTRANSMITTER SUBSTRATES THROUGH THE PRODUCTION OF THERMODYNAMIC CYCLES

Giovanna Zanella
Universidad del País Vasco, San Sebastián, Spain
DFT STUDY OF THE REACTIVITY OF TRANSIENTLY GENERATED CYCLIC DIENOLATES VERSUS THE ACYCLIC COUNTERPARTS IN ADDITION REACTIONS
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Poster Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan Alfuth</td>
<td>Gdansk University of Technology, Gdansk, Poland</td>
<td>PO-323</td>
</tr>
<tr>
<td>Lucian M Birsa</td>
<td>Alexandru Ioan Cuza University of Iasi, Iasi, Romania</td>
<td>PO-324</td>
</tr>
<tr>
<td>Patrick Boaler</td>
<td>The University of Edinburgh, Edinburgh, UK</td>
<td>PO-325</td>
</tr>
<tr>
<td>Leo Frkanec</td>
<td>Ruder Bošković Institute, Zagreb, Croatia</td>
<td>PO-326</td>
</tr>
<tr>
<td>Sabrina Gonglach</td>
<td>Johannes Kepler University Linz, Linz, Austria</td>
<td>PO-327</td>
</tr>
<tr>
<td>Michael Haas</td>
<td>Johannes Kepler University Linz, Linz, Austria</td>
<td>PO-328</td>
</tr>
<tr>
<td>Dong Hwan Kim</td>
<td>University of Ulsan, Ulsan, Republic of Korea</td>
<td>PO-329</td>
</tr>
<tr>
<td>Saša Opačak</td>
<td>The Ruđer Bošković Institute, Zagreb, Croatia</td>
<td>PO-330</td>
</tr>
<tr>
<td>Marcelle D. Perretti</td>
<td>Universidad de La Laguna (ULL), Tenerife, Spain</td>
<td>PO-331</td>
</tr>
<tr>
<td>Lidia Pop</td>
<td>"Babes Bolyai" University, Cluj-Napoca, Romania</td>
<td>PO-332</td>
</tr>
<tr>
<td>Manuel Rondelli</td>
<td>Instituto de Productos Naturales y Agrobiología, San Cristóbal de La Laguna, Spain</td>
<td>PO-333</td>
</tr>
</tbody>
</table>

SUPRAMOLECULAR SELF-ASSEMBLY OF HALOGEN-BOND-FORMING QUINOLINE DERIVATIVES

INTRAMOLECULAR INTERACTIONS IN [2.2]PARACYCLOPHANES

MECHANISTIC INVESTIGATIONS INTO CATALYTIC, CAPSULE-MEDIATED ARENE ALLYLATIONS

TRANSCRIPTION OF SELF-ASSEMBLED GEL NETWORKS EMBEDDED WITH REACTIVE VINYL GROUPS TO NANOSTRUCTURED POLYMERS

MOLECULAR Co-CORROLE COMPLEX FOR THE HETEROGENEOUS ELECTROCATALYTIC REDUCTION OF CARBON DIOXIDE ON CARBON FIBER ELECTRODES

INCREASING THE \(\pi\)-ELECTRON CONJUGATION OF CORROLES VIA SONOGASHIRA-CROSS-COUPLING

ACCEPTOR METAL-DIRECTED SUPRAMOLECULAR TOPOLOGIES

SECONDARY STRUCTURAL MOTIFS IN DISUBSTITUTED FERROCENE AMIDES

BUILDING COVALENT MOLECULAR CAPSULES BY THIOL- MICHAEL ADDITION CLICK REACTION

SUPRAMOLECULAR ARHITECTURES SUPPORTED BY CATEMERS OF 2,7-DIppyRidylFLuoreNE WITH ORTHO-, META- OR PARA- DIIODOTETRAFLUOROBENZENE ISOMERS

RATIONAL DESIGN OF COOPERATIVITY IN A SYNTHETIC RECEPTOR
Total Synthesis and Methodology

Suresh Alati
Indian Institute of Technology Bombay, Mumbai, India
SYNTHESIS OF BENZOFURANYLINDOLINONES AND SPIRONAPHTHOQUINONES BY REACTION OF 3-SUBSTITUTED PHTHALIDES AND OXINDOLE DERIVED NITRO-OLEFINS

Mostafa Amer
University of Bristol, Bristol, UK
STEREOSELECTIVE SYNTHESIS OF MEDICINALLY-RELEVANT DIHYDROISOQUINOLINONES

Emy Andre-Joyaux
University of Bern, Bern, Switzerland
RADICAL CYCLIZATIONS OF A-OXY CARBON CENTERED RADICALS

André U. Augustin
TU Braunschweig, Braunschweig, Germany
EXPLOITING ORGANOSULFUR COMPOUNDS IN DONOR-ACCEPTOR CYCLOPROPANE CHEMISTRY

Andreas Baumann
Ludwig-Maximilians University, Munich, Germany
ELECTROCHEMICAL TRANSFORMATION OF TETRAORGANO BORATES TOWARDS HIGHLY FUNCTIONALIZED ALKENES

Sarah Bauspieß
Saarland University, Saarbrücken, Germany
SULFOXIDE CONTROLLED SUZUKI C-C COUPLING FOR THE SYNTHESIS OF CYCLOPHANE TYPE AXIALLY CHIRAL BIARYLS

Marius Bayer
University of Tübingen, Tübingen, Germany
THE SYNTHESIS OF DODECO-6,7-DIULOSES

Steven Bennett
University of Bristol, Bristol, UK
DEVELOPMENT OF BICYCLO[1.1.0]BUTYL BORONATE COMPLEXES FOR THE DIASTEREOSELECTIVE SYNTHESIS OF CYCLOBUTANES

Martin Berger
University of Vienna, Vienna, Austria
C-H ACTIVATION ENABLES A CONCISE AND STEREOSELECTIVE TOTAL SYNTHESIS OF QUININE AND ANALOGUES

Helge Berneaud-Kötz
Leibniz University Hannover, Hannover, Germany
DEVELOPMENT OF A TOTAL SYNTHESIS OF CEBULACTAMS A1 AND A2

Frédéric Bihel
Université de Strasbourg, Illkirch, France
A VERSATILE KETONE FORMATION VIA HIGHLY ACTIVE PRECATALYST "POXAP": APPLICATION TO THE SYNTHESIS OF ISOPREKINAMYCIN

Matteo Borgini
University of Siena, Siena, Italy
LARGAZOLE, A PROMISING SCAFFOLD FOR HDAC INHIBITORS

Christina Bub
RWTH Aachen University, Aachen, Germany
PHENOTHIAZINIMIDES: ATOM-EFFICIENT ELECTROPHILIC AMINATION REAGENTS
Robert Bujok
Polish Academy of Science, Warsaw, Poland
SYNTHESIS OF THE DIARYLACETYLENES BEARING ELECTRON WITHDRAWING GROUP VIA THE SMILES REARRANGEMENT

Finn Burg
Technical University Munich, Garching, Germany
BIOMIMETIC SITE- AND ENANTIOSELECTIVE C–H OXYGENATION OF QUINOLONE ANALOGUES MEDIATED BY HYDROGEN BONDING

Marcel Bürger
Technical University of Braunschweig, Braunschweig, Germany
ACTIVATED THIOCYANATES - THE CYANOSULFENYLATION OF INTERNAL ALKynes

Dmitry Bystrov
Russian Academy of Sciences, Moscow, Russia
NEW METHOD FOR THE SYNTHESIS OF (N-FUROXANYL)HYDRAZONES

Brenda Callebaut
Ghent University, Ghent, Belgium
AN INTRAMOLECULAR CYCLOADDITION APPROACH TO THE KAURANOID FAMILY OF DITERPENE METABOLITES

Roxan Calvo
Swiss Federal Institute of Technology, Zürich, Switzerland
FACILE ACCESS TO NITROARENES AND NITROHETERARENES USING N-NITROSACCHARIN: AN ELECTROPHILIC NITRATING REAGENT

Tomáš Čarný
Slovak University of Technology, Bratislava, Slovakia
ONE-STEP SYNTHESIS OF ISOINDOLO[2,1-α]INDOL-6-ONES VIA TANDEM Pd-CATALYZED AMINOCARBONYLATION AND C–H ACTIVATION REACTION

Anna Chamberlain
University of Oxford, Oxford, UK
STEREOSELECTIVE SYNTHESIS OF SATURATED NITROGEN HETEROCYCLES VIA HYDROGEN BORROWING CATALYSIS

Wei Wen Chen
Catalonia Institute for Advanced Chemistry, Barcelona, Spain
IODANE-DIRECTED ORTHO C–H ALLYLATION AS GATEWAY TOWARDS ADDED VALUE CORES

Yong Sheng Chng
National University of Singapore, Singapore, Singapore
PROTECTING-GROUP-FREE SYNTHESIS OF CHONDROITIN 6-SULFATE DISACCHARIDE AND TETRASACCHARIDE

Mien Christiaens
Ghent University, Ghent, Belgium
STEREOSELECTIVE AND MODULAR ASSEMBLY METHOD FOR DAUCANE, CYATHANE AND TIGLIANE TERPENOID SCAFFOLDS

Cecilia Ciccolini
University of Urbino “Carlo Bo”, Urbino, Italy

Yair Cohen
Israel Institute of Technology, Haifa, Israel
CARBOMETALLATION OF CYCLOPROPENYLSILANES

Anthony Cohen
Israel Institute of Technology, Haifa, Israel
REMOTE FUNCTIONALIZATION OF STEREODEFINED SUBSTITUTED CYCLOPROPANES
Laurent Commeiras
Aix-Marseille Université, Marseille, France
DIVERGENT COBALT-MEDIATED FORMAL (2+2+3)-CYCLOADDITION OF ENEDIYNES: EXPERIMENTAL AND THEORETICAL INSIGHTS

Ben Cons
Astex Pharmaceuticals, Cambridge, UK
ENABLING FRAGMENT GROWTH WITH PHOTOREDOX CATALYSIS THROUGH HIGH-THROUGHPUT EXPERIMENTATION

Massimiliano Cordaro
Università di Messina, Messina, Italy
SYNTHESIS OF BODIPY HETERODIMER FORMED BY HYDROGEN BONDING FOR ELECTRONIC TRANSFER INVESTIGATIONS

Massimiliano Cordaro
Università di Messina, Messina, Italy
SYNTHESIS OF BODIPY HETERODIMER FORMED BY HYDROGEN BONDING FOR ELECTRONIC TRANSFER INVESTIGATIONS

Axel Daikeler
University of Tübingen, Tübingen, Germany
SYNTHETIC PATHWAYS TOWARDS CARBOHYDRATE-SUBSTITUTED ALPHA-DIKETONES

Andrew Dalling
University of Bristol, Bristol, UK
RHODIUM-CATALYSED (3+1+2) CYCLOADDITIONS OF ELECTRON-POOR CYCLOPROPANES

Arif Dastan
Atatürk University, Erzurum, Turkey
ONE-POT SYNTHESIS OF DIAZANAPHTHALENE DIMERS AND TRIMERS VIA C-H SUBSTITUTION

Thomas Davies
University of Oxford, Oxford, UK
GENERATING AND EXPLOITING SULFINYL NITRENES

Samuel Delgado-Hernandez
Instituto de Productos Naturales y Agrobiología, Tenerife, Spain
INTEGRATIVE PERICYCLIC CASCADE: AN ATOM ECONOMIC, MULTI C-C BOND-FORMING STRATEGY FOR THE CONSTRUCTION OF MOLECULAR COMPLEXITY

Damien Dewez
Université libre de Bruxelles, Bruxelles, Belgium
TOTAL SYNTHESIS OF PALIURINE E: A HIGHLY CONVERGENT "BLOCK" APPROACH

Giovanni Di Mauro
University of Vienna, Vienna, Austria
HYDRATIVE AMINOXYLATION OF THIOALKYNES

Raquel Diana
Instituto de Productos Naturales y Agrobiología, Tenerife, Spain
SYNTHESIS AND REACTIVITY OF ALKYNYL VINYL HYDRAZINES

Abián Díaz
Instituto de Productos Naturales y Agrobiología, Tenerife, Spain
2,2-DIMETHYL-2H-PYRANS: DIENES FOR DOMINO DIELS-ALDER / RETRO DIELS-ALDER REACTIONS IN THE SYNTHESIS OF POLYSUBSTITUTED 2-NAPHTOATES

Marta Diaz
Universitat Ramon Llull, Barcelona, Spain
GEMINAL SILICON/BORON BIMETALLOIDS: VERSATILE BUILDING BLOCKS FOR MOLECULAR DIVERSITY
Markus Draskovits
TU Wien, Vienna, Austria
Ν-HETEROCYCLIC CARBENE CONTROLLED DIVERGENT DEHOMOLOGATION OF ALDOSES

Julia Dürner
Technical University Munich, Garching, Germany
SYNTHESIS OF NEW STERICAL DEMANDING CHIRAL AMINES

Louise Eagling
University of Bristol, Bristol, UK
DEVELOPING A ‘REVERSE-BIOMIMETIC’ SYNTHESIS OF AROGENATE AND ITS ANALOGUES

Sabria Ederwish
University of Strasbourg, Strasbourg, France
SYNTHESIS OF SPIRO-γ-HYDROXYLACTAM OXINDOLES AS HYBRID PROHIBITIN-2 LIGANDS

Tereza Edlová
University of Chemistry and Technology, Prague, Czech Republic
BROMINATION OF 1,2-DISUBSTITUTED CYCLOBUTENES

Abdelaziz Ejjoummany
Université Hassan II de Casablanca, Mohammedia, Maroc
DESIGN AND REGIOSELECTIVE FUNCTIONALIZATION OF NEW 2,4-SUBSTITUTED PYRIDO[1',2':1,5]PYRAZOLO[3,4-][3,4-]PYRIDINES AND 2,4-SUBSTITUTED PYRIDO[1',2':1,5]PYRAZOLO[4,3-]PYRIDINES VIA Pd-CATALYZED SEQUENTIAL ARYLACTION

Gábor Zoltán Elek
Tallinn University of Technology, Tallinn, Estonia
DIVERGENT ACCESS TO HISTONE DEACETYLASE INHIBITORY CYCLOPEPTIDES VIA LATE-STAGE CYCLOPROPANE RING CLEAVAGE STRATEGY. SHORT TOTAL SYNTHESIS OF CHLAMYDOCIN

Jessica Elwood
University of Glasgow, Glasgow, United Kingdom
CENTROSYMMETRIC APPROACH TOWARDS THE SYNTHESIS OF FUSED POLYCYCLIC ETHER NATURAL PRODUCTS

Julian Erver
University of Cologne, Cologne, Germany
STUDIES TOWARDS THE TOTAL SYNTHESIS OF DYSIHERBOL A

Joshua Farndon
University of Bristol, Bristol, UK
BIFUNCTIONAL AMINO-REAGENTS FOR C-N BOND FORMATION

Jerome Fischer
Université de Nantes, Nantes, France
CINCHONA AND BODIPY: AN APPEALING CATALYTIC STRATEGY FOR CHIMIOSELECTIVE PHOTOOXYGENATION

James Fordham
University of Bristol, Bristol, UK
PREPARATION OF VINYL BORONIC ESTERS VIA A HOMOLOGATION REACTION: BIDIRECTIONAL SYNTHESIS OF MACHILLENE

Sebastian Frey
Saarland University, Saarbrücken, Germany
ENANTIOSELECTIVE SYNTHESIS OF HYPERFORIN
Silvia Gazzola
University of Insubria, Como, Italy
NOVEL Mg-BASED APPROACH FOR THE REGIOSELECTIVE FUNCTIONALIZATION OF PURINE DERIVATIVES

Manoj Ghosh
University of Warsaw, Warsaw, Poland
METAL-FREE REGIOSELECTIVE C-H ARYL-ARYL CROSS-COUPLING - ARYLATION OF 2-NAPHTHOLS WITH DIARYLIDONIUM SALTS

Thomas Glachet
Normandie Université, Caen, France
DIRECT TRANSFORMATION OF AMINO ACIDS INTO DIAZIRINES AND $^{15}\text{N}_2$-DIAZIRINES AND THEIR APPLICATION AS HYPERPOLARIZED MARKERS

Mladena Glavaš
Ruder Bošković Institute, Zagreb, Croatia
SYNTHESIS OF MACROCYCLIC COMPOUNDS VIA CONSECUTIVE SONOGASHIRA-UGI-SONOGASHIRA REACTIONS

Carlos Gonçalves
University of Vienna, Vienna, Austria
A UNIFIED APPROACH TO THE CHEMOSELECTIVE α-FUNCTIONALIZATION OF AMIDES

Hanusch Grab
Technical University Munich, Garching, Germany
TOWARDS THE TOTAL SYNTHESIS OF VIOPROLIDES A-D

Julian Greb
Heinrich-Heine-University Düsseldorf, Jülich, Germany
OXIDATIVE PHENOL COUPLING IN NATURAL PRODUCT SYNTHESIS

Nándor Győrfi
Servier Research Institute of Medicinal Chemistry, Budapest, Hungary
PHOTOREDOX-CATALYZED ALKYLATION OF HETEROAROMATIC BASES USING ETHYL ACETATE AS ALKYLATING AGENT

Lamouri Hammal
University of Science and Technology Houari Boumediene (USTHB), Algiers, Algeria
SYNTHESIS OF PYRRAZOLE AND PYRIMIDINE STRUCTURE

Maxwell Haughey
University of Oxford, Oxford, UK
STUDIES TOWARDS THE TOTAL SYNTHESIS OF HETEROCLITIN F AND TAIWANSCHIRIN A, B, C AND D

Taiki Hayashi
Westfälische Wilhelms-Universität Münster, Münster, Germany
STEREOSPECIFIC α-SIALYLATION BY SITE-SELECTIVE FLUORINATION

Xin He
Xi’an Jiaotong University, Xi’an, China
PHOSPHINE-CATALYZED ACTIVATION OF ALKYLIDENECYCLOPROPANES: REARRANGEMENT TO FORM POLYSUBSTITUTED FURANS AND DIENONES

Tamás Hergert
Budapest University of Technology and Economics, Budapest, Hungary
A STEREOFLEXIBLE ACCESS TO 2-ALKENYLATED INDOLES

Yuto Hioki
Kobe University, Kobe, Japan
DEPROTONATIVE GENERATION OF CYCLOALKYNES USING METAL AMIDES
Oskar Hoff
University of Oxford, Oxford, UK
TOWARDS THE SYNTHESIS OF (+)-LOPHOTOXIN

Suvi Holmstedt
Tampere University, Tampere, Finland
A SHORT TOTAL SYNTHESIS OF NATURAL CARBASUGAR

Mira Holzheimer
Rijksuniversiteit Groningen, Groningen, The Netherlands
TOWARDS THE TOTAL SYNTHESIS OF CRENARCHAEOL

Marcel Holzwarth
University of Stuttgart, Stuttgart, Germany
COMPARISON OF TWO SYNTHETIC STRATEGIES TOWARDS 1-ACYL-2-VINYLCYCLOPROPANES

Alexander Horn
Saarland University, Saarbrücken, Germany
STEREOSELECTIVE MODIFICATION OF "α-HYDROXY ACID PEPTIDES" BY PALLADIUM CATALYZED ALLYLIC ALKYLLATION

Day-Shin Hsu
National Chung Cheng University, Chiayi, Taiwan
FORMAL SYNTHESIS OF PLATENCIN FROM O-VANILLIN BY INTERMOLECULAR AND INTRAMOLECULAR DIELS-ALDER STRATEGIES, RESPECTIVELY

Manish Kumar Jaiswal
Indian Institute of Technology Dehli, New Dehli, India
ORGANOCATALYTIC HIGHLY ENANTIOSELECTIVE VINYLOGOUS ALDOL REACTION: RAPID ACCESS TO &-QUARTERNARY α-HYDROXYPHOSPHONATO-3-ALKYLIDENE-2-OXINDOLES

Jiwon Jang
Hanyang University, Seoul, Republic of Korea
ASYMMETRIC [3,3]-SIGMATROPIC REARRANGEMENT IN GOLD(I)-CATALYZED INTERMOLECULAR CARBOALKOXYLATION

Antoine Joosten
Normandie Université, Rouen, France
REGIO- AND CHEMOSELECTIVE DEPROTECTION OF PRIMARY ACETATES BY ZIRCONIUM HYDRIDES

Wolfgang Jud
University of Graz, Graz, Austria
AN ELECTROCHEMICAL APPROACH TO RADICAL TRIFLUOROMETHYLATIONS AND OXYTRIFLUOROMETHYLATIONS

Martin Juhl
University of Copenhagen, Copenhagen, Denmark
UMPOLUNG MEDIATED CARBOXYLATION OF ALDEHYDES

Tobias Jung
Saarland University, Saarbrücken, Germany
STEREOSELECTIVE SYNTHESIS OF NATURAL MYRTUCOMULONES

Lukas Junk
Saarland University, Saarbrücken, Germany
LATE-STAGE INDOLE SYNTHESIS ENABLES THE TOTAL SYNTHESIS OF TRYPTOPHAN CONTAINING PEPTIDES

Maximilian Kaiser
TU Wien, Vienna, Austria
TOWARDS THE TOTAL SYNTHESIS OF ELISABETHIN A
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hubert Kalaus</td>
<td>TU Wien, Vienna, Austria</td>
<td>KINETIC QUANTIFICATION OF ALDOSE OPEN-CHAIN CONTENT</td>
</tr>
<tr>
<td>Claire Kammerer</td>
<td>Université de Toulouse, Toulouse, France</td>
<td>SYNTHESIS OF A FAMILY OF STAR-SHAPED MOLECULAR GEAR</td>
</tr>
<tr>
<td>Jurij Kessler</td>
<td>University of Tübingen, Tübingen, Germany</td>
<td>THE SYNTHESIS OF CARBON BRIDGED C-DISACCHARIDES VIA LITHIATED GLYCALS</td>
</tr>
<tr>
<td>Pankaj Khairnar</td>
<td>National Taiwan Normal University, Taipei, Taiwan</td>
<td>HIGHLY EFFICIENT SYNTHESIS OF TRISUBSTITUTED PYRAZOLES AND DISUBSTITUTED ISOXAZOLES VIA INTRAMOLECULAR WITTIG REACTIONS: A DIVERSITY-ORIENTED SYNTHESIS OF HETEROARENE SCAFFOLDS</td>
</tr>
<tr>
<td>Viktor Khutoriansky</td>
<td>Academy of Science of the Czech Republic, Prague, Czech Republic</td>
<td>VICARIOUS NUCLEOPHILIC CHLOROMETHYLATION OF NITROAROMATIC</td>
</tr>
<tr>
<td>Thorsten Kinsinger</td>
<td>Saarland University, Saarbrücken, Germany</td>
<td>C-H FUNCTIONALIZATION OF N-METHYLATED AMINO ACIDS AND PEPTIDES AS TOOL IN NATURAL PRODUCT SYNTHESIS</td>
</tr>
<tr>
<td>Alexander Klaiber</td>
<td>University of Tübingen, Tübingen, Germany</td>
<td>NOVEL PATHWAY TOWARDS STANNYLATED GLUCALS</td>
</tr>
<tr>
<td>Thomas Klein</td>
<td>University of Tübingen, Tübingen, Germany</td>
<td>GLYCOCONJUGATED AB3-SECO-PORPHYRAZINES AS POTENTIAL PHOTOSENSITIZERS IN PHOTODYNAMIC THERAPY</td>
</tr>
<tr>
<td>Immo Klose</td>
<td>University of Vienna, Vienna, Austria</td>
<td>STEREODIVERGENT SYNTHESIS OF 1,4-DICARBONYLS VIA A TRACELESS SULFOXIDE REARRANGEMENT</td>
</tr>
<tr>
<td>Christian Knittl-Frank</td>
<td>University of Vienna, Vienna, Austria</td>
<td>A SHORT SEMISYNTHESIS OF HEDERAGONIC ACID BY C–H ACTIVATION</td>
</tr>
<tr>
<td>Mikhail Kornev</td>
<td>The Ural Federal University, Ekaterinburg, Russia</td>
<td>USE OF CHROMONE-3-CARBOXYLIC ACID AND ITS DERIVATIVES IN THE SYNTHESIS OF HETEROCYCLES</td>
</tr>
<tr>
<td>Teresa Kösel</td>
<td>Leibniz University Hannover, Hannover, Germany</td>
<td>RADICAL CHEMISTRY OF POLYMER-SUPPORTED DIAZIDOIODATE(I)</td>
</tr>
<tr>
<td>Ondřej Kováč</td>
<td>Palacky University, Olomouc, Czech Republic</td>
<td>α,β-UNSATURATED α-BENZOTHIAZOLYSULFONYL DERIVATIVES - PREPARATION AND APPLICATIONS</td>
</tr>
<tr>
<td>Nicolas Kratena</td>
<td>TU Wien, Vienna, Austria</td>
<td>TOTAL SYNTHESIS OF HUMAN PHASE I STEROID METABOLITES</td>
</tr>
</tbody>
</table>
Alexander Kreft
TU Braunschweig, Braunschweig, Germany
DONOR–ACCEPTOR CYCLOPROPANES: A REACTIVITY STUDY

Timothy Kwok
University of Oxford, Oxford, UK
TOWARDS THE TOTAL SYNTHESIS OF PECTENOTOXIN-4

Dániel Lasányi
Eotvos Lorand University, Budapest, Hungary
COPPER CATALYZED RING OPENING REACTIONS OF [1.1.1]PROPELLANE

Guillaume Le Calvez
University of Groningen, Groningen, The Netherlands
TOTAL SYNTHESIS OF MYCOSEROSIC ACID FROM MYCOBACTERIUM TUBERCULOSIS AND THE PHEROMONE FROM MARGARODES PRIESKAENSI

Stian Legøy Árvik
University of Bergen, Bergen, Norway
RESPONSE SURFACE MODELLING OF MICROWAVE ASSISTED BISCHLER-NAPIERALSKI REACTION: SYNTHESIS OF EUDOSTOMIN H

Miran Lemmerer
University of Vienna, Vienna, Austria
A UNIFIED APPROACH TO THE CHEMOSELECTIVE ALPHA-FUNCTIONALIZATION OF AMIDES

Marcel Leroux
Ludwig-Maximilians University, Munich, Germany
LATE-STAGE FUNCTIONALIZATION OF PEPTIDES AND CYCLOPEPTIDES USING ORGOZINC REAGENTS

Vladimir Levchenko
University of Oslo, Oslo, Norway
AQUA REGIA IN GOLD(III) CHEMISTRY

Malte Leverenz
Technical University Munich, Garching, Germany
LEWIS-ACID CATALYZED PHOTOREARRANGEMENT OF 2,4-CYCLOHEXADIENONES

Yan-Cheng Liou
National Taiwan Normal University, Taipei, Taiwan
SYNTHESIS OF FUNCTIONALIZED BENZOFLURANS FROM PARA-QUINONE METHIDES VIA PHOSPHA-1,6-ADDITION/O-ACYLATION/WITTIG REACTION

Dylan Lynch
Trinity College Dublin, Dublin, Ireland
DEVELOPMENT OF A NOVEL LIGATION STRATEGY FOR SYNTHESIS OF THERAPEUTIC GLYCOPEPTIDES

Anton S. Makarov
Perm State University, Perm, Russia
RHODIUM-CATALYZED REARRANGEMENT OF 2-FURYL TETHERED 1-TOSYL-1,2,3-TRIAZOLES

Nina Makhova
Russian Academy of Sciences, Moscow, Russia
SYNTHESIS OF NEW PHARMACOLOGICALLY ORIENTED NO-DONOR FUROXAN-BASED HETEROCYCLIC ENSEMBLES

Marvin Mantel
Heinrich-Heine-University Düsseldorf, Jülich, Germany
NEW BENCH-STABLE ALLYLATION REAGENTS - HOW TUNING THE REACTIVITY ENABLES HIGHLY ENANTIOSELECTIVE ACCESS TO ALL STEROISOMERS OF TERTIARY HOMOALLYLIC ALCOHOLS
Athanasios Markos
Academy of Science of the Czech Republic, Prague, Czech Republic
N-**FLUOROALKYL**-1,2,3-TRIAZOLES: EASILY AVAILABLE COMPOUNDS WITH HIGH SYNTHETIC POTENTIAL

Lisa Marx
Saarland University, Saarbrücken, Germany
SYNTHESIS OF AXIALLY CHIRAL BIS(BIBENZYLs) DERIVED FROM PERROTTETIN E VIA C-H ACTIVATED HECK TYPE CYCLIZATION

Itai Massad
Israel Institute of Technology, Haifa, Israel
SURPRISINGLY SIMPLE CATALYTIC ACCESS TO STEREODEFINED FULLY-SUBSTITUTED ALDEHYDE ENOLATES

Jeferson B. Mateus-Ruiz
Universidad Nacional Autónoma de México, Ciudad de México, México
STEREOSELECTIVE TOTAL SYNTHESIS OF ASPERGILLIDE A

Tsubasa Matsuzawa
Tokyo Medical and Dental University (TMDU), Tokyo, Japan
SYNTHESIS OF DIVERSE BENZOTHIOPHENES VIA REACTION OF ARYNES WITH ALKYNYL SULFIDES

Joshua McLean
Trinity College Dublin, Dublin, Ireland
DEVELOPMENT OF NOVEL THIOL-ENE MEDIATED PEPTIDE LIGATION STRATEGIES

Claudio Flavio Meyer
University of Oxford, Oxford, UK
HYDRODIFLUOROMETHYLATION OF ALKENES WITH DIFLUOROACETIC ACID

Jean Michalland
Ecole Polytechnique, Palaiseau, France
ALTERNATING RADICAL STABILITIES. A CONVERGENT ROUTE TO TERMINAL AND INTERNAL BORONATES

Pierre Miibeo
Trinity College Dublin, Dublin, Ireland
THIOL-ENE CLICK LIGATION AS AN EFFICIENT APPROACH FOR PEPTIDE MACROCYCLIZATION

Marco Minneci
Università degli Studi di Milano, Milan, Italy
OPTIMIZED SYNTHESIS OF THE BACTERIAL MAGIC SPOT (p)ppGpp CHEMOSENSOR PyDPA

Malte Moeller
Leibniz University Hannover, Hannover, Germany
IMPROVED SYNTHESIS OF CYSTOBACTAMID 861-2 AND ANALOGS

Kazuki Morii
Kobe University, Kobe, Japan
SYNTHETIC STUDIES ON LAMELLARINS

Vladimir Motornov
N.D. Zelinsky Institute of Organic Chemistry, Moscow, Russia
ALPHA-FLUORONITROALKENES: USEFUL BUILDING BLOCKS FOR THE CONSTRUCTION OF NOVEL FLUORINATED HETEROCYCLES

Bastian Muriel
Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
PHOTOREDOX-MEDIATED RADICAL DIFFUNCTIONALIZATION OF CYCLOPROPENES
<table>
<thead>
<tr>
<th>Poster index</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arif Music
Ludwig-Maximilians University, Munich, Germany</td>
<td>PO-458</td>
</tr>
<tr>
<td>BIARYL COUPLING OF TETRA(HETER)ARYL BORATES VIA ELECTROCHEMICAL</td>
<td></td>
</tr>
<tr>
<td>OXIDATIONS</td>
<td></td>
</tr>
<tr>
<td>Yu Nakamura
Tokyo Medical and Dental University (TMDU), Tokyo, Japan</td>
<td>PO-459</td>
</tr>
<tr>
<td>FACILE SYNTHESIS OF DIVERSE BENZOPYRAN DERIVATIVES VIA GOLD-CATALYZED</td>
<td></td>
</tr>
<tr>
<td>CYCLIZATION AND GENERATION OF ARYNES</td>
<td></td>
</tr>
<tr>
<td>Aleksandra Narczyk
Polish Academy of Science, Warsaw, Poland</td>
<td>PO-460</td>
</tr>
<tr>
<td>THE SYNTHESIS OF β,β-DISUBSTITUTED ALLYL ALCOHOLS AND THEIR TRANSFORMATION</td>
<td></td>
</tr>
<tr>
<td>INTO UNNATURAL AMINO ACIDS</td>
<td></td>
</tr>
<tr>
<td>Stéphanie Norsikian
ICSN CNRS-UPR 2301, Gif-sur-Yvette, France</td>
<td>PO-461</td>
</tr>
<tr>
<td>TOWARDS THE TOTAL SYNTHESIS OF TIAUCUMICIN B: PREPARATION OF GLYCOSIDIC</td>
<td></td>
</tr>
<tr>
<td>FRAGMENTS AND GLYCOSYLATION</td>
<td></td>
</tr>
<tr>
<td>Dmitry Obydennov
The Ural Federal University, Ekaterinburg, Russia</td>
<td>PO-462</td>
</tr>
<tr>
<td>CARBAMOYLATED ENAMINONES AS VERSATILE BUILDING BLOCKS FOR THE</td>
<td></td>
</tr>
<tr>
<td>SYNTHESIS OF AZA HETEROCYCLES</td>
<td></td>
</tr>
<tr>
<td>Lukas Ochmann
Justus Liebig University Giessen, Giessen, Germany</td>
<td>PO-463</td>
</tr>
<tr>
<td>ALKOXYDIPHENYLPHOSPHINITES AS CARBOCATION SYNTONS</td>
<td></td>
</tr>
<tr>
<td>Derek Yiren Ong
Nanyang Technological University, Singapore, Singapore</td>
<td>PO-464</td>
</tr>
<tr>
<td>CONTROLLED REDUCTION OF CARBOXAMIDES TO ALDEHYDES, ALCOHOLS OR AMINES</td>
<td></td>
</tr>
<tr>
<td>Jekaterina Ongouta
Symrise AG, Holzminden, Germany</td>
<td>PO-465</td>
</tr>
<tr>
<td>STUDIES TOWARDS THE TOTAL SYNTHESIS OF ASADANIN</td>
<td></td>
</tr>
<tr>
<td>Dmitry Osipov
Samara State Technical University, Samara, Russia</td>
<td>PO-466</td>
</tr>
<tr>
<td>Zn- AND Sm-INDUCED REDUCTIVE REARRANGEMENT OF 2-ACYL-2,3-DIHYDROBENZOFURANS</td>
<td></td>
</tr>
<tr>
<td>INTO 4H-CHROMENES</td>
<td></td>
</tr>
<tr>
<td>Vitaly Osyanin
Samara State Technical University, Samara, Russia</td>
<td>PO-467</td>
</tr>
<tr>
<td>NEW APPROACHES TO SYNTHESIS OF 4H-CHROMENES</td>
<td></td>
</tr>
<tr>
<td>Sándor B. Ötvös
University of Graz, Graz, Austria</td>
<td>PO-468</td>
</tr>
<tr>
<td>MULTISTEP CONTINUOUS FLOW SYNTHESIS OF THE CHIRAL KEY INTERMEDIATE OF</td>
<td></td>
</tr>
<tr>
<td>PAROXETINE</td>
<td></td>
</tr>
<tr>
<td>Padmaja
Indian Institute of Technology Bombay, Mumbai, India</td>
<td>PO-469</td>
</tr>
<tr>
<td>CASCADE RADICAL CYCLISATION ON ALKYNYL VINYLLOGOUS CARBONATES FOR THE</td>
<td></td>
</tr>
<tr>
<td>DIVERGENT SYNTHESIS OF TETRASUBSTITUTED FURANS AND DIHYDROFURANS</td>
<td></td>
</tr>
<tr>
<td>Soumyaranjan Pati
Indian Institute of Technology Bombay, Mumbai, India</td>
<td>PO-470</td>
</tr>
<tr>
<td>SYNTHESIS OF FUNCTIONALIZED OLEFINS VIA BASE MEDIATED 1,6-ADDITION OF</td>
<td></td>
</tr>
<tr>
<td>DiazO Compounds AND their Active Methylene Precursors To p-QUINONE Methides</td>
<td></td>
</tr>
</tbody>
</table>
Andreas Paul
University of Tübingen, Tübingen, Germany
NEW STUDIES TOWARDS THE TOTAL SYNTHESIS OF GULMIRECIN B

Agnese Petrini
Università degli Studi di Siena, Siena, Italy
TRIFUNCTIONAL SELF-IMMOLATIVE SPACERS LINKED TO AMIDES: A NEW OPPORTUNITY FOR BIOCONJUGATION

Cristofer Pezzetta
Dr. Reddy's Laboratories Ltd., Cambridge, UK
ENANTIOSELECTIVE SYNTHESIS OF N-BENZYLIC HETEROCYCLES: A NICKEL- AND PHOTOREDOX-DUAL CATALYSIS APPROACH

Igor Philippov
Novosibirsk Institute of Organic Chemistry, Novosibirsk, Russia
SYNTHESIS OF PYRAZOLO[1,5-a]PYRIDINES CONTAINING PHOSPHONATE MOIETY

Jean-Marie Pohl
Justus Liebig University Giessen, Giessen, Germany
MICROWAVE ASSISTED SYNTHESIS OF H-PHOSPHONATES

Achim Porzelle
Apollo Scientific Ltd., Cheshire, UK
100 G TO 1 KG - THE FORGOTTEN SCALE?

Achim Porzelle
Apollo Scientific Ltd., Cheshire, UK
CHIRAL AND NON CHIRAL N-BOC PROTECTED 7-AZAINDOLINES IN BATCH AND FLOW

Pauline Poutrel
Normandie Université, Rouen, France
COPPER CATALYZED ASYMMETRIC FORMATION OF ENANTIOENRICHED β-CF₃ ESTER & NITRILE DERIVATIVES

Alexander Preinfalk
University of Vienna, Vienna, Austria
DIRECTED ENANTIOSELECTIVE COUPLING OF ALDEHYDES AND ALKENES

Felix Preusch
University of Tübingen, Tübingen, Germany
CARBOHYDRATE DERIVED LIGANDS FOR CATALYTIC STEREOSELECTIVE CARBENOID CYCLOPROPANATION REACTIONS

Salvatore Princiotto
Università degli Studi di Siena, Siena, Italy
CONTINUOUS FLOW APPROACH FOR THE SYNTHESIS OF MAYTANSINOL, AS ADC-BASED THERAPY CYTOTOXIC AGENT

Stefano Protti
University of Pavia, Pavia, Italy
ARYLAZO SULFONES: PHOTOACTIVATABLE SUBSTRATES FOR METAL-FREE ARYLATIONS

Mikus Purpiš
Riga Technical University, Riga, Latvia
CATIONIC 1,2-SILYL SHIFT IN PROPARGYL SILANES

Adrien Quintard
Aix-Marseille Université, Marseille, France
MULTI-CATALYTIC ENANTIOSELECTIVE METHODOLOGY AS ENTRY TO NEW SUPRAMOLECULAR TOOLS
Friederike Ratsch
University of Cologne, Cologne, Germany
TOTAL SYNTHESIS OF a-TOCOPHEROL THROUGH ENANTIOSELECTIVE IRIIDIUM-CATALYZED FRAGMENTATION OF A SPIRO-CYCLOBUTANOL INTERMEDIATE

Felix Reiners
Ludwig-Maximilians University, Munich, Germany
THIETES: A NEW PLATFORM FOR MOLECULAR DIVERSIFICATION

Luka Rejc
University of Ljubljana, Ljubljana, Slovenia
RADIOISOTOPE-ENABLED TRACKING OF SUBSTRATES IN SUZUKI CROSS-COUPLING REACTION

Evelien Renders
University of Antwerp, Antwerpen, Belgium
RUTHENIUM-CATALYZED REDUCTIVE ARYLATION OF N-(2-PYRIDINYL)AMIDES WITH ISOPROPA NOL AND ARYLBORONATE ESTERS

Aubert Ribaucourt
NC State University, Raleigh, USA
BICYCLIC β-LACTAM INTERMEDIATES FOR THE DIVERGENT SYNTHESIS OF MARINE POLYCYCLIC GUANIDINIUM ALKALOIDS

Batoul Rkein
Normandie Université, Rouen, France
DEAROMATIZATION OF ELECTRON POOR ARENES BY (4+2) CYCLOADDITION REACTION

Joel Roesslein
University of Zurich, Zurich, Switzerland
PREPARATION OF INDOLENINES VIA NUCLEOPHILIC AROMATIC SUBSTITUTION

Nicolai Rosenbaum
Karlsruhe Institute of Technology, Karlsruhe, Germany
FORMAL SEMISYNTHESIS OF DEMETHYLGORGOSTEROL USING AN ENANTIOSELECTIVE CYCLOPROPANATION AS KEY STEP

James Rossi-Ashton
University of York, York, UK
TUNEABLE ACCESS TO MEDICINALLY RELEVANT SCAFFOLDS VIA AN ENANTIOSELECTIVE DEAROMATIVE CYCLISATION CASCADE

Amanda L. Rousseau
University of the Witwatersrand, Johannesburg, South Africa
SYNTHESIS OF 2,4-DIAMINOPYRIMIDINES AS POTENTIAL ANTIFOLATES

Lukas Rycek
Charles University of Prague, Prague, Czech Republic
APPLICATION OF [2+2+2] CYCLOADDITION IN THE TOTAL SYNTHESIS OF SELAGINPULVILINES

Bram Ryckaert
Ghent University, Ghent, Belgium
NOVEL BUILDING BLOCK TOWARDS HIGHLY FUNCTIONALIZED CYCLOPENTANOID SCAFFOLDS

Dmytro Ryzhakov
Université Paris-Sud, Orsay, France
RADICAL-MEDIATED DEAROMATIZATION OF INDOLES WITH SULFINATE REAGENTS AND PHOSPITHES FOR THE SYNTHESIS OF FLUORINATED AND PHOSPHONATED SPIROCYCLIC INDOLINES
Malvika Sardana PO-498
AstraZeneca, Gothenburg, Sweden
VISIBLE-LIGHT ENABLED LATE-STAGE AMINOCARBONYLATION OF ALKYL IODIDES WITH CARBON MONOXIDE

Göran Schulz PO-499
Leibniz University Hannover, Hannover, Germany
TRANSITION-METAL-MEDIATED RADICAL DEFORMYLATION OF ALDEHYDES USING VARIOUS AMINOXYL RADICALS

Lydia Scott PO-500
Monash University, Melbourne, Australia
SIMPLIFYING THE SYNTHESIS OF VIRGINIAMYCIN MII ANALOGUES FOR CRYO-EM GUIDED DRUG DEVELOPMENT

Yang Feng Anders See PO-501
Nanyang Technological University, Singapore
TOWARDS THE SYNTHESIS OF SAMROIYOTMYCINS A & B

Alessio Sferrazza PO-502
IRBM SpA, Rome, Italy
IMPROVED SYNTHESIS OF DEUTERIUM LABELED ATYPICAL BILE ACID METABOLITES AS ANALYTICAL STANDARDS FOR BILE ACID DISORDER DIAGNOSIS

Alexandr Shafir PO-503
The Barcelona Institute of Science and Technology, Tarragona, Spain
TOWARDS IODANE-DIRECTED ITERATIVE C-H ALKYLATION

Seunghoon Shin PO-504
Hanyang University, Seoul, Republic of Korea
UMPOLING ALKYLATION BASED ON THE OXIDATION OF YNAMIDES

Rajeev Shrestha PO-505
Yeungnam University, Gyeongsan, Republic of Korea
METAL- FREE BASE MEDIATED TANDEM BENZANNULATION OF N-TOSYLHYDRAZONES WITH 3 FORMYLCHROMONES: A GENERAL ROUTE TO DIVERSE AND POLYFUNCTIONALIZED XANTHONES

Moritz Sinast PO-506
University of Stuttgart, Stuttgart, Germany
SYNTHESIS OF THE AB RING SYSTEM OF CLIFEDNAMIDE

Veronika Šlachtová PO-507
Palacky University, Olomouc, Czech Republic
NOVEL APPROACHES TO 2-AMINOBENZOXAZOLES

Manolis Sofiadis PO-508
University of Crete, Heraklion, Greece
ORGANOCATALYTIC [3+2]-ANNULATIONS OF β,γ-UNSATURATED-γ-LACTAMS WITH α,β-UNSATURATED ALDEHYDES

Olga Sokolova PO-509
University of Bristol, Bristol, UK
C-C BOND ACTIVATION INITIATED CASCADE PROCESSES

Patrycja Sokolowska PO-510
Polish Academy of Science, Warsaw, Poland
FIRST SYNTHESIS OF CRYPTANDS WITH SUCROSE SCAFFOLD

Magdalena Sommer PO-511
Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
ELECTROCATALYTIC IODOPERFLUOROALKYLATION OF UNSATURATED HYDROCARBONS
Stefanie Spindler
University of Bonn, Bonn, Germany
STUDIES TOWARDS THE TOTAL SYNTHESIS OF TUSCORON C

Laura Srsan
University of Tübingen, Tübingen, Germany
SYNTHESIS OF NEW GLYCOPEPTIDES

Simone Stegbauer
Technical University Munich, Garching, Germany
CHROMOPHORE ACTIVATION AT ITS BEST - INFLUENCING THE SELECTIVITY OF PHOTOREACTIONS BY ADDITION OF LEWIS ACIDS

Michael Steinacher
TU Wien, Vienna, Austria
TOWARDS THE TOTAL SYNTHESIS OF PROVIDENCIN

Maria Stiblarikova
Slovak University of Technology, Bratislava, Slovakia
FIRST TOTAL SYNTHESIS OF VARIOXIRANOL A

Barbara Stoessel
ETH Zürich, Zürich, Switzerland
STUDIES TOWARD THE TOTAL SYNTHESIS OF NAHUOIC ACID A

Manolis Stratakis
University of Crete, Heraklion, Greece
GOLD NANOPARTICLE-CATALYZED SILABORATION OF CYCLOPROPYL ALDEHYDES FORMING REARRANGED SILYLOXY BORONATES

Abdusalom Suleymanov
Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
SYNTHESIS AND APPLICATIONS OF VINYL TRIAZENES

Tímea Szabó
Egis Pharmaceuticals PLC, Budapest, Hungary
TOTAL SYNTHESIS OF INDOLE ALKALOIDS

Milena Szewczyk
Gdansk University of Technology, Gdansk, Poland
CYCLIZATION OF 5-(1H-INDOL-3-YL)-3-OXOPENTANOIC ACID ESTERS AND AMIDES PROMOTED WITH TRANSITION METAL TRIFLATES

Nicholas Tappin
University of Bern, Bern, Switzerland
REACTIVITY AND SYNTHETIC UTILITY OF α-BORYL CARBON CENTERED RADICALS: TWO OPPOSING REACTION MANIFOLDS

Ömer Taspinar
University of Cologne, Cologne, Germany
STUDIES TOWARDS THE SYNTHESIS OF EURYSTEROL A

David Tejedor
Instituto de Productos Naturales y Agrobiología, Tenerife, Spain
A GENERAL HYDROCYANATION OF ACTIVATED TERMINAL ALKynes

Johanna Templ
TU Wien, Vienna, Austria
TOWARDS THE TOTAL SYNTHESIS OF EUPHOSALICIN AND PEPLUANIN A - ROUTE TO A HIGHLY OXYGENATED CYCLOPENTANE KEY FRAGMENT

Pierre Thesmar
University of Basel, Basel, Switzerland
DIVERGENT TOTAL SYNTHESIS OF (+)-EPICOCCIN G AND (-)-ROSTRATIN A ENABLED BY DOUBLE C(sp³)-H ACTIVATION
Pierre Thilmany
Université libre de Bruxelles, Bruxelles, Belgium
DOUBLE ELECTROPHILIC ACTIVATION OF YNAMIDES: A STRAIGHTFORWARD ENTRY TO α-HALO-CARBOXYL DERIVATIVES

Raju S Thombal
Yeungnam University, Gyeongsan, Republic of Korea
In/Ag-CATALYZED CONSTRUCTION OF N-ARYLPYRAZOLES VIA REGIOSELECTIVE [2+2+1]-OXIDATIVE N-ANNULATION: TWO IS BETTER THAN ONE

Karolina Tiara
Polish Academy of Science, Warsaw, Poland
STEREOREGULAR DEBENZYLATING CYCLOETHERIFICATION DEPENDED ON SUBSTRATE REACTIVITY

Gergely L. Tolnai
Eotvos Lorand University, Budapest, Hungary
SYNTHESIS OF VERSATILE BICYCLOPENTANE BUILDING BLOCKS FROM [1.1.1]PROPELLANE

Danjano Trenz
Saarland University, Saarbrücken, Germany
ENANTIOSELECTIVE SYNTHESIS OF PROPARGYL ALCOHOLS WITH DIYNES UNDER CARREIRA CONDITIONS

Krishna Nand Tripathi
Indian Institute of Technology Dehli, New Dehli, India
ORGANO PHOTOINDUCED DECARBOXYLATIVE ALKYLATION OF COUMARINS WITH N-(ACYLOXY)PHTHALIMIDE

Johan Van der Eycken
Ghent University, Ghent, Belgium
TOTAL SYNTHESIS AND BIOLOGICAL EVALUATION OF PELOFEN, A NEW MICROTUBULE-STABILIZING AGENT

Szilárd Varga
Hungarian Academy of Sciences, Budapest, Hungary
CHIRAL BUILDING BLOCKS IN THE TOTAL SYNTHESIS OF MONOTERPENE INDOLE ALKALOIDS

Georgios Vassilikogiannakis
University of Crete, Heraklion, Greece
DOUBLE VINYLOGOUS REACTIVITY OF THE γ AND γ' POSITIONS OF CYCLIC 2-ENONES: ORGANOCATALYSED ASYMMETRIC SYNTHESIS OF FUSED CARBOCYCLES

Timo von Keutz
University of Graz, Graz, Austria
GENERATION AND UTILIZATION OF UNSTABLE CARBENOID INTERMEDIATES USING CONTINUOUS FLOW TECHNOLOGY

Aleksey Vorob’ev
Novosibirsk Institute of Organic Chemistry, Novosibirsk, Russia
SYNTHESIS OF FLUORINATED PYRAZOLO[1,5-a]PYRIDINES

Sebastian Wienhold
Technical University Munich, Garching, Germany
TOWARDS THE TOTAL SYNTHESIS OF (-)-PULVOMYCIN

Jason D. Williams
University of Graz, Graz, Austria
FLOW PHOTOCHROMISTRY FOR EFFICIENT AND SCALABLE SYNTHESIS
Lukas Martin Wingen
University of Bonn, Bonn, Germany
SYNTHESIS OF NOVEL LIPID I AND LIPID II ANALOGS

Bernhard Wölfli
Max-Planck-Institut für Kohleforschung, Mülheim/Ruhr, Germany
TOTAL SYNTHESIS OF CALLYSPONGIOLIDE

Yikang Wu
Chinese Academy of Sciences, Shanghai, China
CHEMoselectivity in perhydrolysis of ketones, ketals, and epoxides

Silong Xu
Xi’an Jiaotong University, Xi’an, China
LEWIS BASE-CATALYZED REARRANGEMENTS OF ELECTRON-POOR CYCLOPROPANES

Yi-Chi Yang
National Chiao Tung University, Hsinchu, Taiwan
PALLADIUM-CATALYZED SEQUENTIAL ARYLATION OF CYCLIC VINYLLOGOUS ESTERS

Zhu-Jun Yao
Nanjing University, Jiangsu, China
CONCISE SYNTHESIS OF ALL-CIS-3,4,5-SUBSTITUTED PIPERIDINES THROUGH CASCADE RADICAL CYCLISATION INITIATED BY VISIBLE LIGHT-PROMOTED HYDROSILYLATION OF ALKENES

Liu Ye
Southern University of Science and Technology, Shenzhen, China
C-H Bond-InvolVed Intramolecular Asymmetric Radical Cyclization

Suguru Yoshida
Tokyo Medical and Dental University (TMDU), Tokyo, Japan
SINGLE C-F BOND CLEAVAGE OF TRIFLUOROMETHYLARENES WITH A LATENTLY TRANSFORMABLE ORTHO-SILYL GROUP

František Zálešák
Palacky University, Olomouc, Czech Republic
BENZO[d]THIAZOLE-2-SULFONYL GROUP AS A NITROGEN ACTIVATING AND PROTECTING GROUP

Wojciech Zawodny
University of Vienna, Vienna, Austria
KETONE ACTIVATION ENABLES METAL-FREE ALPHA-ARYLATION AND ALPHA-OXYAMINATION OF ACETOPHENONES

Andreas Zech
Technical University Munich, Garching, Germany
PHOTOCHEMICAL REACTION CASCADE FROM O-PENT-4-ENYL-SUBSTITUTED SALICYLATES TO COMPLEX MULTIFUNCTIONAL SCAFFOLDS

Yufen Zheng
The University of Hong Kong, Hong Kong, P.R. China
INTRAMOLECULAR (4+3) CYCLOADDITIONS OF THIOPHENES

Egor Zhilin
N.D. Zelinsky Institute of Organic Chemistry, Moscow, Russia
SYNTHESIS OF DOUBLE NO-DONORS INCORPORATING FUROXAN AND AZASYDNONE RINGS

Yuxiang Zhu
University of Oxford, Oxford, UK
HFIP SOLVENT ENABLES ALCOHOLS TO ACT AS ALKYLATING AGENTS IN STEREOSELECTIVE HETEROCYCLIZATION
Benjamin Zonker
Justus Liebig University Giessen, Giessen, Germany
SIGMATROPIC REARRANGEMENT OF IMINUM SALTS EXEMPLIFIED ON NORADAMANTANE DERIVATIVES

Robert Zscherp
Technical University of Braunschweig, Braunschweig, Germany
THE SYNTHESIS OF AN ARTIFICIAL, BACKBONE MODIFIED ENTEROBACTIN ANALOGUE

Tobias Zweiböhmer
University of Tübingen, Tübingen, Germany
SYNTHESIS OF NOVEL AZA-BODIPY DERIVATES FOR PHOTODYNAMIC THERAPY

Denis Nihuei Prada Gori
Universidad Nacional de Rosario, Rosario, Argentina
DESIGN OF A SELECTIVE AND TUNABLE RCEYM-HYDROGENATION ONE-POT PROCESS

Yang Yang
University of Copenhagen, Copenhagen, Denmark
EXPLORING THE ROLE OF BASES IN CARBOXYLATION OF GRIGNARD REAGENTS WITH CO₂

Birgit Meindl
TU Wien
SYNTHESIS OF N SUBSTITUTED INDOLO[3,2,1-jk]CARBAZOLE BASED SYSTEMS FOR ORGANIC ELECTRONICS

Nikolaus Poremba
TU Wien
RECENT PROGRESS OF AZAINDOLO[3,2,1-jk]CARBAZOLE BASED DONOR-ACCEPTOR MATERIALS AS POTENTIAL TADF EMITTERS

Clare Muhanji
The Technical University of Kenya, Nairobi, Kenya
SYNTHESIS OF BENZISOTHIAZOLE DERIVATIVES AS POSSIBLE HIV-1 NUCLEOCAPSID PROTEIN-7 (NCp7) INHIBITORS
Presenting authors in bold italics.

A
Abdelraheem, E. PO-1
Abdulla, H.O. PO-482
Abell, A. OC-22
Abid, S. PO-417
Ackermann, L. OC-6
PO-67, PO-96, PO-317
Adamsen, T.Ch.H. PO-189
Ádén, J. PO-173
Adler, P.
PO-392, PO-435
Adolfssohn, D. PO-173
Adolfssohn, H. PO-153
Afanasiev, O. IL-4
Aggarwal, V.
PO-341, PO-386
Aillard, P. PO-342
Ajdacic, V. PO-105
Akiyama, T. OC-7
Akssia, M. PO-380
Al-Shihry, S. PO-299
Alandini, N. PO-2
Alazzad, Z. PO-28
Alati, S. PO-334
Albrecht, A.
PO-4, PO-465
Albrecht, L. PO-3
Afluth, J. PO-323
Allegrini, P. PO-481
Allwood, D. PO-144
Alme, E. PO-174
Almqvist, F.
PO-173, PO-240
Alston, B. OC-25
Altmann, K.-H. PO-517
Alvarenga, N. PO-52
Amable, L. PO-108
Anatole, M. PO-361
Ambrosio, T. PO-5
Amer, M. PO-335
Amest, Á. PO-215
Amin, H.J.M. PO-482
Amir, R. IL-11
Ammar, U. PO-175
An, X. PO-542
Anand, B. PO-256
Anania, M. PO-6
Andre-Joyaux, E.
PO-336
Angelucci, F.
PO-176, PO-434
Angibaud, P. PO-38
Angyal, P. PO-534
Annibaleto, J.
PO-7, PO-16
Antol, I.
PO-300
Antonchick, A.P.
PO-120, PO-142
Arends, I. PO-52
Arlinghaus, H.F. PO-252
Armstrong, R. PO-354
Asad, K. PO-258
Åstrand, O.A.H. PO-177
Athavale, S. PO-8
Aubert, C. PO-361
Aubin, A.J.
PO-246, PO-247
Audisio, D.
OC-23, PO-195
Augustin, A.U. PO-337
Awadellah, F.M. PO-178
Aynedtina, D. PO-402
Ayoub, I. PO-196
Azofra, L.M.
PO-17, PO-171
B
Baaziz, S. PO-396
Babici, D. PO-330
Bacchi, A. PO-26
Bach, Th.
PL-5, PO-56, PO-348
PO-376, PO-393, PO-438
PO-514, PO-538, PO-550
Backenköhler, A.
PO-206
Backes, M. PO-465
Bai, L. PO-168
Balk, M.-H. PO-130
Balz, M.K. PO-254
Balázs, A. PO-82
Bäll, L. PO-5
Ball-Jones, M.P. PO-319
Balliu, A. PO-179
Balzer, N. PO-255
Bamberger, J. PO-47
Bampali, K. PO-249
Bandov, J. PO-197
Banks, C.E. PO-254
Baran, Ph.S. PL-7
Barbone, J.L. PO-294
Barman, S. PO-327
Barros, M.E. PO-214
Barstets, Ch. PO-173
Bartos, P. PO-256
Baronesch, M. OC-10
Bates, R. PO-501
Bauducin, Ch. PO-38
Baudoin, O.
PO-10, PO-134, PO-526
Bauer, T. PO-9
Baumann, A. PO-338, PO-486
Baumann, A.N. PO-458
Baumgartner, Y. PO-10
Bauspieß, S. PO-339
Bayer, M. PO-340
Baykal, A. PO-209
Beattie, N. PO-301
Beau, J.-M. PO-461
Bednárová, L. PO-239
Bedningaas, S. PO-216
Beemelmanns, Ch.
PO-180, PO-213, PO-236
Beier, P.
PO-237, PO-420, PO-444
Belaj, F. OC-27
Belal, M. PO-532
Bellec, N. PO-396
Bellina, F. PO-77
Belousoff, M. PO-500
Benckendorff, C. PO-227
Bend, A. PO-332
Bend, Ch. PO-104
Bennett, S. PO-341
Benison, M. OC-25
Bentouhami, E. PO-148
Bentzinger, G. PO-506
Bera, S. PO-11
Berardo, E. OC-25
Bergander, K. PO-398
Berger, M.
PO-342, PO-425
Bergman, J. PO-498
Berini, Ch. PO-7
Bernardes, G.J.L.
PO-225
Berneau-Kötz, H. PO-343
Bernstein, M. PO-320
Bertozzi, C. PO-243
Besset, T.
IL-12, PO-21
Beytlerova, N. PO-495
Bhasin, A. PO-506
Bhosale, D. PO-181
Bifora, A. PL-6
Bialetti, M. PO-77
Bialy, L. PO-319
Bibal, B. PO-12
Biber, N. PO-209
Bickmann, Ch.
PO-287, PO-302
Bier, C. PO-198
Biermann, K. PO-182
Bihel, F. PO-344
Binder, D. PO-198
Birsa, L.M. PO-239, PO-324
D
Daïbrowski, M. PO-66
Daikeler, A. PO-365
Dale, H. PO-305
Dalling, A. PO-366
Daniel, M. PO-283
Daniluc, C.G. PO-141
Danowski, W. PO-295
Dao-Huy, T. PO-191
Das, M. PO-164, PO-259
Daskalakis, K. PO-508
Daško, M. PO-182
Dastan, A. PO-367
Daum, M. PO-229
Daivdson, R. PO-473
Davies, J. PO-90
Davies, Th. PO-368
De, R. PO-327
De Koning, C. PO-212, PO-494
De la Torre, A. PO-342
De Orbe, M.E. OC-17
De Wever, O. PO-533
Dehaen, W. PO-220
Delgado-Hernández, S. PO-359, PO-524
Della Ca’, N. PO-26
Delorme, M. PO-361
Delpiccio, C.M.D.L. PO-557
Demidov, M. PO-466
Demirel, P. PO-240
Demitr, N. PO-196
Demizu, Y. PO-224
Demkowicz, S. PO-182
Denisov, D. PO-257
Denmark, S. PO-8
Denton, E. PO-341
Derat, E. PO-129
Désaubry, L. PO-148, PO-378
Deska, J. OC-9
Desmecht, A. PO-27
Destro, G. OC-23
Deuchmann, A. PO-173
Deutzmann, A. PO-243
Dewez, D. PO-370
Dhayalan, V. PO-28
Di Francesco, D. PO-29
Di Mauro, G. PO-313, PO-371
Di Pasquale, A. PO-182
Dialer, C. PO-183
Diamanti, E. PO-183
Diana, R. PO-372
Diaz, A. PO-373
Diaz, M. PO-374
Didier, D. PO-338, PO-458, PO-486
Diederichsen, U. PO-226, PO-241
Dobbs, A. PO-306
Dohanosova, J. PO-516
Doltsinis, N. PO-259
Domański, S. PO-20
Donohoe, T. PO-354, PO-397
PO-402, PO-431, PO-553
Donslund, A.S. PO-30
Dooley Cullinan, T.-M. PO-88
Doris, E. PO-233
Dorn, F. PO-103
Dove, Ch. PO-243
Draskovits, M. PO-375
Drenthaus, T. PO-394
Drepper, Th. PO-198
Drescher, M. PO-313, PO-371
Drexler, D. PO-193
Du, Q. PO-31
Duarte, F. PO-368
Dugave, Ch. PO-498
Duman, E. PO-554
Durandetti, M. PO-490
Dörner, J. PO-376
Dydio, P. PO-80
Dzierzbicka, K. PO-235
Dzieszkowski, K. PO-32

E
Eagling, L. PO-377
Echavarren, A.M. OC-17
Eddihf, B. PO-233
Eder, I. PO-260
Ederwish, S. PO-378
Edlová, T. PO-379
Eger, E. PO-75
Egyed, O. PO-534
Eitzinger, A. PO-33, PO-380
El Hakmaoui, A. PO-380
El Said El Sayed, H. PO-34
El Sepelgy, O. PO-17
El-Hage, F. PO-35
El-lateef, H.M.A. PO-299
El-Sepelgy, O. PO-62, PO-171
Elaridi, J. PO-261
Elbaum, D. PO-502
Elek, G.Z. PO-381
Elmore, C. PO-498
Eltantawy, A.I.A. PO-462
Elwood, J. PO-382
Enev, V. PO-415
PO-429, PO-515, PO-525
Epishina, M. PO-442
Erbland, G. PO-417
Ericsson, C. PO-498
Eriksen, M.E. PO-434
Ernst, J. PO-259
Ernst, M. PO-199, PO-249
Erver, J. PO-383
Espinoso, M. PO-106
Estévez-Braun, A. PO-215
Evano, G. PO-211, PO-370, PO-527
Evans, L. PO-306
Evans, P. PO-273
F
Fabbrini, D. PO-502
Fagnoni, M. PO-482
Faigl, F. PO-400
Farkas, T. PO-194, PO-203
Farndon, J. PO-384
Favi, G. PO-2, PO-358
Fawcett, A. PO-341
Fedoseev, P. PO-108
Feilner, J. IL-2
Felscher, D. PO-243
Feng, M. PO-195
Feringa, B.L. OC-5, PO-295
Fernandez Bieber, M. PO-512
Fershtat, L. PO-262
PO-350, PO-442, PO-552
Fey, N. PO-384
Fink, M.J. OC-15
Florio, D. PO-36
Fischer, J. PO-385
Fischer, T. PO-47
Fleck, N. PO-307
Fleschier, I. PO-37, PO-44, PO-68
Flentie, K. PO-240
Font, P. PO-127
Fontana, F. PO-308
Fontana, G. PO-481
Fordham, J. PO-386
Forschner, R. PO-405
<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraga-Timiraos, A.B.</td>
<td>PO-238</td>
</tr>
<tr>
<td>França, S.</td>
<td>PO-214</td>
</tr>
<tr>
<td>France, D.</td>
<td>PO-184</td>
</tr>
<tr>
<td>Franck, X.</td>
<td>PO-390</td>
</tr>
<tr>
<td>François-Heude, M.</td>
<td>PO-461</td>
</tr>
<tr>
<td>Fredriksen, T.-A.</td>
<td>PO-434</td>
</tr>
<tr>
<td>Freitas, R.</td>
<td>PO-25</td>
</tr>
<tr>
<td>Freudenberg, J.</td>
<td>PO-266</td>
</tr>
<tr>
<td>Frey, S.</td>
<td>PO-387</td>
</tr>
<tr>
<td>Frippiat, S.</td>
<td>PO-38</td>
</tr>
<tr>
<td>Frkanec, L.</td>
<td>PO-326</td>
</tr>
<tr>
<td>Fröhlich, J.</td>
<td>PO-265</td>
</tr>
<tr>
<td>Früh, M.L.</td>
<td>PO-422</td>
</tr>
<tr>
<td>Fu, L.</td>
<td>PO-181</td>
</tr>
<tr>
<td>Fuchs, M.</td>
<td>OC-27</td>
</tr>
<tr>
<td>Fuentes Pineda, R.</td>
<td>PO-279</td>
</tr>
<tr>
<td>Fulco, F.</td>
<td>PO-183</td>
</tr>
<tr>
<td>Funk, L.-M.</td>
<td>PO-226, PO-241</td>
</tr>
<tr>
<td>Fürstner, A.</td>
<td>PL-2, PO-541</td>
</tr>
</tbody>
</table>

G

<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gabillet, S.</td>
<td>PO-298</td>
</tr>
<tr>
<td>Gabriele, B.</td>
<td>PO-26</td>
</tr>
<tr>
<td>Gade, L.H.</td>
<td>PO-14, PO-137, PO-264</td>
</tr>
<tr>
<td>Gadekar, S.C.</td>
<td>PO-28</td>
</tr>
<tr>
<td>Gademann, K.</td>
<td>PO-242, PO-491</td>
</tr>
<tr>
<td>Gagnebin, A.</td>
<td>PO-457</td>
</tr>
<tr>
<td>Galla, H.-J.</td>
<td>PO-252</td>
</tr>
<tr>
<td>Gallardo-Fuentes, S.</td>
<td>PO-316</td>
</tr>
<tr>
<td>Gallo, M.</td>
<td>PO-502</td>
</tr>
<tr>
<td>Garbacz, M.</td>
<td>PO-39</td>
</tr>
<tr>
<td>García, F.</td>
<td>PO-373</td>
</tr>
<tr>
<td>García Mancheño, O.</td>
<td>OC-11, PO-47</td>
</tr>
<tr>
<td>García-Moncón, I.</td>
<td>PO-40</td>
</tr>
<tr>
<td>García-Tellado, F.</td>
<td>PO-369PO-372, PO-524</td>
</tr>
<tr>
<td>García-Vázquez, V.</td>
<td>PO-41</td>
</tr>
<tr>
<td>Gärtner, P.</td>
<td>PO-415</td>
</tr>
<tr>
<td>PO-429, PO-515, PO-525</td>
<td></td>
</tr>
<tr>
<td>Gatlik, B.</td>
<td>PO-20</td>
</tr>
<tr>
<td>Gao, Y.</td>
<td>PL-6</td>
</tr>
<tr>
<td>Gavel, M.</td>
<td>PO-410</td>
</tr>
<tr>
<td>Gavendova, M.</td>
<td>PO-42</td>
</tr>
<tr>
<td>Gazvoda, M.</td>
<td>PO-43, PO-97</td>
</tr>
<tr>
<td>Gazzola, S.</td>
<td>PO-388</td>
</tr>
<tr>
<td>Geenen, S.R.</td>
<td>PO-263</td>
</tr>
<tr>
<td>Geerdink, D.</td>
<td>PO-37, PO-44</td>
</tr>
<tr>
<td>Gehrtz, P.</td>
<td>PO-37, PO-44</td>
</tr>
<tr>
<td>Geier, M.</td>
<td>PO-172</td>
</tr>
<tr>
<td>Geiger, V.</td>
<td>PO-44</td>
</tr>
<tr>
<td>Gelis, C.</td>
<td>PO-78</td>
</tr>
<tr>
<td>George, R.</td>
<td>PO-196</td>
</tr>
<tr>
<td>Gerke, V.</td>
<td>PO-252</td>
</tr>
<tr>
<td>Gharpure, S.J.</td>
<td>PO-469</td>
</tr>
<tr>
<td>Ghosh, K.K.</td>
<td>PO-45</td>
</tr>
<tr>
<td>Ghosh, M.</td>
<td>PO-389</td>
</tr>
<tr>
<td>Gil de Montes, E.</td>
<td>PO-225</td>
</tr>
<tr>
<td>Gilheany, D.</td>
<td>PO-107</td>
</tr>
<tr>
<td>Gilmore, Ch.</td>
<td>OC-1</td>
</tr>
<tr>
<td>Gilmour, R.</td>
<td>OC-21</td>
</tr>
<tr>
<td>Glibstrup, E.</td>
<td>PO-172</td>
</tr>
<tr>
<td>Glieder, T.</td>
<td>OC-4</td>
</tr>
<tr>
<td>Glindemann, C.P.</td>
<td>PO-206</td>
</tr>
<tr>
<td>Glorius, F.</td>
<td>PO-57, PO-101, PO-141</td>
</tr>
<tr>
<td>PO-164, PO-252, PO-259</td>
<td></td>
</tr>
<tr>
<td>Gmeiner, G. PO-188, PO-429</td>
<td></td>
</tr>
<tr>
<td>Gnaegi-Lux, M.</td>
<td>PO-522</td>
</tr>
<tr>
<td>Godard, C.</td>
<td>PO-112</td>
</tr>
<tr>
<td>Gollner, A.</td>
<td>OC-4</td>
</tr>
<tr>
<td>Gómez-Bengoia, E.</td>
<td>PO-145</td>
</tr>
<tr>
<td>PO-303, PO-319, PO-322</td>
<td></td>
</tr>
<tr>
<td>Gómez-Martínez, M.</td>
<td>PO-47</td>
</tr>
<tr>
<td>Gómez-Vallejo, V.</td>
<td>PO-487</td>
</tr>
<tr>
<td>Gómez-Bengoia, E.</td>
<td>PO-115</td>
</tr>
<tr>
<td>Gonçalves, C.R.</td>
<td>PO-392, PO-435</td>
</tr>
<tr>
<td>Goglach, S.</td>
<td>PO-73, PO-327, PO-328</td>
</tr>
<tr>
<td>González, L.</td>
<td>PO-313, PO-392, PO-435</td>
</tr>
<tr>
<td>González-Bello, C.</td>
<td>PO-201</td>
</tr>
<tr>
<td>Gooßen, L.</td>
<td>PL-6</td>
</tr>
<tr>
<td>Gordon, M.R.</td>
<td>PO-388</td>
</tr>
<tr>
<td>Goto, C.</td>
<td>PO-224</td>
</tr>
<tr>
<td>Götlich, R.</td>
<td>PO-475</td>
</tr>
<tr>
<td>Götz, F.</td>
<td>PO-209</td>
</tr>
<tr>
<td>Gouriveau, V.</td>
<td>PL-9, PO-450</td>
</tr>
<tr>
<td>Grab, H.</td>
<td>PO-393</td>
</tr>
<tr>
<td>Gracza, T.</td>
<td>PO-353, PO-516</td>
</tr>
<tr>
<td>Grainger, R.</td>
<td>PO-362</td>
</tr>
<tr>
<td>Gramage-Doria, R.</td>
<td>PO-166</td>
</tr>
<tr>
<td>Grätzke, M.</td>
<td>PO-167</td>
</tr>
<tr>
<td>Gravel, E.</td>
<td>PO-233</td>
</tr>
<tr>
<td>Greb, J.</td>
<td>PO-394</td>
</tr>
<tr>
<td>Gredickač, M.</td>
<td>PO-48</td>
</tr>
<tr>
<td>Greenaway, R.</td>
<td>OC-25</td>
</tr>
<tr>
<td>Greenhalgh, M.</td>
<td>PO-122</td>
</tr>
<tr>
<td>Gregorić, T.</td>
<td>PO-326</td>
</tr>
<tr>
<td>Grela, K.</td>
<td>PO-66</td>
</tr>
<tr>
<td>Grill, D.</td>
<td>PO-252</td>
</tr>
<tr>
<td>Grimm, Ch.</td>
<td>PO-118</td>
</tr>
<tr>
<td>Grogan, G.</td>
<td>PO-75</td>
</tr>
<tr>
<td>Grosu, I.</td>
<td>PO-280, PO-332</td>
</tr>
<tr>
<td>Guimaraes, C.</td>
<td>PO-264</td>
</tr>
<tr>
<td>Guittof, C.</td>
<td>PO-209</td>
</tr>
<tr>
<td>Győffy, N.</td>
<td>PO-395</td>
</tr>
<tr>
<td>Gyöjtő, I.</td>
<td>PO-310</td>
</tr>
<tr>
<td>Gyuris, M.</td>
<td>PO-395</td>
</tr>
</tbody>
</table>

H

<table>
<thead>
<tr>
<th>Author</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haas, M.</td>
<td>PO-73, PO-327, PO-328</td>
</tr>
<tr>
<td>Habiger, Ch.</td>
<td>IL-2</td>
</tr>
<tr>
<td>Hachem, M.</td>
<td>PO-50</td>
</tr>
<tr>
<td>Hädade, N.D.</td>
<td>PO-280</td>
</tr>
<tr>
<td>Hauen, J.C.</td>
<td>PO-286</td>
</tr>
<tr>
<td>Hagedoorn, P.-L.</td>
<td>PO-1, PO-95</td>
</tr>
<tr>
<td>Haidar, S.</td>
<td>PO-215</td>
</tr>
<tr>
<td>Haider, V.</td>
<td>PO-51</td>
</tr>
<tr>
<td>Halcoxvith, N.</td>
<td>OC-2</td>
</tr>
<tr>
<td>Hale, L.V.A.</td>
<td>PO-145</td>
</tr>
<tr>
<td>Hall, A.</td>
<td>PO-368</td>
</tr>
<tr>
<td>Hamilton, A.</td>
<td>OC-8, PO-22, PO-144</td>
</tr>
<tr>
<td>Hammell, L.</td>
<td>PO-396</td>
</tr>
<tr>
<td>Hammerer, L.</td>
<td>OC-27</td>
</tr>
<tr>
<td>Hanefeld, U.</td>
<td>PO-1, PO-52, PO-95</td>
</tr>
<tr>
<td>Hanpe, M.</td>
<td>PO-46</td>
</tr>
</tbody>
</table>
Author index

Kim, M. PO-125, PO-311, PO-389
Kim, Z. PO-194, PO-203
Kim, M.J. PO-163
Kim, J.-S. PO-417
Kim, E. PO-291
Kim, D.H. PO-329
Kim, B. PO-267
Kim, B.H. PO-276
Kim, D.H. PO-329
Kim, E. PO-276
Kim, H. PO-409
Kim, J.-S. PO-202
Kim, M.J. PO-130
Kim, S. PO-124, PO-130
Kim, S.-G. PO-70
Kim, Y. PO-547
King, N. PO-213, PO-236
Kinsella, M. PO-42, PO-88
Kinsinger, T. PO-421
Kirchner, A. PO-207
Kirchner, S. PO-205
Kirin, S. PO-330
Kirres, J. PO-289
Kirschning, A. PO-343, PO-427
Klaiber, A. PO-454, PO-465, PO-499
Klahn, P. PO-206
Kläber, A. PO-422
Klatte, M. PO-20-313
Klausk, H. PO-281
Klein, S. PO-423
Klein, Th. PO-219
Klemenc, S. PO-420
Klepetařová, B. PO-237
Klimánková, I. PO-466, PO-467
Klimochkin, Y. PO-293
Kličar, I. PO-313, PO-424
Knaus, T. PO-103
Knecht, S. PO-289
Knecht, T. PO-164
Knittl-Frank, Ch. PO-342, PO-425
Knoche1, P. PO-436
Kabosil, S.C.K. PO-169
Koch, G. PO-436
Kočovský, P. PO-6
Kohlbacher, R. PO-278
Kohls, P. OC-12
Kóňa, A. PO-506
Kokotou, M. PO-71
Kokotos, G. PO-152
Kokotos, M. PO-208
Kokotos, M. PO-152
Kolarski, D. PO-5
Kolb, B. PO-405
Koč, P. PO-353
Koppel, K. PO-381
Kornev, M. PO-426
Kornigg, S. PO-136
Körsgen, M. PO-252
Korytková, E. PO-207, PO-427
Kössel, T. PO-43, PO-97
Košmrilj, J. PO-219, PO-296, PO-487
Kotora, M. PO-19, PO-72, PO-495
Kotschy, A. PO-395
Kotzbasakis, V. PO-76, PO-518
Koukovský, C. PO-497
Kourtellaris, A. PO-258
Koutoulougenis, G. PO-208
Kouznetsov, V. PO-110
Kováč, O. PO-428
Krammer, G. PO-465
Kraszewski, K. PO-311
Kratenka, N. PO-429
Kraus, F. PO-209
Krause, B.M. PO-210
Krauss, S. PO-209
Kreft, A. PO-430
Křen, V. PO-248
Krisch, D. PO-73
Kristensen, S.K. PO-74
Krompiec, St. PO-87, PO-275
Kroul, W. OC-27, PO-75, PO-118
Krückel, T. PO-62
Krupička, M. PO-294
Kryštof, V. PO-217, PO-218
Kucháň, M. PO-182
Kubínský, K. PO-220, PO-223
Kuchuk, E. IL-4
Kühne, R. PO-187
Kulhánek, J. PO-291
Kulikov, A. PO-442
Kunfi, A. PO-274
Kunz, D. PO-405
Kurpanik, A. PO-275
Kushida, S. PO-266
Kwok, T. PO-431
Kydonakis, M. PO-76

L
Lagerblom, K. PO-86
Lahboubi, M. PO-211
Lakhdar, S. PO-490
Lam, Y. PO-251, PO-356
Lanardi, O. PO-285
Lang, M. PO-302
Lapointe, G. OC-1
Larionova, N. PO-98
Larsson, C. PO-240
Lasáňev, D. PO-432, PO-530
Laschat, S. PO-286
Lavoie, G. PO-289, PO-405, PO-506
Lasic, K. PO-516
Latkolik, S. PO-191
Author index

Layton, C. PO-246
Lazzarotto, M. PO-347
Le Calvez, G. PO-433
Lebedev, Y. PO-171
Leboho, T. PO-212
Lecomte, M. PO-276
Lee, H. PO-130
Lee, H.-Y. PO-124
Lee, J. PO-558
Lee, J.-W. PO-130, PO-412
Lee, J.H. PO-23
Lee, Y.R. PO-528
Legros, J. PO-490
Legoy Arvik, S. PO-434
Leichnitz, D. PO-213, PO-236
Lemmerer, M. PO-392, PO-435
Lence, E. PO-201
Lennon, C.M. PO-42, PO-88
Leonard, D. PO-335, PO-377
Lepskí, M. PO-217
Leroux, M. PO-436
Lesieur, C. PO-461
Lessi, M. PO-77
Lethu, S. PO-355
Levacher, V. PO-7, PO-16
Levchenko, V. PO-437
Leverenz, M. PO-438
Levirte, G. PO-78
Lewis, I. PO-436
Leyssens, T. PO-89
Lhiaubet-Vallet, V. PO-238
Li, H. PO-142
Li, J. PO-392, PO-435, PO-479
Li, W.Ch. PO-512
Li, Z.-L. PO-79
Liardet, L. PO-167
Lichosyt, D. PO-80
Lima, D. PO-214
Lima, L. PO-214
Lin, W. PO-419, PO-439
Lin, Y.-C. PO-489, PO-544
Linde, E. PO-272
Lindell, S.D. PO-388
Lindhardt, A. PO-25, PO-64
Liu, Y.-C. PO-439
Lipparini, F. PO-77
Little, M. OC-25
Liu, X.-Y. PO-79, PO-546
Liu, Y. PO-36
Llewellyn, B. PO-477
Llop, J. PO-487
Lloyd-Jones, G. PO-305, PO-325
Loch, M. PO-349
Loke, I. PO-506
Lombardo, M. OC-28
London, G. PO-274
Lopez de Moraga, A. PO-355
López Rojas, P. PO-215
Lopp, M. PO-381
Loreau, O. OC-23
Lou, T.S.-B. PO-81
Loza, M. PO-186
Lozinšek, M. PO-154
Lu, Z. PO-143
Lücht, A. PO-430
Luis, J.M. OC-6, PO-317
Lukášek, J. PO-255
Lukashenko, A. PO-467
Lumpi, D. PO-265
Lundevall, F. PO-216
Luo, J. PO-167
Lupton, D. PO-500
Lusby, P. PO-325
Lycka, A. PO-217
Lynch, D. PO-440
M
Ma, X. PO-384
Madarász, I. PO-82
Maes, B. PO-488
Maestrí, G. PO-83
Magagnano, G. PO-84
Magar, P. PO-218
Magauer, Th. PO-42
Mahlmoud, W. PO-178
Maier, L. IL-2
Maier, M.E. PO-471
Mairhofer, Ch. PO-85
Majeti, R. PO-243
Makarav, A.S. PO-441
Makovka, N. PO-262
PO-350, PO-442
PO-350
PO-442
PO-552
Makosza, M. PO-347
Makowiec, S. PO-521
Makra, Z. PO-277
Makrević, J. PO-326
Malikénas, M. PO-221
Maliszewski, B. PO-9
Maluleka, M. PO-312
Mancuso, R. PO-26
Mannchen, F. PO-405
Mannisto, J. PO-88
Mannucci, E. PO-132
Mantel, M. PO-443
Mantellini, F. PO-358
Mantzourani, C. PO-208
Marcol-Szumilas, B. PO-87
Marcon, E. OC-23
Marek, I. PO-359, PO-360, PO-446
Mareya, T. PO-88
Margetić, D. PO-300, PO-309
Marghem, G. PO-89
Mari, G. PO-358
Markovíc, M. PO-444
Marsden, S. PO-535
OC-20, PO-231
Marsden, St.R. PO-95
Martek, B.A. PO-219
Martin, G. PO-534
Martin, R. PO-49, PO-90, PO-145
Martin, T. PO-40, PO-333
Martin-Matute, B. PO-41, PO-303
Martin-Montero, R. PO-90
Martínez-Bailión, M. PO-185
Martínez-Errro, S. PO-41, PO-303
Martynow, D. PO-230
Martzel, Th. PO-16
Maruoka, H. PO-228
Marx, L. PO-445
Maryasín, B. PO-313
Matyáš, K. PO-392, PO-435, PO-549
Maryška, M. PO-220
Maryska, M. PO-223
Masevicus, V. PO-221
Masman, M. PO-103
Massad, I. PO-446
Masson, G. PO-78
Masumoto, E. PO-228
Maslyk, M. PO-182
Mata, G. PO-541
Matassini, C. PO-185
Mateus-Ruiz, J.B. PO-447
Máth, D. PO-530
Mathe, D. PO-203
Matos, A.L.L. PO-252
Matoušek, V. PO-237
Mátravölgyi, B. PO-400
Matsuzawa, T. PO-448
Matthies, D. PO-186
Matussek, M. PO-275
Matvišovský, J. PO-222
Maulide, N. PO-136
PO-313, PO-342, PO-371
Author index

Melchiorre, P. PO-190
Milewska, M. PO-449
Milbeo, P. PO-220, PO-223
Minnaard, A. PO-404 PO-433
Minneci, M. PO-453
Miranda, M.A. PO-201, PO-238
Misale, A. PO-450
Misawa, T. PO-224
Mishevska, M. PO-280
Miształ, K. PO-279
Mitake, A. PO-140
Miyagawa, N. PO-92
Miyatake Ondozabal, J. PO-98
Miyazawa, M. PO-36 PO-363
Moazami, Y. PO-489
Moeller, M. PO-454
Möller, J. PO-99
Molins-Molina, Ó. PO-201
Möller, D. PO-197
Molleti, N. PO-281
Mondal, A. PO-161
Mondal, S. PO-141, PO-164
Monsù Scolaro, L. PO-363, PO-364
Montagnon, T. PO-535
Moock, D. PO-101
Mora-Radó, H. PO-319
Moreno-Vargas, A.J. PO-185, PO-225
Mori, A. PO-290, PO-401, PO-455
Mori, K. PO-455
Morimoto, T. PO-162
Mos, S. PO-492
Mosinger, J. PO-19
Motornov, V. PO-444, PO-456
Mphahlele, M.J. PO-312
Mrđen Debono, V. PO-241, PO-226
Mrksich, M. PO-102
Mudráková, B. PO-322
Mugica, O. PO-227
Muhammad, M. PO-193
Müller, F. PO-298
Müller, G. PO-259
Müller, T.J.J. PO-457
Muratsugu, S. PO-281
Muriel, B. PO-263 PO-278, PO-281, PO-298
Music, A. PO-338, PO-458
Muti, F. PO-103

N
Na, J. PO-315
Nada, H. PO-178
Nagabuchi, H. PO-228
Nagai, R. PO-140
Nagarkar, A. OC-15
Nagy, A. PO-89
Nainyté, M. PO-221
Naito, M. PO-224
Nakagawa, N. PO-290
Nakamura, Y. PO-459
Namboothiri, I.N.N. PO-334, PO-470
Nan, M.-I. PO-280
Narczynk, A. PO-460
Nardi, V. PO-502
Nava, P. PO-361
Nawara-Hultzsch, A. PO-104
Nečas, D. PO-19, PO-72
Negoro, K. OC-1
Neidig, S. PO-229
Nelson, A. OC-20, PO-231
Neumann, K.T. PO-30
Neuvile, L. PO-78
Ngamnithiporn, A. OC-1
Nguyen, N.H. PO-504
Nguyen, Q.H. PO-281
Niedballa, J.S. PO-86
Nieger, M. PO-86
Nielsen, D. PO-25
Niemi, T. PO-86
Nikitin, K. PO-92
Nikolic, A. PO-105
Nizi, E. PO-502
Nocentini, A. PO-178
Nociarová, J. PO-282
Nocjarová, J. PO-106
Norskov, M.D. PO-454
Norsikian, S. PO-461
Novacek, J. PO-51
Novikov, R. PO-257
Novosjolova, I. PO-271, PO-288

O
O’Gara, R. PO-107
Oha, M. PO-224
Oble, J. PO-117
Obydenkov, D. PO-426, PO-462
Ochmann, L. PO-463
O’Donovan, D. PO-342
<table>
<thead>
<tr>
<th>Author</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oestreich, M.</td>
<td>IL-10, PO-109</td>
</tr>
<tr>
<td>Ohoka, N.</td>
<td>PO-224</td>
</tr>
<tr>
<td>Oiarbide, M.</td>
<td>PO-322</td>
</tr>
<tr>
<td>Øien-Ødegaard, S.</td>
<td>PO-437</td>
</tr>
<tr>
<td>Ojeda, G.M.</td>
<td>PO-108</td>
</tr>
<tr>
<td>Okabe-Nakahara, F.</td>
<td>PO-228</td>
</tr>
<tr>
<td>Okamura, H.</td>
<td>PO-193</td>
</tr>
<tr>
<td>Okano, K.</td>
<td>PO-290, PO-401, PO-455</td>
</tr>
<tr>
<td>Okolo, E.</td>
<td>PO-231</td>
</tr>
<tr>
<td>Oliveira, B.</td>
<td>PO-225</td>
</tr>
<tr>
<td>Olafsson, B.</td>
<td>PO-272</td>
</tr>
<tr>
<td>Olszewska, T.</td>
<td>PO-323</td>
</tr>
<tr>
<td>Ong, D.Y.</td>
<td>PO-464</td>
</tr>
<tr>
<td>Ongouta, J.</td>
<td>PO-465</td>
</tr>
<tr>
<td>Opacik, S.</td>
<td>PO-330</td>
</tr>
<tr>
<td>Oppedisano, A.</td>
<td>PO-425</td>
</tr>
<tr>
<td>Opsenica, I.</td>
<td>PO-105</td>
</tr>
<tr>
<td>Orden, A.</td>
<td>PO-103</td>
</tr>
<tr>
<td>Orecchia, P.</td>
<td>PO-109</td>
</tr>
<tr>
<td>Ormazabal-Toledo, R.</td>
<td>PO-316</td>
</tr>
<tr>
<td>Ortalli, M.</td>
<td>OC-28</td>
</tr>
<tr>
<td>Ortiz, M.</td>
<td>PO-110</td>
</tr>
<tr>
<td>Osipov, D.</td>
<td>PO-466, PO-467</td>
</tr>
<tr>
<td>Ossip, P.</td>
<td>PO-308</td>
</tr>
<tr>
<td>Osusky, P.</td>
<td>PO-282</td>
</tr>
<tr>
<td>Osyanin, V.</td>
<td>PO-467</td>
</tr>
<tr>
<td>Ötvös, S.B.</td>
<td>PO-468</td>
</tr>
<tr>
<td>Oudeyer, S.</td>
<td>PO-7, PO-16</td>
</tr>
<tr>
<td>Özkaya, B.</td>
<td>PO-111</td>
</tr>
<tr>
<td>Pace, V.</td>
<td>OC-16</td>
</tr>
<tr>
<td>Padmaja</td>
<td>PO-469</td>
</tr>
<tr>
<td>Palomo, C.</td>
<td>PO-322</td>
</tr>
<tr>
<td>Palucci, B.</td>
<td>PO-112</td>
</tr>
<tr>
<td>Pálvolgyi, Á.M.</td>
<td></td>
</tr>
<tr>
<td>Papastavrou, A.T.</td>
<td>PO-113, PO-135</td>
</tr>
<tr>
<td>Pancrazzi, F.</td>
<td>PO-26</td>
</tr>
<tr>
<td>Pang, J.</td>
<td>PO-306</td>
</tr>
<tr>
<td>Pannecoucke, X.</td>
<td>PO-478</td>
</tr>
<tr>
<td>Papastavrou, A.T.</td>
<td>PO-115</td>
</tr>
<tr>
<td>Pape, F.</td>
<td>PO-15</td>
</tr>
<tr>
<td>Papot, M.</td>
<td>PO-233</td>
</tr>
<tr>
<td>Parak, M.</td>
<td>PO-516</td>
</tr>
<tr>
<td>Parella, T.</td>
<td>PO-127</td>
</tr>
<tr>
<td>Park, J.</td>
<td>PO-124</td>
</tr>
<tr>
<td>Park, J.H.</td>
<td>PO-23</td>
</tr>
<tr>
<td>Parrain, J.-L.</td>
<td>PO-361</td>
</tr>
<tr>
<td>Paruch, K.</td>
<td>PO-204</td>
</tr>
<tr>
<td>Parveen, N.</td>
<td>PO-114</td>
</tr>
<tr>
<td>Pasquinet, E.</td>
<td>PO-283</td>
</tr>
<tr>
<td>Passera, A.</td>
<td>PO-352</td>
</tr>
<tr>
<td>Pasturaud, K.</td>
<td>PO-490</td>
</tr>
<tr>
<td>Paterson, K.</td>
<td>PO-354</td>
</tr>
<tr>
<td>Pati, S.</td>
<td>PO-470</td>
</tr>
<tr>
<td>Patrareau, F.</td>
<td>PO-111, PO-165, PO-346</td>
</tr>
<tr>
<td>Paul, A.</td>
<td>PO-471</td>
</tr>
<tr>
<td>Paul, S.</td>
<td>PO-327</td>
</tr>
<tr>
<td>Paulisch, T.</td>
<td>PO-57</td>
</tr>
<tr>
<td>Pauze, M.</td>
<td>PO-115</td>
</tr>
<tr>
<td>Pawlowski, R.</td>
<td>PO-146</td>
</tr>
<tr>
<td>Pearson, S.</td>
<td>PO-232</td>
</tr>
<tr>
<td>Peinshipp, Ch.</td>
<td>PO-136</td>
</tr>
<tr>
<td>Pellicciani, R.</td>
<td>OC-21</td>
</tr>
<tr>
<td>Peng, C.-C.</td>
<td>PO-213, PO-236</td>
</tr>
<tr>
<td>Péreaudeau, E.</td>
<td>PO-233</td>
</tr>
<tr>
<td>Pérez Márquez, L.A.</td>
<td>PO-331</td>
</tr>
<tr>
<td>Pérez-Ruiz, R.</td>
<td>PO-201, PO-284</td>
</tr>
<tr>
<td>Perić, B.</td>
<td>PO-330</td>
</tr>
<tr>
<td>Pericass, M.A.</td>
<td>PO-468</td>
</tr>
<tr>
<td>Perisic, M.</td>
<td>PO-172</td>
</tr>
<tr>
<td>Permingeart, C.</td>
<td>PO-557</td>
</tr>
<tr>
<td>Perretti, M.D.</td>
<td>PO-331</td>
</tr>
<tr>
<td>Petersen, L.</td>
<td>PO-174</td>
</tr>
<tr>
<td>Petkova, D.</td>
<td>PO-342</td>
</tr>
<tr>
<td>Petracca, R.</td>
<td>PO-449, PO-452</td>
</tr>
<tr>
<td>Petriti, A.</td>
<td>PO-472</td>
</tr>
<tr>
<td>Pezzetta, C.</td>
<td>PO-473</td>
</tr>
<tr>
<td>Philippov, I.</td>
<td>PO-474</td>
</tr>
<tr>
<td>Planevski, Z.</td>
<td>PO-205</td>
</tr>
<tr>
<td>Picher, M.-I.</td>
<td>PO-116</td>
</tr>
<tr>
<td>Pichler, A.</td>
<td>PO-193</td>
</tr>
<tr>
<td>Piekarz, D.G.</td>
<td>PO-47</td>
</tr>
<tr>
<td>Pierce, J.</td>
<td>PO-489</td>
</tr>
<tr>
<td>Pieters, G.</td>
<td>PO-298</td>
</tr>
<tr>
<td>Pietruszka, J.</td>
<td>PO-198, PO-394, PO-443</td>
</tr>
<tr>
<td>Pikho, P.</td>
<td>PO-128, PO-314</td>
</tr>
<tr>
<td>Pillwein, F.</td>
<td>PO-327</td>
</tr>
<tr>
<td>Pineschi, M.</td>
<td>PO-94</td>
</tr>
<tr>
<td>Pingen, D.</td>
<td>PO-119</td>
</tr>
<tr>
<td>Pinter, B.</td>
<td>PO-43, PO-97</td>
</tr>
<tr>
<td>Pinto, A.</td>
<td>PO-313</td>
</tr>
<tr>
<td>Pipaon, N.</td>
<td>PO-374</td>
</tr>
<tr>
<td>Plamont, R.</td>
<td>PO-34</td>
</tr>
<tr>
<td>Planas, O.</td>
<td>OC-24</td>
</tr>
<tr>
<td>Planke, T.</td>
<td>PO-454</td>
</tr>
<tr>
<td>Pleková, K.</td>
<td>PO-102</td>
</tr>
<tr>
<td>Pletkier, B.</td>
<td>PO-116, PO-126, PO-209</td>
</tr>
<tr>
<td>Plougastel, L.</td>
<td>PO-298</td>
</tr>
<tr>
<td>Pluvmage, J.</td>
<td>PO-243</td>
</tr>
<tr>
<td>Podyacheva, E.</td>
<td>IL-4</td>
</tr>
<tr>
<td>Poechla, P.</td>
<td>OC-12</td>
</tr>
<tr>
<td>Pohl, J.-M.</td>
<td>PO-475</td>
</tr>
<tr>
<td>Poinet, P.</td>
<td>PO-233</td>
</tr>
<tr>
<td>Poisson, Th.</td>
<td>PO-478</td>
</tr>
<tr>
<td>Poli, G.</td>
<td>PO-117, PO-345</td>
</tr>
<tr>
<td>Pollice, R.</td>
<td>OC-3</td>
</tr>
<tr>
<td>Polychronidou, V.</td>
<td>PO-120</td>
</tr>
<tr>
<td>Pompei, S.</td>
<td>PO-118</td>
</tr>
<tr>
<td>Ponte, S.</td>
<td>PO-320</td>
</tr>
<tr>
<td>Poole, D.</td>
<td>PO-397</td>
</tr>
<tr>
<td>Pop, L.</td>
<td>PO-332</td>
</tr>
<tr>
<td>Popella, P.</td>
<td>PO-209</td>
</tr>
<tr>
<td>Porcs-Makkay, M.</td>
<td>PO-310</td>
</tr>
<tr>
<td>Poremba, N.</td>
<td>PO-270, PO-560</td>
</tr>
<tr>
<td>Porte, K.</td>
<td>PO-233</td>
</tr>
<tr>
<td>Porzelle, A.</td>
<td>PO-476, PO-477</td>
</tr>
<tr>
<td>Possch, J.</td>
<td>PO-35, PO-150</td>
</tr>
<tr>
<td>Pospisil, J.</td>
<td>PO-428, PO-548</td>
</tr>
<tr>
<td>Potopnyk, M.</td>
<td>PO-529</td>
</tr>
<tr>
<td>Pototschnig, G.</td>
<td>OC-1</td>
</tr>
<tr>
<td>Poullain, D.</td>
<td>PO-283</td>
</tr>
<tr>
<td>Pourghasemi Lati, M.</td>
<td>PO-234</td>
</tr>
<tr>
<td>Poutrel, P.</td>
<td>PO-478</td>
</tr>
<tr>
<td>Polanski, T.</td>
<td>PO-323</td>
</tr>
<tr>
<td>Prada Gori, D.N.</td>
<td>PO-557</td>
</tr>
<tr>
<td>Prasath, V.</td>
<td>PO-469</td>
</tr>
<tr>
<td>Precht, M.H.G.</td>
<td>PO-119</td>
</tr>
<tr>
<td>Preinfalk, A.</td>
<td>PO-479</td>
</tr>
<tr>
<td>Preston, D.</td>
<td>OC-15</td>
</tr>
<tr>
<td>Preusch, F.</td>
<td>PO-480</td>
</tr>
<tr>
<td>Princiotto, S.</td>
<td>PO-481</td>
</tr>
<tr>
<td>Principalle, A.</td>
<td>PO-321</td>
</tr>
<tr>
<td>Procter, D.</td>
<td>PO-301</td>
</tr>
<tr>
<td>Prokopcová, H.</td>
<td>PO-488</td>
</tr>
<tr>
<td>Prötti, S.</td>
<td>PO-482</td>
</tr>
<tr>
<td>Pryk, N.</td>
<td>PO-197</td>
</tr>
<tr>
<td>Przybyłowska, M.</td>
<td>PO-235</td>
</tr>
<tr>
<td>Puerto, C.</td>
<td>PO-110</td>
</tr>
<tr>
<td>Pugh, C.</td>
<td>OC-25</td>
</tr>
<tr>
<td>Pungor, D.</td>
<td>PO-360</td>
</tr>
<tr>
<td>Punter, A.</td>
<td>PO-361</td>
</tr>
<tr>
<td>Puriš, M.</td>
<td>PO-483</td>
</tr>
<tr>
<td>Purkait, N.</td>
<td>PO-272</td>
</tr>
<tr>
<td>Puskás, L.G.</td>
<td></td>
</tr>
<tr>
<td>Pusztai, G.</td>
<td>PO-82, PO-277</td>
</tr>
<tr>
<td>Puthmanveedu, M.</td>
<td>PO-120</td>
</tr>
</tbody>
</table>
Author index

Q
Qian, D. PO-121
Qu, S. PO-122
Queiroz, M.-J.R.P. PO-123
Querolle, O. PO-38
Quinonero, O. OC-17
Quintard, A. PO-484
Quintavalla, A. OC-28

R
Rael, M. PO-124
Rachóň, J. PO-182
Rafinski, Z. PO-32
Raguž, L. PO-236
Rahimidashaghoul, K. PO-237
Raja, A. PO-506
Rajkiewicz, A. PO-66
Rakers, C. OC-5
Rami, F. PO-126
Ramondenc, Y. PO-38
Ranjan, P. PO-108
Rank, Ch. PO-111
Rapenne, G. PO-417
Ratsch, F. PO-485
Rautlainen, S. PO-29
Ravinder, R. PO-461
Raviola, C. PO-482
Ray, S. PO-470
Reboul, V. PO-390
Rehman, S. PO-199
Rehorova, K. PO-223
Reichetseder, A. PO-416
Reindl, M. PO-229
Reiners, F. PO-486
Reis, W. PO-25
Reisman, S.E. IL-8
Rejc, L. PO-487
Ren, D. PO-167
Ren, X. PO-130
Renaud, P. PO-336, PO-522
Renders, E. PO-488
Renoux, B. PO-233
Repo, T. PO-86, PO-132
Riant, O. PO-27, PO-89
Ribas, X. OC-6, PO-127, PO-317
Ribaucourt, A. PO-489
Richardson, M. PO-431
Richert, S. PO-307
Richter-Morales, S. PO-316
Riszté, G. PO-203
Riuttamäki, S. PO-128
Rivera, D.G. PO-108
Rizzo, S. PO-77, PO-308
Rkein, B. PO-490
Robina, I.
Rodrigues, J.M. PO-185, PO-225
Rodriguez, E. PO-123
Rodríguez-Muñiz, G.M. PO-238
Roe, A. PO-184
Roesslein, J. PO-491
Rogge, T. PO-67
Rohrbach, S. PO-522
Roithova, J. IL-5
Roithová, J. PO-6
Rok Lee, Y. PO-505
Roland, S. PO-129
Roldán-Gómez, S.
OC-6, PO-317
Roling, L. PO-252
Roller, A. PO-104
Roncali, J. PO-280
Ronchi, P. PO-77
Rondelli, M. PO-333
Rongved, P. PO-177
Ronson, Th. PO-488
Rosenbaum, N. PO-492
Rossi-Ashton, J. PO-493
Rouche, J.B. PO-50
Roufesly, F. PO-117
Roulland, E. PO-461
Rousseau, A.L. PO-494
Routine, S. PO-380
Roy, S. PO-327
Roy, T. PO-130
Rudorff, F. PO-172
Rueping, M. PO-17
Ruijer, S. PO-58, PO-62, PO-171
Rumlová, M. PO-313
Runo, J. PO-220
Runikina, S. PO-246
IL-4
Rycek, L. PO-495
Ryckaert, B. PO-496
Ryczkowski, M. PO-521
Ryzhakov, D. PO-497
Samir, M. PO-175
Samir, N. PO-196
Sánchez Quesada, J. PO-112
Santolini, V. OC-25
Sanz-Maro, A.
Saraiva-Rosa, N. PO-41, PO-303
Sarbu, L.G. PO-239, PO-324
Sardana, M. PO-498
Sarkar, S. PO-240
Sarris, J. PO-535
Sarró, P. PO-63
Sass, P. PO-209
Sasse, F. PO-506
Sattin, S.

IL-7, PO-304, PO-453
Sauerermann, N. PO-96
Savy, D. PO-134
Sayed, A.R. PO-299
Scanlan, E.
Schaef, M. PO-440, PO-449, PO-452
Scharinger, F. PO-135
Schiel, F. PO-136
Schiemann, O. PO-307
Schiffers, S. PO-207
Schloder, D. PO-103
Schirmacher, R. PO-226, PO-241
Schlau, Ch. PO-137
Schlunzt, W. PO-485
Schmalz, H.-G. PO-187, PO-210
PO-383, PO-485, PO-523
Schmauck, J. PO-443
Schmidt, M. IL-2
Schmidt, L. PO-492
Schmidt, M. PO-44
Schmitt, M. PO-344
Schnaars, Ch. PO-177
Schneider, C. PO-38, PO-50
Schneider, T. PO-540
Schmitzer, T. PO-99
Schnürch, M.
PO-139, PO-191, PO-199
Schnurr, M. PO-138
Schnurr, F. PO-19
Schober, R. PO-506
Schöberger, W.
PO-73, PO-327, PO-328
Schönhauer, D. PO-139
Schönhümer, J.

PO-33
Schou, M. PO-498
Schoup, J. PO-104
Schreiner, P. PO-463

- 168 -
Author index

Schröder, K. PO-113
PO-133, PO-135, PO-285
Schulte, A. OC-5
Schulz, F.
PO-197, PO-286
Schulz, G. PO-499
Schup, M. PO-287
Schuster, Ch. OC-12
Schuster, R. PO-302
Schwarz, J.L. PO-57
Schwermann, Ch.
PO-259
Scott, L. PO-500
Sebesta, R.
PO-24, PO-102
Sebris, A. PO-288
See, Y.F.A. PO-501
Sekar, G.
PO-114, PO-147
Sekine, A. PO-140
Seoane, F. PO-320
Seriér-Brault, H. PO-385
Serra, J.
PO-141
Serrano, E.
PO-461
Setyawati, I. PO-183
Seubert, P.
PO-289
PO-405
PO-519
PO-502
Severin, K.
Sferrazza, A.
Shaaban, S.
PO-142, PO-313
Shafir, A.
PO-355, PO-503
Shalaby, E.
Shao, W.
Sharma, U.K.
Schelik, I.
Shelke, Y.G.
Shen, Y.
Shi, J.-C.
Shibasaki, M.
Shibata, T.
PO-140, PO-149
PO-290
PO-547
Shih, S.
PO-409, PO-504
Shine, C.
Shiozawa, N.
Shimazaki, F.
Shrestha, R.
Shukla, R.K.
Siebert, D.C.B.
Sigmundová, I.
Sikorski, A.
Simeone, X.
PO-199, PO-249
Simig, G.
PO-310
Simon, A.
PO-8, PO-75
Šimon, P.
PO-291
Simon, T.
PO-103
Sinast, M.
PO-506
Singh, J.
PO-329
Singh, J.P.
PO-173
Singh, R.P.
PO-408, PO-532
Singha, S.
PO-141
Sirvinokaitienė, G.
PO-67
Sitte, H.H.
PO-188
Sklyaruk, T.
PO-17
Skrydstrup, T.
IL-13
PO-25, PO-30, PO-74
Skwarecki, A.
PO-230
Ślachtová, V.
PO-507
Slamon, D.
OC-1
Slater, J.
PO-144
Slotboom, D.
PO-183
Smith, A.
PO-13, PO-93, PO-122
Smith, A.D.
PO-160
Smith, B.
PO-243
Smith, M.D.
IL-6
Smits, R.
PO-244
Smolčič, M.
PO-292
Sofiadis, M.
PO-508, PO-535
Sokol, K.
IL-2
Sokolova, O.
PO-509
Sokolowska, P.
PO-510
Sollogoub, M.
PO-129
Somerville, R.J.
PO-145
Sommer, H.
PO-446
Sommer, M.
PO-511
Soós, T.
PO-534
Sosnovskih, V.
PO-426, PO-462
Sotorrios, L.
PO-319
Speicher, A.
PO-339, PO-445
Spicer, R.
PO-325
Spindler, S.
PO-512
Spiwok, V.
PO-248
SPOehrle, S.
PO-13
Sreenummar, S.
PO-327
Sršan, L.
PO-44
Sršan, L.
PO-513
Stallings, Ch.
PO-240
Stanek, F.
PO-146
Stanetty, Ch.
PO-375, PO-416
Stará, I.G.
PO-293
Starý, I.
PO-293
Stazzoni, S.
PO-193
Stecko, S.
PO-39, PO-460
Steigbauer, S.
PO-514
Steinacher, M.
PO-515
Steinborn, Ch.
IL-2
Steiner, L.
OC-27
Štepiška, M.
IL-1
Stergiou, A.
PO-258
Stiblarikova, M.
PO-516
Stirling, A.
PO-26
Stöckl, Y.
PO-286
Stoddart, J.F.
PL-1
Stodulski, M.
PO-146
Stoessel, B.
PO-517
Stöger, B.
PO-265, PO-270, PO-559
Stoltz, B.
OC-1
Stratakis, M.
PO-76, PO-518
Strieter, M.
PO-206
Suc Sakjo, J.
PO-200
Sugiaryama, A.
OC-5
Suleymanov, A.
PO-519
Sundararavand, N.
PO-147
Supuran, C.
PO-178
Süssmuth, R.D.
PL-10
Sutherland, J.D.
PL-8
Suzenet, F.
PO-283
Suzuki, T.
PO-290
Svatunek, D.
PO-253
Sytniczuk, A.
PO-66
Szabol, G.
PO-310
Szabó, T.
PO-520
Szafranński, K.
PO-245
Szewczyk, M.
PO-521
Szollosi, D.
PO-194, PO-203
Szpilman, A.
OC-18
Sztanó, G.
PO-86
Szymanski, W.
OC-5
Slawiński, J.
PO-245

T
Tabolin, A.
PO-456
Tabli, R.
PO-148
Taddei, M.
PO-472, PO-481
Tadross, P.
OC-1
Tagmatachris, N.
PO-258
Takano, H.
PO-149
Takemoto, Y.
OC-13
Tali Shandiz, S.
OC-21
Tama, F.
OC-5
Tan, B.
PO-161
Tanaka, M.
PO-224
Tang, S.-Q.
PO-344
Tang, Y.
PO-399, PO-543
Tappin, N.
PO-522
Taran, F.
OC-23
Törn, P.
PO-195, PO-233, PO-298
Taspınar, Ö.
PO-523
Täufer, T.
PO-150
Author index

Taylor, R. PO-493
Teichert, J.F. PO-15, PO-65, PO-169
Tejedor, D. PO-369
Templ, J. PO-524
Ten, A. OC-15
Ten Dijke, P. PO-187
Terec, A. PO-280, PO-332
Teskey, C.J. PO-435
Teskey, Ch. PO-392, PO-549
Theis, Th. PO-390
Thesmar, P. PO-526
Thibaut, C. PO-410
Thiel, N.O. PO-65
Thilmany, P. PO-527
Thomas, F. PO-226, PO-241
Thomas, L. PO-410
Thombal, R.S. PO-528
Thuéry, P. PO-298
Tian, C. PO-96
Tiara, K. PO-529
Tiffner, M. PO-51
Tilby, M. PO-368
Tilset, M. PO-437
Tischberger, S. PO-188
Tishin, D. PO-426
Tittmann, K. PO-226, PO-241
Tkaczyk, S. PO-371
Tobisu, M. PO-163
Tobrman, T. PO-379
Tolnai, G.L. PO-432, PO-530
Tomilov, Y. PO-257
Tommasini, M. PO-308
Tommasone, S. PO-192
Tomorowicz, Ł. PO-245
Tonge, N. PO-320
Tonin, F. PO-1, PO-52
Törnroos, K.W. PO-216
Townley, OC-20
Trabanco, A.A. PO-450
Tran, G. PO-151
Trapani, M. PO-369
Traskovskis, K. PO-371, PO-288
Trbušek, M. PO-204
Trenz, D. PO-531
Tresse, C. PO-461
Triandafillidi, I. PO-152
Triantafylakis, M. PO-508
Trillo, P. PO-153
Tripathi, K.N. PO-532
Trombini, C. OC-28
Trusso, S. PO-308
Tselev, V. PO-103
Tsukano, C. OC-13
Tsygankov, A. IL-4
Tüna, J. PO-294
Tungasmita, D.N. PO-29
Turesa, S. PO-321
Turks, M.
PO-271, PO-288, PO-483
Tūkenmez, H. PO-240
Twin, H. PO-354
Tyagi, M. PO-173
U
Ucar, S. PO-367
Uchida, K. PO-448
Uchuskin, M.G. PO-441
Ulč, J. PO-72
Ullrich, P. PO-443
Um, T.-W. PO-504
Unsworth, W. PO-493
Urankar, D. PO-487
Urlep, M. PO-154
Urruzuno, I. PO-322, PO-377
Uttry, A. PO-45
V
Vaccaro, L. PO-481
Väisänen, T. PO-314
Valašek, M. PO-255
Valkenier, H.
Valkenier, H.
Valle, M. OC-26
Valle, M. PO-25
van Beek, C.L.F. PO-295
van Beelen, E.S.E. PO-246, PO-247
Van den Bossche, D.
van der Eijk, H. PO-95
van der Eycken, E. PO-155, PO-108
Van der Eycken, J. PO-533
Van der Eycken, M. PO-533
Van der Eycken, N. PO-45, PO-100
Van der Eycken, P. W.N.M.
PO-119
Van Steijvoort, B.
van Vuuren, S. PO-488
Varani, S. OC-28
Vara, S. PO-534
Vašiček, T. PO-248
Vasilenko, V.
PO-14, PO-137
Vasilikogiannaki, E.
Vasiloiu, M.
Vasilikogiannakis, G.
Vastakaite, G.
Vázquez-Hernández, M.
Vega Alanis, B.A. PO-249
Venegas, S.T. IL-2
Verner, J. PO-204
Veselovska, L. PO-250
Veth, S. PO-193
Vidal-Ferran, A. PO-60
Viera, M. PO-251
Vilím, J. PO-103
Vincent, G. PO-497
Virant, M. PO-43, PO-97, PO-296
Virgil, S. OC-1
Vogt, D. PO-119
Vojkovsky, T. PO-157
Volk, B. PO-310, PO-520
Völtl, M. PO-549
Volla, C.M.R. PO-69
Voltronva, S. PO-444
von Keutz, T. PO-536
Vorherr, T. PO-436
Vorob’ev, A. PO-537
Vorobev, A. PO-474
Vougioukalakis, G.C.
PO-115
W
Wadepohl, H. PO-264
Wagenknecht, H.-A.
PO-131, PO-287, PO-302
Waldmann, H. PO-142
Wang, D. PO-252
Wang, F. OC-24
Wang, G.-W. PO-509
Wang, H. PO-67, PO-209
Wang, J. PO-31, PO-370
Wang, M.-M. PO-297
Wang, S. PO-545
Wang, X. PO-488
Wang, Z. PO-63
Ward, J. PO-335, PO-377
Waser, J.
Waser, M. PO-297, PO-457
Waser, M. PO-33, PO-51
PO-85, PO-158, PO-260
Wedl, P. PO-100
<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wegner, H.A.</td>
<td>PO-252</td>
</tr>
<tr>
<td>Wegner, T.</td>
<td></td>
</tr>
<tr>
<td>Wein, L.</td>
<td>OC-19</td>
</tr>
<tr>
<td>Welin, E.</td>
<td></td>
</tr>
<tr>
<td>Wen, Z.</td>
<td>PO-129</td>
</tr>
<tr>
<td>Wennemers, H.</td>
<td></td>
</tr>
<tr>
<td>PO-99, PO-138, PO-156</td>
<td></td>
</tr>
<tr>
<td>Werz, D.B.</td>
<td></td>
</tr>
<tr>
<td>PO-337, PO-349, PO-430</td>
<td></td>
</tr>
<tr>
<td>Westin, G.</td>
<td>PO-29</td>
</tr>
<tr>
<td>Wezenberg, S.J.</td>
<td></td>
</tr>
<tr>
<td>PO-295</td>
<td></td>
</tr>
<tr>
<td>Whiteoak, Ch.</td>
<td>OC-8</td>
</tr>
<tr>
<td>Whitesides, G.M.</td>
<td></td>
</tr>
<tr>
<td>OC-15</td>
<td></td>
</tr>
<tr>
<td>Wienhold, S.</td>
<td>PO-538</td>
</tr>
<tr>
<td>Wijkhuisen, A.</td>
<td>PO-233</td>
</tr>
<tr>
<td>Wilkovitsch, M.</td>
<td>PO-253</td>
</tr>
<tr>
<td>Williams, J.D.</td>
<td>PO-539</td>
</tr>
<tr>
<td>Willis, M.</td>
<td>PO-81, PO-368</td>
</tr>
<tr>
<td>Wimmer, L.</td>
<td>PO-188, PO-249</td>
</tr>
<tr>
<td>Wingen, L.M.</td>
<td>PO-540</td>
</tr>
<tr>
<td>Wink, M.</td>
<td>PO-196</td>
</tr>
<tr>
<td>Winkler, S.</td>
<td>PO-183</td>
</tr>
<tr>
<td>Winne, J.</td>
<td>PO-357, PO-496</td>
</tr>
<tr>
<td>Winne, J.M.</td>
<td>PO-351</td>
</tr>
<tr>
<td>Winter, M.</td>
<td>PO-158</td>
</tr>
<tr>
<td>Winterhalter, P.</td>
<td>PO-465</td>
</tr>
<tr>
<td>Witte, G.</td>
<td>PO-193</td>
</tr>
<tr>
<td>Witte, M.D.</td>
<td>PO-433</td>
</tr>
<tr>
<td>Wittstock, U.</td>
<td>PO-206</td>
</tr>
<tr>
<td>Witzel, S.</td>
<td>PO-159</td>
</tr>
<tr>
<td>Wojciechowska, N.</td>
<td></td>
</tr>
<tr>
<td>PO-125</td>
<td></td>
</tr>
<tr>
<td>Wojciechowski, K.</td>
<td>PO-279</td>
</tr>
<tr>
<td>Wölfli, B.</td>
<td>PO-541</td>
</tr>
<tr>
<td>Wollenburg, M.</td>
<td>PO-101</td>
</tr>
<tr>
<td>Woźniak,</td>
<td>PO-84</td>
</tr>
<tr>
<td>Wu, J.</td>
<td>PO-160</td>
</tr>
<tr>
<td>Wu, Y.</td>
<td>PO-542</td>
</tr>
<tr>
<td>PO-503, PO-544</td>
<td></td>
</tr>
<tr>
<td>Wu, Y.-K.</td>
<td>PO-545</td>
</tr>
<tr>
<td>Wulff, S.</td>
<td>PO-252</td>
</tr>
<tr>
<td>Wurster, M.</td>
<td>PO-405</td>
</tr>
<tr>
<td>Wybon, C.</td>
<td>PO-488</td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Xiang, S.</td>
<td>PO-161</td>
</tr>
<tr>
<td>Xie, D.</td>
<td>PO-181</td>
</tr>
<tr>
<td>Xie, J.</td>
<td>PO-159</td>
</tr>
<tr>
<td>Xu, J.</td>
<td>PO-143</td>
</tr>
<tr>
<td>Xu, S.</td>
<td>PO-399, PO-543</td>
</tr>
<tr>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Yamada, A.</td>
<td>OC-13</td>
</tr>
<tr>
<td>Yamane, Y.</td>
<td>PO-455</td>
</tr>
<tr>
<td>Yamauchi, T.</td>
<td>PO-366</td>
</tr>
<tr>
<td>Yamazaki, S.</td>
<td>PO-162</td>
</tr>
<tr>
<td>Yang, Y.</td>
<td>PO-130</td>
</tr>
<tr>
<td>Yang, Y.</td>
<td>PO-558</td>
</tr>
<tr>
<td>Yang, Y.-C.</td>
<td>PO-544</td>
</tr>
<tr>
<td>Yao, Z.-J.</td>
<td>PO-545</td>
</tr>
<tr>
<td>Yasui, K.</td>
<td>PO-163</td>
</tr>
<tr>
<td>Yasui, M.</td>
<td>OC-13, PO-90</td>
</tr>
<tr>
<td>Yatham, R.</td>
<td></td>
</tr>
<tr>
<td>Ye, J.-H.</td>
<td>PO-164</td>
</tr>
<tr>
<td>Ye, J.Z.</td>
<td>PO-52</td>
</tr>
<tr>
<td>Ye, L.</td>
<td>PO-546</td>
</tr>
<tr>
<td>Yemppala, T.</td>
<td>PO-186</td>
</tr>
<tr>
<td>Yen-Pon, E.</td>
<td>PO-298</td>
</tr>
<tr>
<td>Yin, H.</td>
<td>PO-90</td>
</tr>
<tr>
<td>Yin, R.</td>
<td>PO-67</td>
</tr>
<tr>
<td>Yip, G.</td>
<td>PO-251</td>
</tr>
<tr>
<td>Yip, G.W.C.</td>
<td>PO-356</td>
</tr>
<tr>
<td>Yoshida, M.</td>
<td>OC-7</td>
</tr>
<tr>
<td>Yoshida, S.</td>
<td></td>
</tr>
<tr>
<td>PO-448, PO-459, PO-547</td>
<td></td>
</tr>
<tr>
<td>Youn, M.</td>
<td>PO-268</td>
</tr>
<tr>
<td>Young, T.</td>
<td>PO-384</td>
</tr>
<tr>
<td>Young Jr. V.G.</td>
<td>PO-256</td>
</tr>
<tr>
<td>Youssuf, A.</td>
<td>PO-261</td>
</tr>
<tr>
<td>Yu, C.</td>
<td>PO-165</td>
</tr>
<tr>
<td>Yu, J.</td>
<td>PO-106</td>
</tr>
<tr>
<td>Yu, J.-S.</td>
<td>PO-109</td>
</tr>
<tr>
<td>Yuan, W.</td>
<td>PO-166</td>
</tr>
<tr>
<td>Yuan, Y.-C.</td>
<td>PO-401</td>
</tr>
<tr>
<td>Yukioka, T.</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>Zálešák, F.</td>
<td>PO-548</td>
</tr>
<tr>
<td>Zamarrija, I.</td>
<td>IL-2</td>
</tr>
<tr>
<td>Zanchi, C.</td>
<td>PO-308</td>
</tr>
<tr>
<td>Zanella, G.</td>
<td>PO-322</td>
</tr>
<tr>
<td>Zanini, M.</td>
<td>OC-17</td>
</tr>
<tr>
<td>Zapata-Torres, G.</td>
<td></td>
</tr>
<tr>
<td>Zarate, C.</td>
<td>PO-186</td>
</tr>
<tr>
<td>Zard, S.</td>
<td>PO-451</td>
</tr>
<tr>
<td>Zawodny, W.</td>
<td>PO-549</td>
</tr>
<tr>
<td>Zech, A.</td>
<td>PO-550</td>
</tr>
<tr>
<td>Zelenka, J.</td>
<td>PO-291</td>
</tr>
<tr>
<td>Zemanová, J.</td>
<td>PO-204</td>
</tr>
<tr>
<td>Zens, A.</td>
<td>PO-405</td>
</tr>
<tr>
<td>Zha, Q.</td>
<td>PO-542</td>
</tr>
<tr>
<td>Zhang, G.</td>
<td>PL-6</td>
</tr>
<tr>
<td>Zhang, G.</td>
<td>PO-390</td>
</tr>
<tr>
<td>Zhang, K.</td>
<td>PO-352</td>
</tr>
<tr>
<td>Zhang, L.</td>
<td>PO-143, PO-167</td>
</tr>
<tr>
<td>Zhang, P.</td>
<td>PO-129</td>
</tr>
<tr>
<td>Zhang, Q.</td>
<td>PO-181</td>
</tr>
<tr>
<td>Zhang, Z.</td>
<td>PO-168</td>
</tr>
<tr>
<td>Zhao, Q.</td>
<td>PO-21</td>
</tr>
<tr>
<td>Zheng, Y.</td>
<td>PO-551</td>
</tr>
<tr>
<td>Zhilin, E.</td>
<td>PO-262, PO-552</td>
</tr>
<tr>
<td>Zhou, F.</td>
<td>PO-143</td>
</tr>
<tr>
<td>Zhu, J.</td>
<td>PO-545</td>
</tr>
<tr>
<td>Zhu, Y.</td>
<td>PO-553</td>
</tr>
<tr>
<td>Ziegler, Th.</td>
<td>PO-340, PO-365</td>
</tr>
<tr>
<td>PO-418, PO-422, PO-423</td>
<td></td>
</tr>
<tr>
<td>PO-480, PO-513, PO-556</td>
<td></td>
</tr>
<tr>
<td>Zimmermann, B.M.</td>
<td>PO-169</td>
</tr>
<tr>
<td>Zippel, Ch.</td>
<td>PO-170</td>
</tr>
<tr>
<td>Zografos, A.</td>
<td>IL-14</td>
</tr>
<tr>
<td>Zonker, B.</td>
<td>PO-554</td>
</tr>
<tr>
<td>Žolnowska, B.</td>
<td>PO-245</td>
</tr>
<tr>
<td>Zschep, R.</td>
<td>PO-555</td>
</tr>
<tr>
<td>Zschieschang, U.</td>
<td>PO-264</td>
</tr>
<tr>
<td>Zubar, V.</td>
<td>PO-17, PO-171</td>
</tr>
<tr>
<td>Zukic, E.</td>
<td>PO-172</td>
</tr>
<tr>
<td>Zweiböhmer, T.</td>
<td>PO-556</td>
</tr>
</tbody>
</table>
XELSIUS
Highspeed Solubility & Synthesis Reactor

-20°C | +150°C

Introduction

inspired by the possibilities of lab automation!

XELSIUS solubility & synthesis reactor, is capable of taking charge of precise and individual temperature controlling, stirring and turbidity measurements. The right fit in a wide range of applications in fully automated chemical processing.

A high grade of modularity makes this product accessible for small research facilities, as well as large scale industry-level development labs. XELSIUS offers up to 10 individual reactor cells, but can easily be customized. Controlled by an easy-to-use software interface.

XELSIUS can be easily combined with our SAMPLIFY product family.

Key Features

- Up to 10 reaction cells per unit
- Independent control of each individual reactor cell
- from -20°C to +150°C
- Individual stirring
- Turbidity measurement
- Individual and easy-to-use programming

Application

- Temperature studies
- Chemical processing
- Crystallization analysis
- Solubility profiles
- Process Optimization
- DoE reactor
- Screening studies

A smart combination

- Combinable with a flexible and easy to use robotic system:
- Time scheduled sample taking
- Flexible dosage of reagents
- Customized app programming
- Integrated sample preparation
- Direct data-export to Excel ®

nevoLAB GmbH
Am Gehrenbach 8
D 88167 Maierhöfen
phone: +49 (0) 8383 929 566 0
fax: +49 (0) 8383 929 566 30
email: info@nevolab.de
www@nevolab.de

nevolab GmbH shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. Information, descriptions and specifications in this publication are subject to change without notice. © nevoLAB GmbH 2019
Advantages

- Rich variety of cycloparaphenylenes (CPP) (From the possible smallest [5]CPP up to [12]CPP)
- Diverse light absorption and emission depending on the ring size
- Unit structure of carbon nanotube (CNT)
- Ring-shaped carbon materials with unique and unexplored properties

Related product

- (6,6)Carbon Nanobelt Bis(tetrahydrofuran) Adduct ([12]CNB-2THF) 10mg [I1078]
Carbon Nanoring Material Cycloparaphenylene (CPP)

Properties and applications of CPP

Relation between no. of phenylene (n) and HOMO, LUMO in [n]CPP

![Graph showing the relation between no. of phenylene (n) and HOMO, LUMO in [n]CPP]

HOMO-LUMO gap decreases with decreasing ring size.

CPP-iodine complex

Encapsulation of fullerene by CPP

Electrically activated conductivity and white light emission

Functionalization of CPP

CPP growth to CNT

One phenylene ring can be readily functionalized.

Bottom up synthesis of CNT with uniform diameter

References

For further information please refer to our website at www.TCIchemicals.com.

Or access to https://www.tcichemicals.com/eshop/en/de/category_index/12955/