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Chapter 5
Multiple Support Random Vibrations
of Beam Structures
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ilicon. II., Abstract The seismic behavior of elastic multi-span beams subjected to multiple
33 d prob- support excitations is studied by means of a random vibration approach. Based on

the common set of equations of motion an efficient formulation is developed in order

¥s. 44(3),: to reduce the degrees of freedom. The resulting equations are formally identical

o those that are valid for structures under uniform support excitations. Stationary
scoplastic andom multiple support excitation is entirely performed by an approximate Pseudo
15t 27(9), xcitation Method calculating the power spectral density matrix of the structural
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tructures supported on several foundations such as bridges behave very complex

¥5. 89(5) hen subjected to ground motions, e.g. earthquakes. Analysis of seismic response

annot be based on the single assumption that free-field ground motions are spatially
niform. Therefore, common discretization procedures, originally derived for struc-
ires under uniform support excitations, must be extended accordingly resulting in
larger system of equations of motion, see e.g. [1, 2].

The dynamic response of bridges subjected to deterministic multiple supportexci-
tion has been investigated by various researchers, {3, 4, 5]. Random vibrations of
ridges have been analyzed generally by spectral analysis approach in the last two
ecades. In [6] the response of continuous two- and three-span beams to varying
ound motions is evaluated and the validity of the commonly used assumption
f equal support motion is examined. An extensive comparison of random vibra-
on methods for multiple support seismic excitation analysis of long-span bridges
an be found in [7]. Perotti [8] examines the structural response to non-stationary
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multiple-support random excitation in the frequency domain by means of evolution-
ary stochastic functions and parameters.

Allam et al, [9] treat cable-stayed bridges under multi-componeni random ground
motion in frequency domain. In [10] the stochastic analysis of long span struciures
focuses on the site-response effect. The paper of Zanardo et al. [11] carries out a
parametrical study of the pounding phenomenon associated with the seismic response
of multi-span bridges with base isolation devices. Further compiechensive studies
about spatial variation of seismic ground motions and its engineering application
can be found in [12, 13].

In this contribution an advanced formulation for linear elastic multi-span beams
under multiple support excitation is propesed in order to reduce the degrees of free-
dom in a mechanically consistent manner. The resuiting differential equations are
formally identical to those of structures under uniform support excitations. Apply-
ing the classical modal analysis approach, it becomes necessary (0 introduce time-
dependent participation factors.

For stationary random multiple support excitation the Pseudo Excitation Method
[14] is introduced, which includes the main effects of wave passage and site response.

This paper is related to applied structural dynamics. The treatment of the mechan-
ical modeling of the muiti-span beam under consideration is based on the formulation
given in a previous paper of the author {15], where deterministic muliiple support
excitations are studied. In the present contribution it is intended to bring practical
engineers closer to applied stochastic methods. Thus, on purpose, a strategy for
treating the rather complex problem of multiple random support excitation has been
generated that is quite easy to handle.

5.2 Governing Equations of Motion

The equation of motion of a discretized linear elastic beam subjected to uniform
support excitation, (Fig. 5.1)

Wei (1) = Wei(t) = -+ - = Weu (1) = we(?), (5.1)

reads, compare [1],

mii +cu+ ku=—me® i, (5.2)

where m, ¢, k stand for the mass, damping, and stiffniss matrix, respectively. u(z)
denotes the vector of the nodal transverse deflections w;(¢),i = 1,..., N. If the
dicretization is extended to include also nodal rotations, u(#) contains additional rota-
tory degrees of freedom, and the corresponding system matrices have to be extended
accordingly. The uniform ground acceleration is expressed by wg(#). The influence
vector € represents the displacements (and rotations) of the masses resulting from
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Fig. 5.1 Multi-span beam and its discretization as lumped mass model
t Method
esponse.
mechan- static application of a ground displacement. In case of a lumped-mass model, where
mulation only nodal deflections (and no rotations) are considered, it is a vector with each
s support - element equal to unity, (¢9)” = (11...1).
practical - Contrary, the coupled equations of motion of multi-span beams under multiple
ategy for - ‘support excitation can be written formally as, compare [2],
has been

[ mla]-leale] - [salul-[a]
[mé'mgg][ﬁg * c;"cgg g * knggg ug Pg 63

The displacement vector now contains two parts:

“(a) ut(r) includes the degrees of freedom of the beam, and
(b) ug(t) contains the components of support excitation.

> uniform
g, Mgy, Cq, €0, and Ky, Ky, are submatrices associated with the support motion, and
¢ () is the vector of support forces.
(5.1) In the following a new, efficient representation of Eq. (5.3) is derived, which is
elated to the form of Eq. (5.2). Thus, it becomes possible to use numerical procedures
at are common in the field of structures under uniform support excitation.
5.2y
‘_ 3 Modeling Procedure
ively. u(t).
,N. If the R ) . )
ional rota- a first step the individually prescribed support displacements, wg;(t),j =
. extended ,+..s M, are interpreted as additional degrees of freedom, i.e., up(t), &k = (N +
. influence )y ..., (N 4+ M), see Fig. 5.2.

lting from
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Fig. 5.2 Free body diagram of the lumped mass model

Next, the (singular) stiffness matrix of the complete discretized beam has to be
evaluated, e.g., using the direct stiffness method by applying static unit deformations,
which leads to

k[l I'C[Q e klN kl(N+1) ‘s kl(N-}-M)
kz[ kz'z . ng : :
K= kNl S kNN fCN(N+1) . kN(N—I—M) (54)
vy kivenn  Egvanoan - Kavenwsan
kvt <o+ kavesnn kv - - koveaniemn

Mass and damping matrices of Eq. (5.3) are of analogous form.
In the analysis of such dynamic system it is common to decompose the response
into pseudo-static and dynamic components,

et | _ [ e u(?)
vo= [“g(t)] B {ug(t)} + [ 0 } (5.5)
The pseudo-static component satisfies the equation
k kg [fui@|_| 0
[kg kgg][ug(f)] B [pfb,(t)]’ (5.6)

from which one can solve for v®{¢):

w(f) = —k 'kgu,. (5.7)

O
k-]

Substituting Egs. (5.5) and (5.7) into Eq. (5.3) results in

mii +cd+ku = —[m(—k 7'kg) + mg i — [¢ (—k ~'kg) + ¢4 4y = pesy-
(5.8)
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The vector of support forces can be expressed as

mgM
N - .. _ .
—is P(t) = (K 'kgmy + mgy)iig + (—kkge] + cgp)tiy
l + (——k‘lkgkg + kgg)ug + m ii -+ g+ klu. (5.9)
u
NeMt The damping terms in the effective forcing function peg can be neglected either
the damping matrices are proportional to the stiffness matrices, e.i.,
¢ =Kk, g = aikg, (5.10)
1as to be
mations, - or the damping forces are assumed to be proportional to the relative velocity vector
~ instead to the absolute velocity, i.e.,
c ¢ ffat c ¢ |[u
. , 5.11
[Cg cgg}[“g]~> [ch cgg:l[o] 4D
- then Eq. (5.8) simplifies to
54
mii + ca + ka = — [m(—k 'kg) + m,] i, (5.12)
i M
This approximation is very commen in structural dynamics, compare e.g. [2] or
13], and it can be assumed when the damping mechanism is mainly of the structural
type.
Tesponse Note that in case of a lumped-mass model, my is a null matrix, which is assumed
n all subsequent derivations.
Defining a non-dimensional ground acceleration vector,
(5.5)
Fg(t) = [ﬁgl/ﬁgref i":gZ/i/igref o1 iigM/ﬁgref ]s (513)
where iig.r 7 O represents a reference acceleration component, leads to
(5.6) mii + ca + ku = —m(—k7'ky)iiy = —mE(£)iigrer, (5.14)
with the time-dependent influence vector
E(f) = (—k kg)Fy (£). 5.15
5 (1) = (K" kg Fy(®) (5.15)
When comparing Egs. (5.14) to (5.2) of the beam under uniform support excitation
t turns out that both are of the same dimension and structure.
An application of that efficient formulation to deterministic multiple support exci-
= pe ff-

5.8) tation is given in [15]. There, applying the classical modal analysis approach,
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N —+
u(t) =Y biyit) (5.16)
f=1

where ¢; represents the eigenvectors, and y; stands for the generalized coordinates,
the resulting uncoupled equations of motion are of the form

Vi + 2503 + @02y = Ty (il grer (5.17)
with time-dependent participation factors

_"-r "-'l _Il o
b, “15, < ‘=)F'gf(r). (5.18)

¢j mg;

I (1) =

5.4 Stationary Random Excitation

5.4.1 An Approximate Excitation Model

Under close examination of the seismic analysis of multiply supported bridge struc-
tures subjected to spatially varying ground motion three main effects have to be taken
into account compare [16]:

(a) Wave passage, considering the difference in the arrival times of the waves at
stations located apart due to the finite nature of the seismic wave velocities,

(b) Incoherence, caused due to wave propagation in a heterogeneous medium with
numerous reflections and refractions,

(c) Site response, considering local soil conditions.

In the previous work [15] about deterministic excitation only the wave passage
effect has been considered.

The present paper introduces an approximate procedure for random vibrations,
the Pseudo Excitation Method (PEM), see e.g. [14], which includes both the cross-
correlation terms between the participant modes and between the excitations.

Local effects are treated by assuming different power spectral densities (PSDs)
of the ground acceleration at each support,

Sit geii g () = AeSiigyiig (@) = A Sa(w), (5.19)

where it is suggested that the factor A; can be estimated by the ratio of individual
mean square values,

0 o
3y = 0 'St (@) [ Siigeiig (@)d 0

(5.20)

S Sigiig (@Yo [y Se(w)de
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- As example, the common approach of the filtered Kanai-Tajimi spectral density

(5.16) could be used, see e.g. [1]:
2 2
dinates, Sigiigs (@) = So| Hy(o0)|" | Hp ()|, (5.21)
where
517 2
(517 . [+ 42 (0/00gt)’]
|H ()| = =) - (5.22)
[1— (@/0p)] +422(0/0p)
(5.18) is the squared Kanai-Tajimi frequency response function and
4
|H (@) = (‘Z/ ot t) : (5.23)
(1= (r0n)’] +ath(w/om)
notes the high pass filter frequency response function.
In the next step, this random excitation is replaced by a pseudo sinusoidal excita-
n, where the first ground node is taken as reference node,
dge struc- . .
o be taken Ugres (t) = Hg1(t) = v/ Sa(w) exp(iwt). (5.24)
The time delay of the ground motion depends on the distance of ground nodes j
: waves at
.. easured to the reference node 1,
ocities,
dium with
Tj = |ug; — ug1|/vapp, (5.25)
here Vgpp denotes the surface apparent wave velocity. Finally, the vector of pseudo
Ve passage wisoidal excitation becomes
vibrations, i, = U, exp(iot) = d(io) /5, (@) explior) = dGw) Tigres (£), (5.26)
.the cross-
.ons. th the non-dimensional complex vector
ies (PSDs)
d(iw) = [1 Rz exp(—iwTy) - - I exp(—ioTy) ] . (5.27)
(5.19)
“individual 2 Computation of Structural Response
_ e use of PEM makes it possible to determine the PSDs of the dynamic response.
(5.20) ereby the vector of the total response is formulated by means of a time-harmonic

1safz,
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8() = @) + B°(¢) = [f}(iu)) + ﬁs(iw)] explion). (5.28)
Solving the equation of motion associated to u(z), compare Eq. (5.14),
mi + 8+ kil = —m(—k "'k, = —mEiig.y, (5.29)
with the complex influence vector
E(iw) = (-k 'kd(iw), (5.30)
gives the complex amplitude vector of the dynamic part of nodal displacements
Uliw) = —HGo)mEG ©)+/S:(w), (5.31)
where the complex transfer matrix 1s defined as
H(iw) = [k +ioe — o’m] . (5.32)

The pseudo-static contribution, see Egs. (5.7) and (5.26), becomes

. - 1 - S
UGiow) = ~k 'k, Uy = Ek*lkg U, = ;2(“’) k 'k, d. (5.33)

Finally the total pseudo structural displacement vector reads
- . 1
i'(f) = Uiw) expliot), U'Giow) = [—,,k_‘kgd — H(iw)mE]\/Sa (@), (5.34)
>
and the corresponding matrix of PSDs can be expressed as

[Satat(w)] = [ﬁ**][ﬁ‘f, (5.35)

where the superscript * represents the complex conjugate of the vector.

5.5 Conclusions

A new formulation for linear elastic multi-span beams under muitiple support exci-
tation has been proposed in order to reduce the degrees of freedom in a mechani-
cally consistent manner. The resulting differential equations are formally identical to
those of structures under uniform support excitations. Thus, in case of deterministic
excitation it becomes possible to apply only slightly modified procedures for treat-
ing vibrations of structures under uniform support excitation. Making use of modal
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analysis, e.g., it becomes necessary to introduce time-dependent participation fac-
ors. For stationary random multiple support excitation an approximate procedure,
the Pseudo Excitation Method is introduced, which includes the main effects of wave
passage and site response.

The mechanical modeling of the considered structural problem and its combina-
ion with random vibrations are new and valuable in applied engineering.
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