Algebra Meets Biology Contents

Stefan Schuster

. . . . nvited Papers
Matthias Schleiden Institute, Department of Bioinformatics, ) i
Fricdrich Schiller University, Emst-Abbe-Platz 2, 07743 Jena, Germany Impacts of Membrane Computing on Theoretical Computer Science
stefan.schu@uni-jena.de i (Extended ADSIACD) . « + o v e e et e e e 3

Erzsébet Csuhaj-Varju

Abstract. Fibonacci numbers and the Golden Section occur in many instances |
in Biology. We have recently found that the potential number of fatty acids Time and Space Complexity of P Systems — And Why They Matter . . .. .. 10
increases with their chain length according to the famous Fibonacci series, when

DA 1 . . i : Alberto Leporati
cis/trans isomerism is neglected. Since the ratio of two consecutive Fibonacci

numbers tends to the Golden section, 1.618..., organisms can increase fatty acid A Brute-Force Solution to the 27-Queens Puzzle Using
variability approximately by that factor per carbon atom invested. Moreover, we 2 Distributed COmputation . . .. .. ... ..o 23
show that, under consideration of cis/trans isomerism, modification by hydroxy
. X L Thomas Preufer
and/or oxo groups, triple bonds or adjacent double bonds, diversity can be
described by generalized Fibonacci numbers (e.g. Pell numbers). Similar cal-
culations can be applied to aliphatic amino acids. Our results should be of Regular Papers
interest for mass spectrometry, combinatorial chemistry, synthetic biology, . " . 33
patent applications, use of fatty acids as biomarkers and the theory of evolution. Tissue P Systems with Point Mutation Rules .......................
A second example of the role of algebra in biology discussed in this talk Artiom Alhazov, Rudolf Freund, Sergiu Ivanov, and Sergey Verlan
concerns intracellular calcium oscillations. Such oscillations are transformed (in ) 57
a sense, decoded) in the cell by phosphorylation of proteins. In this way, an Adaptive P SyStems. .. . ...
approximate temporal integral of the signal is computed. This implies that the Bogdan Aman and Gabriel Ciobanu
number of spikes in the oscillation can be counted. In plant cells, an effect is . .
often triggered only if a certain number of spikes (e.g., five) occurred. Some Chain Code P System Generating a Variant of the Peano -
techniques for the mathematical modelling of such phenomena are reviewed Space-Filling Curve. . .. ... ... ..
here. Rodica Ceterchi, Atulya K. Nagar, and K. G. Subramanian
APCol Systems with Agent Creation. . . ... .o, 84
Lucie Ciencialova
References F
APCol Systems with Verifier Agents. .. ............. . oo, 95
L. Schuster, S., Fichtner, M., Sasso, S.: Use of Fibonacci numbers in lipidomics — Enumerating Lucie Ciencialovd, Erzsébet Csuhaj-Varjii, Gydrgy Vaszil,
various classes of fatty acids. Sci. Rep. 7, 39821 (2017) and Ludek Cienciala
2. Fichtner, M., Voigt, K., Schuster, S.: The tip and hidden part of the iceberg: proteinogenic and
non-proteinogenic aliphatic amino acids. Biochim. Biophys. Acta - Gen. Subj. 1861, 3258- A Semantic Investigation of Spiking Neural P Systems . ... ............ 108
3269 (2017) Gabriel Ciobanu and Eneia Nicolae Todoran
3. Bodenstein, C., Knoke, B., Marhl, M., Perc, M., Schuster, S.: Using Jensen’s inequality to . .
explain the role of regular calcium oscillations in protein activation. Phys. Biol. 7, 036009 Towards Automated Analysis of Belousov-Zhabotinsky Reactions
(2010) in a Petri Dish by Membrane Computing Using Optic Flow. .. .......... 131
Benjamin Forster and Thomas Hinze
Testing Identifiable Kernel P Systems Using an X-Machine Approach. . .. .. 142

Marian Gheorghe, Florentin Ipate, Raluca Lefticaru, and Ana Turlea




Tissue P Systems with Point
Mutation Rules

Artiom Alhazov?, Rudolf Freund®®™), Sergiu Ivanov?, and Sergey Verlan*

L Institute of Mathematics and Computer Science,
Academiei 5, 2028 Chisindu, Moldova
artiom@math.md
2 Faculty of Informatics, TU Wien, Favoritenstrafie 9-11, 1040 Vienna, Austria
rudi@emcc.at
3 IBISC, Université Evry, Université Paris-Saclay,
23 Boulevard de France, 91025 Evry, France
sergiu.ivanov@univ-evry.fr
4 Laboratoire d’Algorithmique, Complexité et Logique, Université Paris Est Créteil,
61 Avenue du Général de Gaulle, 94010 Créteil, France
verlan@u-pec.fr

Abstract. We consider tissue P systems working in the sequential mode
on vesicles of multisets with the very simple operations of insertion, dele-
tion, and substitution of single objects. In a computation step, one rule
is to be applied if possible, and then, in any case, the whole multiset
being enclosed in a vesicle moves to one of the cells as indicated by the
underlying graph structure of the system. The target cell is chosen in a
non-deterministic way and does not depend on the possibly applied rule.
With defining halting as reaching the final cell with a vesicle only con-
taining terminal symbols, computational completeness can be obtained.
Imposing the restriction that in each derivation step one rule has to be
applied, we only reach the computational power of matrix grammars for
multisets. Moreover, we also discuss variants for computations on strings.
Finally, we outline a way how to “go beyond Turing” like with red-green
register machines.

I 1 Introduction

Membrane systems were introduced at the end of the last century by Paun, e.g.,
see [11] and [32], motivated by the biological interaction of molecules between
cells and their surrounding environment. In the basic model, the membranes are
organized in a hierarchical membrane structure (i.e., the connection structure
between the compartments/regions within the membranes being representable
as a tree), and the multisets of objects in the membrane regions evolve in
a maximally parallel way, with the resulting objects also being able to pass
through the surrounding membrane to the parent membrane region or to enter an
inner membrane. Since then, a lot of variants of membrane systems, for obvious




34 A. Alhazov et al.

reasons mostly called P systems, have been investigated, most of them being
computationally complete, i.e., being able to simulate the computations of regis.
ter machines. If an arbitrary graph is used as the connection structure betweey
the cells/membranes, the systems are called tissue P systems, see [28].

Instead of multisets of plain symbols coming from a finite alphabet, P Sys.
tems quite often operate on more complex objects (e.g., strings, arrays), tog.
A comprehensive overview of different variants of (tissue) P systems and thej;
expressive power is given in the handbook which appeared in 2010, see [33]‘
For a short view on the state of the art of the domain, we refer the reader tq
the P systems website [37] as well as to the Bulletin series of the Internationg
Membrane Computing Society [36].

Very simple biologically motivated operations on strings are the so-calleq
point mutations, i.e., insertion, deletion, and substitution, which mean inserting
or deleting one symbol in a string or replacing one symbol by another one.
For example, graph-controlled insertion-deletion systems have been investigated
in [20], and P systems using these operations at the left or right end of string
objects were introduced in [25], where also a short history of using these point
mutations in formal language theory can be found.

When dealing with multisets of objects, the close relation of insertion and
deletion with the increment and decrement instructions in register machines
looks rather obvious. The power of changing states in connection with the incre-
ment and decrement instructions then can be mimicked by moving the whole
multiset representing the configuration of a register machine from one cell to
another one in the corresponding tissue system. Yet usually moving the whole
multiset of objects in a cell to another one, besides maximal parallelism, requires
target agreement between all applied rules, i.e., that all results are moved to the
same target cell, e.g., see [23].

In this paper we follow a different approach which has been introduced in [3]:
in order to guarantee that the whole multiset is moved even if only some point
mutations are applied, the multiset is enclosed in a vesicle, and this vesicle is
moved from one cell to another one as a whole, no matter if a rule has been
applied or not. Running the tissue P system in the sequential nfode we obtain
computational completeness when allowing even no rule to be applied in a deriva-
tion step, i.e., if none of the rules assigned to the cell where the vesicle currently
is to be found can be applied to the multiset contained in the vesicle. Requiring
that one rule has to be applied in every derivation step, we achieve a character-
ization of the family of sets of (vectors of) natural numbers defined by partially
blind register machines, which itself corresponds with the family of sets of (vec-
tors of) natural numbers obtained as number (Parikh) sets of string languages
generated by matrix grammars without appearance checking.

The idea of using vesicles of multisets has already been used in variants of P
systems using the operations drip and mate, corresponding with the operations
cut and paste well-known from the area of DNA computing, see [21]. Yet in that
case, always two vesicles (one of them possibly being an axiom available in an
unbounded number) have to interact. In this paper, the rules are always applied

Tissue P Systems with Point Mutation Rules 35

¢ mautations, i.e., wnsertion, deletion, and substitution, well-known
ology as operations on DN A, have also wit:lely bee_n usf!cl in the variants
orks of evolutionary processors (NEPs), which consist of cells (processors)
of ﬂem}”i,llmrl allowing for specific operations on strings. Networks of Evolutionary
pach 0.. rs (NEPs) were introduced in [9] as a model of string processing devices
P m&?wie.([ over a graph, with the processors carrying out these point mutations.
dismbut,a;;ions in such a network consist of alternatingly performing two steps —
Gcnlplz tion step where in each cell all possible operations on all strings currently
e efﬁtuirn the cell are performed, and a communication step in which strings
a::s ;’eut from one cell tlo'another cell provided lspeciﬁc condit.io:_ls are fulfilled.
Examples of such conditions are (O'Ut-[Jl{t and input) ﬁltel.'s which have to be
passedv and these (output and 1n.pul.) filters can be_s_pemﬁc types of mg}ﬂar
Janguages Or permitting and fu.rb:ddeu context u.::m:dli;lons. The set of stl:mgs
obtained as results of computations by tluiz NEP is defined as the set F}f objects
which appear in some distinguished node in the course of a computation.

In hybrid networks of evolutionary processors (HNEPs), each language pro-
cessor performs only one of these operations at a certain position of a Strmg.
Furthermore, the filters are defined by some variants of random-context fsondl—
tions, i.e., they check the presence and the absence of certain symbols in the
strings. For an overview on HNEPs and the best results known so far, we refer
the reader to [4].

In networks of evolulionary processors with polarizations, each symbol has
assigned a fixed integer value; the polarization of a string is computed accord?ng
to a given evaluation function, and in the communication step the obtained string
is moved to any of the connected cells having the same polarization. Networks
of polarized evolutionary processors were considered in [7] and [6], and networks
of evolutionary processors only using the elementary polarizations —1,0, 1 were
investigated in [31]. The number of processors (cells) needed to obtain compu-
tational completeness has been improved in a considerable way in [24] making
these results already comparable with those obtained in (4] for hybrid networks
of evolutionary processors using permitting and forbidden contexts as filters for
the communication of strings between cells.

Seen from a biological point of view, networks of evolutionary processors
are a collection of cells communicating via membrane channels, which makes
them closely related to tissue-like P systems considered in the area of membrane
computing. The tissue P systems considered in this paper now take features of
several of the devices mentioned above: we use a set of cells, each of them having
assigned a set of point mutation rules as in (H)NEPs as well as two substeps
in each derivation step — an evolution step in which one rule out of the set of
rules assigned to the cell is applied (i.e., if possible) to the multiset in the vesicle
currently present in the cell, and a communication step in which the vesicle is
sent from the current cell to another cell.

In contrast to (H)NEPs, which usually deal with strings, we here deal with
multisets enclosed in a vesicle. Yet the most important difference is that the
communication is not guided by output and input filters or by polarizations,

The -pm'ﬂ

frg m IJi




36 A. Althazov et al.

but simply by using a directed graph as the underlying communication structure,
On the other hand, in contrast to the well-known control mechanism of grapl
control with appearance checking (e.g., see [10] and [19]), the target cell does no
depend on which rule - if any — has been applied, which resembles the specia]
variant of graph control known as unconditional transfer, for example, see [12],

Another control mechanism closely related to this moving a vesicle througy,
the underling communication structure of a tissue P system is using regular con.
trol languages (e.g., see [10]): the directed graph describing the control structure
can be inferpreted as the graph of a finite automaton for the rule labels; iy
this model, appearance checking, i.e., allowing some rules to be skipped if they
cannot be applied, is modeled by fixing a set of rules which may be skippeq
when following a control word in the regular control language. An important
technical detail to be mentioned here is that in regular control languages the
control word usually is composed of single rule labels, whereas in the tissue P
systems introduced in this paper the control word would be composed of sets of
rule labels.

For comparing the results exhibited in this paper by using the control given
by the underlying communication structure of the tissue P system, we recall
the general framework for grammars working in the sequential derivation mode,
developed in [19]; many relations between various regulating mechanisms can
be established in a very general setting without any reference to the under-
lying objects the rules are working on, as, for example, for graph-controlled,
programmed, matrix, random-context, and ordered grammars. Other control
mechanisms considered in this paper are grammars with regular control lan-
guages and time-varying grammars, which in the context of P systems have
been investigated in [2]. In that paper, computational completeness is shown for
membrane systems with only one membrane, but using non-cooperative rules
and a lot of additional control symbols. Moreover, the number of steps needed
without applying a rule in the proof given there was two, whereas our result
established in this paper only needs one step without applying a rule.

Finally, we should like to mention that the control given by the underlying
communication structure of the tissue P system could also be ihterpreted as
having a P system with only one membrane but using states instead; for a
discussion on how to use and interpret features of (tissue) P systems as states we
refer to [2], where also an example only using the point mutation rules insertion
and deletion is given.

Although dealing with multisets, we can also simulate computations on
strings: adding the rules for taking an object from the environment into the
vesicle and/or sending an object out of the vesicle allows us to define the input
and output strings as the sequence of symbols taken in and sent out, respectively.
As an input sequence can be encoded as a number and then processed by only
two registers (the folklore result for two-counter automata) and the final result
can be encoded as a number and then decoded into a sequence of symbols sent
out (e.g., see [13]), the basic result showing how to simulate register machines
also allows for simulating computations on strings.

Tissue P Systems with Point Mutation Rules 37

various possibilities of how one may “go beyond Turing” are discussed in

. for example, the definitions and results for red-green Turing machines can
‘f2-7}f: and there. In [5] the notion of red-green automata for register machines
o homput strings given on an input tape (often also called counter automata) is
fﬂt duced and the concept of red-green P automata for several specific models
mb-l:emhrane systems is explained. Via red-green counter automata, the results
?jrl acceptance and recognizability of finite strings by red-green Turing machines
are carried over to red-green P automata. The basic idea of red-green automata
i to distinguish between two different sets of states (red and green states) and
to consider infinite runs of the automaton on finite input objects (strings, multi-
cets); allowed to change between red and green states more than once, red-g'reen
automata can recognize more than the recursively enumerable sets (of strings,
multisets), i.e., in that way one can “go beyond Turing”. In the area of P sys-
tems, first attempts to do that can be found in [8] and [35]. Computations with
infinite words by P automata were investigated in [22].

In [17,18], infinite runs of P automata are considered, taking into account the
existence/non-existence of a recursive feature of the current sequence of configu-
rations. In that way, infinite sequences over {0, 1}, called “observer languages”,
are obtained, where 1 indicates that the specific feature is fulfilled by the current
configuration and 0 indicates that this specific feature is not fulfilled. The recog-
nizing runs of red-green automata then correspond to having w-regular languages
over {0,1} of a specific form ending with 1* as observer languages.

The main problem with finding a red-green variant of the special variant
of tissue P systems introduced in this paper is its inherent non-determinism
even when simulating deterministic register machines and their red-green variant
(again see [5]) — the zero-test case and the decrement case of a SUB-instruction
are chosen in a non-deterministic way. Yet there is a possibility to overcome
this problem by using ideas as, for example, discussed in [30] and in [1]. In [30],
k-determinism of variants of P systems like (purely) catalytic P systems is dis-
cussed, i.e., with a look-ahead of (at most) k derivation steps always a determin-
istic continuation of a derivation can be found, although at some moment several
(multisets of) rules could be applied, because all other derivation paths would
lead to the introduction of the trap symbol; this technique is used very often
in proofs in the area of membrane systems to cause non-halting computations.
In [1], the concept of toxic objects is introduced which “kill” any derivation
branch producing a toxic object as, for example, the trap symbol. As we will
show later, our proof for simulating the SUB-instructions of a register machine
only needs a look-ahead of 1, i.e., as the deterministic continuation of a deriva-
tion in the tissue P system we can just take the one which does not introduce
the trap symbol. In that way, also a red-green variant of the model introduced
in this paper can be defined, thus even allowing us to “go beyond Turing”.

The rest of the paper is structured as follows: In Sect. 2 we recall some well-
known definitions from formal language theory, and in the Sect.3 we describe
the general model for sequential grammars as established in [19] and the control
mechanisms we are referring to in this paper within this general framework.




38 A. Alhazov et al.

In Sect. 4 we give the definitions of the model of tissue P systems with ves;.
cles of multisets as well as its variants to be considered in this paper. In Sect. 5
we show our main results for tissue P systems with vesicles of multisets using
the three operations — insertion, deletion, and substitution — in the sequentia]
derivation mode and moving the vesicle according to the underlying communica,
tion structure of the system. Computational completeness can be achieved whep
allowing also no rule to be applied in a derivation step, whereas otherwise we
get a characterization of the families of sets of natural numbers and Parikh setg
of natural numbers generated by partially blind register machines. In Sect. 6 we
briefly discuss how computations on strings can be simulated with this mode]
of tissue P systems. Moreover, we briefly outline how we even can “go beyond
Turing” with such systems by simulating red-green register machines in Sect. 7,
A summary of the results and an outlook to future research conclude the paper.

2 Prerequisites

We start by recalling some basic notions of formal language theory. An alphabet
is a non-empty finite set. A finite sequence of symbols from an alphabet V ig
called a string over V. The set of all strings over V' is denoted by V*; the empty
string is denoted by A; moreover, we define V't = V*\ {\}. The length of a
string « is denoted by |z|, and by |z|, we denote the number of occurrences of
a letter a in a string z. For a string x, alph(z) denotes the smallest alphabet X
such that z € 2*.

A multiset M with underlying set A is a pair (4, f) where f : 4 — N
is a mapping, with N denoting the set of natural numbers (non-negative inte-
gers). If M = (A, f) is a multiset then its support is defined as supp(M) =
{z € Alf(z) > 0}. A multiset is empty (respectively finite) if its support
is the empty set (respectively a finite set). If M = (A, f) is a finite multiset
over A and supp(M) = {a1,...,ax}, then it can also be represented by the
string a{(al) . ..ai(‘“‘) over the alphabet {aj,...,ax} (the corresponding vec-
tor (f(a1),. .., f(ag)) of natural numbers is called Parikh vector of the string
a{ (a) ai(a’“)), and, moreover, all permutations of this string precisely identify
the samme multiset M (they have the same Parikh vector). The set of all multisets
over the alphabet V' is denoted by V°.

The family of all recursively enumerable sets of strings is denoted by RE,
the corresponding family of recursively enumerable sets of Parikh sets (vectors
of natural numbers) and of number sets is denoted by PsRE and NRE, respec-
tively. For more details of formal language theory the reader is referred to the
monographs and handbooks in this area, such as [34].

2.1 Insertion, Deletion, and Substitution

For an alphabet V, let a — b be a rewriting rule with a,6 ¢ V U {\}, and
ab # \; we call such a rule a substitution rule if both a and b are different from

AU T LV T e 7 A v . 11 1 T O e o B P 1

Tissue P Systems with Point Mutation Rules 39

4\, and we also write I(b). The set of all insertion rules, deletion rules,

and buﬁstil'.util)ll rules over an alphabet V' is denoted by I'nsy, Dely, and Suby,
e jct'ively. Whereas an insertion rule is always applicable, the applicability of
respe i

Jetion and a substitution rule depends on the presence of the symbol a. We
a de Gl that insertion rules, deletion rules, and substitution rules can be applied
".“‘mar- (1 r.; as well as to multisets. Whereas in the string case, the position of the
& St:l(:(fi deleted, and substituted symbol matters, in the case of a multiset this

o _
mb]e means incrementing the number of symbols b, decrementing the number
0? ;;rml)ols a, or decrementing the number of symbols a and at the same time
5 :

incrementing the number of symbols b.
1 '

2.2 Register Machines

Register machines are well-known universal devices for computing (generating
or accepting) sets of vectors of natural numbers.

Definition 1. A register machine is a construct

M = (m, B,ly,ln, P)

where

— m is the number of registers,

_ B is a set of labels bijectively labeling the instructions in the set P,
~ lg € B is the initial label, and

~ 1, € B is the final label.

The labeled instructions of M in P can be of the following forms:

~p:(ADD(r),q,s), withp € B\ {lp}, ¢,s€ B, 1 <7 <m.
Increase the value of register v by one, and non-deterministically jump to
instruction q or s.

-~ p:(SUB(r),q,s), withpe B\ {la}, ¢,s€ B, 1 <r <m.
If the value of register T is not zero then decrease the value of register r by one
(decrement case) and jump to instruction q, otherwise jump to instruction s
(zero-test case).

~lp: HALT.
Stop the execution of the register machine.

A configuration of a register machine is described by the contents of eqch
register and by the value of the current label, which indicates the next instruction
to be executed.

In the accepting case, a computation starts with the input of a k-vector of
natural numbers in its first k registers and by executing the first instruction of P
(labeled with lo); it terminates with reaching the HALT-instruction. Without
loss of generality, we may assume all registers to be empty at the end of the




40 A. Alhazov et al.

In the generating case, a computation starts with all registers being empty
and by executing the first instruction of P (labeled with lo); it terminates with
reaching the H A LT-instruction and the output of a k-vector of natural numberg
in its first k registers. Without loss of generality, we may assume all registers >
to be empty at the end of the computation. The set of vectors of natural numberg
computed by M in this way is denoted by Ps(M). If we want to generate only
numbers (1-dimensional vectors), then we have the result of a computation iy
register 1 and the set of numbers computed by M in this way is denoted by N ( R),
By NEM and PsREM we denote the families of sets of natural numbers and of
sets of vectors of natural numbers, respectively, generated by register machineg,
It is folklore (e.g., see [29]) that PsRE = PsRM and NRE = NRM (actually,
three registers are suflicient in order to generate any set from the family N RE,
and, in general, k + 2 registers are needed to generate any set from the family
PsRE).

Partially Blind Register Machines. In the case when a register machine
cannot check whether a register is empty we say that it is partially blind: the
registers are increased and decreased by one as usual, but if the machine tries to
subtract from an empty register, then the computation aborts without producing
any result; hence, we may say that the subtract instructions are of the form
p: (SUB(r),q,abort); instead, we simply will write p: (SUB (), q).

Moreover, acceptance or generation now by definition also requires all regis-
ters, except the first k output registers, to be empty (which means all registers
k+1,...,m have to be empty at the end of the computation), i.e., there is an
implicit test for zero, at the end of a (successful) computation, that is why we
say that the device is partially blind. By NPBRM and PsPBRM we denote
the families of sets of natural numbers and of sets of vectors of natural numbers,
respectively, computed by partially blind register machines. It is known (e.g.,
see [16]) that partially blind register machines are strictly less powerful than
general register machines (hence than Turing machines); moreover, NPBRM
and PsPBRM characterize the number and Parikh sets, respectively, obtained
by matrix grammars without appearance checking.

3 A General Model for Sequential Grammars

We first recall the main definitions of the general model for sequential grammars
as established in [19].
A (sequential) grammar G is a construct (O, Or,w, P,=¢) where

— O is a set of objects;

— Or C O is a set of terminal objects;
—~ w € O is the aziom (start object);
— P is a finite set of rules;

Tissue P Systems with Point Mutation Rules 41

_COXx0ls the derivation relation of G.
r We &«;unle that each of the rules p € P induces a relation =,C O x O, in

gum yielding =¢ = Upe p =>p- The reflexive and transitive closure of =¢

is denoted by =>¢- A rule p € P is called applicable to an object x € O if
;nd only if there exists at least one object y € O such that (z,y) € =; we

also write T ==p -

In the following we shall consider different types of grammars depending on
the components of G (where the set of objects O is iu['init.(-e, e.g., V*, the set of
strings over the alphabet V'), especially with respect to different types of rules

., context-free string rules). Some specific conditions on the elements of G,

e > / :
igsﬁgcia]ly on the rules in P, may define a special type X of grammars which

then will be called grammars of type X.

The language generated by G is the set of all terminal objects (we also assume
v € Op to be decidable for every v € O) derivable from the axiom, ie.,

L(G):{UGOT|w——*—>Gv}.

The family of languages generated by grammars of type X is denoted by £ (X).

3.1 Specific Types of Objects

As special types of objects, in this paper we consider strings and multisets.

String Grammars. In the general notion as defined above, a string grammar

G is represented as
((N U, T* w, P, :’Gs)

where IV is the alphabet of non-terminal symbols, T is the alphabet of terminal
symbols, NNT =0, w € (NUT)", Pis a finite set of rules of the form u — v
with v € V* (for generating grammars, v € V*) and v € V* (for accepting
grammars, v € V1), with V := N UT; the derivation relation for u — v € P
is defined by axuy == ., xvy for all z,y € V*, thus yielding the well-known
derivation relation =, for the string grammar Gg. In the following, we shall
also use the common notation Gg = (N, T, w, P) instead, too. We remark that,
usually, the axiom w is supposed to be a non-terminal symbol, i.e., w € V\ T,
and is called the start symbol.

As special types of string grammars we consider string grammars with arbi-
trary rules as well as with contezt-free of the form A — v, with 4 € N and
v € V*. The corresponding types of grammars are denoted by ARB and CF,
thus yielding the families of languages £ (ARB), i.e., the family of recursively
enumerable languages (also denoted by RE), as well as L (CF), i.e., the family
of context-free languages, respectively.

We refer to [19] where some examples for string grammars of specific types
Mlustratine +he evnreccive nawer of +hic general framework are olven



42 A. Alhazov et al.

The subfamily of REG only consisting of 1-star languages of the form W+ for

i ] ni@d L . el )
some finite set of strings W is denoted by REG"™; to be more specific, we algg.

ider REGY* (k,p) consisting of all I-star languages of the form W* with, b
E?a?:!g :ﬂe maximum number of strings in W and p being the maximum lengths

f the strings in W. If W = {w} for a singleton w, we call the set {w}" periods,
0 L

vd |w| its period; thus, REG" (1,p) denotes the family of all periodic sets wit},
;L_u-iod at most p. If any of the numbers k or p may be arbitrarily large, We
replace it by *.

Multiset Grammars. G, = (NUT)° ,T° w, P, =g,.) is called a multise
grammar; N is the alphabet of non-terminal symbols, T' is the alphabet of ter.
minal symbols, N N'T = (), w is a non-empty multiset over V,V:i=NUT, ang
P is a (finite) set of multiset rules yielding a derivation relation =q,, on the
multisets over V; the application of the rule u — v to a multiset z has the effect
of replacing the multiset u contained in = by the multiset v. For the multiset,
grammar G, we also write (N, T,w, P,=¢, ).

As special types of multiset grammars we consider multiset grammars with
arbitrary rules as well as context-free ( non-cooperative) rules of the form A — v,
with A € N and v € V°; the corresponding types X of multiset grammars are
denoted by mARB and mCF, thus yielding the families of multiset languages
L(X).

As is well known, for example, see [26], even with arbitrary multiset rules, it
is not possible to get Ps (L (ARB)):

L(mCF) = Ps(L(CF)) & L(mARB) G Ps(L(ARB)).

3.2  Graph-Controlled and Programmed Grammars

A graph-controlled grammar (with applicability checking) of type X is a con-
struct

Gao = (G,9,H;, Hy, =>¢c)

where G = (0,07, w, P, ==>¢) is a grammar of type X; 9= (H,E,K)is a
labeled graph where H is the set of node labels identifying the nodes of the
graph in a one-to-one manner, E C H x 1Y, N} x H is the set of edges labeled
by Y or N, K : H — 2 ig a function assigning a subset of P to each node of
g; H; C H is the set of initjal labels, and Hy C H is the set of final labels. The
derivation relation = is defined based on —>¢ and the control graph g as
follows: For any i, ¢ H and any u,v € 0, (u,7) =¢c (v,7) if and only if

~ u=>p v bysomerulep e K (i) and (,Y,5) € E (success case), or
—u=v,nopé¢ K (i) is applicable to u, and (4, N,j) € E (failure case).

The language generated by Gae is defined by

LGeo)={vec Or | (w,i) =% (v.). ic H. 7 c H.

Tissue P Systems with Point Mutation Rules 43

B, = Hy = H, then Gge is called a programmed grammar, The families of
"If L o5 generated by graph-controlled and progrlammed grammars of type X
'Ja_nguag teg by L (X-GCy.) and L (X-P,.), respectively. If the set F contains no
e ._den? r];e form (i, N, j), then the graph-controlled or programmed grammar is
. : bé without applicability checking; the co.rrespun('ling families of languages
oted by £ (X-GC) and L (X-P), respectively. If fo'r all pairs (4,§) € Hx g
(i, Y,j) € E if and only if (3, N, j) € E, l'.het.l this regulated grammar is
id to be with unconditional transfer, as the transitions in the contro] graph do
3“ Jepend on the application of a rule; the corresponding families of languages
not :]er;:oted by L (X-GCy) and L (X-Py;), respectively.
g The notions and concepts with/without applicability clze}cking were introduced
as with/without appearance checking in the or.iginal definition for string gram-
mars because the appearance of the non-terminal symbol on the left-han side
n;'ﬂ. context-free rule was checked, which coincides with checking for the appli-
gabiiity of this rule in our general model; in both .ca{;es — applicability checking
ﬁnd appearance checking — we can use the abbreviation ac.
The concept of unconditional transfer has only .been nvestigated in a few
papers; the most interesting results are to be found in [12], where the following

was shown for strings:
Theorem 1. L(CF-GCy) = L(CF-GCy,.) = RE.

said ¢
are den
._'w.e have

3.3 Matrix Grammars
A matriz grammar (with applicability checking) of type X is construct
Gy = (G, M,F,=¢,,)

where G = (0,07, w, P,=>¢) is a grammar of type X, M is a finite set of
sequences of the form (py,...,pn), n = 1, of rules in P, and F C p, For W,z € O
we write w ==>¢,, z if there are a matrix (py,...,p,) in M and objects w, ¢ 0,
1 <i<n+1, such that w = wy, 2 =wy4y, and, for all 1 < < n, either

- W; == @G Wij41 O
- W; = Wi41, p; is not applicable to w;, and p; € F.

L(Guy) = {ve Or |w ==, v} is the language generated by Guy. The
family of languages generated by matrix grammars of type X is denoted by
L(X-MAT,.). If the set F is empty, then the grammar is said to be with-
out applicability checking; the corresponding family of langnages is denoted by
L(X-MAT).

We mention that in this paper we choose the definition where the sequential
application of the rules of the final matrix may stop at any moment,.

3.4  Grammars with Regular Control and Time-Varying Grammars

Another possibility to capture the idea of controlling the derivation in a grammar
as with a control graph is to consider the sequence of rules applied during »




44 A. Alhazov et al.

A grammar with regular control and appearance checking is a construct

GC . (GvHC'vL’F)

where G = (0,07, w, P,==¢) is a grammar of type X and L is a reguly,
language over H¢, where He is the set of labels identifying the non-empty -
subsets of productions from P in a one-to-one manner, and F' C Ho. We wil]
use the notation Hc (P') to refer to the label of the subset P’ C P. The language
generated by G¢ consists of all terminal objects z such that there exist a string -
He (Py)...He (P,) € L as well as objects w; € O, 1 < i < n+1, such tha

W =Wy, 2 = Wnt1, and, for all 1 < ¢ < n, either

— wy; = W;+1 by some production from P; or
— Wi = W41, no production from F; is applicable to w;, and Heo (F;) € F.

It is rather easy to see that the model of grammars with regular control ig
closely related with the model of graph-controlled grammars in the sense that
the control graph corresponds to the deterministic finite automaton accepting I,
Hence, we may also speak of a grammar with regqular control and without appeqgy-
ance checking if F = 0, and if F = H then G is said to be a grammar with reg-
ular control and unconditional transfer. The corresponding families of languages
are denoted by £ (X-C(REG),.), L(X-C (REG)), and L (X-C (REG),,).

Obviously, the control languages can also be taken from another family of lan-
guages Y, e.g., L (CF), thus yielding the families £ (X-C (Y'),.), etc., but in this
paper we shall restrict ourselves to the cases Y = REG and Y = REG™ (k, p).
For Y = REG (1,p), these grammars are also known as (periodically) time-
varying grammars, as the control language {Hg (P1) ... Ho (Pp)}" means that
the set of productions available at a time ¢ in a derivation is P; if ¢ = kp+1, k > 0;
p is called the period of the time-varying system. The corresponding families of
languages generated by time-varying grammars with appearance checking, with-
out appearance checking, with unconditional transfer, and with period p, are
denoted by £(X-TV,. (p)), L(X-TV (p)), and £ (X-TVy, (p)), respectively; if p
may be arbitrarily large, p is replaced by * or omitted in these notations.

In many cases it is not necessary to insist that the control string
Ho (Py)...He (P,) of a derivation is in L, it usually also is sufficient that
Heo (Py)...He (Py) is a prefix of some string in L. We call this control weak
and replace C' by wC and TV by wTV in the notions of the families of lan-
guages. We should like to mention that in the case of wT'V the control words
are just prefixes of the w-word (He (P1)... Ho (Fp))”.

In the case of string grammars, from the results stated in [12], we obtain the
following, for « € {\, w}:

RE = L(CF-GCqy.) = L(CF-GCly)
= L(CF-P,.) = L(CF-MAT,,)
= L(CF-aC (REG),,) = L(CF-aC (REG),,)
= L(CF-aTV,.) = L (CF-oTVy)
DrLICOFCY — L (OF.PY — F(CF_MATY

ou
of gram

Tissue P Systems with Point Mutation Rules 45

ik 1. We would like to mention that in the standard definition only the

’ l:: themselves are labeled for the control language and not all the subsets of
i

ales which corresponds with having only one rule assigned to each node in a
"y ['1 controlled grammar and not allowing a set of rules to be assigned. Yet in
grapli-¢ i : . . .

TP more general definition, time-varying grammars are just an easy special case
mars with regular control.

In (2], gime-varying (tissue) P systems with only one cell are considered. As

8 sequentia! (tissue) P system with only one cell and no interaction with the

nvironment corresponds with a multiset grammar, the main results obtained in
e

this paper can be expressed as follows:

Theorem 2. For all a € {\ w}, fe{racut}, and k,p > 1,
£ (mARB-MAT) = £ (mCF-MAT)
= PsL(CF-MAT)
= £ (mARB)
= L(mMARB-TV (p))
= £ (mARB-aC (REG)ﬁ)
= £ (mCF-aC (REG™ (+,p + 1)) ﬁ)

= £ (mCF-aC (REG) ﬁ) :
Theorem 3. For all a € {\, w}, B € {ac,ut}, p > 12, and d > 2,
L(mCF-aTVs(p,d)) = PsRE.

The additional parameter d — for delay — indicates that for at most d steps
no rule is applied during any derivation before it stops.

4 Tissue P Systems Working on Vesicles of Multisets
With Point Mutation Rules

We now define the model of tissue P systems working on vesicles of multisets in
the sequential mode using point mutation rules:

Definition 2. A tissue P systems working on vesicles of multisets in the sequen-
tial derivation mode with point mutation rules (an stPV system for short) is a
tuple

II= (L, V,T\R, g, (1:0,100), h)

where

= L is a set of labels identifying in a one-to-one manner the |L| cells of the
tissue P system II;
=V is the alphabet of the system,

RS T B -




46 A. Alhazov et al.

— R is a set of rules of the form (i,p) wherei € L and p € Insy U Dely USub..,,
t.e., p is an insertion, deletion or substitution rule over the alphabet V ; We
may collect all rules from cell i in one set and then write R; = { (1,p) |

(i,p) € R}, so that R = |J;c;, Ri; moreover, for the sake of conciseness, v

may simply write R, = {p | (i,p) € R}, too;

— g 1s a directed graph describing the underlying communication structure of I,
g = (N, E) with N = L being the set of nodes of the graph g and the set of
edges E C N x N;

- (o, wo) describes the initial vesicle containing the multiset wg in cell ig;

— h is the output cell for extracting the terminal results.

The stPV system now works as follows: The computation of IT starts with
vesicle containing the multiset wq in cell i, and the computation proceeds with
derivation steps until a specific output condition is fulfilled, which in all possible
cases means that the vesicle has arrived in the output cell A.

In each derivation step, with the vesicle enclosing the multiset w being in
cell 4, tentatively (i.e., if possible) one rule p from R; is applied to w and the
resulting multiset in its vesicle is moved to a cell 7 such that (i, 5) € E.

As we are dealing with membrane systems, the classic output condition - in
the generating case — would be to only consider halting computations; yet as
we allow that we also move the vesicle to the next cell even if no rule can be
applied to the multiset in the vesicle, the most natural condition is to take as
results only those multisets which have arrived in the output cell A enclosed in
the vesicle and only consist of terminal symbols.

On the other hand, halting still can be defined as follows for vesicles enclosing
terminal multisets which have arrived in the output cell h: consider any loopless
path from the output cell A through the communication graph g; then halting
can be defined as having no such path along which we arrive in a cell where still
a rule can be applied.

In [2], the notion halting with delay d is used to describe the situation that
we allow the system to stay inactive (i.e., without applying a rule) for d steps
before a computation is said to halt. We will also use this refinement of halting
in this paper to specify how many steps we have to go ahead in order to see
that the system halts; according to the definition for halting given above, in the
worst, case d is the length of the longest loopless path through the communication
graph g.

Hence, for the tissue P systems considered in this paper we may specify the
following derivation and output strategies:

— halt: the only condition is that the system halts in the sense explained above,
i.e., no matter which path we followed in the communication graph g, no
rule will be applicable any more; the result is the multiset contained in the
vesicle to be found in cell » (which in fact means that specifying the terminal
alphabet is obsolete);

Tissue P Systems with Point Mutation Rules 47

(Mu,d): the result is the multiset contained in the vesicle to b(? foufl.tl in
g '“ p. but the additional condition is that in no successful derivation (i.e., a
Eleriv;t'-ion yielding a result) more than d steps without applying a rule may

jcul" the special case d = 0 means that we do not allow a derivation step
¢ | E.rf: no rule is applied (again specifying the terminal alphabet is obsolete);
r:,:..,},_;‘ the resulting multiset contained in the vesicle to be found in cell h
C(;llsiSI;S of terminal symbols only (yet the system need not have reached a
halting conﬁgur&tim_]); ' . ' _ .
_ (term, d): the resulting multiset contained in the vesicle to be found in cell i
consists of terminal symbols only (vet the system need no.t have reached a
halting configuration), but, in addition, we require that in any successful
derivation at most d steps without applying a rulﬁ: may occur; .
(halt, term): both conditions must be fulfilled, ie., the resulting multiset
contained in the vesicle to be found in cell i consists of terminal symbols
only as well as the system halts in the way defined gbove; . '
(halt, term, d): all three conditions must be fulfilled, i.e., the resulting multiset
contained in the vesicle to be found in cell h consists of terminal symbols only,
the system halts in the way defined above, and in any successful derivation
at most d steps without applying a rule may occur.

Instead of halt, term, and (halt, term) we may also write (halt, *), (term, *),
and (halt, term, *), respectively.

The set of all multisets obtained as results of computations in II with the
output being obtained by using the derivation and output strategy g € ID,

D = {(halt, o), (term, &), (halt, term, a) | oo € NU {x}}

is denoted by Ps(II,sequ, gen, 3), with sequ specifying that the tissue P sys-
tem works in the sequential derivation mode and gen indicating that IT is
considered as a generating device; if we are only interested in the number of
symbols in the resulting multiset, the corresponding set of natural numbers is
denoted by N(I1, sequ, gen, §). The families of sets of (k-dimensional) vectors
of natural numbers and sets of natural numbers generated by stPV systems
with at most n cells using the derivation and output strategy @ are denoted
by Ps(tPV,,sequ, gen,3) and N(tPV,, sequ, gen, 3), respectively. If n is not
bounded, we simply omit the subscript in these notations.

The tissue P systems defined above can also be used as accepting and as
computing devices: the input multiset w then is added to the initial multiset
Wp, 1.€., we start with the multiset wwg enclosed in the vesicle to be found in
cell 49 at the beginning of the computation. In the computing case, the results
are obtained as described above according to the two different derivation and
output strategies 8 as explained above. In the accepting case, the final multiset
can either be required to be empty or else even to be any multiset over V, in
which case only getting the vesicle into the output cell is the main acceptance
criterion. We here prefer to require the strong condition that the final multiset
in the vesicle having arrived in cell A must be the empty multiset. In all the
notions defined in the preceding paragraph, gen is replaced by acc or comp in

LAl . -




48 A. Alhazov et al.

5 Simulation Results

Our first results show that without allowing derivation steps where no rule g
applied, the computational power of stPV systems is very much reduced, Le,
such systems only have the power of partially blind register machines.

Lemma 1. For any 0 € {(term,0), (halt, term,0)},
PsPBRM C Ps(stPV, sequ, gen, 3).

Proof. Let K € PsPBRM, i.e., the vector set K can be generated by a partially
blind register machine M = (m, B, ly, In, P). We now define an equivalent stPy
system IT generating K, i.e., Ps(II, sequ, gen, (term,0)) = K. The number of
symbols a, represents the contents of register r.

II =(L,V,T,R,g = (L, E), (ip, wo), h)

L = B,

V ={a, |1 <r<m},

T ={ar|1<7r <k},

R ={(p,I(ar)) | p: (ADD(r),q,s) € P}
U{(p,D(ar)) | p: (SUB(r),q) € P},

E ={(pq), )| p: (ADD(r),q,s) € P}
U{(p,q) |p: (SUB(r),q) € P},

(0, wo) = (lo, A),
ho=1.

The simulation of the computations in M by II works in real time, i.e., one
step of the register machine is simulated in one step of IT: incrementing register
r by an ADD-instruction is simulated by inserting a symbol a,, decrementing
register r by a SUB-instruction is simulated by deleting a symbol a,; in case we
try to decrement an empty register, the partially blind register machine aborts
the computation, which is mimicked in the stPV system with IT getting stuck in
cell p, as without applying the rule D(a,) the vesicle cannot move further and
thus will never reach the output cell [,.

Any halting computation in M finally reaches the halting instruction labeled
by Iy, and thus in II the vesicle obtained so far has also reached the output cell 4,
and as no rule is assigned to cell h, the computation in IT also halts when a vesicle
reaches the output cell h. Provided no non-terminal symbol a, with k+1 <r <m
is still present, the computation in IT yields the same result as the corresponding
computation in M, i.e., we conclude that Ps(II, sequ, gen, (term,0)) = K and
Ps(I1, sequ, gen, (halt, term,0)) = K, too.

The construction given in the preceding proof does not need additional sym-
bols, the computation is guided by the communication graph g. Moreover, only

LY B B R L T

Tissue P Systems with Point Mutation Rules 49

If we only require halting, we have to guarantee that a vesicle arriving in
o output cell can only stay there if its contents entirely consists of terminal
' mbols; in this case, we not, only need an additional symbol (the trap symbol #),

ls;ut also substitution rules:

[emma 2- PsPBRM C Ps(stPV, sequ, gen, (halt, 0)).

Proof. Let K € PsPBRM, i.e., the vector set K can be generated by a partially
plind register machine M = (m, B, lg, l;,, P). We now define an equivalent stPV
systeln IT generating K such that Ps(II, sequ, gen, (halt,0)) = K. The number
of symbols a represents the contents of register r.

The simulation of the computations in M by IT works in real time as
described in the preceding proof: incrementing register » by an ADD-instruction
is simulated by inserting a symbol a,, decrementing register r by a SUB-
instruction is simulated by deleting a symbol a,..

17 :(L,V,T,R,g=(L,E),(io,wo),h),
=5

V ={ar |1 <r <m}U{#},

T ={a |1<7 <k}

R ={(p,I(ar)) |p: (ADD(r),q,s) € P}

U{(p, D(a,)) | p: (SUB(r),q) € P}
U{(h,S(ar,#)) |+ 1 <r <m}
U{(h, S(#, #))}»

E ={(p,9),(p,s) | p: (ADD(r),q,s) € P}
U{lp,@) I p: (SUB(r),q) € P}
U{(h,h)},

(G0, wo) = (lo, A),

h =1.

Any halting computation in M finally reaches the halting instruction labeled
by ln, and thus in IT the vesicle obtained so far has also reached the output
cell h. Yet now we have to check by applying trap rules S(a,,#) that no non-
terminal symbol a, with &k +1 < r < m is still present to guarantee that the
computation in I yields the same result as the corresponding computation in
M: If the multiset enclosed in the vesicle which has reached the output cell h
only contains terminal symbols a, with 1 < r < k, then no rule S(a,,#) for a
lon-terminal symbol a, with £+ 1 < » <m is applicable, i.e., the computation
halts. Otherwise, the application of one of these trap rules S(a,, #) forces the
the rule S(#, #) to be applicable in cell & again and again, i.e., the computation
gets trapped in an infinite loop, so no unwanted result will be obtained in that
case.

In sum, we conclude that Ps(I7, sequ, gen, (halt,0)) = K. O




50 A. Alhazov et al.

We now also show that the computations of an stPV system using the derivy,_
tion and output strategy (term,0) can be simulated by a partially blind registe,
machine.

Lemma 3. Ps(stPV,sequ,gen, (term,0)) C PsPBRM.
Proof (Sketch). Let (L, V,T,R,g = (L, E), (i0, wo), h) be an arbitrary stPV sy

tem yielding an output in the output cell provided the multiset in the vesiclg

having arrived there contains only terminal symbols. Without, loss of generality
we assume L = {i |1 <i<n}.

We now construct a register machine M = (m,B,lo, I, P) generating
Ps(II, sequ, gen, (term, 0)), yet using a more relaxed definition for the labe].
ing of instructions in M, i.e., one label may be used for different instruc.
tions, which does not affect the computational power of the register machine gq
shown in [16]. For example, instead of a nondeterministic ADD-instruction p -
(ADD(r),q,s) we use the two deterministic ADD-instructions p : (ADD (r) ,q)
and p : (ADD (r), s). Moreover, we omit the generation of wy in ly by a sequence
of AD D-instructions finally ending up with label ly and the correct values in
registers r for the numbers of symbols a, in cell ly. In general, the number of

symbols a, in the current multiset enclosed in the vesicle is represented by the

corresponding number of symbols in the registers r, 1 <+ < m.
We now sketch how the computations in II can be simulated by the register
machine instructions in M:

— for any combination of rules (p, I(a,)) € R and edges (p,q) € E we take the
instruction p: (ADD (r),¢q) into P.

~ for any combination of rules (p, D(a,)) € R and edges (p,q) € E we take the
instruction p : (SUB(r),q) into P.

— for any combination of rules (p, S(ar,as)) € R and edges (p,¢) € E we take
the sequence of two instructions p : (SUB (a,),p’) and p’ : (ADD (as),q)
into P using an intermediate label p’.

If a vesicle reaches the final cell i with the multiset inside only consisting of
terminal symbols, we also have to allow M to have this multiset as a result: this
goal can be accomplished by using the final sequence

B <ADD (m),ﬁ)g
h: <SUB (m) ,B) ,
h:HALT.

We observe that ﬁ,ﬁ are new labels different from all others. The new label A
now the only halting instruction of M, i.e., I, = h. Hence, M must have reset
to zero all its working registers before reaching h to satisfy the final zero check,
which corresponds to I1 having produced a multiset consisting exclusively of
terminal symbols.

R . 01T 1 41 4 T I ™ /17Tr I & T 22 R Y

Tissue P Systems with Point Mutation Rules 51

consequence of Lemmas 1 and 3 we obtain:

As @
Theorem 4. PsPBRM = Ps(stPV,sequ, (term,0)).

[t remains as & challenging open question if a similar characterization result
an also be obtained for the derivation and output strategies (halt,0) and
‘.’t..m,m‘ halt,0) including the condition that no rule can be applied any more
iﬁ the output cell. This immediately turns out to be true if we require that no
rules should be applied in the output cell, which seems to be a very natural

condition- In general, without this condition, this need not be true: just consider

4 loop in the output cell h with an insertion rule leading back to h itself or via
an additional cell &’ as used in the proof of Lemma 2.

We now turn our attention to stPV systems allowing to continue the com-
putation even if in some derivation step(s) no rule can be applied:

Theorem 5. PsRE C Ps(stPV, sequ, gen, ) for any f with
B € D\ {(hat, term, 0), (halt, 0), (term, 0)}.

Proof. Let K be an arbitrary recursively enumerable set of k-dimensional vec-
tors of natural numbers. Then K can be generated by a register machine
M = (m, B,lo,ln, P) with the first k registers being the output registers and
the other ones being working registers, which without loss of generality can be
assumed to be empty at the end of any successful computation. We now define
an stPV system IT generating K, i.e., Ps(II, sequ, gen, 3) = K:

I =(L,V,T,R,g = (L, E), (io, wo), h) ,

L =BU{p,p, 00,9 |p: (SUB(r),q,s) € P},

V ={a, |1 <r <m}U{e, #},

T ={a,|1<r <k},

R = {(pI(a)) | p: (ADD () ,¢,5) € P}
UL, 1(6)), (B, Sar, #)), (7, D(e)),

(5, 5(e, #)), (5 D(an)), (7, D(e)) | p < (SUB (r) ,q) € P}

U{(h, S 4), (W, S(H 40)),

E ~{(p,0),(»5) | p: (ADD(r),q,5) € P}
U{(p,p), (p,0), (B, 7), (5,9, (7', q), (#,5) | p: (SUB(r),q) € P}
U{(h, 1), (W, h)},

(i0, wo) = (lp, A),
h =1y.

(ADQ (r),q, s) is simulated by applying the rule (p, I(a,)) and then sending the
vesicle from cell p either to cell g or cell s.




F

52 A. Alhazov et al.

(SUB (r), g, s) is simulated by first inserting one symbol e, which at the end of 4
correct simulation path is to be eliminated again in cells o and P/, respectively_'
The decrement case follows the path p — p — 9" — ¢; if chosen correctly, j
cell  the rule D(a,) can be applied, otherwise the trap rule S(e,#)) mﬂat':
be applied, in which case instead of eliminating e in cell ' no rule will b,
applicable there. 1
The zero-test case follows the path p—p—p' —s; if chosen correctly, i.e., if pg
symbol a.. is present (indicating that register r is empty), the rule S (ar,#))}
will not be applicable in cell p, i.e., the vesicle will move to cell § without g
rule having been applied. In cell §/, the rule D(e) will be applicable in apy

case.

Any halting computation in M finally reaches the halting instruction labeleq
by I, and thus in [T the vesicle obtained so far has arrived in the output cel|
h. Provided no trap symbol # has been generated during the simulation gf
the computation in M by the stPV system II, the multiset in this vesicle only
contains terminal symbols and the computation in II halts as well. In case g
trap symbol occurs, the computation gets stuck in an infinite loop in cell A.

We observe that by construction in two succeeding derivation steps it may
happen at most once that no rule is applicable; hence, we conclude thaf

Ps(I1, smaz, ) = K for any with
g € D\ {(halt, term,0), (halt,0), (term, 0)}

which observation completes the proof.

The construction given in the preceding proof could be modified in severa
ways: for example, we could replace the additional symbol e by # and replace’
the rules (7, S(e,#)) by the corresponding rules @, I(#))-

Another variant would be to avoid the introduction of e anyway and takes
two simple paths for the decrement and the zero-test case: _

The decrement case follows the path p — ¢ with Ry, = {D(ar), I(#))}; ift
chosen correctly, the rule D(a,) can be applied, otherwise the trap rule I (#))
must be applied introducing the trap symbol #. # '

The zero-test case follows the path o/ — s with Ry = {S(ar, #)}; if chosen
correctly, i.e., if no symbol a, is present (indicating that register r is empty)i
the rule S(ar, #) will not be applied, otherwise the trap symbol is introduced.

In sum, with this variant we only need two cells p and p’ for a SUB-instruction
p as well as a simpler communication structure, but from every cell having all
edge to p we now need both edges to p and p'.

The major drawback of this simpler construction is that we cannot guarantes
that the delay between two rule applications is not bigger than one: if the registen
machine M performs k successful zero checks, then IT in a correct simulatiol

path does not apply any rule to the vesicle for k successive steps.

As already discussed in Sect.1, the control given by the communica
graph in stPV systems nicely corresponds to the control mechanisms in grapis
controlled multiset grammars with unconditional transfer and in multiset grats

otk

Tissue P Systems with Point Mutation Rules 53

of an gtPV system t.:an' be interpreted as the control graph of the corresponding
\ wh-contro]le(l.Ijtlaltlset grammar. In a multiset grammar with regular co ©
] and unconditional transfer, the communication graph of the stPV syst "
describes & regular control language over L, hence, the proof of The'orem)'-': :l:l:
vields 3 pm{.)f. of the following result for graph-controlled 11'1ult.ise!; ﬂrr'm'tlr;E
with unconditional transfer as well as multiset grammars with regul:-rccm 13151
and unconditional transfer, both using insertion, deletion, and subst.itutiunl : 'mf
mutation rules (we refer to this type of rules by mI DS): ' P

Theorem 6. PsRE = L(mIDS-C (REG),,) = L (mIDS-GCly).

¢ Simulating Computations with Strings

As already discussed in Sect. 1, we can also simulate computations on strin b;
adding rules for taking an object from the environment into the vesicle a gs .
gending an object out of the vesicle. We then define the input and output ? / or
as the sequences of symbols taken in and sent out, respectively (for exI;m Sl o
[;14,15]). As an input sequence can be encoded as a number and then rp e, Seg
by only two registers (the folklore result for two-counter automata) an(ftﬁcezse |
result can be encoded as a number and then decoded into a sequence fe na
bols sent out (e.g., see [13]), the basic result how to simulate register 0 Eym_
elaborated in Sect. 5 also allows for simulating computations on gstrin machines
As these additional rules we may use read(a) and write(a) which C%)S;r d
to taking an object from the environment into the vesicle and sendin esg?n
out from the vesicle, respectively. § an object

7 Going Beyond Turing

As already discussed in Sect. 1, a possibility to “go beyond Turing” is to simulate

31‘9d gl‘eﬁﬂ re iS er ma I i n i L4 )‘S 15 111
o B 2 e ST ont C e L} I']l 8 I ms
(3]0 (, 2 chnimes as “.l '1 IILI"() ]I.IL(-"(J mn the area Of membrane s L1

; o the -

._{;JJ;I:IBI etth(. c-:ancep;; of red-green P automata for several specific models of mem
rane systems is explained. The basic idea of these r dis-
oo sy : hasic » red-green automata is to dis

Iit;i]l{:igl.l;sh between two different sets of states (red and green states) and t‘.(o considl::;

nite runs of the automaton on finite input objects (strings, multisets); ;\.l[owc’;i

fo.change | o 2
"-réc()gnife 3et.ween red and green states more than once, red-green automata can
e more than the recursively enumerable sets (of strings, multisets)

The main pr ith findi

,iliis_sue . 1;1;1;:11:; 0,],311;?:( ]:v:rézl(ii !‘lll(‘tlllt:lg a :'ecl-.grfv,eul variant of the special variant of
e ol o.f e int usr paper is its mlhemnt. non-determinism as can
e .le(fre‘m 5, even when simulating deterministic register
BSUB i Cgl ee.m v_drl‘ant ~the zeroftf‘zst‘ case and the decrement case of
i e, _k-de;e?er.l in a non—d’eternumstlc way. To overcome this prob-
A A berminism (!oolclxlg ahead k steps in order to know how to

leterministic way) as, for example, discussed in [30], as well as on the

€oncept, of toxic obi -
_ ¢ objec il o .
By .. L____{C‘"t& ‘fthh klf! any -(IEI-WEI.T,IOI] IJral_lcll that introduces one of




54 A. Alhazov et al.

As we can see from the proof of Theorem 5, simulating the SUB-instructiong
of a register machine only needs a look-ahead of 1, ie., as the deterministicl
continuation of a derivation in the tissue P system we can just take the opg
which does not introduce the trap symbol. In that way, also a red-green variant'
of the model introduced in this paper can be defined, thus even allowing us ¢,
“go beyond Turing”:

We use the simulation technique as outlined in the proof of Theorem 5, ang
then all variants of an instruction label p get the same color as p itself. In that
way, mind changes are also simulated in a correct way. The only additional trick
is to make the infinite run on a finite input deterministic by choosing the brancy
which does not introduce the trap symbol #-.

8 Conclusion and Future Research

In this paper, we have investigated tissue P systems operating on vesicles of
multisets with point mutations, i.e., with insertion, deletion, and substitution
of single symbols, working in the sequential derivation mode. Without allowing
computation steps to not apply a rule, we obtain a characterization of the sets
of (vectors of) natural numbers generated by partially blind register machines,
whereas otherwise we can generate every recursively enumerable set of (vectors
of) natural numbers. Adding the possibility of taking in symbols from the envi-
ronment and/or sending out symbols to the environment from the vesicle, we
are able to simulate computations on strings. Moreover, we even showed how to
“00 beyond Turing” based on the model of red-green register machines.

Several challenging topics remain for future research: for example, what hap-
pens if we are not allowed to use substitution rules (with all possible derivation
and output strategies)?

References

1. Alhazov, A., Freund, R.: P systems with toxic objects. In: Gheorghe, M., Rozen-
berg, G. Salomaa, A., Sosik, P., Zandron, C. (eds.) CMC 2014. LNCS, vol 8961,
PP- 99-~125. Springer, Cham (2014). https://dol org/10.1007/978-3-319-14370-5.7

2. Alhazov, A., Freund, R., Heikenwilder, H., Oswald, M., Rogozhin, Yu., Verlan,
S.: Sequential P systems with regular control. In: Csuhaj-Varja, E., Gheorghe, M.,
Rozenberg, G., Salomaa, A., Vaszil, Gy. (eds.) CMC 2012. LNCS, vol. 7762, pp.
112-127. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36751-
9.9

3. Alhazov, A., Freund, R., Ivanov, S., Verlan, S.: (tissue) P systems with vesicles
of multisets. In: Csuhaj-Varji, E., Démési, P., Vaszil, Gy. (eds.) Proceedings 15th
International Conference on Automata and Formal Languages, AFL 2017, Debre-
cen, Hungary, 4-6 September 2017. EPTCS, vol. 252, pp. 11-25 (2017). https://
doi.org/10.4204/EPTCS.252.6

4. Alhazov, A., Freund, R., Verlan, S.: P systems working in maximal variants of the
set derivation mode. In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C.
(eds.) CMC 2016. LNCS, vol. 10105, pp. 83-102. Springer, Cham (2017). https://

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Amarn,

. Arroyo, I,

Tissue P Systems with Point Mutation Rules 55

1, B., Csuhaj-Varji, E., Freund, R.: Red-green P automata. In: Gheorghe,

[{orenbelg, G., Salomaa, A., Sosik, P., Zandron, C. (eds.) CMC 2014. LNCS,
l 89‘)1 pp- 139 l5r Springer, Lham (2011) https: //d(n org/10.1007/978-3-319-
4370-5

Aijovo I'., Gémez-Canaval, S., Mitrana, V., Popescu, S.: On the computational

power of networks of polarized (‘volutwndry processors. Inf. Comput. 253(3), 371

380 (2017). hitps://doi.org/10.1016/j.ic.2016.06.004

Gémez Canaval, S., Mitrana, V., Popescu, S.: Networks of polarized

evolutionary processors are unnpl.ltatwlmll_\' comp]otc In: Dediu, A.-H., Martin-

vVide, C., Sierra-Rodriguez, J.-L., Truthe, B. (eds.) LATA 2014. LNCS, vol. 8370,

p. 101- 112 Springer, Cham (2014) https://doi.org/10.1007/978-3-319-04921-2 8

) Calude, C.S., Paun, Gh.: Bio-steps beyond Turing. BioSystems 77(1-3), 175-194

(2004)

_ Castellanos, J., Martin-Vide, C., Mitrana, V., Sempere, J.M.: Networks of evolu-

tionary processors. Acta Informatica 39(6-7), 517-529 (2003). https://doi.org/10.
1007/500236-004-0158-7

Dassow, J., Paun, Gh.: Regulated Rewriting in Formal Language Theory. Springer,
Berlin (1989)

Dassow, J., Paun, Gh.: On the power of membrane computing. J. UCS 5(2), 3349
(1999). https://doi.org/10.3217/jucs-005-02-0033

Fernau, H.: Unconditional transfer in regulated rewriting. Acta Informatica 34(11),
837-857 (1997). hitps://doi.org/10.1007/s002360050108

Fernau, H., Freund, R., Oswald, M., Reinhardt, K.: Refining the nonterminal com-
plexity of graph-controlled, programmed, and matrix grammars. J. Autom. Lang.
Comb. 12(1-2), 117-138 (2007)

Freund, R.: P systems working in the sequential mode on arrays and strings. In:
Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp.
188-199. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30550-
7_16

Freund, R.: P systems working in the sequential mode on arrays and strings.
Int. J. Found. Comput. Sci. 16(4), 663-682 (2005). https://doi.org/10.1142/
50129054105003224

Freund, R., Ibarra, O., Paun, Gh., Yen, H.C.: Matrix languages, register machines,
vector addition systems. In: Third Brainstorming Week on Membrane Computing,
pp- 155-167 (2005)

Freund, R., Ivanov, S., Staiger, L.: Going beyond turing with P automata: partial
adult halting and regular observer w-languages. In: Calude, C.S., Dinneen, M.J.
(eds.) UCNC 2015. LNCS, vol. 9252, pp. 169-180. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21819-9_12

Freund, R., Ivanov, S., Staiger, L.: Going beyond Turing with P automata: regular
observer w-languages and partial adult halting. IJUC 12(1), 51-69 (2016)
Freund, R., Kogler, M., Oswald, M.: A general framework for regulated rewriting
based on the applicability of rules. In: Kelemen, J., Kelemenova, A. (eds.) Com-
putation, Cooperation, and Life. LNCS, vol. 6610, pp. 35-53. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20000-7_5

Freund, R., Kogler, M., Rogozhin, Yu., Verlan, S.: Graph-controlled insertiondele-
tion systems. In: Proceedings of Twelfth Annual Workshop on Descriptional Com-
plexity of Formal Systems, DCFS 2010, Saskatoon, Canada, 8-10th August 2010,
pp. 88-98 (2010). https://doi.org/10.4204/EPTCS.31.11




56

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

A. Alhazov et al.

Freund, R., Oswald, M.: Tissue P’ systems and (mem)brane systems with mateqy,
drip operations working on strings. Electron. Notes Theor. Comput. Sci. 171(2)
105-115 (2007). https://doi.org/10.1016/].entcs.2007.05.011 '
Freund, R., Oswald, M., Staiger, L..: w-P automata with communication rules. In.
Martin-Vide, C., Mawri, G., Pdun, Gh., Rozenberg, G., Salomaa, A. (eds.) W
2003. LNCS, vol. 2933, pp. 203-217. Springer, Heidelberg (2004). https://doi.()rg/
10.1007/978-3-540-24619-0_15

Freund, R., Paun, Gh.: How to obtain computational completeness in P systemg
with one catalyst. In: 2013 Proceedings of Machines, Computations and Univey.
sality, MCU 2013, Zirich, Switzerland, 9-11 September 2013, pp. 47-61 (2013).
https://doi.org/10.4204/EPTCS.128.13

Freund, R., Rogojin, V., Verlan, S.: Computational completeness of networks of
evolutionary processors with elementary polarizations and a small number of pr.
cessors. In: Pighizzini, G., Campeanu, C. (eds.) DCFS 2017. LNCS, vol. 10316, pp,
140-151. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60252-3_11
Freund, R., Rogozhin, Yu., Verlan, S.: Generating and accepting P systems with
minimal left and right insertion and deletion. Nat. Comput. 13(2), 257-268 (2014),
https://doi.org/10.1007/s11047-013-9396-3

Kudlek, M., Martin-Vide, C., Pdun, Gh.: Toward a formal macroset theory. In:
Calude, C.S., Padun, Gh., Rozenberg, G., Salomaa, A. (eds.) WMC 2000. LNCs,
vol. 2235, pp. 123-133. Springer, Heidelberg (2001). https://doi.org/10.1007/3.
540-45523-X_7

van Leeuwen, J., Wiedermann, J.: Computation as an unbounded process. Theoy.
Comput. Sci. 429, 202-212 (2012). https://doi.org/10.1016/j.tcs.2011.12.040
Martin-Vide, C., Pazos, J., Paun, Gh., Rodriguez-Patén, A.: A new class ol sym-
bolic abstract neural nets: tissue P systems. In: Ibarra, O.H., Zhang, L. (eds.)
COCOON 2002. LNCS, vol. 2387, pp. 290-299. Springer, Heidelberg (2002),
https://doi.org/10.1007/3-540-45655-4_32

Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice Hall, Engle-
wood Cliffs (1967)

Oswald, M.: P automata. Ph.D. thesis, Faculty of Computer Science, Vienna Uni-
versity of Technology (2003)

Popescu, 3.: Networks of polarized evolutionary processors with elementary polar-
ization of symbols. In: NCMA 2016, pp. 275-285 (2016)

Paun, Gh.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108-143
(2000). https://doi.org/10.1006/jcss.1999.1693

Paun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford (2010)

Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1-3.
Springer, Heidelberg (1997)

Sosik, P., Valik, O.: On evolutionary lineages of membrane systems. In: Freund,
R., Pdun, Gh., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850,
pp- 67-78. Springer, Heidelberg (2006). https://doi.org/10.1007/11603047_5
Bulletin of the International Membrane Computing Society (IMCS). http://
merabranecomputing.net/IMCSBulletin/index.php

The P Systems Website. http://ppage.psystems.eu/

Adaptive P Systems

Bogdan Aman’2®) and Gabriel Ciobanu®+2

1 Institute of Computer Science, Romanian Academy, Iagi, Romania
bogdan.aman@iit.academiaromana-is.ro
> “A.1.Cuza” University of Tagi, lasi, Romania
gabriel@info.uaic.ro

Abstract. In this paper we introduce a membrane system named adap-
tive P system which is able to adjust dynamically its behaviour depending
on resource availability. Such a system is defined as a tree of membranes
in which the objects are organized in multisets, and the rules are applied
in a maximal parallel manner. We use guards on the right side of the
rules in order to model the biological sensitivity to context, and in this
way we are able to describe an adaptive behaviour. The Turing com-
pleteness of the adaptive P systems can be obtained only by using non-
cooperative rules (with guards) working in the accepting case. Using the
adaptive P systems, we provide a polynomially uniform solution for an
NP-complete problem (Subset Sum) by using specific membrane com-
puting techniques. The solution employs a linear number of resources
and evolution steps.

1 Introduction

Membrane systems (also called P systems) are introduced by Gheorghe P#un as
a model of distributed, parallel and non-deterministic systems inspired by cell
biology [27]. A membrane system (P system) is a tree-like structure of hierar-
chically arranged membranes embedded in the skin membrane as the outermost
part of the system. The membranes can be arranged in a tree (cell-like [28])
structure, or in a graph form (tissue-like [26] and neural-like [19]). In this paper
we use the symbol-object P systems [28] in which cells are divided in various
regions containing specific objects and evolution rules, each region with a differ-
ent task and all of them working simultaneously to accomplish a more general
task of the whole system. The objects evolve according to the specific rules
associated with each region, and the regions cooperate in order to maintain the
proper behaviour of the whole system. Several results and variants of membrane
systems (inspired by different aspects of living cells like symport and antiport
tommunication through membranes, catalytic objects, membrane charge, etc.)
are presented in [28]. There are defined various semantics which express how
Mmembrane systems evolve [9,10]. Over the years several books on membrane
computing were published presenting the latest results in theory and applica-
tions [11,14,25, 35,36]. Links between membrane systems and process calculi are

| VAR R |




