
This work is licensed under the CC BY 4.0 license. You are free to share and adapt the work.
The full license text can be found at https://creativecommons.org/licenses/by/4.0/legalcod
This work was presented at the first Workshop on Open-Source Design Automation (OSDA), 29 March 2019, in Florence, Italy. https://osda.gitlab.io

Python Wraps Yosys for Rapid Open-Source EDA
Application Development

Benedikt Tutzer∗, Christian Krieg∗, Clifford Wolf† and Axel Jantsch∗
∗Institute of Computer Technology, TU Wien, Vienna, Austria †SymbioticEDA, Vienna, Austria

christian.krieg@alumni.tuwien.ac.at, clifford@symbioticeda.com, {first.last}@tuwien.ac.at

Abstract—Yosys is an open-source synthesis and verification
tool which natively supports Verilog-2005 and offers a variety
of passes to allow a user to adapt the design and verification
flow. A user can extend the functionality of Yosys with a plugin
interface in C++. C++ is a powerful language, and it is easy
to lose track in fixing low-level issues like memory allocation,
instead of focusing on the original problem. This can significantly
increase the length of the compile/debug cycle. Python, on the
other hand, is a dynamically-typed, garbage-collected language
which takes away low-level management from the user, who can
focus on the original problem, and therefore keep the debug cycle
short. Python is simple and easy to learn. We therefore propose
pyosys, a script that generates Boost.Python wrappers around the
C++ implementation of Yosys. These wrappers maintain seamless
interoperability between C++ and Python. pyosys makes Python’s
success accessible to Yosys: rapid application development. With
pyosys, a user can interactively use Yosys in a Python session,
with direct access to the Yosys data structures (e.g., design,
modules, cells, wires) and methods (e.g., run pass, load plugin,
get selection). In addition, the user can develop passes step-
by-step directly in Python, with immediate feedback and debug
capabilities. This is significant for scientists who can now test
their algorithms using an easy-to-use and maintainable high-
level language. The results of their experiments are stored
in Python objects, and can be directly processed with data
analysis frameworks like scipy, machine learning libraries such
as TensorFlow, and data visualization frameworks like matplotlib.

Index Terms—Electronic design automation, Yosys, hardware
synthesis

I. INTRODUCTION

Imagine you wish to show the output of the Yosys stat
pass as a histogram of cell types. You may choose to look
for a dedicated tool that generates such a histogram, but find
yourself with the need of implementing an algorithm yourself.

Listing 1 shows a Yosys script to generate such a histogram
by calling the cell stats pass (Line 8). Its output is visualized
in Figure 1.

Because the cell stats pass from Line 8 in Listing 1
does not exist yet in Yosys, a user needs to implement a
pass that provides the desired functionality. Yosys offers an
infrastructure to implement custom passes with full access to
data structures that represent the design in memory. These
custom passes are built using the C++ programming lan-
guage. C++ provides great flexibility, detailed control and
high performance but comes with initial overhead and high
design, debug and verification effort. Python is an alternative
since it provides a different trade-off, reducing complexity and

Fig. 1: Output of the cell stats pass from Listing 1 (called in
Line 8)

therefore enabling fast-paced pass development. Table I lists
differences between C++ and Python.

That is why we propose pyosys, Python wrappers for the
Yosys library. Pyosys allows users of Yosys to implement
custom passes using Python instead of C++, enabling fast-
paced development. It wraps around existing Yosys structures
and methods to expose most of the functionality of Yosys to
Python. Users may also choose to use Python as their main
interface to Yosys, using Python scripts instead of the Yosys
command line.

The proposed Python library enables the user to access all
of the data structures used by Yosys to represent hardware
designs. The user may work on these structures using well-

Listing 1: Generate histogram using Yosys
1 # Read and p r o c e s s d e s i g n
2 r e a d v e r i l o g f i e d l e r −c o o l e y . v
3 p rep
4 o p t − f u l l
5
6 # V i s u a l i z e numbers o f c e l l t y p e s as

h i s t o g r a m
7 p l u g i n − i c e l l s t a t s
8 c e l l s t a t s

This work is licensed under the CC BY 4.0 license. You are free to share and adapt the work.
The full license text can be found at https://creativecommons.org/licenses/by/4.0/legalcod
This work was presented at the first Workshop on Open-Source Design Automation (OSDA), 29 March 2019, in Florence, Italy. https://osda.gitlab.io

C++ or Python
frontend

C++ or Python
pass

C++ or Python
pass

C++ or Python
pass

C++ or Python
backend

Fig. 2: Flow into which pyosys is embedded; Figure adapted
from Figure 3.1 in [1]

known Python control flow structures such as loops, condi-
tions, classes and functions, as well as built-in functionalities
of Yosys. The user does not need to convert Yosys and Python
data structures. This happens at library-level and all data is
kept in sync with Yosys automatically.

Listings 4 and 5 show the simplicity of the usage of pyosys.
Minimal effort is required to interact with hardware designs.
An abstract design flow using Yosys with Python passes is
visualized in Figure 2.

II. IMPLEMENTATION

This section discusses implementation details of pyosys
library. The goal of pyosys is to keep the user away from C++
code, so that the resulting library can be used with Python. To
accomplish this goal, the library captures all communication
between Python and C++.

C++ and Python differ in most aspects that define a pro-
gramming language, as seen in Table I. These differences make
it difficult to interchange data between the two languages and
make them interact with each other. The Boost C++ library [2]

TABLE I: C++ vs. Python

C++ Python

No garbage collection Garbage collection

Compiled to machine code Interpreted by virtual machine

Variable scopes limited to blocks
they are declared in

Variables accessible outside of
block they are declared in

Strictly typed Loosely typing

Static typing Dynamic typing

Listing 2: Including Python module in C++
1 P y I n i t i a l i z e () ;
2 PyObjec t *module p =
3 PyImpor t Impor t (f i l ename p) ;

offers the Boost.Python module that includes utilities to miti-
gate these issues.

The Boost.Python library includes a Python virtual machine
(VM) that can be started by a C++ function. This VM can then
execute Python code. This allows the integration of Python
code inside C++. Listing 2 shows how a Python module is
loaded by the Python module of the Boost.Python library. The
module is then available from C++.

This functionality allows us to define Yosys passes in
Python.

Python is an interpreted language, so this does not happen
during compile-time, but during run-time. This means, that
symbols defined in the Python module are not available to
the C++ compiler and linker, and can therefore not be called
the same way as regular C++ functions. One must either call
functions by packing the functions name and parameters into a
string and passing it to the virtual machine, or define interfaces
in C++ and use them in Python.

If interfaces are given, it is much easier to pack functions,
since it does not require to distinguish between C++ and
Python methods, as long as they use the same interface. This is
the case with Yosys passes. Their interface is well defined and
easily exposed to Python. Python classes that use this interface
can be used in the same way as C++ classes are used.

The Boost.Python module also allows the developer to
expose C++ constructs to Python. The developer marks func-
tions, structures and classes with their methods, static func-
tions, member variables and operators using only C++ code.
The linker then includes meta information about the marked
constructs in the shared object file, which makes it possible for
Python to import that shared object file as a Python module.

Since Yosys is under active development and is updated
frequently [3], static Python wrappers are not considered to
be feasible, since they would need to be updated every time
new functions are introduced or their signature is changed.
Therefore, we chose to generate the wrapper-file when build-
ing the Yosys C++ library. During the regular Yosys build,
the build system reads the header files which are defined in
a configuration file, and generates Python wrappers, provided
that all types which appear in a function’s interface are either
built into Python by default or are wrapped as well. We
introduce new targets, %.pyh and $(PY WRAPPER FILE).cc,
in the Yosys Makefile to include the Python wrappers in
the Yosys build. First, the compiler’s preprocessor removes
comments, resolves macros, and reformats the code of the
header files. Second, a Python script analyzes the resulting
code and generates the wrapper classes. The Makefile-switches
to enable Python wrappers are given in Listing 3.

Line 1 triggers the build process to generate the Yosys

This work is licensed under the CC BY 4.0 license. You are free to share and adapt the work.
The full license text can be found at https://creativecommons.org/licenses/by/4.0/legalcod
This work was presented at the first Workshop on Open-Source Design Automation (OSDA), 29 March 2019, in Florence, Italy. https://osda.gitlab.io

Listing 3: Makefile switches to install pyosys
1 ENABLE LIBYOSYS := 1
2 ENABLE PYOSYS := 1
3 PYTHON VERSION := 3 . 5
4 PYTHON DESTDIR := / u s r / l o c a l / l i b / Python$ (

PYTHON VERSION) / d i s t−p a c k a g e s

shared library. We set ENABLE PYOSYS to 1 to make libyosys
to include the meta information that is required to be im-
portable from Python (Line 2). PYTHON VERSION needs to
be set to the Python version for which libyosys is generated
(Line 3). The build process then generates the file libyosys.so
that can be either used from C++ or Python. It will only be
importable by exactly this version of Python, so the user needs
to make sure to choose the correct version. We thoroughly
tested Python version 3.5. PYTHON DESTDIR in Line 4 is
the directory to which we install the Python module. This
variable adapts to the chosen Python version and does not
need to be changed on default Python installs.

After building, the user can load the pyosys module in
Python. The module can be used to work with Yosys inter-
actively in a Python shell, or to implement passes in Python
and use them from the Yosys shell.

A typical use case would be to prototype some functionality
in an interactive Python shell, and once the user is happy with
the result, it can be moved to a Yosys pass. We demonstrate
pysosys in Listing 4, which implements the generation of cell-
type histograms as given in Figure 1 and Listing 1. In Line 1,
the pyosys module is loaded. A new Design object is created
in Line 5 and a Verilog file is parsed in Line 6. In Lines 7 to 8,
the design is processed (high-level-synthesized and optimized).
Afterwards, a Python for loop is used to iterate over all
selected modules in the design (Line 12) and then another loop
iterates over the selected cells of of every selected module
(Line 13), and the types of the cells are counted (Lines 14
to 17). Lines 20 to 21 take advantage of the Python library
matplotlib [4] to plot the resulting statistics.

Listing 5 implements the functionality of Listing 4 as a
Yosys pass in Python. The pass is derived from the Pass class
as in Line 4 and at least the constructor init and the
methods py help and py execute need to be defined as in
Line 6, Line 10 and Line 13 respectively. The interface is
very similar to the C++ Pass interface, but all objects are the
wrapped Python versions of the corresponding C++ objects.

Passes defined as Python classes can be loaded into Yosys
just as a compiled C++ pass, using either the load plugin
function when using Yosys as a library, or the -m switch
when invoking Yosys from the command line, or the plugin
command when using the Yosys shell or script (as given in
Line 8 of Listing 1).

Listing 4: Interactively use pysoys to create a histogram of cell
types as shown in Figure 1

1 from pyosys import l i b y o s y s as ys
2 import m a t p l o t l i b . p y p l o t a s p l t
3
4 # Read and p r o c e s s d e s i g n
5 ys . d e s i g n = Design ()
6 ys . run pass (” r e a d v e r i l o g f i e d l e r −c o o l e y . v

” , d e s i g n)
7 ys . run pass (” p rep ” , d e s i g n)
8 ys . run pass (” o p t − f u l l ” , d e s i g n)
9

10 # C a l c u l a t e h i s t o g r a m o f c e l l t y p e s
11 c e l l s t a t s = {}
12 f o r module in d e s i g n .

se lec ted whole modules warn () :
13 f o r c e l l in module . s e l e c t e d c e l l s () :
14 i f c e l l . type . s t r () in c e l l s t a t s :
15 c e l l s t a t s [c e l l . type . s t r ()] += 1
16 e l s e :
17 c e l l s t a t s [c e l l . type . s t r ()] = 1
18
19 # V i s u a l i z e h i s t o g r a m
20 p l t . b a r (range (l e n (c e l l s t a t s)) , h e i g h t =

l i s t (c e l l s t a t s . v a l u e s ()) , a l i g n = ’ c e n t e r
’)

21 p l t . x t i c k s (range (l e n (c e l l s t a t s)) , l i s t (
c e l l s t a t s . keys ()))

22 p l t . show ()

III. CONCLUSION

pyosys allows to process hardware designs with Yosys in
multiple ways:

1) Traditionally, using the Yosys command line, and C++
plugins

2) Interactively, using Python, C++ plugins, and Python
plugins

3) Using the Yosys command line, C++, and Python plugins
4) Using Python modules to share functionality between

Python plugins and scripts
Three new approaches enable fast-paced Yosys pass devel-

opment. The user can use interactive Python to develop a pass,
using all debug mechanisms Python has to offer, and later use
the created Python code to define a pass which can then be
used in Yosys just as a C++ pass. The flexibility of Python
outweighs the drawbacks it has compared to C++, namely
worse performance and less control.

IV. RELATED WORK

We evaluate the importance of pyosys by studying the
availability of Python interoperability in available electronic
design automation (EDA) tools of the following vendors:

• Xilinx
• Cadence
• Altera
• Mentor
• Synopsys

This work is licensed under the CC BY 4.0 license. You are free to share and adapt the work.
The full license text can be found at https://creativecommons.org/licenses/by/4.0/legalcod
This work was presented at the first Workshop on Open-Source Design Automation (OSDA), 29 March 2019, in Florence, Italy. https://osda.gitlab.io

Listing 5: Python pass that generates a histogram of cell types
as shown in Figure 1

1 from pyosys import l i b y o s y s as ys
2 import m a t p l o t l i b . p y p l o t a s p l t
3
4 c l a s s C e l l S t a t s P a s s (ys . Pas s) :
5
6 def init (s e l f) :
7 super () . init (” c e l l s t a t s ” ,
8 ” Shows c e l l s t a t s a s p l o t ”)
9

10 def py help (s e l f) :
11 l o g (” Th i s p a s s u s e s t h e m a t p l o t l i b

l i b r a r y t o d i s p l a y c e l l s t a t s \n ”)
12
13 def py execute (s e l f , a rg s , d e s i g n) :
14 l og heade r (des ign , ” P l o t t i n g c e l l

s t a t s \n ”)
15 c e l l s t a t s = {}
16 f o r module in d e s i g n .

se lec ted whole modules warn () :
17 f o r c e l l in module . s e l e c t e d c e l l s () :
18 i f c e l l . type . s t r () in c e l l s t a t s :
19 c e l l s t a t s [c e l l . type . s t r ()] += 1
20 e l s e :
21 c e l l s t a t s [c e l l . type . s t r ()] = 1
22 p l t . b a r (range (l e n (c e l l s t a t s)) , h e i g h t

= l i s t (c e l l s t a t s . v a l u e s ()) , a l i g n =
’ c e n t e r ’)

23 p l t . x t i c k s (range (l e n (c e l l s t a t s)) ,
l i s t (c e l l s t a t s . keys ()))

24 p l t . show ()
25
26 def p y c l e a r f l a g s (s e l f) :
27 l o g (” C l e a r F l a g s − C e l l S t a t s P a s s \n ”)
28
29 p = C e l l S t a t s P a s s ()

None of the above vendors provides support for Python
interoperability on design level as pyosys. They each provide a
Tool Command Language (TCL) interface, which is easy to im-
plement using Python and pipes, but that interface is designed
as an alternative to the respective Graphical User Interface
(GUI), but not to interact with the design on structural level.
The TCL language, as it’s name suggests, only supplies an
interface on command level. It is used to automate synthesis
jobs from the command line. Pyosys on the other hand allows
the user to access the design on the structural level and on
command level.

For Cadence, there is a third-party Python module [5]
that allows communication with their SKILL core. SKILL

is mostly used to control Cadence, but it can also interact
with the design. All objects (wires, pins, labels, shapes, . . .)
are stored in a database which can be queried and edited
using the SKILL language. The Python module uses pipes to
communicate with SKILL, so it is completely string-based and
does not allow for object oriented synthesis as pyosys does.
This results in a tedious user experience.

RapidWright [6] is a Java framework that can perform
netlist manipulation in a similar manner to pyosys. During
the various synthesis steps of Vivado, the synthesis tool
for Xilinx chips, e.g. between synth design and opt design,
Design Checkpoints (DCPs) are generated which can then
be read by the RapidWright framework. RapidWright is then
used to manipulate the design and to write back a DCP
that is then read by the next synthesis step. RapidWright’s
main goal is to optimize digital designs towards more speed.
In [6], Lavin et al. claim to have reached 50% Quality of
Result (QoR) improvements and faster compilation time by
using RapidWright. The RapidWright interface claims to be
Free Open Source Software (FOSS) and is released under the
Apache license, but it’s main functionalities are hidden in
compiled java archives whose source code is not accessible
to the general public. Also, Vivado is necessary to utilize it,
which is neither open source nor free, making it an invalid
alternative to Yosys for FOSS enthusiasts.

REFERENCES

[1] C. Wolf, Yosys manual, http: / /www.clifford.at /yosys/
files/yosys manual.pdf, [Online; accessed 2019-01-15],
2013.

[2] Boost c++ libraries, https: / /www.boost .org/, [Online;
accessed 2018-11-27].

[3] Code frequency for yosys, https://github.com/YosysHQ/
yosys/graphs/code-frequency, [Online; 2018-11-27].

[4] J. D. Hunter, “Matplotlib: A 2d graphics environment,”
Computing in Science & Engineering, vol. 9, no. 3,
pp. 90–95, 2007. DOI: 10.1109/MCSE.2007.55. eprint:
https://aip.scitation.org/doi/pdf/10.1109/MCSE.2007.55.
[Online]. Available: https://aip.scitation.org/doi/abs/10.
1109/MCSE.2007.55.

[5] V. Borisov, Cadenceskill-python, https : / / github . com /
unnir/CadenceSKILL-Python, 2016.

[6] R. Hale and B. Hutchings, “Enabling low impact, rapid
debug for highly utilized fpga designs,” in 2018 28th
International Conference on Field Programmable Logic
and Applications (FPL), Aug. 2018, pp. 81–813. DOI:
10.1109/FPL.2018.00022.

http://www.clifford.at/yosys/files/yosys_manual.pdf
http://www.clifford.at/yosys/files/yosys_manual.pdf
https://www.boost.org/
https://github.com/YosysHQ/yosys/graphs/code-frequency
https://github.com/YosysHQ/yosys/graphs/code-frequency
https://doi.org/10.1109/MCSE.2007.55
https://aip.scitation.org/doi/pdf/10.1109/MCSE.2007.55
https://aip.scitation.org/doi/abs/10.1109/MCSE.2007.55
https://aip.scitation.org/doi/abs/10.1109/MCSE.2007.55
https://github.com/unnir/CadenceSKILL-Python
https://github.com/unnir/CadenceSKILL-Python
https://doi.org/10.1109/FPL.2018.00022

	Introduction
	Implementation
	Conclusion
	Related Work

