
Ontology-Based OPC UA Data Access via Custom
Property Functions

Gernot Steindl, Thomas Frühwirth, Wolfgang Kastner
Institute of Computer Engineering, Research Unit Automation Systems

TU Wien
Vienna, Austria

{gernot.steindl, thomas.fruehwirth, wolfgang.kastner}@tuwien.ac.at

Abstract—Cyber Physical Production Systems have a need
of sharing and interlinking information and knowledge over
different domains. In the area of industrial automation,
OPC Unified Architecture (OPC UA) is a widely used and estab-
lished standard for communication and information modeling.
We propose an ontology-based OPC UA data access method
utilizing custom property functions, which enables interlinking
between OPC UA information and other factory data. To avoid
duplicated data and to reduce the communication overhead in
the proposed method, the OPC UA run-time data are loaded
on-demand and are not persistently stored in the triplestore. To
enable fast and easy ontology-based access and interlinking of
the OPC UA information, the needed ontology is automatically
generated from the OPC UA information model. A proof of
concept demonstrates the application of our approach for a
laboratory use-case of a Packed-Bed Regenerator.

Index Terms—OPC Unified Architecture, Semantic Web, On-
tology, Cyber Physical Production Systems

I. INTRODUCTION

The process of digitalization in industry is an ongoing
challenge for industry itself as well as for academia. This
transformation is often called the fourth industrial revolution or
Industry 4.0. The main goals of Industry 4.0 are optimization
and customization of production as well as enhanced automa-
tion and adaption [1]. This claims benefits for increasing flexi-
bility of the whole production system, which is a composition
of human resources, production equipment, and aggregated
products that interact over cyber-physical interfaces [2]. Such
production systems are referred to as Cyber-Physical Produc-
tion Systems (CPPSs).

CPPSs can be structured into five levels, which is called
the 5C architecture [3] and depicted in Figure 1. This ar-
chitecture consists of a connection, conversion, cyber, cog-
nition, and configuration level. The Semantic Web Stack,
including the Resource Description Framework (RDF), the
Resource Description Framework Schema (RDFS) and the
Web Ontology Language (OWL) as well as SPARQL Protocol
and RDF Query Language (SPARQL) can be applied on
the upper levels of this 5C architecture to implement and
enhance its functionality. Semantic Web technologies can be
used to semantically enrich industry data, integrate data from
heterogeneous sources, and increase interoperability. With the
help of Semantic Web technologies engineering and run-time

information can be interlinked to form a so-called ontology-
based Linked Factory Data [4]. A key aspect of Linked Factory
Data is to keep the data in their natural format and storage,
which can be achieved with the help of various types of
ontology-based data integration methods [5].

Fig. 1: Levels of the 5C architecture for CPPS [3] and
the application of OPC Unified Architecture (OPC UA) and
Semantic Web technologies

In the area of industrial automation, OPC UA is a well-
established standard for industrial communication. It specifies
the data exchange and facilitates semantic interoperability by
use of an extensible information model. Thus, OPC UA is
a framework for object-oriented data and information repre-
sentation and exchange [6]. As it is widely used and also
recommended by the Industry 4.0 initiative [7], the integration
into Linked Factory Data is addressed in this paper. Therefore,
the transformation of the OPC UA information model into
an OWL ontology as well as an ontology-based data access
method is presented, which both are prerequisite for OPC UA
integration into Linked Factory Data.

Usually, the information in an ontology is stored in a graph-
based triplestore and is not changing frequently over time.
In industrial processes, run-time data, like sensor data or
state conditions, are generated in high volume and velocity.
Triplestores are not well suited for large time series data
as it will reduce the performance of SPARQL queries [8],
because the query engine has to perform a pattern matching
over the whole graph in the triplestore. Therefore, we propose
an ontology-based data access method, which uses custom

978-1-7281-0303-7/19/$31.00 ©2019 IEEE 95



property functions in SPARQL to retrieve run-time data and
time series data on-demand and without a persistent storage
of the data in the triplestore. To reduce the engineering effort
and to enable an easy ontology-based OPC UA data access, an
automatic transformation of the OPC UA information model
into an OWL ontology is performed.

The remainder of this paper is structured as follows:
Section II is giving a short introduction into the OPC UA
information model and Semantic Web technologies. Also, a
literature review of Semantic Web applications in combination
with OPC UA is presented. Section III explains the proposed
ontology-based OPC UA data access method as well as the
automatic ontology generation process. Section IV presents a
laboratory use case of a Packed-Bed Regenerator, which is
used to demonstrate our approach. In Section V, a conclusion
is drawn and ideas for future work are discussed.

II. STATE OF THE ART

This section gives a short overview of OPC UA and its infor-
mation modeling as well as some introduction to the Semantic
Web technologies used in this work. Also previous work is
reviewed which already applies Semantic Web technologies
in combination with OPC UA.

A. OPC UA Information Model

A key feature of OPC UA is its information modelling
capability. It allows to describe everything from simple de-
vices (sensors, actuators, etc.) to very complex components
(production machinery, energy storage devices, etc.) in an
object-oriented and semantically meaningful way [9]. The
information model is thereby built from nodes, representing
objects, variables, etc. and references, representing relations
between nodes. OPC UA defines eight different types of nodes,
so-called node classes. They are briefly summerized in Table I.

Depending on its node class, each node has a set of
attributes. Most importantly, each node has a unique NodeId,
which consists of a NamespaceIndex and an Identifier, e.g.
”id=2;s=Heater”. Other attributes are the NodeClass (one of
the entries of Table I), DisplayName (a human-readable name
for the node), Description (a human-readable description of
the nodes’s purpose), possibly a Value, and many more. The
information model exposed by a specific OPC UA server is
called the server’s address space. OPC UA clients use services
to interact with the server, e.g. the Browse service to navigate
through the address space, the Read/Write service to read/write
variable values, the HistoryRead/HistoryUpdate service to
read/update historic values of variables, the Call service to
invoke methods, etc. The historical values themselves are not
visible in the OPC UA address space of the server.

B. Semantic Web Technologies

In the context of Semantic Web, various technologies
are standardized under the lead of the World Wide Web
Consortium (W3C)1. One of the base technologies is called
RDF [10], which can be used to model information by creating

1https://www.w3.org

TABLE I: OPC UA node classes

Node
class

Comment Example

Object
Type

The ObjectType can be used to
model complex objects. Typically,
these objects expose some internal
structure.

HeaterType

Object An Object is an instance of
the corresponding ObjectType, just
like objects in programming are
instances of their corresponding
class.

Heater

DataType DataTypes are typically simple
types such as String, Boolean,
Float, Int32, etc. However, they can
also have a more complex internal
structure if needed.

Float

Variable
Type

VariableTypes are used to model
the value and structure of data. Ad-
ditional information, e.g. the En-
gineeringUnit, can be added. The
value is of a specific DataType.

AnalogItemType

Variable A Variable is an instance of the
corresponding VariableType.

Temperature

Reference
Type

The ReferenceType node class is
used to define the references be-
tween nodes and their semantics.

HasComponent

Method Methods can be called by an OPC
UA client. Input arguments, as well
as output arguments, are supported.

SetSetpoint()

View Views can be used to structure and
filter the information in a user-
group-specific way.

OperatorView

statements about resources. These statements consist of a
subject, a predicate and an object, and, therefore, are called
triples. As the object of such a statement can be used as a
subject in another statement, the information is represented as
a graph with interlinked resources. Special databases, called
triplestores, are used for this kind of data.

RDFS [11] and OWL [12] are both formal knowledge
representation languages. RDFS is an extension of the basic
RDF and provides vocabulary to create hierarchies of classes
and properties. OWL extends RDFS with further language
constructs, like cardinalities, value restrictions, characteristics
of properties, and complex class construction and is based on
description logic. Thus, RDFS and OWL enables reasoning
for the Semantic Web.

With the help of these technologies and standards, so-
called ontologies can be created. In computer science, on-
tologies are an explicit specification of a conceptualization,
where a conceptualization is a simplified abstract model of
a certain domain [13]. In addition, ontologies in computer
science should be machine readable. Thus, an ontology can
be defined as ”... a formal, explicit specification of a shared
conceptualization” [14].

To retrieve information from such an ontology,
SPARQL [15] was designed to query RDF data including
RDFS and OWL constructs. It supports a SELECT statement
to perform a graph-based pattern matching over the RDF
graph and to retrieve data in a table-based fashion. It also
supports the CONSTRUCT clause, which allows to extract

96



information from the ontology and to create new RDF graphs
based on these data.

Ontologies can be used in different fields of application,
like communication, interoperability, as well as information
sharing and reuse [16]. In the context of CPPS, data and
information integration is one of the key applications, where
ontologies are applied. Ontology-Based Data Access (OBDA),
as the foundation of Ontology-Based Data Integration (ODBI),
enables semantic enrichment of available data from heteroge-
neous sources to create a semantic integration layer, which is
able to provide a higher level of abstraction [17].

Since in the manufacturing domain, data is hardly available
in the RDF format, mappings and transformations from ex-
isting data sources have to be performed [18]. For relational
databases, frameworks for OBDA, like Ontop exist [19] and
have already been applied for industrial use cases [20]. Similar
concepts have to be investigated for OPC UA, which is a
common data source in an industrial environment [6].

C. Combining Semantic Web Technology and OPC UA

Semantic Web technology in combination with OPC UA
can be used in CPPSs for various applications, like creating
flexible orchestration plans in manufacturing [21] or semantic
data integration and analysis like conceptually shown in [22].

Semantic Web technologies are also used to harmonize
the access and utilization of industrial devices. Therefore, a
conceptional architecture with an OPC UA adaption layer is
presented in [23], to perform a transformation of data exchange
structures into RDF. The transformation itself is not described
in detail in this work, because it primarily focuses on the
creation of a plant model ontology.

A more concrete implementation strategy of combining
OPC UA and Semantic Web for an ontology-based OPC UA
data access can be found in [24]. Thereby, Semantic Web
technology is used in combination with OPC UA for sensor
discovery. A semantic access layer is implemented to tap the
full potential of ontologies while not affecting the existing
OPC UA standard. The data are retrieved by a subscription
handler if available. Otherwise, a sensor data request is trig-
gered frequently to map the OPC UA data to a sensor ontology.
In [25], the OPC UA ontology-based data access is enabled
by mirroring the OPC UA data into a relational database
and to map this data into an ontology. This architecture is
chosen to enable real-time processing of a large amount of
industrial data. The stored data in this database are used in
combination with the ontology to perform reasoning periodi-
cally to generate new knowledge dynamically. Both of these
approaches to ontology-based OPC UA data access have the
disadvantages of duplicating data or communication overhead,
if the information is frequently polled.

To directly access the OPC UA data, a so-called linked
data adapter is implemented in [26]. This adapter provides
data from an OPC UA server as RDF via a REST interface.
The base functionality of OPC UA is mapped to HTTP GET,
POST, PUT and DELETE requests. As the adapter returns

RDF data, URI dereferencing can be used in SPARQL to
access these data on-demand.

Our proposed approach of ontology-based OPC UA data
access is a direct extension of the SPARQL query engine,
by implementing so-called custom property functions. This
extension implements an efficient data extraction mechanism,
as it only retrieves the necessary data from an OPC UA server,
if a SPARQL query is invoked, which needs these specific data.
This enables data access on-demand, but waives an additional
REST mapping.

III. PROPOSED ONTOLOGY-BASED OPC UA DATA ACCESS
METHOD

To enable ontology-based OPC UA data access, an OWL
model has to be created and mapped to the OPC UA in-
formation model. To reduce engineering effort, the OPC UA
information model, which is stored in the OPC UA server, is
extracted by a software module and automatically transformed
into OWL. This needs only to be performed once or if the
OPC UA information model of the server has changed.

To implement the proposed ontology-based OPC UA data
access method, a Semantic Web framework has to be used
which supports custom property functions. Inside these func-
tions, the OPC UA server is accessed and its run-time data
is retrieved. For our proof of concept, the Apache Jena
Framework2 is used. It is able to handle the OWL data and its
SPARQL query engine ARQ can be extended with custom
property functions. For the OPC UA communication the
Eclipse Milo framework3 is chosen to implement an OPC UA
client inside the ARQ extension. To test the implementation,
an Apache Jena Fuseki server is configured to load the
ARQ extension and to provide a SPARQL web interface for
exploring the data in the triplestore. Figure 2 gives an overview
of the used software modules of our proof of concept. The
OPC UA ontology extraction as well as the custom property
function implementation are described in more detail in the
following subsections.

A. OPC UA Ontology Extraction

The components and steps involved in generating OWL
models from the address space of an existing OPC UA server
are illustrated in Figure 3. First, the OPC UA client connects
to the OPC UA server and starts analyzing the address space
by reading the OPC UA server’s NamespaceArray, which
associates each NamespaceIndex to its corresponding Names-
paceUri. This is required because each NodeId only contains
the NamespaceIndex, while in Semantic Web technologies
each resource is identified by 〈Namespace〉#〈Identifier〉. Next,
the OPC UA client recursively browses the address space
of the OPC UA server and creates an RDF model for each
Namespace. It thereby maps OPC UA nodes to RDF resources
and OPC UA references to RDF properties. Additionally, for
each reference between two OPC UA nodes, an RDF statement
is created in the model. If such a statement involves resources

2https://jena.apache.org
3https://projects.eclipse.org/proposals/milo

97



Fig. 2: Software Modules of the proof of concept

of different namespaces, and thus different models, it is added
to the model corresponding to the namespace with the higher
index, according to the NamespaceArray. This way, the model
corresponding to namespace with NamespaceIndex 0 only
contains statements about namespace 0, namespace 1 contains
statements about namespace 1 and 0, etc. Finally, attributes
in OPC UA (such as NodeId, BrowseName, etc.) are added to
the corresponding resources by means of literals.

OPC UA Server

OPC UA

RDF model
namespace 0

OPC UA Client 

OPC UA to RDF Transformer

...

OWL Full Post Processor

http://auto.tuwien.ac.at/~ontologies/opcua.owl

http://auto.tuwien.ac.at/~ontologies/session.owl

...

RDF model
namespace 1

O
P
C

 U
A

 O
n

to
lo

g
y
 E

x
tra

ctio
n

Fig. 3: OPC UA ontology extraction process

The result of this transformation step is a set of models,
which only use the vocabulary provided by RDF. Additional
vocabulary of a more specific ontology language, e.g. RDFS,
OWL DL or OWL Full, is then added in the post processing
step. As different ontology languages provide different mod-
elling concepts, the resulting RDFS/OWL models may deviate
quite substantially from the initial OPC UA address space.
A very prominent challenge in this regards is the capability
of OPC UA to arbitrarily create references between objects

(corresponding to individuals in most ontology languages) and
types (corresponding to classes in most ontology languages).
Only OWL Full allows to use object properties for relating
individuals and classes with similar flexibility. This short
discussion already indicates that the post processing step
requires many design decisions and compromises to be made.
As a more expressive ontology language enables the creation
of models that better represent the OPC UA address space,
a post processor for OWL Full has been developed in a
first attempt. The post processor currently implements the
following transformation rules and can easily be extended:
• An rdfs:label is created for each resource from the

OPC UA node’s DisplayName.
• All resources corresponding to an OPC UA node of node

class ObjectType, VariableType, or DataType are declared
as owl:Class.

• All resources corresponding to an OPC UA node of node
class ReferenceType are declared as owl:ObjectProperty.

• All resources corresponding to an OPC UA node being
the source of a HasTypeDefinition reference are declared
as individual of the corresponding class.

• All resources corresponding to an OPC UA node being
the source of a HasSubtype reference are declared as
superclass of the corresponding class.

• All object properties, for which the corresponding
OPC UA ReferenceType’s attribute Symmetric is set, are
declared as symmetric property.

• For all object properties, for which the corresponding
OPC UA ReferenceType’s attribute InverseName is set,
an inverse object property is created.

• All properties relating OPC UA nodes to their OPC UA
attributes are declared as annotation properties.

While not always being respected, it is best practice
in ontology engineering to use namespaces that actually
correspond to ontology documents accessible via the
web. This idea is not present in OPC UA, and, thus,
the namespaces extracted from the OPC UA server’s
NamespaceArray have no meaning except for being
unique. For this reason, the post processor allows to
substitute namespaces with user-defined replacements,
e.g. http://opcfoundation.org/UA/ is substituted with
http://auto.tuwien.ac.at/˜ontologies/opcua.owl.4

This completes the OPC UA ontology extraction process.

B. Ontology-based OPC UA data access method

As most of the run-time data that are accessible through
the Read or HistoryRead service are changing over time, they
should not be statically stored in the ontology. An ontology-
based data access method has to be provided which loads the
OPC UA data on-demand to avoid a periodical or event-based
update of the ontology and to keep the triplestore as small as
possible.

4The resulting ontology documents are available in RDF/XML format at
http://auto.tuwien.ac.at/∼ontologies/opcua.owl,
http://auto.tuwien.ac.at/∼ontologies/session.owl, and
http://auto.tuwien.ac.at/∼ontologies/packed-bed-regenerator.owl.

98



We have implemented such an ontology-based data
access for the OPC UA Read and HistoryRead service as
an extension to a SPARQL query engine. SPARQL is a
very flexible language which allows to implement custom
property functions to add functionality. Two custom property
functions were implemented, namely value and histValue.
These functions use the information stored in the ontology to
retrieve the OPC UA endpoint url and the OPC UA node ID to
connect to the OPC UA server and request the required data.
These two custom property functions are registered within the
http://auto.tuwien.ac.at/˜ontologies/opcua.owl

namespace.
The value property function can be applied on every

OPC UA node in the ontology. If for that node the Read
service is available, the data are retrieved during the SPARQL
query and the value is assigned to the SPARQL variable.
Listing 1 shows a SPARQL query which uses the custom
property function value.

The histValues property function returns the timestamp and
its related value and binds them to the specified SPARQL
variables. As additional parameter, the start and end time of the
HistoryRead service can be defined. If no end time is defined,
the current time is used as default value. Table II illustrates the
implemented function overloadings of histValues. The usage of
the custom property function histValues is shown in Listing 2

TABLE II: Overloading of the Custom Property Function
histVlaues

Function Signature Behaviour
histRead(?timestamp ?value) Retrieves all available data
histRead(?timestamp ?value int n) Retrieves the n last values till now
histRead(?timestamp ?value
”YYYY-MM-DD hh:mm:ss”)

Retrieves all data since the speci-
fied date

histRead(?timestamp ?value
”YYYY-MM-DD hh:mm:ss”
”YYYY-MM-DD hh:mm:ss”)

Retrieves all data between the first
and second date-string

SPARQL can not only be used for querying, but also
for updating or inserting new data. For example, if certain
OPC UA run-time data should be stored persistently in the
ontology, the SPARQL INSERT command can be utilized.

IV. USE CASE - PACKED-BED REGENERATOR

As use-case for the ontology-based OPC UA data access, a
model of a Packed-Bed Regenerator (BPR) test rig is chosen,
which is located at the laboratory of the Institute for Energy
Systems and Thermodynamics (IET) at TU Wien (Figure 4b).
The BPR is a thermal energy storage, which has a conic steel
container filled with gravel as storage medium and surrounded
by an insulation. Ambient air is used as a heat transfer fluid.
It gets heated by a electric heater and transported through the
tank during the charging phase. The hot air heats up the gravel
inside the tank which stores the energy. For discharging, cold
air is ventilated through the hot gravel. The schematic of the
BPR and its components are depicted in (Figure 4a)

The BPR consists of a ventilator, a heater and the bulk
container. It has various temperature sensors installed as well

(a) Schematic diagram of the
Packed-bed Regenerator

(b) Test rig at the laboratory of
TU Wien [27]

Fig. 4: Packed-bed Regenerator

as a mass flow sensor. The bulk container has four temperature
sensors at different levels to track its state of charge. An
OPC UA information model has been created which is partly
shown in Figure 5. This model is automatically transformed
into OWL, as explained in previous Section. With this OWL
model and the implemented custom property function value
and histValues, ontology-based OPC UA data access is per-
formed, by sending SPARQL queries to the Apache Jena
Fuseki Server.

Listing 1 shows a SPARQL query which retrieves the
current value of the temperature sensor TL1 in the bulk
container of the BPR. The SPARQL query engine connects
to the OPC UA server in the background, requests the data,
and assigns it to the SPARQL variable ?temp. The answer to
this query is also shown at the end of Listing 1.

1 PREFIX r d f s : <h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema#>
2 PREFIX uaBase : <h t t p : / / a u t o . t u wi en . ac . a t / opcua . owl#>
3 PREFIX j . 0 : <h t t p : / / a u t o . t u wie n . ac . a t / packed−bed−

r e g e n e r a t o r . owl#>
4

5 SELECT ? disp layName ? temp
6 WHERE {
7 ? s e n s o r r d f s : l a b e l ”T L1 ” .
8 ? s e n s o r r d f s : l a b e l ? d isp layName .
9 ? s e n s o r uaBase : HasComponent / uaBase : v a l u e ? temp

10 }

| ? disp layName | ? temp |
| ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” |
| ” T L1” | 8 1 . 0 0 |

Listing 1: SPARQL query using custom property function
value and its corresponding answer

99



Objects

PackedBedRegenerator

BulkContainer

T_L1

CurrentTemperature

EngineeringUnits

EURange

SerialNumber

T_L2

T_L3

T_L4

Heater

T_H

Setpoint

SetSetpoint()

Ventilator

m_flow

CurrentTemperature

EngineeringUnits

EURange

SerialNumber

Setpoint

SetSetpoint()

T_i

T_o

Fig. 5: OPC UA Information Model of the Packed-Bed Re-
generator

Listing 2 shows a SPARQL query which retrieves the
historical data (timestamp and values) of the temperature
sensor TL1, starting at 2019-03-21 10:00:00. As the retrieved
data is assigned to a SPARQL variable, the values can be
processed by the SPARQL engine. In the case of this query,
a filtering of the values greater than ”41.0” is applied. The
corresponding answer to this query is also partly shown in
Listing 2.

1 PREFIX r d f s : <h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema#>
2 PREFIX uaBase : <h t t p : / / a u t o . t u wi en . ac . a t / opcua . owl#>
3 PREFIX j . 0 : <h t t p : / / a u t o . t u wi en . ac . a t / packed−bed−

r e g e n e r a t o r . owl#>
4

5 SELECT ? disp layName ? t ime ? temp
6 WHERE {
7 ? s e n s o r r d f s : l a b e l ”T L1 ” .
8 ? s e n s o r r d f s : l a b e l ? d isp layName .
9 ? s e n s o r uaBase : HasComponent / uaBase : h i s t V a l u e s ( ? t ime

? temp ”2019−03−21 1 0 : 0 0 : 0 0 ” ) .
10 FILTER ( ? v a l u e > ” 4 1 . 0 ” )
11 }

| ? disp layName | ? t ime | ? temp |
| ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” ” |
| ” T L1” | ” Thu Mar 21 1 0 : 0 0 : 0 0 CET 2019” | 8 1 . 0 |
| ” T L1” | ” Thu Mar 21 1 0 : 0 0 : 0 1 CET 2019” | 8 0 . 0 |
| . . . | . . . | . . . |
| ” T L1” | ” Thu Mar 21 1 0 : 2 5 : 5 2 CET 2019” | 1 0 4 . 0 |

Listing 2: SPARQL query using custom property function
histValue and its corresponding answer

In Listing 3 a SPARQL query is shown, which retrieves
all temperature sensor values from the bulk container and
calculates the average temperature. As the OPC UA type
definitions are present in the Objects and the Types folder of
the OPC UA information model, the query has to state that the
BulkContainer is a component of the PackedBedRegenerator.
Afterwards, all components of the BulkContainer which are
from type TemperatureSensorTypes are retrieved and their
current values are accessed by invoking the custom property
function uaBase:value. The temperatures in the bulk container
are TL1 = 180 ◦C, TL2 = 190 ◦C, TL3 = 200 ◦C and
TL4 = 210 ◦C. The answer to this query is an average
temperature of TA = 195 ◦C, which is also shown as a
result at the end of Listing 3. The calculation of the average
temperature is performed by the SPARQL engine, as the
retrieved data are assigned to the SPARQL variable values.

1 PREFIX r d f s : <h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f−schema#>
2 PREFIX uaBase : <h t t p : / / a u t o . t u wi en . ac . a t / opcua . owl#>
3 PREFIX j . 0 : <h t t p : / / a u t o . t u wie n . ac . a t / packed−bed−

r e g e n e r a t o r . owl#>
4

5 SELECT ( avg ( ? v a l u e s ) a s ? averageTemp )
6 WHERE {
7 ? r e g e n e r a t o r r d f s : l a b e l ” PackedBedRegene ra to r ” .
8 ? r e g e n e r a t o r uaBase : HasComponent+ ? bu lkCon t .
9 ? bu lkCon t uaBase : H a s T y p e D e f i n i t i o n j . 0 :

Bu lkC on t a in e rT ype .
10 ? bu lkCon t uaBase : HasComponent+ ? t empSenso r s .
11 ? t empSenso r s uaBase : H a s T y p e D e f i n i t i o n j . 0 :

Tempera tu r eSenso rType .
12 ? t empSenso r s uaBase : HasComponent / uaBase : v a l u e ? v a l u e s
13 }

| ? averageTemp |
| ” ” ” ” ” ” ” ” ” ” ” ” |
| 1 9 5 . 0 |

Listing 3: SPARQL query to retrieve the average
temperature of the bulk container and its corresponding
answer

V. CONCLUSION AND FUTURE WORK

We have shown how ontology-based OPC UA data access
can be implemented with the help of custom property functions
and an automatic transformation of the OPC UA information
model into OWL. The combination of Semantic Web technolo-
gies and OPC UA enables new possibilities in the context of
CPPS, which could lead to higher flexibility in the production
system. We have shown the application of the SPARQL query
language to retrieve OPC UA data from a specified information
model.

In this paper, we did not explore the reasoning capabilities
of OWL, which can be beneficial for certain applications in
the context of CPPS. Further research will be carried out to
enable reasoning for the OPC UA ontology and combining
it with logical rules. Also, a performance evaluation of our
approach, regarding to query execution time and memory
space, is planned as future work.

The presented proof of concept showed only a simple use
case in an isolated environment. We believe that the full
potential of the ontology-based OPC UA data access is only
achieved, if other information, like environmental conditions,

100



production plans, device information, etc. are interlinked to
build up Linked Factory Data. This will lead to new insights
into the data and the production system itself.

ACKNOWLEDGEMENTS

This work has been partially supported and funded by the
Austrian Research Promotion Agency (FFG) for the “PoSyCo
- Power System Cognification” project under the contract
number 867276, as well as the “SIC! - Smart Industrial
Concept!” doctoral program.

REFERENCES

[1] V. Roblek, M. Meško, and A. Krapež, “A Complex View of Industry
4.0,” SAGE Open, vol. 6, no. 2, apr 2016. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/2158244016653987

[2] L. Ribeiro and M. Bjorkman, “Transitioning from Standard Automation
Solutions to Cyber-Physical Production Systems: An Assessment of
Critical Conceptual and Technical Challenges,” IEEE Systems Journal,
vol. 12, no. 4, pp. 3816–3827, 2018.

[3] J. Lee, B. Bagheri, and H. A. Kao, “A Cyber-Physical
Systems architecture for Industry 4.0-based manufacturing systems,”
Manufacturing Letters, vol. 3, pp. 18–23, 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.mfglet.2014.12.001

[4] G. Steindl, B. Heinzl, and W. Kastner, “A Novel Ontology-Based Smart
Service Architecture for Data-Driven Model Development,” in eKNOW
2019 - The Eleventh International Conference on Information, Process,
and Knowledge Management, J. L. Mauri, Ed., Athens, Greece, 2019,
pp. 26–27.

[5] F. J. Ekaputra, M. Sabou, E. Serral, E. Kiesling, and S. Biffl, “Ontology-
Based Data Integration in Multi-Disciplinary Engineering Environments:
A Review,” Open Journal of Information Systms, vol. 4, no. 1, pp. 1–26,
2017.

[6] P. Drahos, E. Kucera, O. Haffner, and I. Klimo, “Trends in industrial
communication and OPC UA,” Proceedings of the 29th International
Conference on Cybernetics and Informatics, K and I 2018, vol. 2018-
Janua, pp. 1–5, 2018.

[7] S. Baier, H.-D. Flick, T. Gast, A. Huger, H. Schleinkofer, H. Schmidtke,
H.-J. Schneider, K.-H. Stoffels, F. Völker, and O. Zbikowski, “Guidlines.
Industry Services - Technical services in the lifecycle of machines and
plants,” German Electrical and Electronic Manufacturers‘ Association,
Frankfurt am Main, Germany, Tech. Rep., 2015. [Online]. Available:
http://www.industry.siemens.com/services/global/en/Pages/home.aspx

[8] M. Martin, J. Unbehauen, and S. Auer, “Improving the performance of
semantic web applications with SPARQL query caching,” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 6089 LNCS, no.
PART 2, pp. 304–318, 2010.

[9] W. Mahnke and S.-H. Leitner, “OPC Unified Architecture - The future
standard for communication and information modeling in automation,”
ABB Review, vol. 3, p. 2009, 2009.

[10] G. Klyne and J. J. Carroll, “Resource Description Framework (RDF):
Concepts and Abstract Syntax. W3C Recommendation,” World Wide
Web Consortium (W3C), Tech. Rep., 2004. [Online]. Available:
https://www.w3.org/TR/rdf-concepts/

[11] D. Brickley and R. Guha, “RDF Schema 1.1. W3C Recommendation,”
World Wide Web Consortium (W3C), Tech. Rep., 2014. [Online].
Available: https://www.w3.org/TR/rdf-schema/

[12] W3C OWL Working Group, “OWL 2 Web Ontology Language.
Document Overview,” World Wide Web Consortium (W3C), Tech.
Rep., 2012. [Online]. Available: https://www.w3.org/TR/owl2-overview

[13] T. Gruber, “Toward Principles for the Design of Ontologies Used for
Knowledge Sharing,” International Journal Human-Computer Studies,
vol. 43, pp. 907–928, 1995.

[14] R. Studer, V. R. Benjamins, and D. Fensel, “Knowledge Engineering :
Principles and methods,” Data & Knowledge Engineering, vol. 25, pp.
161–197, 1998.

[15] S. Harris and A. Seaborne, “SPARQL 1.1 Query Language. W3C
Recommendation,” World Wide Web Consortium (W3C), Tech. Rep.,
2013. [Online]. Available: https://www.w3.org/TR/sparql11-query/

[16] M. Uschold and M. Gruninger, “Ontologies : Principles , Methods and
Applications,” The Knowledge Engineering Revie, vol. 11, pp. 93–136,
1996.

[17] D. Schachinger, W. Kastner, and S. Gaida, “Ontology-based abstraction
layer for smart grid interaction in building energy management systems,”
2016 IEEE International Energy Conference (ENERGYCON), pp. 1–6,
2016.

[18] B. Mörzinger, T. Weiler, T. Trautner, I. Ayatollahi, B. Angerer,
and B. Kittl, “A large-scale framework for storage, access and
analysis of time series data in the manufacturing domain,” Procedia
CIRP, vol. 67, no. January, pp. 595–600, 2018. [Online]. Available:
http://dx.doi.org/10.1016/j.procir.2017.12.267

[19] D. Calvanese, B. Cogrel, S. Komla-Ebri, R. Kontchakov, D. Lanti,
M. Rezk, M. Rodriguez-Muro, and G. Xiao, “Ontop: Answering
SPARQL Queries over Relational Databases,” Semantic Web Journal,
2017. [Online]. Available: https://github.com/ontop/ontop-examples/

[20] B. Mörzinger, M. Sabou, F. Ekaputra, and N. Sindelar, “Improving
industrial optimizationwith Semantic Web technologies,” in SEMANTiCS
2018, vol. 2198, 2018.

[21] B. Katti, C. Plociennik, and M. Schweitzer, “SemOPC-UA: Intro-
ducing Semantics to OPC-UA Application Specific Methods,” IFAC-
PapersOnLine, vol. 51, no. 11, pp. 1230–1236, 2018.

[22] M. Obitko and V. Jirkovský, “Big Data Semantics in Industry
4.0,” in HoloMAS, 2015, vol. 1, pp. 217–229. [Online].
Available: http://www.springer.com/series/1244http://link.springer.com/
10.1007/978-3-319-22867-9{\ }19

[23] D. Hastbacka and A. Zoitl, “Towards semantic self-description of
industrial devices and control system interfaces,” in 2016 IEEE
International Conference on Industrial Technology (ICIT). IEEE,
mar 2016, pp. 879–884. [Online]. Available: http://ieeexplore.ieee.org/
document/7474867/

[24] C. Legat, C. Seitz, and B. Vogel-heuser, “Unified Sensor Data Provi-
sioning with Semantic Technologies,” ETFA2011, pp. 1–8, 2011.

[25] S. Wang, J. Wan, D. Li, and C. Liu, “Knowledge reasoning with
semantic data for real-time data processing in smart factory,” Sensors
(Switzerland), vol. 18, no. 2, pp. 1–10, 2018.

[26] M. Graube, L. Urbas, and J. Hladik, “Integrating industrial middleware
in linked data collaboration networks,” IEEE International Conference
on Emerging Technologies and Factory Automation, ETFA, vol. 21,
2016.

[27] P. Drochter, “Auslegung, konstruktion und errichtung eines festbettregen-
erators,” Master’s thesis, TU Wien, Faculty of Mechanical and Industrial
Engineering, Institute for Energy Systems and Thermodynamics, 2016.

101

Powered by TCPDF (www.tcpdf.org)


