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gummary. In the area of P systems, besides the standard maximally parallel derivation
mode, many other derivation modes have been investigated, too. In this paper, many
variants of hierarchical P systems and tissue P systems using different derivation modes
are considered and the effects of using different derivation modes, especially the maxi-
mally parallel derivation modes and the maximally parallel set derivation modes, on the
generative and accepting power are illustrated. Morcover, an overview on some control
mechanisms used for (tissue) P systems is given.

1 Introduction

The basic model of P systems as introduced in [16] can be considered as a dis-
tributed multiset rewriting system, where all objects — if possible — evolve in par-
allel in the membrane regions and may be communicated through the membranes.
But also P systems operating on more complex objects (e.g., strings, arrays) are
often considered, too, for instance, see [6].

Besides the maximally parallel derivation mode, many other derivation modes
have been investigated during the last two decades. Thus in this paper the defini-
tions of the standard derivation modes used for P systems and tissue P systems are
recalled. Various interpretations of derivation modes known from the P systems
area are illustrated and well-known results are presented in a different manner.

Overviews on the field of P systems can be found in the monograph [17] and the
Handbook of Membrane Computing [18]; for actual news and results we refer to the
P systems webpage [20] as well as to the Bulletin of the International Membrane
Computing Society.

With this paper being presented at CMC 20, the 20th anniversary edition of
the meeting of the membrane systems community, the reader is assumed to be
o e gt boats definitions and notations of P systems and tissue P
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2 Prerequisites

The set of integers is denoted by Z, and the set of non-negative integers by N.
Given an alphabet V, a finite non-empty set of abstract symbols, the free monoid
generated by V' under the operation of concatenation is denoted by V*. The ele-
ments of V* are called strings, the empty string is denoted by A, and V*\{\} is
denoted by V*. For an arbitrary alphabet V = {a,, ..., an}, the number of oceur-
rences of a symbol a; in a string z is denoted by |2|a,, while the length of a string &
is denoted by || = >a;cv |2la,. The Parikh vector associated with 2 with respect
to ay,...,an i8 (|@a,...,|z|s, ). The Parikh image of an arbitrary language I,
over {aj,...,a,} is the set of all Parikh vectors of strings in L, and is denoted by
Ps(L). For a family of languages FL, the family of Parikh images of languages
in F'L is denoted by PsFL, while for families of languages over a one-letter (d-
letter) alphabet, the corresponding sets of non-negative integers (d-vectors with
non-negative components) are denoted by NFL ( NIFL).

A (finite) multiset over a (finite) alphabet V = {ay, ..., @n}, is a mapping f :
V' — N and can be represented by (af @, ... aﬁ(a")) or by any string z for which
O2layscnslele,) = (f(a1),..., f(an)). In the following we will not distinguish
between a vector (my,...,my,), a multiset (ai™,...,a™) or a string x having
(lzlayy - oy |2la,) = (ma,...,my,). Fixing the sequence of symbols a,, ..., a, in an
alphabet V' in advance, the representation of the multiset (a7™,...,a™") by the
string a™ ... a7 is unique. The set of all finite multisets over an alphabet V is
denoted by Ve,

The family of regular, context- free, and recursively enumerable string languages
is denoted by REG, CF, and RE, respectively. For example, PsREG — PsCF,
which is the reason why in the area of multiset, rewriting C'F plays no role at
all, and in the area of membrane computing we usually get characterizations of
PsREG and PsRE.

For more details of formal language theory the reader is referred to the fnono-
graphs and handbooks in this area as [5] and [19].

Register machines

A register machine is a tuple M = (m, B,lo,ln, P), where m is the number of
registers, B is a set of labels, Iy ¢ B is the initial label, I, € B is the final
label, and P is the set of instructions bijectively labeled by elements of B. The
instructions of M can be of the following forms:

o U1 : (ADD(j),ls,13), with {1 ¢ B\{lp}, l,ls€e B)1<j <m.
Increases the value of register J by one, followed by a non-deterministic jump
to instruction Iy or 3. This instruction is usually called increment.

o I :(SUB(j),la,13), with [; € B\{lx}, lp,ls € B,1<j <m.

Tf 11 vrelicn L o m 4w
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The two cases of this instruction are usually called zero-test and decrement,

respectively.

o ln: HALT. Stops the execution of the register machine.

A configuration of a register machine is descri.bec.l by the content§ of each register

and by the value of the current label, which 1nf11cates ‘?he next instruction t.o be

executed. Computations start by executing the instruction Iy of P, and terminate

i i e HALT-instruction [j.

Wlt};\;izcg;ﬁi; }(lieterministic if in all ADD-instructions p : (ADD (r), g, s), it holds

that ¢ = s; in this case we write p : (ADD (r), q). _ . .
For useful results on the computational power of register machines, we refer
[15]; for example, deterministic register mac.hines can accept al} recurs1‘veiy

enumerable sets of vectors of natural numbers with k£ components using precisely

L + 2 registers.

3 A General Model for Tissue and Hierarchical P Systems

We now recall the main definitions of the general model for tissue P systems ar%d
hierarchical P systems and the basic derivation modes as defined, for example, in

13].
A (hierarchical) P system (with rules of type X ) working in the derivation
mode ¢ is a construct

II=V,T,u,wi,...,Wm,R1,...,Rm, f,=>m,s) where
e V is the alphabet of objects;
T C V is the alphabet of terminal objects; .
M is the hierarchical membrane structure (a rooted tree of membranes) with
the membranes uniquely labeled by the numbers from 1 to m;
w; € V*, 1 <1< m,is the initial multiset in mcml.)rane 1 )

e R;, 1<1i<m,is a finite set of rules of type X assigned to membrar}e 1}

e fis the label of the membrane from which the result of a .cc-)mputat.lon has to
be taken from (in the generative case) or into which the initial multiset has to
be given in addition to wy (in the accepting ca%se),.

® =5 is the derivation relation under the derivation mode 4.

- ” 13 M _
The symbol X in “rules of type X” may stand for “evolution”, “communica
tion”, “membrane evolution”, etc.

In hierarchical P systems, the membranes are arranged in a tree structure. If
we allow arbitrary graphs as communication structure, with the membranes now
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A (static) tissue P system (with rules of type X ) working in the derivation
mode § is a construct

= (V,T,m,wl,...,wm,Rl,...,Rm,f,:>H,5) where

V is the alphabet of objects;

T C V is the alphabet of terminal objects;

m is the number of cells uniquely labeled by the numbers from 1 to m;

w; € V¥, 1 <14 < m, is the initial multiset in cell i

R;, 1 <9 <m, is a finite set of rules of type X assigned fo cell %;

[ is the label of the cell from which the result of a computation has to be taken
from (in the generative case) or into which the initial multisct has to be given
in addition to wy (in the accepting case),

® =75 is the derivation relation under the derivation mode §.

Each of the cells may have assigned its own set of rules R;, but in the most
general case the rules (for multisets) are of the form

(1) ... (um) = (V1) ... (V)

where (u1), ..., (um) and (v1),..., (vym) are multisets over V, and then instead of
Ry, ..., Ry we specify only one set of rules R for the whole tissue P system I1.

A configuration is a list of the contents of each cell or membrane region, re-
spectively; a sequence of configurations Cj,...,C} is called a computation in the
derivation mode ¢ if C;—> 1,6Cip1 for 1 <4 < k. The derivation relation — 7,6 1s
defined by the set of rules in I7 and the given derivation mode which determines
the multiset of rules to be applied to the multisets contained in each membrane
or cell or even in the overall tissue P system.

The language generated by II is the set of all terminal multisets which can be
obtained in the output membrane /cell f starting from the initial configuration
C1 = (w1, ..., wn) using the derivation mode § in a halting computation, i.e.,

Lgen,s (IT) = {C(f) €eT°|CL==ps CA-IC: o=>n,50'} ,

where C(f) stands for the multiset contained in the output membrane or cell fof
the configuration C. The configuration C is halting, i.e., no further configuration
C' can be derived from it.

The family of languages of multisets generated by P systems and tissue P
systems of type X with at most n membranes / cells in the derivation mode ¢ is
denoted by Psgen sOP, (X) and Psgyen sOtP, (X), respectively.

We may also consider (tissue) P systems as accepting mechanisms: in mem-
brane / cell f, we add the input multiset wqy to wy in the initial configuration
Cl = (w‘la P qwm.] thus obtainine I.'H}n‘] = (a1, 21 £ a1 Ve b Sk
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Lace,s (1) = {wo € T° | 3C - (Crlwo) Z2ms € A -3C": C=11C") }.

Then the family of languages of multisets accepted by P sysm.:ms.a,nd tissue P
gystems of type X with at most n membranes / cells in t}.ue derivation mode § is
denoted by Psaces0P, (X) and PsgeesOLP, (X), respectively.

We finally mention that (tissue) P systems can also be used to compute func-
tions and relations, with using f both as input and output membrane / cell or
even using two different membranes / cells for the input and the output. Yet in
this paper we will mainly focus on the generating case.

3.1 Derivation Modes

The set of all multisets of rules applicable in a (tissue) P systen.l to a'given con-
figuration C is denoted by Appl(II,C) and can be restricted by imposing specific
conditions, thus yielding the following basic derivation modes (for example, see
[13] for formal definitions):

asynchronous mode (abbreviated asyn): at least one rule is applied;
sequential mode (sequ): only one rule is applied; . .
maximally parallel mode (maz): a non-extendable multiset of rules is applied;
maximally parallel mode with maximal number of rules (mammlcis): a non-
extendable multiset of rules of maximal possible cardinality is applied;

o maximally parallel mode with maximal number of objects (MmaZobjects): a non-
extendable multiset of rules affecting as many objects as possible is applied.

In [2], these derivation modes are restricted in such a way that each rule can
be applied at most once, thus yielding the set modes sasyn, §MAT, SMaTrules, and
8MaTobjects (the sequential mode is already a set mode by definition):

e asynchronous set mode (abbreviated sasyn): at least one rule is applied, but
each rule at most once; . .

e maximally parallel set mode (smaz): a non-extendable set of rules is applied;

* maximally parallel set mode with maximal number of rules (smammles): a
non-extendable set of rules of maximal possible cardinality is applied;

e maximally parallel set mode with maximal number of objects (sn.m:cobje.cts): a
non-extendable set of rules affecting as many objects as possible is applied.

Let us denote the set of all multisets (possibly only sets) of rules applicable
in a (tissue) P system II to a given configuration C' in the derivation mode d by
Appl(IT,C, §). We immediately observe that Appl(1l,C,asyn) = A;?pl(ﬂ, C)..

To collect the set and multiset derivation modes, we use the following notations:
Ds = {sequ, sasyn, smazx, SMaTryles, Smaxobjects} and
Dy = {asyn, maz, MaZrules, MaTobjects } -




114 R.. Freund

3.2 Standard Rule Variants

Non-cooperative rules have the form a — w, where a is a symbol and w is
multiset, catalytic rules have the form ca — cw, where the symbol ¢ is called the
catalyst, and cooperative rules have no restrictions on the form of the left-hand
side. These types of rules will be denoted by ncoo (non-cooperative), pcat (purely

catalytic), and coo (cooperative); if both non-cooperative and catalytic rules are
allowed, we write cat (catalytic)

If the P system has more than one membrane, each symbol on the right-hand
side may have assigned a target where the symbol has to be sent after the appli-
cation of the rule. In tissue P systems this target is simply the number of the cell,

whereas in hierarchical P systems the targets take into account the tree structure
of the membranes:

here the symbol stays in the membrane where the rule is applied;

out the symbol is sent to the outer membrane, i.e., the membrane enclosing the
membrane where the rule is applied;

in the symbol is sent to an inner membrane, i.e., a membrane enclosed by the
membrane where the rule is applied;

in; the symbol is sent to the inner membrane labeled by 7.

3.3 Flattening

As many variants of P systems can be flaitened to only one membrane, see [9], we
often may assume the simplest membrane structure of only one membrane which
in effect reduces the P system to a multiset processing mechanism, and, observing
that f =1, in what follows we then will use the reduced notation

I = (V,T,w,R, :>H,6) 3
For a one-membrane system, the definitions for the language generated by 11
and the language accepted by IT can be written in an easier way, i.e.,

Lgen,s (11) = {U €T |w=>p50A 32 v=>p152 ¢ and
Lacc,5 (H) = {’LUO eT° l du: (wwo :*>]7,‘5 vA a2 U:H,JZ)} .

The family of languages of multisets generated by one-membrane P systems of
type X in the derivation mode ¢ is denoted by Psgen sOP (X).

The family of languages of multisets accepted by one-membrane P systems of
type X in the derivation mode § is denoted by Psgcc,sOP (X).

In the following, we will mainly focus on the generative casc, and when writing
PssOP (X) we by default will mean Psge, sOP (X)

4 Some Well-Known Results
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4.1 Non-Cooperative Rules

semni-li as for the

ine only non-cooperative rules leaves us on the lcvc‘:‘. of bclma lm::.: 551:3, kg
Uﬁﬁ?vition with context-free rules (and non-coopcra.tlfre rules fo:. m; pof b
d}f:rcsulting derivation trec does not depend on an flt.ir}':f)rr:ca( ;tring e
t ivati kind. Moreover, context-irec : :
- o hence, taking (even only terminal) results
make any difference. Therefore,

or a - - -
languages are closed under projections,

out from a specific output membrane / cell does not
we may state the following result:

. ati
Theorem 1. For any Y € {N,Ps} and any n > 1 as well as any any derivation
eor . ,

mode § € DgU Dy,
Yyen,sOPn (ncoo) = Yyen,s0tPn (ncoo) = Y REG.

4.2 The Importance of Using Catalysts

ly catalytic rules
have one catalyst ¢ and on _
B T s o uential use of noncooperative rules,

hi e ds to a seq
<iened to ¢, then this conuspog : !
:.?}iigh together with Theorem 1 yields the following result

Theorem 2. For any Y € {N, Ps} and any derwation mode § € Dg U Dy,
e .

=Y REG.
Ygen,sOP (pcaty) = Ygen,sequOP (pcat1) = Ygen,sequOP (ncoo)
at least three catalysts are ‘needed
ly catalytic P systems using the
the following results were

Without additional control mechanisms,
to obtain computational completeness for purt,a1
derivation mode maz, see [8]. In a more gener way,

already proved there:
Theorem 3. For any d > 1 and any E>d+ 2,
d
Psace.mazOP (peatiy1) = PSgce,mazOP (caty) = N RE.

we mention that these results are also valid when
)

e B st by any other maximally parallel (set) derivation

replacing the derivation mode maz
mode, i.e., for any é in

{ma:c MATryules, MALobjects STHAT, SMAaTruless smamobjects}-
)

n, for all these derivation modes, has been

i tio
The complexity of the constn'lc‘ e
considerablypreduced since the original paper from 2005, for example [2]

i i ich i t means
These results are obtained by simulating register machines, which in fac

S orallel mechanism. Exactly
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§ € {max, maz,yies, MaTobjects }, for decrementing the number of a symbol q,
to carry out the decrement case of a SUB-instruction of a register machine, we
cannot do this by a non-cooperative rule a, — ), instead we have to use a catalytic
rule ca, — c.

What happens in the case of two catalysts in purely catalytic P systems (and
one catalyst in the case of catalytic P systems), is one of the most intriguing open
problems in the area of P systems since long time, e.g., see [12], where it is shown
that catalytic P systems with one catalyst can simulate partially blind register
machines and partially blind counter automata.

With respect to the importance of using catalytic rules, the set derivation
modes offer new opportunities, i.e., using specific control mechanisms they are not
needed any more, as eliminating only one symbol a, to carry out the decrement case
of a SUB-instruction of a register machine now can be done by a non-cooperative
rule a, — A, because due to the set restriction this rule is not applied more than
once.

5 Control Mechanisms

To reduce the number of catalysts needed for obtaining computational complete-
ness, specific control mechanisms can be used. Some of these control mechanisms
are considered in this section. For example, label selection or control languages
allow for using only one catalyst (two catalysts) in (purely) catalytic P systems
for getting computational completeness, for instance, see [7, 10, 11, 2]. With tar-
get agreement and maximally parallel set derivation modes, catalysts can even be
avoided completely, only non-cooperative rules are needed.

5.1 P Systems with Label Selection

For all the variants of (tissue) P systems of type X, we may consider labeling all
the rules in the sets Ry,..., R, in a one-to-one manner by labels from a sct H
and taking a set W containing subsets of H. In any transition step of a (tissue)
P system with label selection IT we first select a set of labels U € W and then, in
the given derivation mode, we apply a non-empty multiset R of rules such that all
the labels of these rules from R are in U.

The familics of sets Y, 5 (II), Y € {N, Ps}, v € {gen,acc}, and § € Dy; U Dg
computed by (tissue) P systems with label selection with at most m membranes
and rules of type X are denoted by Y,,50P,, (X,1s) (Y, s0tP,, (X,1s)).

Theorem 4. Y, 50P (caty,ls) = Y, 0P (pcaty,ls) = YRE for anyY € {N, Ps},
v € {agen. acct. and anu marimally narallel fcot) derimntinm mmnde 5
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The proof given in [11] for the maximally parallel mode max can be taken over
for the other maximally parallel (set) derivation modes word by word; the ?nly
difference again is that in set derivation modes, in non-successful computatlor%s
where more than one trap symbol # has been gencrated, the trap rule # — # is
only applied once.

5.2 Controlled (Tissue) P Systems and Time-Varying (Tissue) P
Systems

Another method to control the application of the labeled rules is to use control
uages (see [14] and [1]).

lan%ﬁn 5 co(ntrol[led] ( tissie]))P system 11, in addition we use a set H of labels for
the rules in IT, and a string language L over 2% (each subset of H represents'an
element of the alphabet for L) from a family FL. Every successful computation
in IT has to follow a control word U; ...U, € L: in transition step ¢, only rules
with labels in U; are allowed to be applied (in the underlying derivatif)n mode, for
example, mazx or smaz), and after the n-th transition, the .computat'lo'n halts; we
may relax this end condition, i.e., we may stop after the i-th transition f*or any
i < n, and then we speak of weakly controlled P systems. If L = (Uy...Up)", II is
called a (weakly) time-varying (tissue) P system: in the computatipn step pn + 1,
n > 0, rules from the set U; have to be applied; p is called the period.

The family of sets Y, 5 (II), Y € {N, Ps}, computed by (weaklyl) controlled
P systems and (weakly) time-varying P systems with period p, \iv1th at.most
m membranes and rules of type X as well as control languages in FL is de-
noted by Y., s0Pm (X,C (FL)) (Y4,60Pn (X,wC (FL))) and Y, 0P, (X2 T.V},)
(Y, sOP,, (X,wTV,)), respectively, for v € {gen,acc} and é € Dy U Dg. Similar
notations hold for tissue P systems.

Theorem 5. Y, sOP (cat1,aTVs) = Y, ;0P (pcaty,aTVs) = YRE, for any o €
{\w}, Y € {N, Ps}, v € {gen,acc}, and

d e {mam, MATryles; MALobjects, STNAL, STMATryles, Smazobjects} .

The proof given in [11] for the maximally parallel mode max again can be
taken over for the other maximally parallel (set) derivation modes word by word,
e.g., see [2].

5.3 Target Selection

In P systems with target selection, all objects on the right-hand side of a rul.e must
have the same target, and in each derivation step, for each region a (multl?set of
rules — non-empty if possible — having the same target is chosen. In [2] it was

LAYl Lo T oo % 4 aiicd Tt e 4T AAaricratinatnm vvimada arvrar 1O
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Theorem 6. For any Y € {N, Ps},
Yen,smazOP (ncoo, target selection) = Y RE.

Theorem 7. For any Y € {N, Ps},

Yietace,smaz, v, OF (ncoo, target selection) = Y RE.

In contrast to all the other variants of P systems, P systems with target selec-
tion really take advantage of the membrane structure, no flattening is used or even
reasonable. In that sense, this variant of P systems reflects the spirit of membrane
systems with a non-trivial membrane structure in the best way.

6 The Strangeness of Minimal Parallelism

There is another derivation mode known from literature, which has two possible
definitions, but these two variants unfortunately do not yield the same results.

Following the definition given in [13], for the minimally parallel derivation mode
(min), we need an additional feature for the set of rules R used in the overall
(tissue) P system, i.e., we consider a partitioning @ of R into disjoint subsets R,
to Rp. Usually, this partitioning of R may coincide with a specific assignment of
the rules to the membranes or cells.

There are now several possible interpretations of this minimally parallel deriva-
tion mode which in an informal way can be described as applying multisets such
that from every set R;, 1 < j < h, at least one rule — if possible — has to be used
(e.g., see [4]). Yet this if possible allows for two possible interpretations:

Minimal parallelism as a restriction of asyn *

As defined in [13], we start with a multiset R’ of rules from Appl(IT, C, asyn) and
only take it if it cannot be extended to a multiset R’ of rules from Appl(II, C, asyn)
by some rule from a set R; from which so far no rule is in R’.

Minimal parallelism as an extension of smax

We start with a set R’ of rules from Appl (11, C, smazxg), where the notion smazg
indicates that we are using smaz with respect to the partitioning of R into the
subsets R; to Rp, and then possibly extend it to a multiset R” of rules from
Appl(I1, C, asyn) which contains R'. This definition finally was used in [18] without
using the notion smax, because at the moment when this handbook was written
the notion of maximally parallel set derivation modes had not been invented yet.
Moreaver the 115e of the notion cmar en far waa rectrictod +a +he dicnroto +emaloosr
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Example 1. Consider the one-membrane P system working in the min-mode
II = (V = {a‘7 b},T = {b}aw = aa, R= Rl U R2a :H,min)

with B1 = {a — bb} and Ry = {a — bbb}.

Starting from smazx, we get only one set of rules, i.e., R' = {a — bb,a — bbb},
whose application yields the result bo.

In the case of starting with asyn, we may use one of the two rules twice, thus
also getting the results b* and .

Hence, when two rules are competing for the same objects, the results obtained
with the two different definitions may be different, where the set of results obtained
when using the first definition will always include the results obtained by the
second definition.

The condition that the sets R;, 1 < j < h, have to be disjoint may be alleviated,
for example, see [3].

A special variant of the minimally parallel derivation mode, with the sets R;,
1 < j < h, not being required to be disjoint, is the mode min,, which in fact
means that we stay with smazxg. Now let smaxy denote a partioning § with k
sets of rules. As an interesting result we then get the interpretation of a purely
catalytic P system using max as a P system using min; with the partitioning R;,
1 < j < k, where R; is the set of non-cooperative rules a — u representing the
corresponding catalytic rules ¢;a — cju. Denoting a partitioning in k sets of rules
by 6, we obtain the following result:

Theorem 8. For anyd > 1 and any k > d+ 3,
PSsgce,min, OP (ncoo, 0x) = PSgen min, OP (ncoo, 3) = NYRE.

7 Conclusion

In this paper the effects of using different derivation modes on the generative
and accepting power of many variants of hierarchical P systems and tissue P
systems have been illustrated. Especially some differences between the maximally
parallel derivation modes and the maximally parallel set derivation modes have
been exhibited.

We have also given an overview on some control mechanisms used for (tissue)
P systems.

Many more relations between derivation modes could have been discussed, but
this would have gone much beyond a conference paper.
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