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mation Processing and Intelligent Control of

Summary. We extend the formal framework for P systems exhibited in [3] by consider-
ing the applicability of each rule to be controlled by regular conditions. The aim of this
extension is to express spiking neural P systems in a formal framework. Another goal of
the extension is to incorporate the notions of input and output. We also show that in the
case of spiking neural P systems rules have a rather simple form and in that way spiking
neural P systems correspond to vector addition systems where the application of rules is

controlled by regular expressions.

1 Introduction

Based on the biological background of neurons sending electrical impulses along
uced in [5]. In spiking

axons to other neurons, spiking neural P systems were introd
neural P systems, the contents of a cell — neuron - consists of a number of so-called

spikes. The rules assigned to a cell allow for sending information t0 other neurons
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in the form of spikes corresponding to electrical impulses, which are summed up
in the target cells. The application of the rules depends on the current contents of
the neuron and in the general case is described by regular sets.

As inspired from biology, the cell sending out spikes may be closed for a specific
time period corresponding to the refractory period of a neuron; during this refrac-
tory period, the neuron is closed for new input and cannot get excited — fire — for
spiking. As already shown in (4], considering such delay usually is not needed to
obtain the desired results, hence, we will not consider this feature in the following,

In [1] an extended variant of spiking neural P systems was presented, allowing
the rules to send different numbers of spikes along the axons to different neurons,
lepending on the rule applied in a cell. Since then, many variants of spiking neural
P systems have been considered; we only mention a few ones in the following:

In the basic model for spiking neural P systems, each cell simultaneously with
he other cells applies one applicable rule. This condition may be alleviated by
onsidering asynchronous — any subset of the cells applies a rule - or sequential —
mly one cell applics a rule — spiking neural P systems. In (2], the number of spikes
ent along an axon was allowed to be more than one.

A first overview on results for spiking neural P systems can be found in Chap-
er 13 of the Handbook [8]. A rather extensive bibliography on spiking neural

> systems was published in the first volume of the Bulletin of the International
Uembrane Compuling Society 2016, sce [6].

In [3], a formal framework for P systems was developed. In this paper we
ontinue this line of research b

y extending this formal framework to capture most
f the basic features of spiking neural P systems.

' Preliminaries

he set of all finite multisets over the set V' is denoted by (V,N). The set of finite
mguages over the alphabet T is denoted by FIN(T
ver the alphabet T' by REG( T'). The families of finite and regular languages over
‘bitrary alphabets are denoted by FIN and

REG, respectively. We remark that
;gular expressions are a way to specify regular languages. The regular expressions

/er an alphabet 7" are denoted by REGEX(T). For any E € REGEX(T), L(E)
notes the regular language corresponding to the regular expression E, whereas
*(E) denotes the corresponding regular multiset language. We remark that if
| =1, then L°(E) = L(E).

The set of natural numbers, i.e., the set of non-
. Moreover, N, := NU {o0}.

), the set of regular languages

negative integers, is denoted by

The Definition of the Framework
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7. R is a finite set of interaction rules of the form given in Definition 1.

We also recall the definition of a configuration:

Definition 3 ([3]). Consider a network of cells I = (n, Vi w, Cin, Couts Inf, R).
A configuration C of IT is an n-tuple of multisets over V (Wi, ... up,) with, €
(V,Nx), 1 <4< n; in the Jollowing, C' will also be described by its finile part C/

only, i.e., by (ur,...,u,) satisfying w=wUInfi™ andu,NInf; =0, 1 < i < n.

The next definition defines the applicability of a rule. It extends the corre-
sponding definition from [3].

Definition 4. We say that an interaction rule r — (X = Y, E) is eligible for the
configuration C with C = (uy, . .. yUn) if and only if for all i, 1 < i < n, we have

z; Cu; (x; 18 a submultiset of u;) and

u; € L°(E;) (u; belongs to the regular multiset language described by the ex-
pression E; ).

Moreover, we require that z;0(V Inf;) # 0 for at least one j, 1 < § < n. This
last condition ensures that at least one symbol appearing only in a finite number

of copies is involved in the rule. The set of all rules eligible for C is denoted by
Eligible (11, C).

We remark that the only difference with the previous definition is the replace-
ment of permitting and forbidding conditions by regular expression checks.

The application of a group of rules and the definition of the derivation modes
remains the same as in [3]. Below we recall some details.

Definition 5. Let C be a configuration and II a network of cells. Let R' be a
multiset of rules from Eligible(I1, C) (i.e., a multiset of eligible rules). Let :

X = Z X,.
(Xr—er;ET)ER’

We say that the multiset of rules R’ is applicable to C if X C C.

So, in order for a multiset of rules to be applicable, each rule should be eligible

and there should be enough objects in the configuration corresponding to the sum
of all left-hand sides of the rules.

The set of all multisets of rules applicable to C is denoted by Applicable (11, C).
Definition 6 ([8]). Consider a configuration C and a multiset of rules R' ¢
Applicable (II, C). We define the configuration being the result of applying of R’
to C as

/ \
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finition 7. A derivation mode 0 is a restriction of the set of multisets of ap-
Definition 7. g
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Definition 8. A computation of the network of cells

I = (’I’L, V: w, Cinacoutalnf7 R)
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f
(5

performed as follows:

Co = w + Input(0, cin) | ==k
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| -
he function Input, the defined com
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Ezample 2. A spiking train input is an input function that satisfies the following
property:

Input(t,c) #0 t € {t;,t5}
Tnput(t, ) =0 1 ¢ {11,1)

We also say that the value of the input is fp — ¢;.

Htl,tg >0, & <ty: {

We remark that, according to the above definition, the input cells keep the
non-consumed multisets from the previous steps. It is possible to use a different
strategy by emptying cells ¢;, in every step. First we define an additional function
m(S, X) : 2% x (V,N) - (V, N) that empties all components of X = (X1yees 5X0)
that are not indicated in S (it is similar to a projection, where instead of deleting
components their value becomes empty). Here is its formal definition:

X;, ifie S

0, otherwise

V1 <i<n, (S, X); :{

We will also use the notation (=S, X ) in order to define the application of 7 to
the complement of S.

Now we can define a computation with a transient input.

Definition 9. A computation of the network of cells
H = (TL, V; W, Cip, Cout, Inf) R)

in derwation mode § with transient input and using the input function Input is
performed as follows:

Co = w + Input(0, csr,)
Cit1 = Input(i+ 1,¢;,) + 7(—cim, Apply(I1,C;, R)), R ¢ Applicable(II, C;, 65.

A system with a transient input is useful for some applications, e.g., for image
processing or learning, as it becomes simpler to feed the data into the system.

The result of the computation, or the output, is defined as the result of the
corresponding output function over the time series of the values of output cells.
The output function has a memory and can decide a value based on the history
of the computation, which means that the output is a time series, too. Moreover,
the output function needs the description of the system and the derivation mode
in order to correctly compute its result.

Formally, the signature of the output function is

Output : N x NC x (V™)* x 2V X A— S,

where NC is the familv of all netwrerlea of anlle A fo ol b 11y 1 o
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Suppose that Cy, ..., C, ... is the computation of IT on the sequence of inputs
Input(t). Let us also denote C(t) = Cy, ..., C;. Then the result of the computation
is given by the sequence

R(t) = Output(t, II, C(t), cout, d), t > 0.

The defined computation is infinite. We can restrict ourselves to finite compu-
tations by using an additional function transforming an infinite computation to
a single result. A more elegant solution is to use the following convention — we
expect the output function to produce a finite number of non-empty results: for
any computation there exists a 5, > 0 such that R(t) is empty for all ¢ > #;,. Then
the result is just the union of the corresponding values obtained from the first ¢,
computation steps.

Ezample 3. The traditional output in P systems yields the result of the output cell
when a halting configuration is reached. This can be obtained using the following
output function:

7(cout, Ct) if Applicable(Il,C;,68) =

Output(t, H, C(t)v Cout) 6) = {(Z) otherwise

We remark that the result set in this case is the vector of multisets over V of
dimension |cyq:|. In the simplest case, when ¢y, is a single cell, the result is just
the multiset that is contained in this cell.

We can further simplify the definition of the output function by observing that
for finite computations we need to check for a halting condition, and if it is satisfied
then we need to collect the result (in most of the cases yielding the contents of the
output cells).

Example 4. According to the remark above, total halting can be also scen as an
output function checking that there are no more rules applicable for the current
configuration, and if it is the case, then it yields as the result the contents of the
output cell(s).

Example 5. One of the traditional output strategies in spiking neural P systems is
counting the time difference between two consecutive spikes in the output neuron.
It can be obtained using the output function that for each time ¢ > 0 checks if in
the output cell there is a non-empty contents at time ¢ and at some time t' < ¢,
but the output cell is empty for all 0 < ¢t < ¢,¢” # ¢'. In this case it yields the
value t — t’ as a result. A similar observation holds for the input case.

4 Spiking Neural P Systems
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contains a single object a, also called a spike. In this case, the contents of each cell
is just a number and the whole configuration is a vector of numbers. Moreover,
any regular expression over a one-letter alphabet corresponds to a semi-linear set
of numbers. Hence, we can use the following form for spiking rules (we suppose to
have k cells):

E/X, where X € Z*, E ¢ (2V)*, (1)

Ezample 6. Consider the spiking rule (a2 +a%)*/a® = a in cell 1 connected to cells
2 and 3 (and the system having a total of 4 cells). Taking into account the above
remark we can represent it as (S,N,N,N)/(-2,1,1,0), where § = {2n+3k | n, k>
0,n+k >0}

Such kind of rules can be used if the corresponding system does not have self-
loops. In the converse case it is sufficient to transform the rules into normal form.

Definition 10. A spiking neural P system is said to be in a normal form if the
Jollowing conditions hold:

* for any rule E/a* — a and any & ¢ L°(E), lz| > k,

o for any two rules El/a’C — a and Ey/a™ — a in the same neuron either

E1 = E2 or LO(El) N LO(EZ) — @

The next theorem shows that any spiking neural P system can be transformed
into this normal form.

Theorem 1. For any spiking P system I there exists a sptking neural P system
II" in normal form such that L(II) = L{mr).

Proof. The first condition is easy to be satisfied as the language {z € L°(E) |
|z| > k} is regular and the applicability condition requires the cell to contain at
least k spikes. For the second condition it is enough to observe that the languages
A= L°(Ey)NL°(Ey), B = L°(E1)\ L°(Ey), and C = L°(E;)\ L°(E, ) are regular.
Then the corresponding rules can be replaced by A/a* — a, A fa™ = a, B/a* - a
and C/a™ — a.

Corollary 1. Any spiking neural P system can be written using the notation given
in Equation (1).

Ezample 7. Consider the spiking neural P system depicted on Fig. 1. Tt has an
input neuron labeled by 1 and no output neurons. The system uses a spiking train
input and a boolean output function based on the halting condition: with the first
spike arriving in the input cell in the first step, the system starts spiking in a cycle
of three with different configurations; it halts and thus outputs true if the difference
between the two spikes of the input spiking train arrived with a time difference
of 3 steps and thus forces the system to halt, whereas otherwise the system does
not reach a halting confisuration and thius we concider e o+ Ga mmmmm o Ter 1o

.
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The rules of the system can be written as follows:

1:({1},N,N,N)/(-1,1,0,1
2.1 :(N, {1}, N,N)/(0,—1,1,0
3.1 (N, N, {1},N)/(0,0, -1,1
41:(N,N, N, {1})/(1,0,0, -

* k 10%
izes input sequences of the form 0*1(000) 0%,
e presents a number divisible

)

) 2.2 :(N, {3}, N,N)/(0, —3,0,0)
) 3.2 :(N,N, {3},N)/(0,0,-3,0)
) 42:(N,N,N, {2})/(1,0,0, —2)

We observe that the sys . :
k > 1. ie., the time between the two input spikes re

Eh ribing figuration is (0,0, 2,0).
i i _vector describing the config ,0,2,

1 as the input is 0, the 4-vec ; . . . ;

W-tist}?: grst spike arriving in neuron 1, we get the follo“fmg scqwlucncq‘z of LDEEE‘;

ratlions using the spiking rules in the four neurons, assuming 3k time steps, k > 1,

until the second spike arrives in neuron 1:
(1,0,2,0)
(0,1,2,1)
(0,1,3,0)
(0,0,1,0) A
Then the system loops in neurons 2, 3, and 4 as follows:
(0,0,0,1)
(0,1,0,0)
(0,0,1,0)

Finally, when the second s

pike arrives in neuron 1 at the right time, we end up
with the following sequence, which finally yields a haltin

g configuration:

11 other cases where the time betwecn

. H 3 a
The interested reader may verify that in L R

the two spikes arriving in the input neuron
halting computation.

5 Extensions

i i del.
In this section we briefly discuss some extensions of the basic mo

5.1 Extended Rules

i i e that
A natural extension of spiking neural P systems 18 the mod
L i Tadie tunes of such models:

|
uses extended
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\a" or a?

(BN, N)/(—m. 1, )
(E.N,N)/(—m,p.q)| a*ora9

(c)

at
(a)

Fig. 2. Different extended spiking rules: (a) extended; (b) weights on synapses; (c)
generalized rules from formal framework.

vectors. In fact, since the annihilation rule has priority over all other rules, in a
neuron there can be only spikes or only anti-spikes, which corresponds to having
positive or negative integers.

Another model [10] uses a variant of extended rules with real weights on
synapses. This can be simulated using real vectors and equality predicates on
real numbers instead of regular expressions.

5.3 Astrocytes

In spiking neural P systems with astrocytes two networks are interleaving — a
normal spiking neural P system and a second network of cells interacting with
the axons of the first one. An astrocyte senses several axons. Depending on the
mumber of spikes sent through these axons, the number of spikes then allowed
to pass through each of these axons is determined, For example, given an upper
bound k for the sum of spikes to pass through these axons, either all spikes may
pass, whereas otherwise they are removed and no spike will reach the target cells.
There are many variants: (a) upper bound or (b) lower bound for the spikes to let
them pass, and more general, (c) a function of the number of spikes wanting to
pass and the number then allowed to pass, which can be done in an enforcing way
or in an inhibitory behavior way.

This behavior can be directly modeled using general rules. The simulation is
based on the observation that in each step only one rule per neuron can be applied
(and there is a finite number of rules per neuron), so it is possible to know in
advance how many spikes arc gencrated by chosen rules.

For example, consider two axons leaving from neuron 1 and an astrocyte sensing
these two axons going to neurons 2 and 3. The application of a rule

(E1,N,N)/(-m,p,q)

without the astrocyte controlling the axons would describe the application of a
spiking rule in neuron 1 consuming m spikes, with m € E4, and sending p spikes
| B Y T T T T e TTeine a <imple astrocyte with lower bound k, i.e.,
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(£1,N,N)/(=m,p,q) if p+q>k, and
(E1,N,N)/(=m,0,0) otherwise.

5.4 Families of Control Languages

Instead of regular languages (given by the corresponding regular expressions) for
controlling the application of rules, other classes of formal languages can be used,
for example, subregular classes. In many variants of spiking neural P systems con-
sidered so far, FIN({a})U {a}* is sufficient, for example, see [4]. With FIN({a}),
usually only semi-linear sets can be obtained.

6 Conclusion

The proposed generalization of spiking allows us to describe many spiking-based
models in a uniform way. As the formal framework for static P systems [3], this
may open many directions for future research, including the comparison between
different spiking models and the introduction of new features. As possible examples
we would cite using spiking with real numbers as well as the probabilistic execution
of the system.

Another conclusion that can be drawn using our formalization is that spik-
ing neural P systems in fact can be seen as working in the sequential derivation
mode, without any parallelism, which can easily be argued as follows: since the
complement of L(E) is regular, it is possible to construct complementary regular
expressions for every rule. Then it is possible to write a series of rules each of
them corresponding to the action of any combination of the initial rules (using the
corresponding regular expressions). More precisely, for any combination of single
rules from each neuron, it is possible to construct a single general rule that will
check using the regular expressions that the chosen rules are applicable. Moreover,
if in the normal form there are no identical expressions for any two rules in a cell,
then the resulting system is deterministic (as it is possible for each rule to extend

the regular expression with the negation of all other regular expressions and verify
that any other rule is not applicable).
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