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ABSTRACT: In this study, we present a stand-off hyper-
spectral Raman imager (HSRI) for the fast detection and
classification of different explosives at a distance of 15 m. The
hyperspectral image cube is created by using a liquid crystal
tunable filter (LCTF) to select a specific Raman shift and
sequentially imaging spectral images onto an intensified CCD
camera. The laser beam is expanded to illuminate the field of
view of the HSRI and thereby improves large area scanning of
suspicious surfaces. The collected hyperspectral image cube
(HSI) is evaluated and classified using a random decision
forest (RDF) algorithm. The RDF is trained with a training
set of mg-amounts of different explosives, i.e., TNT, RDX,
PETN, NaClO3, and NH4NO3, on an artificial aluminum
substrate. The resulting classification is validated, and variable
importance is used to optimize the RDF using spectral descriptors, effectively reducing the dimensionality of the data set. Using
the gained information, a faster acquisition and calculation mode can be designed, giving improved results in classification at a
much higher repetition rate.

The advance in computer or machine vision over the last
decades fueled a wide range of new and exciting

possibilities for automated recognition, classification, and
control in medical,1,2 industrial,3,4 as well as military5 areas. At
the same time, the need of rapid detection of localized traces of
harmful substances, such as explosives, at safe distances
increased due to the rise of domestic attacks and the
accompanying elevated security risk and screenings. It is
imperative, then, to distinguish the chemical composition of a
target substance in an area of interest, deciding whether or not it
poses a threat. This can most effectively be done by adding
another layer of information to an ordinary image by means of
spectroscopy, a technique known as hyperspectral imaging
(HSI). Continuous advancements in instrumentation led to a
plethora of different combinations of spectroscopic and imaging
techniques with the goal of creating spatially resolved chemical
maps for various different applications, ranging from food
quality and safety analysis6 to biomedical engineering.7 Raman
spectroscopy (RS) seems to be particularly suited as a
spectroscopic technique to be implemented in such HSI
screening devices, since it offers high chemical selectivity,
while being a nondestructive method, and features the ability to
be used at remote distances due to its scattering nature. Lasers
allow light to be transported over significant distances without
high losses; hence, probing distant samples via stand-off RS is
viable. In stand-off RS applications, the instrument is physically
separated from the sample,8 which is especially useful if

dangerous or harmful substances are the target of an
investigation, or the target area is poorly accessible. The
detection of explosives and explosive residues using stand-off RS
became prominent due to the successful endeavor of this kind of
instruments to detect tiny amounts of explosive material at
significant distances, shown in several studies over the last
years.9−11 The result of a hyperspectral image (HSI) experiment
is a data cube, where two axes represent the local information,
and an additional axis is occupied by the spectral variables. Most
spectroscopic techniques are suitable for obtaining HSI,
generally the recording mechanism can be divided into three
techniques, whiskbroom,12 pushbroom,13 and staring or spectral
scanning14 measurement. The whiskbroom scanner uses a single
point detection scheme, which mapped over a certain area
produces the HSI. The first RS HSI instruments were based on
this scheme using microscope systems, where the implementa-
tion of RS due to its scattering nature and ability to work in the
visible spectral range is preferable.15 High spatial resolution is a
direct benefit of using an optical microscope as both excitation
and collection optic, which can even dissect samples optically
into μm thin slices when a confocal arrangement is used.16

Similarly, in the pushbroom approach, a line is scanned over an
area of interest with an array detector, where one axis is
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dedicated to the spectral axis.17 Lastly, the staring or spectral
scanning techniques utilize a tunable filter to select a specific
spectral feature and acquire an image. The HSI is built by
consecutively stacking spectral images. The first implementation
again employed microscopes in combination with acusto-optical
(AOTFs) and liquid crystal tunable filters (LCTFs).18

Recently, even Bragg tunable filters have been used in Raman
microspectroscopy.19 A comparison of all techniques of
hyperspectral raman imaging (HSRI) was performed by
Schlücker et al.20 Regarding stand-off HSRI instruments, most
are designed as whiskbroom imagers and are therefore of limited
use when large areas should be investigated, but mapping of the
excitation laser over the whole area is a tedious process.
Pushbroom systems have been tested as stationary screening
devices.17 Staring or spectral scanning stand-off Raman imagers
have been proposed and tested over the past years,21 where the
dispersive element is a tunable filter with a large enough aperture
to transmit the whole field-of-view (FOV) of the collecting optic
as an image directly onto the detector array. Here, LCTFs can
facilitate narrow bandpass filters suitable for RS, which can be
tuned electronically in a fast and reliable manner, while on a
small footprint. In combination with a suitable intensified CCD
(iCCD) camera and a small, air-cooled, pulsed laser, it is
possible to design a stand-off HSRI system, which can be field
deployable. The limitation of the LCTFs is the usable spectral
range, especially regarding the UV region, where the absorbance
of the incorporated materials in LCTFs hinders their
application. Hence, recently, custom built tunable filters based
on Fabry−Peŕot interferometers have been studied as viable
alternatives for UV excitation.22 These are, however, still not
available commercially..
The resulting HSI data sets are usually highly dimensional and

complex, challenging even experts with their evaluation.
Therefore, chemometric algorithms found their way into the
field of RS as handy tools for breaking down thousands of
complex spectra into digestible information.23 In regards to
detection of explosives, a fast and robust classification of the
obtained HSRI would result in easily understandable false color
images, which can be also interpreted by trained nonexperts.
Here, we propose the usage of a random forest classifier (RDF),
due to its ability to perform high quality classification with
efficient use of processing power.24 The RDF consist of an
ensemble of decision trees, which are trained by randomly
selecting and using a subset of the available data set (defined by
the ratio R, in-bag samples), thus growing into a forest of user-
defined size (NT). Classification is reached by majority vote of
the class assignment probabilities of each tree, which carry low
bias and high variance due to the random pick of samples during
training.25 A major advantage represents the use of the
previously left out subset as internal cross-validation on the
performance of the RDF by calculating an error estimate known
as an out-of-bag (OOB) error (Table 1).26 Similarly, this can be
exploited to investigate on the variable importance (VIP). When
comparing OOB errors from the trained RDF with OOB errors
from RDFs with randomly permutated sample variables, the

effect of each variable can be assessed. This is a useful tool in
decreasing the dimensionality of the obtained data, while
keeping quality classification.27

This results in a considerable reduction of measurement time,
especially for the staring HSRI system, as the amount of spectral
images to be acquired as the time-consuming step can be
reduced significantly.
In this study we present an air-cooled, mobile stand-offHSRI

system in the visible spectral range. Accidental detonation or
photodegradation of the sample was avoided by using an
excitation laser with low pulse energies, but high repetition rates
with a defocused beam to illuminate an area corresponding to
the field of view of the collection optics. The HSRI works in
staring or spectral scanning mode, where an LCTF is used to
discriminate a certain Raman shift and collect the image.
Different explosive materials are measured at a distance of 15 m.
The obtained HSI is the basis to train an RDF, which is used to
identify the most important variables and create designated
spectral descriptors (SPDCs),28 reducing the dimensionality of
the data set and subsequently improving measurement and
calculation time. A second RDF is trained using these SPDCs,
showing improved performance, while highlighting the benefits
of the synergy between stand-off HSRI and RDF classification
for the fast, remote detection of explosives.

■ MATERIALS AND METHODS

Stand-off Hyperspectral Raman Imager. The direct
stand-off imager (Figure 1a) used an air-cooled, Q-switched,

Table 1. Results of the RDF Classifiers for the Different Explosive Classesa

OOB average error in %

NaClO3 NH4NO3 PETN RDX TNT # var. meas. time calc. time

RDF1 1.44 1.82 7.82 5.94 3.67 768 51 min 15 s 3
RDF2 0.37 0.85 5.2 2.63 1.1 80 5 min 20 s 1

aCalculation time is given as a relative number.

Figure 1. (a) Illustration of the optical setup. The beam emitted by the
laser (532 nm, Nd:YAG) is expanded in order to illuminate the field of
view of the telescope at the stand-off distance. The Raleigh line is
filtered by an edge filter (F), before a tunable liquid crystal filter
(LCTF) selects a Raman shift for the spectral image. The image is taken
by an iCCD camera synchronized to the pulsed laser output. (b) Sketch
of the structure of the resulting hyperspectral image cube.
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frequency-doubled (532 nm) Nd:YAG Explorer One (EONE
532−200, Spectra-Physics, USA) laser with a Gaussian beam
profile and adjustable pulse energies ranging from 30 to 300 μJ
and repetition rates from single shot to 60 kHz. The laser beam
was expanded using a defocused Galilean type beam expander to
a diameter of approximately 100 mm at the stand-off distance of
15 m. The backscattered Rayleigh photons were eliminated
using a long pass filter (LP03-532RE, Semrock, USA).
Afterward, a specific Raman shift was selected using a tunable
LCTF filter (VariSpec VISR, PerkinElmer, USA) with a spectral
resolution of 0.25 nm and directly imaged onto an iCCD
equipped with a quadratic sensor (PIMAX 4 1024f-HBf iCCD,
1024 × 1024 pixels, 13 μm pixels). The spectral images were
stacked in order to build the hyperspectral data cube as depicted
in Figure 1b. This process was automated using LabVIEW
(National Instruments, USA).
Chemicals. Explosives. An appropriate rectangular sample

holder in aluminumwith an edge length of 80 mmwas designed.
Then, 49 wells with a diameter of 4 mm and a depth of 1 mm
were cut into the aluminum, acting as a holder for the explosives.
The wells were randomly filled with 10 mg of the different
available explosives or precursors so that every class was
represented three times (Figure 2a). Three pure explosive
components, trinitrotoluene (TNT), pentaerythritol tetrani-
trate (PETN), and 1,3,5-trinitro-1,3,5-triazinane (research
department explosive, RDX), were used in this study. At the
same time, the three pure components were also added as plastic
variants, i.e., the pure explosives with added binders,
desensitizers, waterproof coatings, and plasticizers, which help
increase their usability and storability.29 Rowodyn is a
commercially available explosive, mostly composed of
NH4NO3, nitroglycerine, ethylene glycol dinitrate, and fuel.
Ammonium nitrate fuel oil (ANFO) is a mixture of NH4NO3
and fuel oil. All these samples were acquired from the Austrian
Armed Forces. Finally, NaClO3 and NH4NO3 were acquired
from Sigma-Aldrich as examples of explosive substances often
found in improvised explosive devices.30

Other. A 3 mm thick polytetrafluoroethylene (PTFE) plate
was acquired from RS Components GmbH (Austria) as a
reference material for the test of the stand-off HSRI.
Measurement Parameters. The sample was placed at a

distance of 15 m to the telescope. The repetition rate of the laser

was set to 10 kHz emitting pulses with a pulse width of
approximately 10 ns and pulse energies of 0.21 mJ, giving an
average power of 2.1W, yielding an average radiant energy of 2.7
μJ/cm2 and an average irradiance of 26.7 mW/cm2 due to the
widened beam. The laser pulses were synchronized to the gate of
the intensifier of the iCCD in order to maximize Raman signal
and suppress ambient light. The gate of the camera was set to 10
ns to coincide with the laser pulse width. Signal to noise was
improved by accumulating 30.000 pulses on the CCD per
spectral image, resulting in a total measurement time of 3 s per
image. HSI cubes were started at 800 cm−1 and ended at 3101
cm−1 Raman shift with a spectral image every 3 cm−1, resulting in
768 different spectral layers.
Reference Raman spectra of all components were measured

using a confocal Raman microscope (Horiba LabRAM HR,
Japan) equipped with frequency-doubled Nd:YAG (532 nm)
laser with 20 mW, a 20× objective, 2 s integration time, 10
accumulations, and a grating of 300 gr/mm.

RDF. In order to train the RDF,25,26 a list of training data
points was created. Then, 40 pixels with pure explosives (TNT,
PETN, RDX, NaClO3, and NH4NO3) were selected manually
and associated to their respective class. Preprocessing of the data
set included spike removal and baseline correction using Eiler’s
method36 over 15 iterations with a smoothness of 10 000 and an
asymmetry of 0.001. First, an RDF was trained with all the
spectral images as input variables (RDF1). The ratio (R)
between used and unused samples (in-bag and out-of-bag OOB
samples) was optimized by computing several forests and
choosing the ratio which yielded the lowest OOB average errors.
Similarly, the optimal number of trees (NT) was established.
Afterward, a feature selection was done via the variable
importance of each class. Spectral descriptors, in this case,
correlation to a template triangle peak (TC descriptor), were
chosen as the new input. The second RDF was trained using
those as input variables (RDF2). Both classifications are
compared regarding their classification and OOB errors. All
calculations were performed using ImageLab (Epina GmbH,
Austria).

■ RESULTS AND DISCUSSION
To assess the capability of the stand-offHSRI to produce quality
HSIs (single pixel spectra) over the whole FOV, a PTFE plate

Figure 2. (a) Illustration of the randomly chosen and filled positions of each sample on the sample holder. (b) Overlay of the intensity of the spectral
image at 941 cm−1 corresponding to the symmetric stretch vibration of NaClO3 on a greyscale image of the sample. (c) Overlay of the intensity of a
correlation to a template triangle as the spectral descriptor for the band associated with NaClO3 on a greyscale image of the sample.
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was placed at a distance of 15 m and imaged starting at 680−
1500 cm−1 with steps of 3 cm−1. An acquired single pixel
example spectra is displayed in Figure 3a and compares correctly

to the given reference spectrum. An important factor for correct
and accurate interpretation of the obtained HSI is the
wavelength stability of the dispersive element, in this case, the
LCTF filter, over the whole FOV. The band of PTFE at 746
cm−1 corresponding to the skeletal stretch37 was chosen because

of its high intensity and narrow line width for an in-depth
analysis of the stability and accuracy of the LCTF as wavelength
discriminator. Both center position and full width at half-
maximum (fwhm) of the band were assessed by fitting the band
with a pseudo-Voigt profile,38 as shown in Figure 3b, and
extracting the respective parameters. Due to low intensities at
the edges of the image because of the Gaussian beam profile,
only values inside the rectangular indicated in Figure 3c,d were
taken for further analysis, as this was also the size of the test
sample. The median center position was found to be 746.2 cm−1

with a standard deviation of 0.3 cm−1. The median fwhm was
located at 11.3 cm−1 with a standard deviation of 0.8 cm−1. Both
parameters are well within the specifications of the LCTF and
exhibit no drift or inconsistencies over the whole FOV. This is
crucial for the device to act as reliable dispersive element in this
HSRI application.
The capability to detect the amounts of explosives put into the

sample holder at a distance of 15 m is shown exemplary in Figure
4, where raw single pixel spectra chosen from the respective
sample positions are compared against reference spectra
obtained via measurement using a Raman microscope. The
pure components NaClO3 and NH4NO3 show quality spectra
(Figure 4a,b) both when measured with the stand-offHRSI and
the Raman microscope. Analogously, the spectra of RDX and
TNT are in good agreement with the respective reference
spectrum. Both components exhibit an elevated background,
which can be attributed to fluorescence. This leads to fluctuating
baseline features (e.g., between 2500 and 2800 cm−1 in Figure
4d), which are not sample related and are caused by the
transmission characteristics of the Rayleigh edge filter used to
block the incoming laser light. Themain difference in the spectra
obtained with theHSRI and the Ramanmicroscope is the signal-
to-noise ratio (SNR). It is higher for the reference spectra, due to
the longer integration time and significantly higher incident
irradiance when using the microscope. At 532 nm, a 20×

Figure 3. (a) Sample spectra of PTFE compared to a reference
measurement using a confocal Raman microscope. (b) Illustration of
the curve fit of the band at 746 cm−1 with a pseudo-Voigt profile (green
curve). (c)Distribution of the center position of the fitted band over the
FOV of the HSRI. (d) Distribution of the fwhm of the fitted band over
the FOV of the HSRI.

Figure 4. Reference spectra of (a) NaClO3, (b) NH4NO3, (c) RDX, and (d) TNT (black curves) obtained via confocal Raman microscope compared
to the spectrum of a pixel recorded with the stand-off HSRI at a distance of 15 m. These spectra are not preprocessed, except normalization.
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objective (NA = 0.4) on a confocal microscope system gives a
theoretical spatial resolution of approximately 500 nm.
Assuming an area of that diameter, the irradiance under the
microscope amounts to 1010 mW/cm2, an increase of
approximately 8 orders of magnitude compared to the irradiance
of the widened beam. Given that the intensity of a Raman signal
is direct proportional to the impinging laser intensity onto the
sample, it speaks for the throughput and detectivity of the stand-
off HSRI to still show acceptable spectra, even at stand-off
distances.
To build an able classifier, the first step taken in this study was

to train an RDF classifier (RDF1) using the baseline-corrected
intensities of each spectral image as input variables. The training
set included 200 reference points per pure class of explosive,
manually selected from the 3 possible positions on the sample
(Figure S1). To select an optimal R (0.66) and NT (50), a scan
for both parameters was performed, taking the OOB average
error as the indicating measure for when optimal classification is
reached (Figures S2−S5).
The results of RDF1 are shown in Figure 5a,b. The confusion

matrix shows that the training set can be distinguished without

any false positives or false negatives. However, the OOB errors
reveal differences in the quality of classification between the
different explosives. NH4NO3 and NaClO3 are better charac-
terized than the other pure components, which is feasible,
because of their strong, single standing spectral features. An even
more differentiated image is given in Figure 5b, where the RDF1
classifier is applied to the whole data set. Here, various
misclassifications can be identified, with sample position B3
showing the biggest error. On this spot, pixels classified as TNT,
RDX, and NaClO3 neighbor each other; whereas B3 was
prepared with plasticized RDX. Aggregations of false classi-
fication on positions with fluorescent samples, like E1, E2, B3,
B4, B6, and C5, are also found. The evidence is hardened when
Figure 2a,b is compared. Even after baseline correction, the

intensity distribution of the band ofNaClO3 at 941 cm
−1 (Figure

2b) does not only cover the areas A1, G2, and G4, as prepared,
but also, e.g., B3, B4, B6, and E2. It is apparent that another tool
which gives a more selective measure for the abundance of the
respective compound has to be found. This challenge was
approached by first evaluating the VIP scores of every class when
all variables are used, i.e., the VIP scores of RDF1. Figure 6a,b

depicts the VIP scores and the respective spectra from a pure
pixel for two selected classes, namely, sodium chlorate and TNT.
High VIP scores for RDF1 for sodium chlorate are situated
around the maximum band intensity at 941 cm−1, which was
expected. For TNT the same situation is true with the highest
VIP score around the main band associated with the symmetric
stretch of the NO2 at 1361 cm−1, albeit the presence of other
bands.
Similarly, it was found that, for all other classes, one spectral

feature was predominantly represented in the VIP scores. This
spurred the idea of using these small parts of the spectrum for

Figure 5. (a) Confusion matrix for the training data set of the RDF1
classification, when all acquired intensities are used as variable (b)
RDF1 classifiers with all variables applied over the whole sample, each
class is color-coded. (c) Confusion matrix for the training data set of the
RDF2, when only the spectral descriptors are used. (d) RDF2 classifier
with only spectral descriptors applied over the whole sample, each class
is color-coded.

Figure 6. (a) Variable importance (VIP) scores of the NaClO3 class for
the RDF using all spectral images as variables. (b) VIP scores of the
TNT class for the RDF using all spectral images as variables. (c) VIP
scores of all explosive classes for the RDF using only spectral descriptors
as variables.
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classification. However, the fact that elevated baselines with
heavy fluorescent backgrounds (e.g., RDX, as shown in Figure 7)

heavily affected pure intensities, another spectral descriptor less
prone to noise was needed to describe band intensity. Here, a
TC descriptor was used. The descriptor is characterized by a
triangle template with the parameters b1 and b2 as baseline
points and c as center point. The strength of the descriptor is
calculated by the positive significant correlation (significance
level 0.01) to the data points within the chosen range multiplied
by the baseline corrected integral as a measure of band
intensity.39 This descriptor tends to be less sensitive to noise,
since for noise, it is unlikely to produce a significant correlation
to the triangle template. In comparison to Figure 2b,c, the effect
of choosing a TC descriptor with appropriate parameters (Table
2) for sodium chlorate is clearly visible. The TC descriptors

intensity is only observable for the prepared NaClO3 positions,
instead of also highlighting points with highly fluorescent
backgrounds. The TC descriptor was subsequently also applied
to all other regions where the RDF1 gave high VIP scores for the
different classes. This resulted in 5 different TC descriptors for
the 5 explosive classes investigated in this study, which are
summarized in Table 2. Now, the same parameters as in RDF1
were taken to train a second RDF, RDF2, except for the input
variables, which, in the case of RDF2, consisted of the five TC
descriptors. An R and NT scan revealed similar behavior of this
RDF, so the same values as in RDF1 were used. Again OOB
errors were calculated and show an overall improved perform-
ance of the classifier (Table 1). Especially, the detection and
recognition of sodium chlorate profited from the new spectral
descriptors, as was discussed before comparing Figure 2b,c, but

is confirmed by the OOB errors found in RDF1 and RDF2.
Overall, the OOB errors are reduced for all classes of explosives,
which, in turn, results in a much cleaner assessment of the whole
sample, when the RDF2 is applied to the whole FOV imaged by
the HSRI, shown in Figure 5d.

■ CONCLUSION
A stand-off hyperspectral Raman imager working at a 532 nm
excitation wavelength with a 15 m distance to the sample
position was designed, constructed, and tested for its capability
to produce quality spectra at low laser irradiance at the target.
The stability and correctness of the produced spectra were
assessed for every pixel in the FOV of the imager. Different types
of explosive samples, namely, ammonium nitrate, sodium
chlorate, PETN, RDX, and TNT, were prepared in the mg-
range on an aluminum substrate. Additionally, plasticized
variants of the explosives as well as a commercial explosive
(Rowodyn) were prepared on the same substrate and measured
at 15 m. Two RDFs were trained. The first RDF (RDF1) was
trained by using all the available pixel intensities of all spectral
images of a defined test set. With the help of the variable
importance in RDF1, TC descriptors for the pure components
in the test set were constructed and used in the training of a
second RDF (RDF2). Both RDFs were compared regarding
their out-of-bag errors and classification performance of the
whole sample. It is shown, that the TC spectral descriptor can
significantly increase the selectivity and specificity of the signal
response and therefore improve the classification prowess of the
RDF. Additionally, since for the TC descriptor fewer spectral
positions are needed, the measurement time decreases by a
factor of 10, while the computation time is reduced by a factor of
3 due to the reduction of variables. Fluorescence remains a
challenge in this spectral region, possible solutions include
moving the excitation either to the near-infrared or to deep UV
wavelengths40 or use of faster gating to discriminate fluorescence
in the time domain.41 In conclusion, we show that the
combination of direct HSRI and RDF with an improved
selection of spectral descriptors enable a fast large area detection
of mg-amounts of explosives at a distance of 15 m using Raman
spectroscopy in the visible regime.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.anal-
chem.9b00890.

Prepared sample positions with the different explosives,
manually selected sample positions for the RDF training
data set, OOB average error in dependence of the selected
in-bag to OOB ratio for RDF1, OOB average error in
dependence of the selected forest size (NT) for RDF1,
OOB average error in dependence of the selected in-bag
to OOB ratio for RDF2, and OOB average error in
dependence of the selected forest size (NT) for RDF2
(PDF)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: bernhard.lendl@tuwien.ac.at.
ORCID
Christoph Gasser: 0000-0002-6329-2560

Figure 7. Reference (black, solid line) and stand-off HRSI (orange,
solid line) spectra of pure RDX compared to a reference (black, dashed
line) and HSRI (orange, dashed line) spectrum of RDXwith plasticizer.
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(12) Adaõ, T.; Hrusǩa, J.; Pad́ua, L.; Bessa, J.; Peres, E.; Morais, R.;
Sousa, J. J. Remote Sens 2017, 9 (11), 1110.
(13) Boldrini, B.; Kessler, W.; Rebner, K.; Kessler, R. W. J. Near
Infrared Spectrosc. 2012, 20 (5), 438−508.
(14) Li, Q.; He, X.; Wang, Y.; Liu, H.; Xu, D.; Guo, F. J. Biomed. Opt.
2013, 18 (10), 100901.
(15) Delhaye, M.; Dhamelincourt, P. J. Raman Spectrosc. 1975, 3 (1),
33−43.
(16) Dieing, T.; Hollricher, O.; Toporski, J. Confocal Raman
Microscopy. Springer Series in Optical Sciences; Dieing, T., Hollricher,
O., Toporski, J., Eds.; Springer Berlin Heidelberg: Berlin, 2011; Vol.
158.
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