
Reduction of the 6th and 12th harmonic in the
torque ripple of a salient pole synchronous

reluctance machine

Mario Nikowitz∗, Matthias Hofer, Manfred Schroedl
Institute of Energy Systems and Electrical Drives, Technische Universitaet Wien, Vienna, Austria

∗E-mail: mario.nikowitz@tuwien.ac.at

Abstract—In this paper a reduction method for
torque–ripple is evaluated. Synchronous reluctance motors
(SynRM) combine highly efficient operation with low initial
costs of the drive system. The disadvantage of the used
salient pole rotor structure is that a strong torque–ripple
could occur. To deal with this unwanted torque harmonics
the classical mathematical model of the SynRM has to
be enhanced. With this extended model a torque–ripple
suppression method was developed which does not require
detailed information of the system. These theoretical ap-
proaches were experimentally tested on a prototype to verify
the performance of the enhanced drive system.
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I. INTRODUCTION

Synchronous–reluctance machines (SynRM) are get-
ting more popular in the last years. This is caused by
the higher efficiency compared to widely used induc-
tion motors (IM) [1][2][3][4] and the lower initial costs
compared to the permanent magnet synchronous motors
(PMSM). Furthermore the use of a position-sensorless
method, which replaces the angular sensor by mathemat-
ical equations [5][6][7], is possible. This also increases
the economical benefits by decreasing failure probability.
The disadvantage of SynRMs, especially in the salient
pole configuration (see Fig. 1), is the increased generation
of unwanted harmonics in torque [8].

Fig. 1. Position of the dq-reference frame in the used rotor geometry

The key data of the used SynRM–prototype are listed
in Tab. I, where the rotor lamination cross section is
shown in Fig. 1 [8].

Maximum Shaft Power 185 W
Maximum Shaft Torque 0.6 N m
Nominal Shaft Speed 3000 rpm
Line Current 1.5 A RMS
Line Voltage 162 V RMS

TABLE I. KEY DATA OF THE USED SYNRM–PROTOTYPE WITH
SALIENT POLES

II. TORQUE–RIPPLE

By variation of the used rotor structure it is possible
to influence the characteristics of the SynRM. For exam-
ple the choice of a salient pole rotor can increase the
efficiency of the motor compared to the flux barrier rotor
type. But this salient pole configuration increases also the
occurrence of disturbing harmonics in the drive system,
which is a big disadvantage [8].

To characterise these unwanted harmonics (in our
case the torque–ripple) the SynRM was driven in the
common used field-oriented control operation mode. The
torque t was determined through equation (5). Of course
the torque determination is also possible by a torque
sensor, but this reduces dramatically the dynamic of the
system caused by the limiting sensor bandwidth. Fig. 2
shows the measured spectrum of the determined torque at
various speeds ωm and as a function of the stator-current
space-vectors magnitude |iα,β |. The two most dominant
harmonics in this machine are the 12th followed by the
6th. In the following the focus of this paper lies on these
two harmonic components.

III. MATHEMATICAL DESCRIPTION OF
SYNCHRONOUS–RELUCTANCE MOTORS

The most comfortable way to describe a SynRM
is in the rotor-fixed reference frame, the dq-reference
frame. The d-axis is aligned in the direction of maxi-
mum magnetic permeance, where the q-axis is aligned in
the direction of maximum magnetic reluctance. Figure
1 shows the positions of these axis in the used rotor
configuration. The difference between the position of the
d-axis and the symmetry axis of the rotor–pole arises from
the asymmetrical rotor structure (βP 6= 90◦).

A. Fundamental Wave Model

In this section the common fundamental wave model
of the SynRM is presented. To describe the rated magnetic



Fig. 2. Measured spectrum of the torque (uncompensated system) as a function of the speed ωm and the magnitude of the stator-current space-vector
|iα,β |

flux linkage of the motor equation (1) and (2) are used.

ψd =ld(id) id (1)
ψq =lq(iq) iq ≈ lq iq (2)

In the case of a SynRM with salient poles the cross-
coupling between the direct–axis and the quadrature–axis
is negligibly small and can be ignored. So the equa-
tions only consist of the rated direct–inductance ld(id),
the quadrature–inductance lq , the direct–current id and
the quadrature–current iq . Figure 3 shows the measured
inductance–characteristics ld(id) and lq(iq) ≈ lq of the
used SynRM.
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Fig. 3. Measured rated inductances ld(id) and lq(iq)

With these specific equations of this SynRM type the
fundamental wave model of the stator voltage equations
can be written in the usual way like shown in (3) and (4).

ud =r id + ld(id)
did
dτ
− ωm lq iq (3)

uq =r iq + lq
diq
dτ

+ ωm ld id (4)

Voltages ud and uq are the components of the
rated stator–voltage space–vector, r represents the stator–
resistance and ωm is the motor speed.

Finally the equation of the rated torque t is given by
(5).

t =− Im(ψ i∗) = (ld(id)− lq) id iq (5)

B. Extended Mathematical Model

To handle the unwanted torque–ripple (see section
II) the introduced fundamental model of section III-A
is unsufficient. An extension of this model is necessary
to describe the disturbing harmonics. An introduction of
position–angle dependent inductances ld(γ) and lq(γ) is
recommended. Assuming constant speed ωm allows the
transformation from a position–angle dependency to a
time dependency of the inductances given by (6) and (7).

ld(τ) =ld,0 +

∞∑
k=2

(ld,k(τ)) = ld,0 + ld,Σ (6)

lq(τ) =lq,0 +

∞∑
k=2

(lq,k(τ)) = lq,0 + lq,Σ (7)

The variables ld,0 and lq,0 represent the time inde-
pendent part of the inductances like described in Sec.



III-A. ld,k(τ) and lq,k(τ) are used to describe the effects
of the kth harmonic. To keep the mathematical model
of the inductance saturation as simple as possible the
inductance ld(id(τ), τ) is assumed to be independent
of the current ripple component id,k(τ), which means
ld(id(τ), τ) ≈ ld(id,0, τ) = ld(τ).

Consequently, these time dependent components in
the inductances lead to time dependent components in the
current and in the voltage like mentioned in (8) - (11).

ud(τ) =ud,0 +

∞∑
k=2

(ud,k(τ)) = ud,0 + ud,Σ (8)

uq(τ) =uq,0 +

∞∑
k=2

(uq,k(τ)) = uq,0 + uq,Σ (9)

id(τ) =id,0 +

∞∑
k=2

(id,k(τ)) = id,0 + id,Σ (10)

iq(τ) =iq,0 +

∞∑
k=2

(iq,k(τ)) = iq,0 + iq,Σ (11)

Considering these time dependent inductances ld(τ)
and lq(τ) in the stator–voltage equations (3) and (4) lead
to modified stator–voltage equations (12) and (13).

ud =r id +
dld
dτ

id + ld
did
dτ
− ωm lq iq (12)

uq =r iq +
dlq
dτ

iq + lq
diq
dτ

+ ωm ld id (13)

Inserting (6) - (11) to this extended model results in
the following form of the stator–voltage equations (14)
and (15).

ud,0+ud,Σ = r (id,0 + id,Σ) +
d ld,Σ
d τ

(id,0 + id,Σ)

+ (ld,0 + ld,Σ)
d id,Σ
dτ

− ωm (lq,0 + lq,Σ) (iq,0 + iq,Σ)

(14)

uq,0+uq,Σ = r (iq,0 + iq,Σ) +
d lq,Σ
d τ

(iq,0 + iq,Σ)

+ (lq,0 + lq,Σ)
d iq,Σ
dτ

+ ωm (ld,0 + ld,Σ) (id,0 + id,Σ)

(15)

Now it is possible to separate the time independent
terms (the fundamental wave terms) and transform it to
the fundamental wave inductances (16) and (17).

ld,0 =
uq,0 − r iq,0
ωm id,0

(16)

lq,0 =− ud,0 − r id,0
ωm iq,0

(17)

The remaining terms represent the harmonic part of
the system. Linearising this non–linear system of differ-
ential equations in an operation point provides following
equations (18) and (19).

0 ≈
∞∑
k=2

(
id,0 ·

d ld,k
dτ

+
d id,k
dτ
· ld,0 − ωm iq,0 · lq,k

+r id,k − ud,k − ωm lq,0 iq,k
) (18)

0 ≈
∞∑
k=2

(
iq,0 ·

d lq,k
dτ

+
d iq,k
dτ
· lq,0 + ωm id,0 · ld,k

+r iq,k − uq,k + ωm ld,0 id,k

) (19)

After Laplace–transforming the linear equations (18)
and (19) it is possible to resolve these equations to the
inductances of each harmonic k in the Laplace–domain
as shown in (20) and (21).

L˜d,k =
1

id,0

[
s

s2 + ω2
m

(
U˜d,k − r I˜d,k

)
+

ωm
s2 + ω2

m

(
U˜ q,k − r I˜q,k

)
− ld,0 I˜d,k

] (20)

L˜q,k =
1

iq,0

[
− ωm
s2 + ω2

m

(
U˜d,k − r I˜d,k

)
+

s

s2 + ω2
m

(
U˜ q,k + r I˜q,k

)
− lq,0 I˜q,k

] (21)

The used variables are defined as follows

ld,k c sL˜d,k lq,k c sL˜q,k (22)

ud,k c sU˜d,k uq,k c sU˜ q,k (23)

id,k c sI˜d,k iq,k c sI˜q,k. (24)
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Fig. 4. Measurement of the currents id and iq and the voltages ud
and uq in a conventional field-oriented control

To consider the voltages and currents appropriately,
the measurements shown in Fig. 4 are used. In this special



case the focus is on the most dominant 12th harmonic
component of the spectrum. Out of the measurement it is
possible to characterise the required currents and voltages
as

id =id,0 + îd,12 cos(12ωm τ) (25)

iq =iq,0 + îq,12 cos(12ωm τ) (26)
ud =ud,0 − ûd,12 cos(12ωm τ) (27)
uq =uq,0 − ûq,12 cos(12ωm τ). (28)

Together with the inductances in the Laplace-domain
(20) and (21) the 12th harmonic of the inductances in the
time–domain can be given to (29) and (30).

ld,12 ≈
ûd,12 + r îd,12

12ωm
1
id,0

· sin(12ωmτ)

+ld,0
îd,12

id,0
· cos(12ωm τ)

(29)

lq,12 ≈
ûq,12 + r îq,12

12ωm
1
iq,0

· sin(12ωmτ)

+lq,0
îq,12

iq,0
· cos(12ωm τ)

(30)

Applying this approach in an analogous way to the
next dominant 6th harmonic of the motor provides the 6th

harmonic component of the direct–inductance ld,6 and the
quadrature–inductance lq,6.

With these three components of ld and lq the mathe-
matical model can be extended to describe the two most
dominant harmonic effects of this SynRM (see (31) and
(32)).

ld(τ) =ld,0 +

∞∑
k=2

(ld,k(τ)) ≈ ld,0 + ld,6(τ) + ld,12(τ)

(31)

lq(τ) =lq,0 +

∞∑
k=2

(lq,k(τ)) ≈ lq,0 + lq,6(τ) + lq,12(τ)

(32)

Fig. 5 shows the FEM–simulation of the inductances
ld(τ) and lq(τ). The 6th and the 12th harmonic can be
easily seen in this graph, which verifies the extended
model of the SynRM introduced above.

Now with this extended model of the SynRM with
salient poles the design of an appropriate control system
is possible.

IV. CONCEPT OF CONTROL SYSTEM

In the following section a method to reduce the
torque–ripple is presented. First of all there have to
be made a differentiation between the ripple generation
caused by the PWM module of the drive system [9] and
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Fig. 5. Simulation of the rated direct– and quadrature–inductances
ld(τ) and lq(τ)

the ripple generation caused by the motor itself. In this
paper the second part is covered.

The easiest way to reduce the unwanted harmonics
is to choose an appropriate rotor design of the SynRM,
but this can lead to a reduction of the motor efficiency
[8]. Another possibility, which is chosen in this paper,
is a feed–forward control of the torque disturbances.
The key–point of this method is the determination of
the torque–ripple. One way to find the optimal feed–
forward signal is by the use of a fuzzy–logic or by
an adaptive algorithm [10]. This entails in the loss of
determinism, which could be an essential disadvantage.
Another option to find an optimal reference signal is
by a very detailed FEM–simulation of the motor or by
empirical experiments. This solution can be stored in a
lookup–table of the drive system to provide a efficient
solution of this problem [11][12]. The main disadvantage
of this solution is the strong parameter dependency of
used motor, which significantly decreases the robustness
and the adaptiveness of the control system.

In this paper a synchronous–demodulator (see Fig.
6) is used to estimate the ideal feed–forward signal for
torque–ripple suppression [13].

sin(k ωm τ)

t
ε

tk,rippel

cos(k ωm τ)

sin(k ωm τ)

cos(k ωm τ)

sin(α)

−sin(α)cos(α)

cos(α)
Nk, k = 6, 12

Fig. 6. Synchronous–demodulator

The biggest advantage of this way of torque–ripple
estimation is the fact that there is minimal system–
knowledge necessary to suppress the disturbances. Only
the rated speed ωm and the order of the harmonic of
the torque–ripple k has to be known, which allows a
very robust behaviour of the control system with regard



to parameter variations. The input for the synchronous–
demodulator is the torque signal t. This signal could
be estimated through equation (5) or could come from
a torque sensor. Both variants were implemented and
tested, but this work only describes the variant with the
calculated torque, because of the higher dynamic of the
system (no bandwidth limitation through torque sensor).
ε and α are used as tuning parameters of the control
system to guarantee the greatest possible robustness of
the system.

The transfer–function N˜ k(s) of the synchronous–
demodulator is given in equation (33), where the de-
pendency on the tuning parameter α is shown in the
corresponding frequency response in Fig. 7. Out of the
transfer–function N˜ k(s) and the bode–plot the bandpass
characteristic of the synchronous–demodulator is obvious.

N˜ k(s) =ε · s cos(α)− k ωm sin(α)

s2 + (k ωm)2
(33)

100 101 102 103
−100

0

100

200

300

400

Rated speed ωm

N
in

dB

ε = 1, α = 0◦

ε = 1, α = 30◦

ε = 1, α = 60◦

ε = 1, α = 90◦

Fig. 7. Frequency responses of the synchronous–demodulator depend-
ing on the tuning–parameter α

Now the whole control system with disturbance–feed–
forward can be specified. Fig. 8 shows in the lower part
of the figure the common field–oriented control of a
SynRM. id,ref and iq,ref represent the reference–currents
from the speed–control, where id,act and iq,act are the
actual measured currents of the motor. t represents the
torque signal of the system, which is fed to both of the
synchronous–demodulators N6 and N12 to estimate the
6th and the 12th harmonic of the torque disturbances.

There is a separated current–control for each of the
two currents in the d, q–reference frame. This current–
control generates the wanted stator–voltage space–vector,
which will be realised by the PWM module of the
voltage–source inverter. To do the transformations from
the α, β– and the d, q–reference frame and back, an
angular–positions sensor is used. Of course it is suppos-
able that a position–sensorless method could replace this
sensor to decrease the initial system–costs.

id,ref
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iq,act

udc
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SynRM

α, β
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d, q
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torque ripple estimation

current controllers

d, q
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γ

Fig. 8. Control structure to reduce the 6th and 12th harmonic
disturbances in torque t
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Fig. 9. Measurement of the torque t without compensation algorithm
(upper figure) and with compensation algorithm (lower figure)

To analyse the stability of this method the extended
mathematical model, which is introduced in Sec. III-B,
is used. The system was linearised in various operating–
points where the stability–proof was made by pole–zero
map analyse of the system. To optimise the robustness
of the system the damping–factor ξi (see (34)) was
maximised by variation of the tuning parameters ε and
α. κi and µi describes the poles of the system according
to λi = κi + j µi.

ξi =
−κi√
κ2
i + µ2

i

(34)

V. EXPERIMENTAL RESULTS

Finally the described control strategy (see Sec. IV)
was implemented on the drive system of the SynRM
prototype.

Fig. 9 demonstrates the functionality of the torque–
ripple reduction method. In the upper part of this figure



Fig. 10. Measured spectrum of the torque (compensated system) as a function of the speed ωm and the magnitude of the stator-current space-vector
|iα,β |

Speed Order of |iα,β | Amplification Amplification
harmonic torque–ripple voltage–ripple

750 rpm 6 1 −26.7 dB 0.1 dB
1500 rpm 6 1 −16.2 dB 0.1 dB
2250 rpm 6 1 −34.6 dB 6.4 dB
3000 rpm 6 1 −51.1 dB 16.2 dB

750 rpm 12 1 −30.3 dB 9.5 dB
1500 rpm 12 1 −34.6 dB 19.5 dB
2250 rpm 12 1 −35.6 dB 18.6 dB
3000 rpm 12 1 −52.9 dB 17.8 dB

TABLE II. CHARACTERISATION OF THE MEASURED
TORQUE-RIPPLE REDUCTION

the uncompensated version of the drive system is shown,
where in the lower part of the figure the ripple suppression
method is active. The torque signal t becomes very
smooth, where the stator–voltage uα gets increased ripple
components compared to the uncompensated case.

To verify this suppression method in the whole speed
range, the spectrum of the compensated system was deter-
mined as shown in Fig. 10. The spectrum was measured
at four different speeds ωm and plotted as a function of
the magnitude of the stator-current space-vector |iα,β |.
Compared to the spectrum of the uncompensated drive
system (see Fig. 2) the peaks at the 6th and the 12th har-
monic are significantly reduced. This fact is also specified
in Tab. II. The 6th and the 12th torque–ripple component
can be reduced significantly, where no other torque–ripple
components were generated by the suppression–method.

VI. CONCLUSION

In this paper a very robust method of torque–ripple
suppression was presented. An extended mathematical
model of the SynRM was introduced, which allows the

consideration of the harmonic effects of the salient pole
SynRM. The presented torque–ripple reduction method
does not need much information of the system, which
allows universal operation of different SynRMs with
minimal tuning effort on the control system. Experiments
on the prototype verified the functionality of the control
system and demonstrated the performance with respect to
torque–ripple suppression.
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