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Abstract. Symbolic-Heap Separation logic is a popular formalism for
automated reasoning about heap-manipulating programs, which allows
the user to give customized data structure definitions.

In this paper, we give a new decidability proof for the separation logic
fragment of losif, Rogalewicz and Simacek. We circumvent the reduction
to MSO from their proof and provide a direct model-theoretic construc-
tion with elementary complexity. We implemented our approach in the
Harrsh analyzer and evaluate its effectiveness. In particular, we show that
Harrsh can decide the entailment problem for data structure definitions
for which no previous decision procedures have been implemented.

1 Introduction

Separation logic (SL) [12,18] is a popular formalism for Hoare-style verification
of imperative, heap-manipulating programs. In particular, the symbolic heap sep-
aration logic fragment has received a lot of attention: Symbolic heaps serve as
the basis of various automated verification tools, such as INFER [6], SLEEK [7],
SONGBIRD [19], GRASSHOPPER [17], VCDRYAD [16], VERIFAST [13], SLS [20],
and SPEN [9]. Many of the aforementioned tools rely on systems of inductive pred-
icate definitions (SID) that serve as specifications of dynamic data structures,
e.g., linked lists and trees.

At the heart of every Hoare-style verification procedure based on separation
logic lies the entailment problem: Given two SL formulas, say ¢ and v, is every
model of ¢ also a model of ¥? While the entailment problem is undecidable in
general [2], there are various approaches to decide entailments between symbolic
heaps ranging from complete methods for fixed SIDs [3], over decision proce-
dures for restricted classes of SIDs [10,11], to incomplete approaches, such as
fold /unfold reasoning [7] or cyclic proofs [5].

Among the largest decidable fragments of symbolic heaps with inductive def-
initions is the fragment of symbolic heaps with bounded tree-width (SLpty) [10].
This fragment supports a rich class of data structures in SID specifications,
such as doubly-linked lists and binary trees with linked leaves. SLypty, introduces
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Fig. 1. An SID ¢ with three predicates for binary trees with parent pointers.

three syntactic conditions on SIDs—progress, connectivity, and establishment—
that enable a reduction from the entailment problem for SLyt, to the (decid-
able) satisfiability problem for monadic second-order logic (MSO) over graphs
of bounded tree width. This gives rise to a decision procedure of non-elementary
complexity—at least without an in-depth analysis of the quantifier alternations
involved in the reduction. The reduction to MSO is also technically involved
and has—to the best of our knowledge—mnever been implemented. The authors
remark in the follow-up paper [11] that “the method from [10] causes a blowup
of several exponentials in the size of the input problem and is unlikely to produce
an effective decision procedure.”

Contributions. We give a new proof for the decidability of the entailment prob-
lem for the SLyty fragment. In contrast to [10], we circumvent the reduction
to MSO and give a direct model-theoretic construction with elementary com-
plexity. This yields an easy-to-implement decision procedure for entailments in
the full SLptyw fragment. We implemented our approach in the Harrsh analyzer
and report on promising results for challenging examples (Sect.6). In particu-
lar, we show that Harrsh can decide the entailment problem for data structure
definitions for which no previous decision procedures have been implemented.

A challenging example. To highlight the challenges faced when developing and
implementing decision procedures for entailments in SLyty, consider the SID &
consisting of the rules in Fig. 1." There are three predicates, namely tree, rtree,
and 1ltree, that specify binary trees with parent pointers (treep for short). The
predicate tree takes two parameters representing the root of the tree and its
parent. Predicates rtree and ltree both have the leftmost leaf of the tree as
an additional parameter. Such a parameter may, for example, be required to
specify tree segments for an automated program analysis. Although both rtree
and ltree describe treeps, they take radically different approaches: Predicate
rtree defines a treep starting at the root, i.e., it specifies the root of the treep

! The syntax and semantics of SIDs are defined formally in Sect. 3.
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and then states that both subtrees are treeps (the param-

eter representing the leftmost leaf is additionally passed

to the left subtree). In contrast, predicate ltree speci-

fies treeps starting at the leftmost leaf and moving up

to the root. Consequently, the models of these predicates b
are derived in completely different ways, which is a chal-

lenge for commonly applied approaches, such as fold /unfold Fig. 2. treep
(cf. [7]) or inductive reasoning (cf. [5,19,20]). In fact, the

entailment ltree(z1,x2,x3) | rtree(xs, s, z1) holds, whereas the entailment
rtree(xq, x3,21) |E 1tree(xy, 29, x3) is violated: Intuitively, rtree admits mod-
els in which all shortest paths from the root to the leftmost leaf have length one.
In contrast, for 1tree, the minimal length of all shortest paths is two. Thus, the
heap illustrated in Fig.2 is a model of rtree, but not of 1tree. In fact, if we
rule out this model, rtree and 1tree entail each other. That is, the entailment
below and its converse are both valid:

ltree(zy1, 22,23) = I, 2o — (I, 7, 23) xrtree(l, o, x1) * tree(r,xs) (&)

HARRSH solved the entailment (&) from above in less than a second. The only
other tool capable of successfully solving (&) is SLIDE [11], which is based on
tree automata. However, the approach in [11] is not complete for SLpty-.

Overview of our approach. We first present an algebra & la Courcelle [8] to sys-
tematically construct models of separation logic formulas (Sect.2). This algebra
enables us to conveniently formalize the semantics of separation logic (Sect. 3).
To decide entailments, we then develop an abstraction mechanism for models
with the following properties (Sect.4):

1. The abstraction is compositional, i.e., we can perform our algebraic operations
on abstractions instead of models (Theorem 2).

2. The abstraction is finite, i.e., each model of a predicate is abstracted to one
of finitely many abstractions (Lemma 3).

3. The abstraction refines the predicate satisfaction relation, i.e., models with
the same abstraction entail the same predicates among those relevant for the
entailment (Lemma 2).

4. The abstraction is effective, i.e., for a given abstraction, one can determine
which predicates are entailed (Theorem 3).

How do we obtain a decision procedure from these properties for an entail-
ment, say pred,(x1) s predy(xz2)? We iteratively compute all abstractions
corresponding to models of pred; (x1). Due to compositionality (1), this can be
achieved by applying the same operations used to construct models on previously
computed abstractions until a fixed point is reached. Finiteness of the abstrac-
tion (2) ensures termination. We then exploit that the abstraction is well-defined
(3) and effective (4) to decide the entailment: pred,(x1) [=¢ predy(x2) holds iff
all computed abstractions of models of pred;(x;) yield that they are also models
of pred,(x2) (Sect.5).
Due to space constraints, all proofs are in the supplementary material [1].
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Notation. The set of all (non-empty) finite sequences over a set S is S* (ST).

Bold letters denote sequences, e.g., x = (x1,..., k). x[i] refers to the i-th ele-
ment of x. We often treat sequences as sets, i.e. we write y € x if y occurs in x,
x Uz for the set of all elements in x or z, etc. f = {x1 — y1,...,Z, — Yy} is the

function given by f(x;) = y; for i € [1,n], n > 0. Moreover, functions f: X — Y
are lifted to functions on sequences f: X* — Y™* by pointwise application.

Fig. 3. A heap graph modeling a list segment of length at least 5 from z1 to x».

2 Heap Graphs

Separation logic is typically interpreted in terms of stack-heap pairs consisting
of a stack, i.e., an evaluation of variables, and a heap, i.e., a finite mapping from
memory locations to values. In our setting, however, it is more convenient to
abstract from locations and consider labeled graphs.

Formally, let Var be a set of variables containing a special variable null €
Var. Moreover, let Preds be a set of predicate identifiers; each predicate pred €
Preds is equipped with an arity ar(pred) € N. pred(x) is a predicate call if the
length of sequence x € Var® is ar(pred).

Definition 1 (Heap Graph). A heap graph M = (Ptr,FV, calls) is a graph
whose nodes are a finite set of variables in Var. The edges of M are given by a
partial points-to function Ptr: Var \ {null} — i Var™ mapping variables to
finite tuples of variables. Moreover, FV C Var is a finite set of free variables
and calls is a finite set of predicate calls. A heap graph is concrete if calls = ().
We collect all variables in Ptr, FV, and calls in vars(M). Finally, we write Ptrpg,
FV A, and callsyq to refer to the individual components of heap graph M. A

Ezxample 1. Figure 3 depicts a heap graph modeling a singly-linked list of length
at least five with head x; and tail 2 (assuming the predicate call s11(d,z2)
stands for non-empty lists segments from d to xs; see the left part of Fig.5).
In our graphical notation, every node corresponds to the variable it is labeled
with. Gray nodes correspond to the free variables in FV. For each variable, say
x, the pointers Ptr(z) = (y1,...,yx) are represented by directed edges—labeled
with the position 1,2, ..., k—from the node labeled with = to nodes labeled with
Y1, -- -, Yk, respectively. We usually omit the edge labels if each node has at most
one outgoing edge. Finally, a predicate call is drawn as a box labeled with the
predicate call and connected to the nodes representing the variables occurring
in the call’s parameters. Formally, the heap graph in Fig.3 is given by M =
(Ptr, FV, calls) with points-to mapping Ptr = {x1 — a,a +— b,b — ¢,c+— d}, free
variables FV = {x1, 22} and predicate calls calls = {s11(d, z2)}. A
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Fig. 4. Illustration of composition of two heap graphs.

Heap graphs are an abstraction of the classical stack-heap model. To reason
about separation logic with heap graphs (and their abstractions), we need a few
operations for their systematic construction: Let f: Var — Var be a partial
function and f(M) its application to every variable in every component of M.

Isomorphic heap graphs. We call a variable x € Var an auziliary variable of
heap graph M if x is not a free variable of M. Throughout this article, we
do not distinguish between isomorphic heap graphs, i.e., heap graphs that are
identical up to renaming of auxiliary variables. Formally, two heap graphs M,
and My are isomorphic, written M; = M, if there exists a bijective function
f:vars(My) — vars(Mz) such that (1) FVa, = FVaq,, (2) f(z) = « for all
x € FVpq,, and (3) f(M1) = Ma.

Renaming heap graphs. Our first operation enables renaming of free variables.
Formally, let M be a heap graph and x € FV),, y € Var™ be repetition free
sequences of variables of the same length. Then the renaming of x to y in M is
given by renamey y (M) = f(M), where

f: Var — Var, z+— {y[@] if x{i] : N

z otherwise.
Composition. Our next operation allows composing heap graphs by “gluing”
them together at their common free variables. Formally, let M7, M5 be heap
graphs such that (1) vars(M;j) Nvars(Msz) C FVaq, N FVaq, and (2) Ptrag,
and Ptrp, are domain disjoint, i.e., dom(Ptrpq, ) N dom(Ptrpg,) = 0. Then the
componentwise union M; U My of M; and My is (Ptrag, U Ptrag,, FVaq, U
FV a,, callspag, Ucallspg, ). Otherwise, My UMy is undefined. We then define the
composition M; e My of heap graphs M7, M5 as

MiUM  where M = My and M; U M is defined
undefined  otherwise.

Ml.MQZ{

Ezxample 2. Figure4 depicts the composition of two heap graphs representing
lists of length two. Since both heap graphs share a variable a ¢ FV, we first
compute an isomorphic heap graph in which variable a is substituted by c in the
second graph. Both heap graphs are then merged at their common free variable
b. This results in a heap graph modeling a list of length four. A
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Forgetting free variables. To construct larger heap graphs from smaller ones,
we often need additional free variables to glue the right nodes together, e.g.,
the variable b in Example 2. Consequently, we need a mechanism for subsequent
removal of these variables from the set of free variables. To this end, for every
heap graph M and sequence of free variables x € FV’,, we define the operation
forget, (M) = (Ptrag, FVar \ x, callspg).

Single allocations. The simplest non-empty heap graph is a single variable, say
x with pointers to a sequence y of finitely many other variables. We write x — y
to denote this single-allocation heap graph ({z — y},{z}Uy,0).

Theorem 1 ([8]). Every non-empty heap graph of tree width at most k can
be constructed from heap graphs r — y, renaming, composition, and forgetting
using at most k + 1 free variables.

3 Symbolic Heap Separation Logic

We consider the symbolic heap fragment of separation logic with user-defined
inductive predicate definitions. We omit pure formulas to simplify the presenta-
tion. Notice, however, that our implementation supports reasoning about sym-
bolic heaps with pure formulas.

Syntaz. The syntax of our simplified symbolic heap fragment is then given by
the following context-free grammar:

pu=emp | z—y | pred(y) | 3z: ¢ | ¢ *x o,

where 2 € Var \ {null} is a variable, y € Var® is a sequence of variables,
and pred(y) is a predicate call. Here, emp is the empty heap, x — Yy asserts
that x points-to the locations captured by y, dz: ¢ is existential quantification,
and * is the separating conjunction. Because * is commutative and associative
and because existential quantifiers can always be moved to the front, we will
always counsider symbolic heaps to be of form Jy: (z1 — y1) * -+ * (T, —

Ym) * pred;(z1) x - - x pred,, (z,,).

Inductive definitions. Before we assign formal semantics to symbolic heaps, we
clarify how custom predicates are specified. To this end, a system of inductive
definitions (SID) is a finite set @ of rules of the form pred < ¢, where pred €
Preds is a predicate symbol and ¢ is a symbolic heap. We assume that all
symbolic heaps of rules with head pred have the same sequence of free variables
(1,... ,xar(pred))2 and collect these variables in the set fv(pred). Moreover, we
collect all predicates that occur in SID @ in the set Preds(®) and all rules of
SID @ in the set Rules(®). Examples of SIDs are found in Figs. 1 and 5.

2 A variable is in the set fv(p) of free variables of ¢ if it is not bound by a quantifier.
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Semantics. We define the semantics of symbolic heaps ¢ for a given SID @
in terms of a force relation =g, which determines whether a heap graph M
satisfies ¢. To this end, let ¢[x/y] denote the symbolic heap ¢ in which every free
occurrence of variable x[i] is substituted by variable y[i], where 1 <14 < |x| = |y|.
Then the relation =g is defined inductively on the syntax of symbolic heaps:

M Eg emp iff ex. x € Var® s.t. M = (0, %,0)
MEgxz—yiff ex. zD{z}Uyst. M= {z—y} z0)
M g pred(y) iff ex. z Dy s.t. M = (D, z, {pred(y)})
or ex. (pred < ) € Rules(®P) s.t. M =4 ¥[fv(pred)/y]
M =g Jx: ¢ iff ex. y € Var s.t. (Ptrag, FVa U {y}, callsp) o o[z/y]
M Ea @1 xpg iff ex. M, Mo s.t. M =2 My o My
and My Eg¢ p1 and Ms g ¢

The above semantics coincides with the standard least fixed-point semantics of
symbolic heaps (cf. [4]) for stack-heap pairs if we restrict ourselves to concrete
heap graphs. Moreover, there is a strong relationship between our SL semantics
and the operations on heap graphs defined in Sect. 2.

Lemma 1. Let ¢ = Jy: (21 = y1)* - * (T = Yom)*pred; (z1) *- - - xpred,, (z,)
be a symbolic heap. M ¢ ¢ iff there exist My, ..., Mytn such that (1)
M Fe w1y for 1 <i<m, (2) Mpy; Fo pred;(fv(pred;)) for 1 <j <mn,
and (3) M = forget, (M; e --- o M,, ® renameg pred,)z, (Mmi1) ® -+ @
rénamesy (pred,)),z,, (Mm+n))

Symbolic heaps with bounded tree-width. Our goal is to develop a decision pro-
cedure for symbolic heaps with inductive definitions in the bounded tree-width
fragment developed by Iosif et al.[10]. This fragment imposes three conditions
on SIDs, which we assume for all SIDs @ considered in the following;:

1. Progress: Every rule allocates exactly one variable x, i.e. every rule contains
exactly one points-to assertion x +— y.

2. Connectivity: Every predicate call pred(z) of a rule has a parameter z[i] that
is referenced by the rule’s allocated variable, i.e., z[i] € y. Moreover, the i-th
free variable of predicate pred must be allocated in all rules pred < ¢ of @.

3. FEstablishment: All existentially quantified variables are eventually allocated.

Assumptions. We make two further assumptions for all SIDs throughout this
paper: (1) Predicates are called with pairwise different parameters. (2) Unfold-
ing predicates (iteratively substituting predicate calls pred(y) with the right-hand
sides [fv(pred)/y] of rules pred < ¢) always yields satisfiable symbolic heaps.
SIDs can be transformed automatically to satisfy (1) and (2) before applying our
decision procedure (cf. [1,14]). The SIDs in Figs. 1 and 5 satisfy all assumptions.
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4 Profiles: An Abstraction for Concrete Heap Graphs

Entailment problem. We present our approach for entailments pred,(x) Eg
pred,(y) between predicate calls pred, (x), and pred,(y) of an SID &. We discuss
the treatment of more general entailments at the end of Sect.5. Formally, the
entailment pred; (x) Eg preds(y) holds iff for all concrete heap graphs M, we
have M g pred,(x) implies M =g predy(y).

Model reconstruction. Recall from Lemma 1 that M =g pred;(x) can be inter-
preted as being able to construct M as a model of pred,(x) using the rules of
SID @ and our operations on heap graphs introduced in Sect.2. To prove the
entailment pred;(x) |=¢ pred,y(y), we then have to “reconstruct” any such M
as a model of pred,(y). Since infinitely many model reconstructions might be
required—after all there might be infinitely many M with M =g pred;(x)—
we now develop an abstraction of heap graphs such that finitely many abstract
model reconstructions suffice to cover all models of pred, (x).

Running example. To sharpen our intuition, we present the technical details
of our abstraction together with a running example: Fig.5 shows an SID
Dyists specifying predicates for various singly-linked list segments. The predi-
cate s1l(x1,x2) specifies non-empty singly-linked list segments with head x;
and tail z5. Similarly, the predicates odd(z1,z2) and even(xy,x2) restrict such
list segments to odd and even length, respectively. In the remainder of this
and the next section, we will use our abstraction to show that the entailment
s1l(z1,x2) Eg,,.,, 0dd(z1,x2) does not hold.

s11(z1,x2) < x1 > 22 odd(z1,22) < 1+ T2
sll(z1,z2) < Fy: x1 — y*sll(y, z2) odd(z1,z2) < TJy: x1 — y *even(y, z2)
even(zi,x2) < Jy: x1 — y* odd(y, x2)

Fig. 5. SIDs &g (left) and &, (right) specifying singly-linked list segments with head
z1 and tail x2. Moreover, we define @jists = P U Dy /e

4.1 Context Profiles as an Abstract Domain

Contexts. Our proposed abstraction is based on contezts. Intuitively, every con-
text describes an extension of a concrete heap graph by predicate calls such that
the resulting graph satisfies a fixed predicate call. Thus, contexts reveal what is
missing in a concrete heap graph to reconstruct models of predicate calls.

Definition 2 (Context). A triple C = (V, pred(x), calls) is a context of a con-
crete heap graph M w.r.t. SID @ if (1) V = FVq, (2) (Ptrag,x,calls) Eo
pred(x), and (3) neither x nor calls contain auziliary variables of M. Moreover,
we define the set of free variables of context C as fv(C) := V. We call variables
in x or calls, but not in fv(C), the auxiliary variables of C. A
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Ezxample 3. Figure6 shows contexts for two concrete heap graphs Myqq and
Meyen of 0dd and even length (without dashes), respectively. The extension by
calls from the contexts is illustrated by dashed lines. Intuitively, context C; states
that no extension of M,qq is needed to obtain a model of predicate odd(x1,x2).
Context Cy states that—in order to obtain an odd list segment from x; to a,
where ¢ is an additional free variable—we have to add an even list segment from
o to a. Similarly, we obtain an even list segment from z; to some fresh variable
a by adding an odd list segment from x5 to a. The interpretation of contexts Cy,
Cs, and Cg of Myen is analogous. A

Contexts decompositions. A context of heap graph M stores the free variables of
M. These variables are important, because additional free variables might allow
to split a heap graph into several smaller ones. For example, the additional free
variable b in Fig.4 (read from right to left) allows to decompose a list into
two lists. Since our goal is to develop a compositional abstraction, we have to
take contexts of decompositions of heap graphs into account. In general, these
decompositions are relevant for entailment when considering more complicated
SIDs, e.g., doubly-linked binary trees or trees with linked leaves. We thus have
to compute decompositions M; e ... e My, k > 1, of a concrete heap graph M
and then consider a context for each component.

Definition 3 (Context decomposition). A context decomposition of a con-
crete heap graph M w.r.t. SID @ is a set € = {C1,...,Cx} such that M =
My e ... e My, k>1,is a decomposition of M and Cy,...,Cy are contexts of
the concrete heap graphs My, ..., My w.r.t. @, respectively. Moreover, we define
the set of free variables of context decomposition £ as fv(E) 1= Jpce fV(C). A

C1 = (a1, a2}, 0dd(z1, 22), 0) @@@@

Ca = ({z1,22}, 0dd (21, a), {even(x2, a)}) @@@@ {e_";’;(;;’_a-)ﬂi"’\:;\,\’\
Cs = ({z1, 22}, even(w1,a), {odd(w2,a)}) @@@@ odd(z2, ) 1/\:;‘/\)
Ca = ({1, 22}, even(x1, z2), ) @@@

Cs = ({1, 2}, even(z1, a), {even(zz, a)}) @—»@—@ Leven(mza) wa

Co = ({w1, 2}, odd(x1, a), {odd(zs, a)}) @@@ oda(r3,0) “':“\,\"

Fig. 6. Contexts of concrete heap graphs Moaq (first graph) and Meyen (fourth graph).
The extensions by a context are drawn in dashed lines.

Example 4. The concrete heap graph Mqq in Fig. 6 cannot be decomposed into
smaller graphs due to a lack of free variables. Hence, context decompositions of
Maq are singletons consisting of C1, Co, and C3 in Fig. 6, respectively. A
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Profiles. As the above example shows, concrete heap graphs may have multiple
context decompositions. We thus abstract a concrete heap graph M by the set
of all context decompositions of M:

Definition 4 (Profiles). The profile profilez (M) of a concrete heap graph M
w.r.t. SID @ 1is the set of all context decompositions of M w.r.t. . Moreover,
since all £ € P have the same free variables, we define the free variables of P as

fv(P) :=fv(E) for some € € P. A

Refinement property. We propose profiles as a suitable abstraction for deciding
entailments. We will argue that they comply with the four essential correct-
ness properties discussed in Sect. 1: refinement, finiteness, compositionality, and
effectiveness. Refinement means that two concrete heap graphs with the same
profiles entail the same SID predicates. Hence, for each profile and predicate
pred, it suffices to find a single model of pred with that profile. Formally,

Lemma 2. Let M, M’ be concrete heap graphs with profilegz(M) = profileg
(M'). Then, for all pred € Preds(®), we have M g pred(x) iff M' Egs
pred(x).

Finiteness. In general, the set of profiles of concrete heap graphs is infinite
due to different names for additional free variables, e.g., variable a in Fig.6.
To obtain a finite set of profiles, we thus (a) limit the total number of free
variables, (b) consider profiles up to renaming of additional free variables, and (c)
exploit the connectivity condition. Notice that condition (a) is not a restriction,
because the number of free variables for every SID and thus every entailment
query is bounded. For condition (b), we have to lift the notion of isomorphism
from heap graphs to profiles. Formally, contexts C; = (z1, pred; (x1), calls;) and
Co = (29, predy(x2), callse) are isomorphic iff z; = zg, pred; = pred, and there
exists a bijective function f: Var — Var such that (1) for all z € z1, f(z) = z,
(2) f(x1) = x2, and (3) callsy = {pred(f(y)) | pred(y) € calls; }. Moreover, two
context decompositions &1, & are isomorphic iff for all ¢ € {1,2} and contexts
C € &; there is a context C' € £3_; that is isomorphic to C. Analogously, two
profiles Py, Py are isomorphic iff for all ¢ € {1,2} and context decompositions
& € P; there exists a context decomposition £ € P3_; that is isomorphic to &;.

Throughout this paper, we do not distinguish between isomorphic contexts,
context decompositions, or profiles.

Lemma 3. For every SID @ and variable sequence x € Var™, the set of profiles
Profiles™(®) = {profilez(M) | M concrete heap graph, fv(profilegz(M)) C x} is
finite up to profile isomorphism.

Ezample 5. Recall from Fig.5 the SID &,,.. Moreover, recall from Fig.6 the
concrete heap graphs Myqq and Meyen, and their contexts Ci, Co, C3 and Cy,
Cs, Ce, respectively. Then the profiles of Myqq and Meyen W.r.t. &,/ are (up to
isomorphism) profi|e¢o/e(/\/lodd) = {{C1},{C2},{C2}} and profi|e¢o/e(Meven) =
{{C4},{C5},{Cs}}. In fact, the profile of every singly-linked list segment from
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to x5 of odd (even) length is isomorphic to profile, . (Moaq) (profileq;o/c (Meven))-
Hence, the profile of every model of the singly-linked list predicate s11(zy,z2)
is either profileg  (Moda) or profileg  (Meven)- A

4.2 Computation of Profiles

Due to Lemmas2 and 3, we can decide an entailment pred,(x) =g predy(x),
once the profiles of all models of pred;(x) with respect to the rules relevant
for pred,(x) are known. The key insight underlying our entailment checker is
that profiles can be computed automatically in a compositional manner. To this
end, recall from Theorem 1 that every concrete heap graph can be constructed
from single-allocation heap graphs x »— y by means of renaming, forgetting,
and composition. We exploit this by (1) devising an algorithm to compute
profileg(z — y) and (2) lifting the operations renamey y, forget,, and e for
renaming, forgetting, and composition of heap graphs to operations renamey y,
forget,, and ® on profiles.

Profiles of single allocations. Since single allocations x — y cannot be further
decomposed, every context decomposition of z — y w.r.t. an SID @ is a single-
ton. Due to the progress condition, every rule of @ contains exactly one points-to
assertion. For each SID rule pred < Jz: a2’ — y’ * pred,(y1) * - - - * pred; (yx),
the corresponding context ({z'} Uy’, pred(x), {pred;(y1), ..., pred,(yx)}) must
be in the profile of z »— y iff z — y is a model of 3z: 2’ — y’. Hence:

Lemma 4. Profiles of single allocations, i.e., profileg(z — y), are computable.

Rename for profiles. We lift the operation renamey y, which renames each vari-
able in x to the corresponding variable in y according to their position, from
heap graphs to contexts, context decompositions, and profiles by componentwise
application. That is, for a context C = (z, pred(u), calls), a context decomposition
&, and a profile P, we define:

renamey y(C) := (renamex y(2z), pred(renamey y (1)),
{pred’(renamey y (v) | pred’(v) € calls})

renamey y (€) = {renamey y(C) | C € £}

renamey y (P) :={renamex (&) | £ € P}

Forget for profiles. Next, we lift the operation forget, , which removes variables in
x from the set of free variables, to contexts, context decompositions, and profiles.
For a profile, forgetting a free variable means that some of its constituting context
decompositions do not have to be considered anymore, because the composition
of their underlying models is no longer defined. Hence, these decompositions are
removed. Formally, for a context C = (z, pred(u), calls), a context decomposition
&, and a profile P, we define:
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forget, (C) := (z \ x, pred(u), calls) forget, (£) = {forget, (C) | C € &£}
forget, (P) := {forget,(£) | € € P and x Nusedvs(E) = 0}
usedvs(&) = U usedvs(C) usedvs(C) := u U U y

ceeg pred’ (y)€calls

Composition for profiles. It remains to lift heap graph composition to profiles.
This is formalized as substituting predicate calls of contexts by other contexts:

Definition 5 (Context substitution). Let C; = (x1,pred,(z1),calls;) and
Ca = (X2, predy(z2), callsy) be contexts such that (1) pred;(z1) € callsy and (2)
no auxiliary variable of Co is a free variable of C1 and vice versa. Then the
substitution of pred, (z) in Cy by Cy is given by

Ca [C1] := (%1 Uxz, predy(z2), (callse \ {pred;(z1)}) Ucallsy). A

To compose profiles, we attempt to substitute the underlying contexts with each
other in all possible ways. Formally, a context decomposition &; derives a context
decomposition &, written & > &, iff there exist contexts C1,Co € &1 such that
E = (&1 \ {C1,Ca}) U{C2[C1]}.2 We denote by >* the reflexive-transitive closure
of the derivation relation . The composition of two profiles then consists of all
context decompositions derivable from some decompositions of both profiles:

Definition 6 (Composition of profiles). Let P, and Py be profiles w.r.t. .
Then the composition P; ® Py of P1 and Ps is defined as

P e Py = {5|EI£167?1,526772:81U52>*8}. A

Compositionality. Our lifted heap graph operations satisfy the compositionality
property mentioned in Sect. 1. That is,

Theorem 2. For all concrete heap graphs M, M’ and every SID &, we have

renamey y (profiles(M)) = profileg(renamey y (M))
forget, (profileg(M)) = profileg (forget, (M))
profile, (M) ® profileg(M') = profileg(M o M)

provided that renamey y (M), forget, (M), and M o M’ are defined, respectively.

Example 6. Recall from Fig. 6 the heap graphs Myqq and Myen whose profiles
w.r.t. @,/ capture all singly-linked lists. We can construct a concrete heap graph
M representing a list of length five from x; to x2 by computing

M := rename,, ,, (forget,, (Moaa ® rename(y, 15) (xs.0)(Meven))) -

3 Recall that all definitions are to be read up to isomorphism, i.e., auxiliary variables
of Ci1, Ca2, and & may be renamed prior to the substitution.
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Then, by Theorem 2, the corresponding profile profileg_ Je (M) is given by:

renamev@z(forgetm(profile(po/e (Moaa) S TENAME (1, 1), (2,0) (Profileg, (Meven)))
This profile, in turn, coincides with the profile of Myqq, i.e., we have
profileg, M) = profile, . (Moaa)-

In particular, notice that without the forget statement, we would obtain a heap
graph M’ with an additional free variable. The additional free variable would
also influence the profile of M’, because there exist more decompositions of
M’ into heap graphs M; e Ms. Consequently, there are also more context
decompositions of M’ and thus M’ has a larger profile. A

5 An Effective Decision Procedure for Entailment

Profile analysis. We now exploit our abstract domain to develop a decision
procedure for entailments of the form pred, (a) =g pred,(b). Let us first consider
the case in which the parameters a and b coincide with the free variables in the
rules of the SID, i.e., a = fv(pred;) =: x3 and b = fv(pred,) =: x2. Our key
observation is then that analyzing profiles of the entailment’s left-hand side
suffices to discharge it: The entailment pred;(x1) g predy(x2) holds iff the
profile of every model M of pred, (x1) contains a context decomposition stating
that a model of pred,(x2) can be reconstructed from M. Formally,

Theorem 3. The entailment pred,(x1) Eo predy(x2) holds iff for all concrete
heap graphs M with M = pred;(x1), {{FV ., predy(x2),0)} € profiles(M).

Ezample 7. Recall the profiles profileq;()/e (Meven) and profi|e¢0/e (Moaq) from
Example 5 computed for models of s11(z1,z2) w.r.t. SID &/, (Fig.5). We now
use these profiles to disprove the entailment s11(x1, z2) =g, 0dd(z1,x2): First,
observe that all predicates relevant for constructing models of odd(x1, x2) belong
to Dy /e € Plists- Second, the profil%o Je (Mevyen) does not contain a context decom-
position {({z1, 22}, 0dd(z1,x2),0)}. Hence, by Theorem 3, the entailment does
not hold as we cannot reconstruct Meyen as a model of predicate odd(z1,z2). A

Computing profiles. By Theorem 3, to decide whether pred, (x1) ¢ preds(x2)
holds, it suffices to compute the finite (by Lemma 3) set of all profiles of mod-
els of pred;(x1). This is performed by the procedure abstractSID(®) shown in
Algorithm 1. To understand how the algorithm works, recall how predicates can
be unrolled to compute a model: We select an SID rule and replace all of its
predicate calls with previously computed models. By Lemma 1, this amounts to
performing heap graph operations. That is, we first rename the free variables of
previously computed models to match the parameters of predicate calls. After
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Algorithm 1: The algorithm abstractSID(®) computes a function f
that maps each predicate pred € Preds(®) to the set of profiles

{profileg(M) | M [Eo pred(fv(pred))}.

1 feurr := Apred . 0;

2 repeat

3 fprev = fcurr§

4 for pred € Preds(®) do

5 for (pred < Jy: x +— zo * pred, (z1) * - - - * pred, (zx)) € Rules(®) do
6 Po := profileg(x — zo);

7 for Fi € fprev(pred,), ..., Frx € forev(pred;) do
8 forie{l,...,k} do

9 L P; := TeNames, (pred;),z; (Fi);

10 P :=forget, (Po @ P1® --- ® Py);

11 Seurr(pred) := feurr(pred) U {P};

12 until fcu’r’r‘ - fprev;
13 return fey,,

that, the resulting models and the single allocation (due to the progress con-
dition) of the rule are composed into a single heap graph. Finally, we apply a
forget operation to remove free variables that have been existentially quantified.

Algorithm 1 behaves analogously. However, instead of applying operations on
heap graphs, it applies our abstract operations on profiles (cf. Theorem 2): We
select an SID rule pred < ¢ in line 5. By Lemma4, we can compute the profile
of the single allocation in . (1. 6). We then select previously computed profiles
for the predicate rules and rename their free variables to match the parameters
of the predicate calls in ¢ (1. 7-9). Finally, the selected profiles are composed
and added to the computed profiles of predicate pred (1. 10, 11). The algorithm
then proceeds by computing profiles until a fixed point is reached (1. 12).

Correctness. Algorithm 1 is guaranteed to terminate due to the finiteness of our
abstract domain (Lemma 3). Moreover, it computes the desired set of profiles:

Theorem 4. abstractSID(®)(pred) = {profiles(M) | M =g pred(fv(pred)) and
FVa C fu(pred)}.

To check entailments pred;(a) s predy(b), where a and b do not coincide
with the free variables of pred; and pred, in the rules of @, it suffices to apply
an additional rename operation. Hence, by combining Theorems3 and 4, we
obtain a constructive decidability proof for entailments between predicate calls.
Moreover, a close inspection of the size of the set of profiles and the runtime of
Algorithm 1 reveals that our decision procedure runs in time doubly exponential
in the size of a given SID. A detailed analysis is found in [1, Sect. 7.4].
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Corollary 1. It is decidable in doubly exponential time whether the entailment
pred,(a) ¢ predy(b) holds.

Generalizations. Several of our assumptions about SIDs and entailments have
been made purely to simplify the presentation. In fact, Corollary 1 can be gen-
eralized to (1) decide entailments ¢ g % for symbolic heaps ¢, (instead of
predicate calls) and (2) SIDs with pure formulas. Both extensions are supported
by our implementation. Further details are found in [1].

6 Experiments

We implemented our decision procedure for entailment in the separation logic
prover HARRSH [1,15], which is written in Scala. HARRSH supports the full
SLptw fragment, including pure formulas, parameter repetitions, and entailments
between symbolic heaps (as opposed to single predicate calls). Table 1 summa-
rizes the results of our evaluation for a selection of entailments and SIDs. Our full
collection of 101 benchmarks and all experimental results are available online [1].

Methodology. We compared HARRSH against SONGBIRD [19], the winner of
the SID entailment category of this year’s separation logic competition, SL-
COMP’18; and against SLIDE [11], the tool that is most closely related to our
approach but that is complete only for a subclass of SLytyw. Experiments were
conducted using the popular benchmarking harness JMH on an Intel®) Core™
i7-7500U CPU running at 2.70 GHz with a memory limit of 4 GB. We report the
average run times obtained by running JMH on each benchmark for 100s.

Benchmarks. Besides the running example (with sl1, q:/qj C‘Q
even and odd as in Fig. 5) and the entailments for doubly- b/:bi ) Cﬂb
linked trees discussed in the introduction (with ltree, —
rtree as defined in Fig. 1), we show results on standard
data-structure specifications from the SL literature: Sev-
eral variants of trees with linked leaves (t11 [10], at11, t11%") and doubly-linked
lists (d11ht [18] defining lists from head to tail, d11th from tail to head). Beyond
lists and trees, we checked an entailment between doubly-linked 2-grid segments
(see Fig. 7) defined forwards dlgridr and backwards dlgridl.4

Fig. 7. dlgrid

Size of the abstraction. Beside the run times, we report the size of the abstrac-
tion computed by HARRSH. More specifically, we report (1) the total number of
profiles in the fixed point of abstractSID (#P), (2) the total number of context
decompositions across all profiles (#D), and (3) the total number of contexts
across all decompositions of all profiles (#C). This shows that even though the
abstract domain Profiles® (&) is very large in general, HARRSH typically only
needs to explore a small portion of it to decide an entailment.

* Formal definitions of all SIDs are found in the supplementary material [1].
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Table 1. The performance of HARRSH (HRS), SONGBIRD (SB) and SLIDE (SLD) on
a variety of SIDs; and the size of the abstraction computed by HARRSH. The timeout
(TO) was 180,000 ms. Termination before the timeout but without result is denoted
(U). Wrong results/crashes are marked (X).

Benchmark Time (ms) Profiles
Query Status HRS SB SLD #P #D #C
s11(z1,2z2) E odd(z1, z2) false 4 11 43 2 6 6
even(zi,z2) = sll(z1,x2) true 2 26 43 2 4 4
rtree(z1,x2,23) = ltree(z1,z2,x3) false 16 (U) 53 3 14 21
Entailment (&) (Sect. 1), left to right true 393 TO 53 7 70116
Entailment (&) (Sect. 1), right to left true 5321274 54 9 57 87
atll(zi,x2,z3) E t11(z1, 22, x3) true 98519 TO 2 2 2
t1l(z1, 2, x3) E atll(zi, z2,x3) false 2 119 TO 2 1 1
1197 (21, 20, 23) |= t11(21, 22, 23) true 2 34 X) 3 3 4
dllht(z1,x2,23,24) = dllth(zs, x4, z1,z2) true 16 37 50 3 27 45
dllth(z1,x2, 23, 24) | dllht(zs, x4, 21, x2) true 16 37 50 3 27 45
dlgridr(zi,...,zs) | dlgridl(zi,...,xs) true 172 TO (X) 5 87208

Results. Table 1 reveals that our decision procedure—being the first implemented
decision procedure that is complete for the entire SL fragment SLy,—is not only
of theoretical interest, but can also solve challenging entailment problems effi-
ciently in practice. While SLIDE was faster on some benchmarks that fall into
the fragment defined in [11], as well as on some SIDs outside of that fragment,
HARRSH was able to solve several benchmarks on which SLIDE failed. Two bench-
marks led to errors: One wrong result and one program crash (the first and the
second entries marked by (X) in Table 1, respectively). We are unsure whether
the timeouts encountered on the TLL benchmarks are caused by a bug in SLIDE,
as SLIDE is quite efficient on other TLL variants (see [11, Table 1]). Furthermore,
note that HARRSH significantly outperformed SONGBIRD, providing further evi-
dence of the effectiveness of our profile-based abstraction.

7 Conclusion

We presented an alternative proof for decidability of entailment in separation
logic with bounded tree width [10]. In contrast to the original proof, we give
a direct model theoretic construction. We implemented the resulting decision
procedure in the tool HARRSH and obtained promising experimental results. For
future work, we plan to extend our approach to the bi-abduction problem.
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