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Abstract

Planning domains represent what an agent assumes or be-
lieves about the environment it acts in. In the presence of non-
determinism, additional temporal assumptions, such as fair-
ness, are often expressed as extra conditions on the domain.
Here we consider environment specifications expressed in ar-
bitrary LTL, which generalize many forms of environment
specifications, including classical specifications of nondeter-
ministic domains, fairness, and other forms of linear-time
constraints on the domain itself. Existing literature typically
implicitly or explicitly considers environment specifications
as constraints on possible traces. In contrast, in spite of the
fact that we use a linear-time formalism, we propose to con-
sider environment specifications as specifications of environ-
ment strategies. Planning in this framework is the problem of
computing an agent strategy that achieves its goal against all
environment strategies satisfying the specification. We study
the mathematical and computational properties of planning
in this general setting. We observe that not all LTL formu-
las correspond to legitimate environment specifications, and
formally characterize the ones that do. Moreover, we show
that our notion of planning generalizes the classical notion of
Church’s synthesis, and that in spite this one can still solve it
optimally using classical Church’s synthesis.

1 Introduction
A foundational characteristic of planning is that, in de-
vising plans, the agent takes advantage of a represen-
tation of its environment (McCarthy 1957; Green 1969;
Lin and Levesque 1998; Reiter 2001; Ghallab, Nau, and
Traverso 2004; Geffner and Bonet 2013), which corresponds
to knowledge that the agent has of how its environment be-
haves.1 In other words, the agent assumes that its environ-
ment works according to certain specifications, and exploits
these environment specifications in devising its plans. Such
environment specifications come in a variety of forms. Ob-
viously, the planning domain itself (here we focus on non-
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1In this paper, we don’t restrict plans to be sequences of ac-
tions, but rather allow them to be stateful controllers, also called
strategies.

deterministic fully observable domains (FONDs) with ini-
tial states) with its preconditions and effects is the typi-
cal form of environment specification: as long as the agent
sticks to its preconditions, the environment brings about ef-
fects as described by the domain. So, the agent can exploit
the effects of its actions in order to enforce its goal. An-
other common piece of environment specifications is to as-
sume that the environment is fair in resolving its nonde-
terministic effects, so-called fair FOND (Daniele, Traverso,
and Vardi 1999; Cimatti et al. 2003; Camacho et al. 2017;
D’Ippolito, Rodrı́guez, and Sardiña 2018). In this case, the
agent can exploit not only the effects but also the guar-
antee that, by repeatedly executing a given action from a
given state, the environment will repeatedly respond with
all its possible nondeterministic effects. More sophisticated
pieces of environment specifications are LTL trajectories
constraints over the domain, which have been proposed to
model general assumptions on the environment other than
fairness (Bonet and Geffner 2015; Bonet et al. 2017).

Planning domains, fairness of effects, and trajectory con-
straints can all be seen as linear-time temporal representa-
tions, i.e., LTL formulas. So a natural generalization is to
consider general environment specification expressed as ar-
bitrary LTL formulas. This is what we study in this paper.

Observe, however, that LTL formulas are interpreted over
traces, e.g., domain specifications are thought of as sets of
traces, fairness is expressed as a restriction on this set of
traces, and trajectory constraints are also defined as restric-
tions on the traces in a certain domain. So, a crucial question
is in what sense can an LTL formula be considered a spec-
ification of the environment? A specification should allow
us to single out the objects that are denoted by it; but LTL
models, the natural object denoted by the logic, are traces
and not environment behaviors.

In this paper, we stipulate that environment specification
single out environment strategies. This view is in line with
the classical framework of Church’s synthesis (aka reactive
synthesis) (Church 1963; Pnueli and Rosner 1989), and, in-
deed, planning becomes a generalized form of Church’s syn-
thesis that is concerned with synthesizing strategies for the
agent such that for all strategies of the environment that sat-
isfy the environment specification expressed in LTL, the ex-
ecution generated satisfies the goal expressed in LTL.

Still, we have to establish in what sense an LTL formula
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can be taken as a specification of environment strategies.
Again we resort to Church’s synthesis: an LTL formula spec-
ifies all those environment strategies that are able to react
to agent actions so as to enforce the LTL formula. In other
words, an LTL environment specification denotes the envi-
ronment strategies that enforce the LTL formula against all
agent strategies.

Notice that not all LTL formulas can be considered le-
gitimate environment specifications. For example, consider
a formula expressing that eventually a certain possible ac-
tion must be performed (and note that the agent may de-
cide not to perform this action). Focusing on environment
strategies allows us to give a precise and elegant account
of which LTL formulas can be considered legitimate en-
vironment specifications. Specifically, to be legitimate, an
environment specification needs to satisfy a basic consis-
tency condition: it needs to denote a nonempty set environ-
ment strategies. Checking this form of consistency amounts
to Church’s synthesis from the point of view of the envi-
ronment (i.e., checking if one can synthesize a strategy of
the environment against the agent), and can be done in 2-
EXPTIME. Eventhough, in many cases, checking this con-
sistency is simpler, e.g., domain specifications and fairness
constraints are trivially consistent, this bound is tight.

Once we have established what (consistent) environment
specifications are, we study how to solve planning under
LTL environment specifications. We resort again to the Veri-
fication literature, which take assumptions (our environment
specifications) into account by resorting to Church’s synthe-
sis for the implication

EnvSpec ⊃ Goal

where bothEnvSpec andGoal are expressed in LTL (Chat-
terjee and Henzinger 2007; Chatterjee, Henzinger, and Job-
stmann 2008). Does planning under LTL environment spec-
ification amount to synthesizing for the above implication?
Surprisingly, we show that this is not the case. An agent that
synthesizes for the implication is too pessimistic: an agent
strategy σag for the implication has to ensure that Goal
holds, not only against environment strategies which enforce
EnvSpec, but also against those that don’t and yet when ex-
ecuted together with σag make EnvSpec true. In this way,
the agent gives too much power to the environment, which
can indeed break its specification.

On the other hand, surprisingly, we show that if there is an
agent strategy enforcing Goal under environment assump-
tion EnvSpec, then there also exists one that enforces the
implication (and vice-versa). Thus, even if the implication
cannot be used for characterizing planning under LTL envi-
ronment specifications, it can be used to solve it.

Exploiting this result, we devise techniques for plan-
ning under LTL environment specifications, and establish 2-
EXPTIME-completeness in the general case. Then we look at
special case that consist of classical FOND domains, with
additional LTL assumptions. For this, we refine the analysis
(in a non trivial way) and get a 1-EXPTIME bounds in the
size of the domain (compactly represented) and 2-EXPTIME
bound in the LTL assumptions and goals.

We conclude the paper by discussing related work in Ver-
ification and giving an outlook to future research.

2 Preliminaries
Linear-time Temporal Logic
Linear-temporal logic (LTL) is a useful and natural logic for
talking about sequences (later we will also use LTL to talk
about strategies). Formulas of LTL over Boolean variables
AP , or simply LTL, are generated by the following gram-
mar: ϕ ::=p |ϕ∨ϕ |¬ϕ |Xϕ |ϕUϕ where p ∈ AP . The size
|ϕ| of a formula ϕ is the number of symbols in it. LTL for-
mulas are interpreted over infinite sequences τ ∈ (2AP )ω ,
called traces, of valuations of the variables. The satisfaction
relation (τ, n) |= ϕ, stating that ϕ holds at step n of se-
quence τ , is defined as follows:

(τ, n) |= p iff p ∈ τn;

(τ, n) |= ϕ1 ∨ ϕ2 iff (τ, n) |= ϕi for some i ∈ {1, 2};
(τ, n) |= ¬ϕ iff it is not the case that (τ, n) |= ϕ;

(τ, n) |= Xϕ iff (τ, n+ 1) |= ϕ;

(τ, n) |= ϕ1 Uϕ2 iff there exists i ≥ n such that (τ, i) |=
ϕ2 and for all j ∈ [n, i), (τ, j) |= ϕ1.

We write τ |= ϕ if (τ, 0) |= ϕ and say that τ satisfies ϕ and
τ is a model of ϕ. We use the usual abbreviations, ϕ ⊃ ϕ′ .=
¬ϕ ∨ ϕ′, true := p ∨ ¬p, false .

= ¬true, Fϕ .
= trueUϕ,

Gϕ
.
= ¬F¬ϕ.

We remark that every result in this paper that mentions
LTL also holds for LDL (linear dynamic logic) (Eisner and
Fisman 2006).

Planning
Classical planning involves finding a sequence of actions
that drives the initial state to a goal state. Fully observ-
able non-deterministic (FOND) planning involves finding
a plan which tells the agent what to do in every possible
state, so that a goal state is reached no matter how the non-
determinism is resolved. Since we consider temporally ex-
tended goals expressed in LTL, rather than just achieve-
ment goals, planning involves finding strategies which tell
the agent what to do from every possible history (rather than
memoryless policies, i.e, plans which tell the agent what to
do in every possible state) (Bacchus and Kabanza 2000).

FOND domains are typically represented compactly by
taking states to be evaluations of a set of Boolean vari-
ables (Rintanen 2004; Geffner and Bonet 2013). Specif-
ically, a FOND domain specification is a tuple D =
〈F,A, init , ops〉 where F is a set of Boolean variables
called fluents, A is a set of actions, init is a Boolean for-
mula over F describing the initial states, and ops associates
with each a ∈ A a pair (prea , effa) where prea is a Boolean
formula over F called the precondition of action a, and effa ,
the effects of action a, is specified as a non-empty set of
pairs E = (E+, E−) of disjoint sets of fluents. A state is
an evaluation of the fluents. A state s is initial if s |= init .
An action a is possible in state s if s |= prea . We assume
that every state has at least one possible action (this can be
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ensured by adding a dummy “fail” state if needed). The suc-
cessor states of a state s under effects effa is the set of states
s′ for which there exists E = (E+, E−) in effa such that i)
s′ |= f for all f ∈ E+, ii) s′ |= ¬f for all f ∈ E−, and
iii) s′ |= f iff s |= f , for all f 6∈ E+ ∪ E−. If a is possible
in s, and s′ is a successor state of s under effa , then we call
(s, a, s′) a transition; we let T denote the set of transitions.

We now define traces. For a state s and an action a, let
[s, a] denote the set s ∪ {a}. A trace of D is a finite or infi-
nite sequence of the form [s0, a0][s1, a1] · · · where s0 is an
initial state and (si, ai, si+1) ∈ T for all i.2 A trace of D is
fair for effects, or simply fair, if for every (s, a, s′) ∈ T for
which there are infinitely many i such that si = s, ai = a
it also holds that there are infinitely many i such that si =
s, ai = a, si+1 = s′ (Daniele, Traverso, and Vardi 1999;
Cimatti et al. 2003). Note that finite traces are fair.

We now define strategies which tell the agent how to act
given the history of states.3 An agent strategy is a func-
tion σag : S+ → A, i.e., it maps the finite non-empty
sequences of states (denoted by S+) to actions. A finite
or infinite sequence [s0, a0][s1, a1] · · · is induced by σag
if σag(s0s1 . . . si) = ai for all i. An agent strategy is ex-
ecutable if for every such induced sequence that is also a
trace of D, the strategy always selects possible actions, i.e.,
if si |= preai for every i.

A FOND problem with LTL goal is a pair P = (D, γ)
where D is a FOND domain specification and γ is an LTL
formula over F ∪ A called the goal. An executable agent
strategy σag is a solution to the FOND problem P = (D, γ)
if every infinite trace of D induced by σag satisfies γ; it is a
solution to the FOND problem P under fairness (fair FOND
problem in the following) if every fair infinite trace of D in-
duced by σag satisfies γ (Camacho et al. 2017). Note that
ordinary FOND problems amount to taking γ

.
= FGoal

where Goal is a Boolean formula over the variables F . It
is known that solving (fair) FOND problems with reachabil-
ity goals, i.e., both with and without the fairness of effects,
is 1EXPTIME-complete (Rintanen 2004).

Church’s Synthesis
Church’s Synthesis (aka Reactive Synthesis) is the prob-
lem of producing a module that satisfies a given prop-
erty no matter how the environment behaves (Church 1963;
Pnueli and Rosner 1989). Let X and Y be disjoint finite sets
of Boolean variables. The idea is that the environment sets
the variables in X , and the agent then responds by setting
the variables in Y . A reactive module or agent strategy is a
function σag : (2X)+ → 2Y , i.e., it tells the agent how to set
its variables given the history of assignments of the environ-
ment. A trace is a sequence (X0 ∪ Y0)(X1 ∪ Y1) . . . over
the alphabet 2X∪Y , i.e., Xi ⊆ X,Yi ⊆ Y . An agent strat-
egy induces a trace (Xi ∪ Yi)i if σag(X0X1 · · ·Xj) = Yj

2Sometimes traces are called possible executions, and defined
to be alternating sequences of states and actions, i.e., s0a0s1a1 · · · ,
which start in an initial state and respect the transitions. Our defi-
nition is just a convenient notational variation.

3These are similar to history-based policies (Geffner and Bonet
2013).

for every j ≥ 0.
In what follows we will also make use of strategies for

the environment. Specifically, an environment strategy is a
function σenv : (2Y )∗ → 2X , i.e., it captures how the envi-
ronment starts as well as how it responds to the history of
assignments of the agent. An environment strategy induces
a trace (Xi ∪ Yi)i if σenv(ε) = X0 and σenv(Y0Y1 · · ·Yj) =
Xj+1 for every j ≥ 0. For an agent strategy σag and an en-
vironment strategy σenv let τ(σag, σenv) denote the unique
sequence over the alphabet 2X∪Y induced by both σag and
σenv.

Let ϕ be an LTL formula. An agent strategy σag enforces4

ϕ, written σag B ϕ, if for every environment strategy σenv,
the sequence τ(σag, σenv) satisfies ϕ, i.e.,

∀σenv.τ(σag, σenv) |= ϕ.

In this case we say that ϕ is agent enforceable. Similarly, an
environment strategy σenv enforces ϕ, written σenv B ϕ, if
for every agent strategy σag, the sequence τ(σag, σenv) satis-
fies ϕ. In this case we say that ϕ is environment enforceable.
Deciding if an LTL formula is agent enforceable (or environ-
ment enforceable), and computing a finite-state strategy5 if
one exists, is called the LTL synthesis problem. These prob-
lems are known to be 2EXPTIME-complete:
Theorem 1. (Pnueli and Rosner 1989) Solving the LTL syn-
thesis problem is 2EXPTIME-complete.

In the rest of the paper, we let X denoted a set of fluents
(i.e., X = F ), and Y denote the bit representations of a set
of actions (i.e., A = 2Y ).

3 Environment Specifications
Our work starts from the observation that we can conceive
environment specifications as mechanisms for selecting en-
vironment strategies. In particular, an environment specifica-
tion Σ denotes a set of environment strategies. This is differ-
ent from a goal Γ which is a specification of a set of traces
that are desirable. Under this view, the planning task itself
can be see as a generalization of Church’s synthesis: find an
agent strategy (a plan) such that for all environment strate-
gies satisfying (i.e., denoted by) the environment specifica-
tion we have that the resulting trace produced by the two
strategies together satisfies (i.e., is denoted by) the goal. In
formulas: find an agent strategy σag such that

∀σenv ∈ Σ. τ(σag, σenv) ∈ Γ

Note that this trivializes if Σ denotes an empty set, i.e.,
if the environment specification is inconsistent and rules out
all environment strategies. Hence, we require that the envi-
ronment specification is consistent, i.e., denotes at least one
environment strategy.

4“Enforces” is often called “realizes” in the synthesis literature;
cf. (Pnueli and Rosner 1989).

5A strategy is finite state if it is computed by a finite-state trans-
ducer, i.e., a deterministic finite-state machine that is fed symbols
from an input alphabet, and symbol by symbol, it produces a sym-
bol from an output alphabet, and changes its internal state. It turns
out that if there is a strategy enforcing an LTL formula ϕ, then there
is a finite-state one doing so.
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It is easy to see that classical FOND domain specifi-
cations can be seen as environment specifications in the
above sense. Let D be a FOND domain specification, e.g.,
a specification expressed in PDDL (Planning Domain Def-
inition Language). Classically, D denotes a transition sys-
tem, i.e., D compactly represents the set of states and how
the agent actions and the environment reactions (resolv-
ing nondeterminism) drive the system from one state to
another. However, we can also see D as specifying a set
of environment strategies σenv : A∗ → S which specify
how the environment resolves the nondeterminism. An en-
vironment strategy σenv is specified by D if i) σenv(ε) is
an initial state, and ii) for every sequence a0a1 · · · ak of
actions, if ak is possible in state σenv(a0a1 · · · ak−1) then
(σenv(a0a1 · · · ak−1), ak, σenv(a0a1 · · · ak)) ∈ T .

The following proposition shows that this new view is
consistent with the classic view of FOND planning:

Proposition 2. Let P = (D, γ) be a FOND domain with
an LTL goal, and let ΣD be the set of environment strategies
specified byD. An executable agent strategy σag is a solution
for P iff ∀σenv ∈ ΣD.τ(σag, σenv) |= γ.

Note that FOND domains denote consistent sets, i.e., ΣD

is always non-empty.
Similarly, we can immediately handle fair FOND prob-

lems by further restricting the environment strategies σenv to
the fair environment strategies, i.e., those that together with
any agent strategy generate a fair trace. Let ΣD,fair denote
this set of environment strategies. The following proposition
shows that this new view is consistent with the classic view
of fair FOND planning:

Proposition 3. Let P = (D, γ) be a FOND domain with
an LTL goal, and let ΣD,fair be the set of fair environment
strategies specified byD. An executable agent strategy σag is
a fair solution for P iff ∀σenv ∈ ΣD,fair.τ(σag, σenv) |= γ.

Note that fair FOND domains denote consistent sets, i.e.,
ΣD,fair is always non-empty.

In this paper, we generalize environment specifications
from nondeterministic domains, possibly with fairness of ef-
fects, to arbitrary LTL formulas. In this way, for example, we
may express that an agent doing a certain action now, results
in having a certain effect eventually (as opposed to at the
next state, as in typical planning domains).

Note that LTL models are traces and not strategies.
Hence, we need to understand in what sense an LTL for-
mula provides us with an environment specification. To do
so, we observe that an LTL formula can be used to specify
the set of strategies that describe how the environment reacts
to the agent’s actions (no matter what the agent does) in or-
der to satisfy the LTL formula. That is, an LTL formula can
be used to specify those environment strategies enforce the
LTL formula, i.e., that fulfill the LTL formula against all pos-
sible agent strategies. Hence, the environment specification
in LTL denotes those environment strategies that enforce the
LTL formula.

Generalizing the ideas above, we can use arbitrary LTL
formulas as specifications for sets of environment strategies.

Definition 1. Let ε be an LTL formula. An environment

strategy σenv is specified by ε if σenv enforces ε, in symbols
σenv B ε.

On the basis of this general definition we now define plan-
ning under LTL environment specifications that generalizes
Proposition 2.
Definition 2. 1. Let γ and ε be LTL formulas. An agent

strategy σag enforces γ under the environment specifica-
tion ε if for all environment strategies σenv specified by ε
we have that τ(σag, σenv) |= γ, in symbols:

∀σenv B ε. τ(σag, σenv) |= γ.

2. Planning under LTL environment specifications is the
problem of deciding whether there is an agent strategy
that enforces γ under the environment specification ε, and
returning such a strategy.6

Let us illustrate these definitions with some notable exam-
ples. We can capture FOND specifications in LTL. Consider
the following example.
Example 1. In robot-action planning problems, typical en-
vironment specifications encode the physical space, e.g., “if
robot is in Room 1 and does action Move then in the next
step it can only be in Rooms 1 or 4”. Such specification are
usually hardwired into the domain. However, they can also
be captured by environment strategies σenv satisfying the fol-
lowing property: for every trace [s1, a1][s2, a2] . . . gener-
ated by σenv such that “the robot is in Room 1” holds in the
state si, and ai is the action Move, then either “the robot is
in Room 1” or “the robot is in Room 4” holds in the state
si+1. Note that this is a condition on traces that can be ex-
pessed in LTL by a formula of the form G(R1 ∧Move ⊃
X(R1 ∨R4)); here Ri is a fluent representing that the robot
is in Room i.

In general, we can capture any FOND domain specifica-
tion D as an LTL formula:

εD
.
= init ∧

∧
a∈A

G((a ∧ prea) ⊃ (
∨

E∈effa

ϕ1 ∧ ϕ2 ∧ ϕ3))

where ϕ1 is the formula
∧

f∈E+ X f , ϕ2 is the formula∧
f∈E− X¬f , and ϕ3 is the formula

∧
f 6∈E+∪E− f ↔ X f .

This LTL formula says, of a sequence, that it starts in an ini-
tial state, and at every point in time, if a given action occurs
and its precondition holds in the same step, then one of its
effects holds in the next step. It is easy to see that the set of
environment strategies specified by D are exactly those that
enforce εD, i.e., those that make εD true no matter which
strategy the agent adopts in selecting actions (this is formal-
ized in Proposition 4, below).

Analogously we can capture fairness of effects in D by
the following LTL formula:

εD,fair
.
= εD∧

∧
(s,a,s′)∈T

(GF(s ∧ a) ⊃ GF(s ∧ a ∧ X s′)) .

This LTL formula says, of a sequence, that εD holds, and
that if a state-action pair occurs infinitely often then it is

6In fact, we will look for a finite-state strategies, since just as
for ordinary LTL synthesis, it turns out that if there is a strategy
then there is a finite-state strategy.
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infinitely often followed by every possible successor state.
Similarly, the set of environment strategies legal forD under
fairness are exactly those that realise εD,fair.

To summarize, we have the following proposition.
Proposition 4. Let D be a FOND domain specification
(respectively, fair FOND domain specification). The set of
environment strategies specified by D (respectively, under
fairness) are exactly those that enforce εD (respectively,
εD,fair).

Proof. Suppose σ enforces the formula εD. In particular,
σ(ε) satisfies init since every trace induced by σ (and
there is at least one) satisfies εD (which logically im-
plies init). Let a0a1 · · · be an infinite sequence of ac-
tions. Write σ(a≤i) for σ(a0a1 · · · ai). Let k be such
that ak is possible in σ(a≤k−1). We will show that
(σ(a≤k−1), ak, σ(a≤k)) ∈ T . Consider the infinite trace
τ
.
= [σ(ε), a0][σ(a0), a1][σ(a0a1), a2] · · · . Since this trace

is induced by σ, it satisfies εD. By the choice of k, both ak
and preak

hold (in position k+1), and thus σ(a≤k) satisfies
the effects (in position k + 2), as required.

For the other direction, suppose σ is specified by D.
Let τ = [s0, a0][s1, a1] · · · be an infinite trace induced by
σ. By assumption σ(ε) satisfies init . Let k ≥ 0 be such
that ak = a, and sk satisfies prea . Then, by assumption,
(sk, ak, sk+1) ∈ T , i.e., sk+1 satisfies the effects. Thus τ
satisfies εD, as required.

The fair case is similar.

It turns out that virtually all forms of planning (with
linear-time temporally extended goals) in the literature are
special cases of planning under LTL environment specifica-
tions (with LTL goals), i.e., the set of strategies that solve
a given planning problem are exactly the set of strategies
that solve the corresponding planning under environment
specifications problem. In the following proposition, Goal
is a Boolean formula over F , and Exec is the LTL formula
G
∧

a∈A(a ⊃ prea) expressing that if an action is done then
its precondition holds.
Proposition 5. 1. FOND planning with reachability

goals (Rintanen 2004) is a special case of planning
under LTL environment specifications with environment
specification ε .

= εD and goal γ .
= Exec ∧ FGoal .

2. FOND planning with LTL (temporally extended) goals γ
(Bacchus and Kabanza 2000; Camacho et al. 2017) is a
special case of planning under LTL environment specifi-
cations with environment specification ε .

= εD and goal
Exec ∧ γ.

3. In planning, trace constraints, e.g., expressed in LTL,
have been introduced for expressing temporally extended
goals (Bacchus and Kabanza 2000; Gerevini et al. 2009).
More recently, especially in the context of generalized
planning, they have been used to describe restrictions
on the environment as well (Bonet and Geffner 2015;
De Giacomo et al. 2016; Bonet et al. 2017). FOND plan-
ning with LTL trace constraints ε and LTL (temporally
extended) goals γ (Bonet and Geffner 2015; Bonet et
al. 2017) is a special case of planning under LTL envi-
ronment specifications with environment specification ε

(though, we do need to check whether ε ∧ εD is a consis-
tent enviroment specification, see later) and goal Exec∧γ.

4. Fair FOND planning with reachability goals (Daniele,
Traverso, and Vardi 1999; Geffner and Bonet 2013;
D’Ippolito, Rodrı́guez, and Sardiña 2018) is a special
case of planning under LTL environment specifications
with environment specification ε

.
= εD,fair, and γ

.
=

Exec ∧ FGoal .7

5. Fair FOND planning with (temporally extended) goals
γ (Patrizi, Lipovetzky, and Geffner 2013; Camacho et
al. 2017) is a special case of planning under LTL en-
vironment specifications with environment specification
εD,fair and goal Exec ∧ γ.

6. Obviously adding LTL trace constraints ε to fair FOND
planning with (temporally extended) goals is a special
case of planning under LTL environment specifications
(though one needs to check that εD,fair∧ε is a consistent
enviroment specification, see later).

We conclude this section by observing that the definitions
above can be immediately generalized to any other linear-
time specifications, e.g., automata over infinite words. In a
later section we study the complexity of FOND planning un-
der environment specifications, and we will exploit this fact
in order to provide optimal complexity, i.e., for FOND plan-
ning we will not use an LTL formula for the domain (cf. εD),
but rather express the domain directly as an automaton.

4 Environment Specification Consistency
We now know how to use any LTL formula as an environ-
ment specification, i.e., to specify sets of environment strate-
gies. However, as mentioned previously, not all formulas
are legitimate environment specifications. This leads to the
question: Which formulas are legitimate environment speci-
fications?

We first discuss the intuition. When do we say that a log-
ical specification is legitimate? When it is consistent, i.e.,
it admits at least one model. But in our setting we cannot
simply use standard logical consistency, because, since the
models of linear-time formulas are traces, standard consis-
tency would only guarantee that the environment specifica-
tion would allow at least one trace. To get such a trace we
would need cooperation between the agent and the environ-
ment. Instead, under the view that environment specifica-
tions are specifications of environment strategies, the con-
sistency requirement becomes: admitting at least one envi-
ronment strategy that fullfils the specification in spite of what
the agent does.

We can make such intuitions precise using Church’s syn-
thesis.

Definition 3. An LTL formula ε is a consistent environment
specification if it is environment enforceable, in symbols:
∃σenv. σenv B ε.

7Unfortunately, such a formula explicitly mentions the states
s, s′ and action a, and hence may be exponential in D (recall that
D is represented compactly).
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Note that FOND domain specifications, i.e., εD, and fair
FOND domain specifications, i.e., εD,fair, are always en-
vironment enforceable, and hence consistent environment
specifications. However, not every LTL formula is environ-
ment enforceable. For instance, if a, b ∈ A then ε = F a,
which says that the agent eventually does action a, is not en-
vironment enforceable (indeed, for every environment strat-
egy σ there is a trace in which all actions are b). Note, how-
ever, that one can decide if an LTL formula is a consistent
environment specification, i.e., if it is environment enforce-
able, by using standard LTL synthesis (Theorem 1):
Theorem 6. Deciding if a given LTL formula ε is a consis-
tent environment specification is 2EXPTIME-complete.

5 Planning under LTL Environment
Specifications

In this section we show how to solve planning under LTL en-
vironment specifications. We show that we can actually re-
duce planning for an LTL goal γ under an LTL environment
specification ε to Church’s synthesis for the implication

ε ⊃ γ.
Notice that in this implication, if the environment specifi-
cation ε is consistent, the agent will not be able to find a
strategy (a plan) to make the implication true by falsifying
the environment specification ε. The fact that ε is consistent,
and hence enviroment enforceable, means that every strat-
egy of the agent can be countered by the environment so as
to fulfill ε. Hence, from now on, we focus on consistent en-
vironment specifications (in fact, the theorems in this section
are trivial in the inconsistent case).

In spite of this, understanding why the reduction works is
not immediate. After all we are moving from a problem of
the form:

find σag such that ∀σenv B ε. τ(σag, σenv) |= γ

to a problem of the form:

find σag such that σag B (ε ⊃ γ),

i.e. find σag such that for all σenv, if τ(σag, σenv) |= ε then
τ(σag, σenv) |= γ. In words, instead of requiring the agent to
find a strategy that fulfills the goal γ against the environment
strategies that satisfy the environment specification ε, we re-
quire the agent find one that fulfills the implication ε ⊃ γ
against all possible strategies of the environment.

In fact, one direction does hold on a strategy-by-strategy
basis.
Theorem 7. Let ε be an LTL environment specification and
γ an LTL goal. Then every agent strategy that enforces ε ⊃
γ (without environment specifications) also enforces γ under
the environment specification ε.

Proof. Let σag be an agent strategy enforcing ε ⊃ γ, i.e.,
every trace induced by σag satisfies ε ⊃ γ. To show that σag
enforces γ under the environment specification ε, let σenv
be an environment strategy enforcing ε, i.e., every trace in-
duced by σenv satisfies ε. In particular, the trace τ(σag, σenv)
induced by both σag and σenv satisfies γ, as required.

However, the converse does not hold:

Theorem 8. It is not the case that, for every LTL environ-
ment specification ε and LTL goal γ, every agent strategy
that enforces γ under the environment specification ε also
enforces ε ⊃ γ (without environment specifications).

Proof. We show one. Let A .
= {a, b} and F .

= {f}, and
let ε .

= f ⊃ a and γ .
= f ⊃ b. First note that ε is a consis-

tent LTL environment specification (indeed, the environment
can enforce ε by playing ¬f at the first step). Moreover,
every environment strategy enforcing ε begins by playing
¬f (since otherwise the agent could play b on its first turn
and falsify ε). Thus, every agent strategy enforces γ under
the environment specification ε (since the environment’s first
move is to play ¬f which makes γ true no matter what the
agent does). On the other hand, not every agent strategy en-
forces ε ⊃ γ (indeed, the agent strategy which plays a on its
first turn fails to satisfy the implication on the trace in which
the environment plays f on its first turn).

Notwithstanding the last theorem, the two problems are
inter-reducible:

Theorem 9. Suppose ε is an LTL environment specification.
The following are equivalent:

1. There is an agent strategy enforcing ε ⊃ γ, in symbols

∃σag. σag B (ε ⊃ γ).

2. There is an agent strategy enforcing γ under environment
specification ε, in symbols

∃σag. ∀σenv B ε. τ(σag, σenv) |= γ.

Proof. The previous lemma gives us 1 → 2. For the con-
verse, suppose 1 does not hold, i.e., ε ⊃ γ is not agent
enforceable. Now, an immediate consequence of Martin’s
Borel Determinacy Theorem (Martin 1975) is that for ev-
ery φ in any reasonable specification formalism (including
LTL), φ is not agent enforceable iff ¬φ is environment en-
forceable. Thus, ¬(ε ⊃ γ) is environment enforceable, i.e.,
∃σenv∀σag.τ(σag, σenv) |= ε ∧ ¬γ. Note in particular that
σenv enforces ε. Now, suppose for a contradiction that 2
holds, and take σag enforcing γ under environment speci-
fication ε. Then by definition of enforceability under envi-
ronment specification and using the fact that σenv enforces ε
we have that τ(σag, σenv) |= γ. On the other hand, we have
already seen that τ(σag, σenv) |= ¬γ, a contradiction.

The above theorem, gives us a way to solve planning for
and LTL goal γ under LTL environment specification ε in
2EXPTIME by using Theorem 1: solve classical Church’s
synthesis for ε ⊃ γ, and return a finite-state strategy (incase
the formula is agent-enforceable).

Theorem 10. Solving planning under LTL environment
specifications is 2EXPTIME-complete. Moreover, if there is
a strategy solving a given instance, then there is a finite-
state strategy doing so, and the algorithm returns one such
finite-state strategy.

36



6 FOND Domains with Additional LTL
Assumptions

In this section we study planning under environment spec-
ifications that consist of a classical FOND domain with an
additional LTL assumption. Such assumptions are, for ex-
ample, used to specify trajectory constraints as in (Bonet et
al. 2017). Notice that we could simply reduce FOND to LTL
formulas and work as in the previous sections. However, we
will follow a refined approach that will give us tight com-
plexity bounds. To state the theorem we need the following
terminology: if D is a FOND domain specification and ε is
an LTL formula over variables F ∪A then the combined en-
vironment specification is the set of environment strategies
specified by D that also enforce ε.
Theorem 11. 1. Let D be a FOND domain specification,

and ε an LTL formula. Deciding whether the combined
environment specification is consistent is 1EXPTIME-
complete in D and 2EXPTIME-complete in ε.

2. LetD be a FOND domain specification, and ε an LTL for-
mula such that the combined environment specification is
consistent. Solving LTL planning under this environment
specification for an LTL goal γ is 1EXPTIME-complete in
D and 2EXPTIME-complete in the goal γ, and 2EXPTIME
in the LTL formula ε.8

Note, as an immediate corollary, we establish the com-
plexity of FOND planning with LTL goals (and no environ-
ment specifications). While this result was known for goals
expressed in LTL on finite traces (LTLf) (De Giacomo and
Rubin 2018), it was not known for LTL on infinite traces.
Corollary 12. Let D be a FOND domain specification.
Solving LTL planning under this environment specifica-
tion for an LTL goal γ is 1EXPTIME-complete in D and
2EXPTIME-complete in the goal γ.

Notice that the complexity for solving LTL planning un-
der these environment specifications is the same for standard
FOND planning for reachability goals (cf. Proposition 2).

To prove the theorem, first consider the lower-bounds.
These follow from known results, i.e., taking reachability
goals we get 1EXPTIME-hardness inD, see (Rintanen 2004);
and by Theorem 1, taking the universal domain (i.e., every
action is always possible, and its effects are all the states), we
get 2EXPTIME-hardness in ε for part 1, and for 2EXPTIME-
hardness for the goal γ for part 2.

Proving the Upper Bounds Here we focus on part 2 since
part 1 is similar; full details are in the supplement. We make
use of automata instead of LTL formulas representing the
domain. This mimics a similar development for FOND for
LTLf goals in which deterministic finite automata (DFA) and
their corresponding games are used (De Giacomo and Rubin
2018). Since we deal with LTL (and not LTLf), we need de-
terministic automata over infinite words. We use determinis-
tic parity word automata (DPW) and games on these.

Deterministic Parity Word automata (DPW) These au-
tomata are like (classic) deterministic finite word automata
except that there is no set of final states; instead, there is

8We do not know if the complexity is 2EXPTIME-hard in ε.

a priority function col : Q → Z that assigns an integer
to every state. A run of a DPW is accepting if the infinite
sequence of priorities of the states of the run satisfies the
parity condition, i.e., the largest integer occuring infinitely
often is even. The DPW accepts an input word if its run is
accepting. The size of a DPW is the cardinality of its set
Q of states, and the number of its priorities is the cardinal-
ity of col(Q). DPW are effectively closed under Boolean
operations: complementation is done by incrementing every
priority by 1 (and thus causes no blowup in the size or num-
ber of priorities), while disjunction results in a DPW of size
at most (|Q1| × |Q2|)d2d! and with O(d) many priorities,
where d = |col(Q1)| + |col(Q2)|. It turns out that one can
convert LTL formulas into equivalent DPW:

Theorem 13. (Vardi 1995; Piterman 2007) For every LTL
formula ϕ over variables X ∪ Y there is a DPW Mϕ over
alphabet 2X∪Y that accepts exactly the words satisfying ϕ.
Moreover, the translation can be done in 2EXPTIME and re-
sults in a DPW Mϕ of size at most doubly-exponential in |ϕ|
and with at most exponentially in |ϕ| many priorities.

DPW games are played by two players who produce a
run in the DPW; the agent chooses the actions and the en-
vironment chooses the fluents. The agent is trying to ensure
that the run is accepting. To talk about winning the game,
we recast the notion of strategy. A run (qi, Xi ∪ Yi, qi+1)i
is induced by an agent strategy σag : (2X)+ → 2Y if
σag(X0X1 · · ·Xj) = Yj for all j. An agent strategy σag wins
the DPW game if every trace induced by σag is accepting,
i.e., the sequence of priorities col(q0)col(q1) · · · satisfies the
parity condition. Similarly, an environment strategy wins the
DPW game if every traced induced by it is not accepting.
Moreover, since DPW games are determined (exactly one
player has a winning strategy), if there is no agent strategy
that wins the game then there is an environment strategy that
wins the game (and vice versa). Deciding which of the two
players (the agent or the environment) has a strategy that
wins the game is called solving the game.

Theorem 14. (Zielonka 1998) There is an algorithm for
solving DPW games that works in time polynomial in |Q|
and exponential in |col(Q)|, i.e., in time O(|Q|O(|col(Q)|)).
Moreover, if there is an agent (resp. environment) strategy
that wins the game, then there is a finite-state one, and this
algorithm returns one such strategy.

The relationship between DPW games and LTL synthesis
is given by the following straightforward lemma:

Lemma 15. Let ϕ be an LTL formula over variablesX∪Y ,
and let M be a DPW equivalent to ϕ (e.g., the DPW from
Theorem 13). Then, an agent strategy σag wins the game M
iff σag enforces ϕ.

Proof. Let σag be an agent strategy. Then, the following are
equivalent: σag wins the gameM ; σag enforces the setL(M)
of all input words accepted by M ; σag enforces the LTL for-
mula ϕ. The first equivalence holds because the automaton
is deterministic; i.e., every input word has a unique run in
M . The second equivalence holds because M accepts ex-
actly the infinite words satisfied by ϕ.
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Solving LTL planning under combined environment spec-
ifications. Let D be a FOND domain specification, and ε an
LTL formula such that the combined environment specifica-
tion is consistent. Let γ be an LTL goal. To solve planning
under the combined enviroment specification, it is enough
to build a DPW M equivalent to (εD ∧ ε) ⊃ γ, and solve
for M . Indeed, some agent strategy solves the DPW game
M iff some agent strategy enforces (εD ∧ ε) ⊃ γ iff some
agent strategy enforces γ under the combined environment
specification εD ∧ ε (the first equivalence is the definition
of solving the DPW game M , and the second equivalence
is by Theorem 8). Moreover, if a specific agent-strategy σag
solves the DPW game M , then by Theorem 7, σag also en-
forces γ under the environment specification εD ∧ ε.

Similarly, in order to decide if the combined environment
specificationD and ε is consistent, form the DPW for εD∧ε
of size 1exp in the size of D, and 2 in the size of ε, and with
1exp many priorities in the size of ε, and solve the DPW
game. Note that if the agent does not have a strategy that
wins this DPW game, then the environment does, and vice
versa. This property of games is called Determinacy, and it
holds for DPW games (Zielonka 1998).

The main problem, now, is to build the DPW M given
D, ε and γ. If one naively applies the translation in Theo-
rem 13 of the LTL formula (εD∧ε) ⊃ γ, and then solves the
game using Theorem 14, one pays 2exp in the size of D, ε
and γ. However, the promised complexity (Theorem 11) is
1exp in the size of D and 2exp in the formulas ε and γ. In
order to achieve this complexity, it is enough to construct a
DPW M equivalent to (εD ∧ ε) ⊃ γ that has 1exp many
states in the size of D, and 2exp many states and 1exp many
priorities in the sizes of ε and γ. This can be done by trans-
lating ε and γ into DPWs using Theorem 13, and directly
building a DPW MD accepting the infinite traces of D of
size single-exponential in D with two priorities, and then
forming a DPW by taking Boolean combinations.

We end this sketch by explaining how to define the DPW
MD for D. It has state set (S×A)∪{qin, q−} and works as
follows: the initial state is qin, and on reading the input [e, a]
it goes to state (e, a) if e ∈ I and to q− otherwise; from a
state of the form (e, a) and on reading the input [e′, a′] the
DPW goes to state (e′, a′) if (a′ is possible in e) implies
(e′ is a successor state of e under effects effa ); and it goes
to the rejecting sink q− if a′ is possible in e but e′ is not a
successor of state e under effects effa . This DPW requires
just two priorities, i.e., the reject sink q− has priority 1 and
all states have priority 0.

This completes the sketch of the proof of Theorem 11.
We mention that it is unknown if a similar technique can
be applied to solve FOND fair planning (under combined
environment specifications).

7 Related Work in Formal Methods
Our notion of environment specification is related to that of
assumptions in the Formal Methods literature, and specif-
ically in synthesis. The most well-known assumption is
that of fairness. Synthesis under fairness was discussed and
solved using automata-theoretic techniques in (Vardi 1995).
More general assumptions appear in works that show how to

use Church’s synthesis to synthesize high-level robot con-
trollers (Kress-Gazit, Fainekos, and Pappas 2009; Kress-
Gazit, Wongpiromsarn, and Topcu 2011). The typical use
of Church’s Synthesis is to synthesize for the implication
Assumption ⊃ Goal (or some variant of this). Our work
shows that one can reduce planning under environment spec-
ifications to Church’s synthesis of such an implication for-
mula (Theorem 9). However, this reduction does not hold
on a strategy-by-strategy basis (Theorem 8). This clarifies
a subtle point that was missing from the Verification litera-
ture (Chatterjee and Henzinger 2007; Chatterjee, Henzinger,
and Jobstmann 2008; Bloem, Ehlers, and Könighofer 2015;
Brenguier, Raskin, and Sankur 2017). Also, the undesirable
drawback of the agent being able to falsify an assumption
when synthesizing Assumption ⊃ Goal is well known,
and it has been observed that it can be overcome by requir-
ingAssumption to be environment enforceable (D’Ippolito
et al. 2013; Chatterjee and Henzinger 2007). Our work (and
Definition 3 in particular), clarifies that this requirement is a
consistency condition for assumptions.

In the Verification literature, there are other approaches
for synthesizing Assumption ⊃ Goal, especially in pres-
ence of multiple agents (the environment being one of them).
These include identifying various “degrees of cooperation”
required amongst agents to satisfy the assumptions (Chat-
terjee and Henzinger 2007; Bloem, Ehlers, and Könighofer
2015; Brenguier, Raskin, and Sankur 2017). Also, in order to
handle complex strategic properties for multiple agents (in-
cluding synthesising equilibria) there are techniques based
on automata that make various assumptions about the en-
vironment (Belardinelli et al. 2017; Berthon et al. 2017;
Maubert and Murano 2018). We do not address multiple
agent in this work; however, we believe that approaches sim-
ilar to the present one may help in establishing principled
foundations on which to ground assumptions in the multi-
agent case.

8 Conclusion
This works gives a unified way to think about many kinds
of assumptions that an agent makes about the environment.
Thus, domain specifications, fairness constraints, trajectory
constraints, etc., should all be viewed as the same type of
object, i.e., as sets of environment strategies. We believe that
this brings a principled clarity to the notion of “environment
specification”, which in literature has been formalized for
specific cases but left at an intuitive level only in general.

Environment specifications could also be specified in
branching-time formalisms such as CTL∗, µ-calculus, and
tree automata (indeed, strategies are naturally viewed as in-
finite trees). The characteristic of such formalisms is that
they allow one to describe possible choices that an agent or
environment has. We leave this for future work.
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