
SIRM 2019 – 13th International Conference on Dynamics of Rotating Machines,
Copenhagen, Denmark, 13th – 15th February 2019

Model correlation for special types of rotor systems

Gudrun Mikota 1, Horst Ecker 2

1 Institute of Machine Design and Hydraulic Drives, Johannes Kepler University Linz, A-4040 Linz, Austria,
gudrun.mikota@jku.at
2 Institute of Mechanics and Mechatronics, Vienna University of Technology, A-1060 Wien, Austria,
horst.ecker@tuwien.ac.at

Abstract
The correlation between theoretical and experimental modal models can be quantified by the Modal As-

surance Criterion, which has also been used for rotor systems. However, the conclusions drawn from the
Modal Assurance Criterion may not be valid for non-symmetric systems since the underlying orthogonal-
ity relations are violated. Therefore, a Rotor Correlation Criterion is proposed, which incorporates right and
left eigenvectors, eigenvalues, and mass and stiffness matrices. Applications of model correlation for test
data assessment, sensor placement, mode pairing, and model updating are discussed in the context of ro-
tors. For two numerical examples, the modified correlation approach is compared to the Modal Assurance
Criterion. Considering the availability of experimentally determined left eigenvectors, these examples deal
with a damped rotor under special support conditions and a purely gyroscopic rotor under more general
conditions.

1 Introduction
The Modal Assurance Criterion (MAC) [2] is widely used to assess the correlation between theoretical and

experimental modal models. If the mass or stiffness weighted MAC of a non-rotating structure is proportional
to the identity matrix, mode shapes are perfectly correlated. For many structural models, the weighting ma-
trix is not essential, and a similar MAC is obtained without weighting. The unweighted MAC only requires the
mode shapes, which suggests that it could be suited for any type of system. However, the properties of the
MAC depend on the underlying orthogonality relations, which are violated by non-symmetric models. Since
the system matrices of rotors are in general non-symmetric, there is no guarantee that the usual conclusions
from the MAC are still valid.

For a flexible rotor in journal bearings, the main MAC diagonal of theoretical and experimental modes
has been calculated in [6]. Four out of ten values were below the recommended limit of 0.9 and could not be
improved by model updating. Moreover, significant differences appeared between the MAC values of right
and left eigenvectors. In this case, model correlation would have required a modified approach.

For the model correlation of rotor systems, one might consider the modal matching array from [1], which
is defined for general second-order systems. It incorporates right and left eigenvectors as well as all system
matrices. In a comparison between theoretical and experimental modal models, approximate mass and stiff-
ness matrices will be available, while damping will hardly be known; this discourages the use of the modal
matching array, which also involves rather complex calculations. The difficulty of obtaining left eigenvectors
from experiments has been discussed in [3]. For purely gyroscopic rotors [7, 8] or special support conditions
[9, 10], they can be calculated from right eigenvectors so that the rotor only has to be excited in one degree
of freedom. In this paper, the results from [9, 10] are used to ensure the practical applicability of a modified
correlation approach.

Besides the comparison between theoretical and experimental modal models, the MAC is used in other
applications such as the validation of experimental modal models [2], optimal sensor placement [11], and
the objective function for model updating algorithms [12]. Future success in the model updating of rotor
systems will depend on an efficient treatment of these issues and requires an appropriate approach to model
correlation.
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This paper is based on a general orthogonality relation for non-symmetric systems. It proposes a corre-
lation criterion that incorporates right and left eigenvectors, eigenvalues, and mass and stiffness matrices.
Various applications of model correlation are discussed with an emphasis on their importance for rotors.
The advantage of the modified correlation approach is demonstrated by numerical examples. These exam-
ples consider special types of rotor systems for which appropriate experiments are feasible. They investigate
various applications of model correlation for a rotor in damped isotropic bearings and a rotor in undamped
bearings with minor anisotropy.

2 Modified correlation criterion
To derive the required orthogonality relation, the equation of motion

Mü+ (C + G )u̇+ (K + N )u= 0 (1)

for an autonomous rotor system with the displacement vector u, the symmetric mass matrix M , the symmet-
ric damping matrix C , the skew-symmetric gyroscopic Matrix G , the symmetric stiffness matrix K , and the
skew-symmetric circulatory matrix N is transformed into

A

�

u̇
ü

�

+ B

�

u
u̇

�

= 0 (2)

where

A=

�

C + G M
M 0

�

(3)

and

B =

�

K + N 0
0 −M

�

. (4)

Equation (2) leads to the first order right eigenvalue problem

(λn A+ B )θr n = 0, (5)

in which both eigenvalues λn and right eigenvectors θr n appear as complex conjugate pairs. The first order
left eigenvalue problem

θT
l n (λn A+ B ) = 0T (6)

yields the same eigenvalues λn and the left eigenvectors θl n , which also appear as complex conjugate pairs.
In general, right and left eigenvectors do not coincide.

If Eq. (5) is premultiplied by the transpose of the left eigenvector θl m , one obtains

θT
l m (λn A+ B )θr n = 0. (7)

Expressing Eq. (6) for the index m and postmultiplying by the right eigenvector θr n results in

θT
l m (λm A+ B )θr n = 0. (8)
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For m 6= n , the combination of Eqs. (7) and (8) proves the orthogonality relation

θT
l m Bθr n = 0. (9)

The right and left eigenvectorsψr n andψl m of the system (1) satisfy the relations

�

λ2
n M +λn (C + G ) + K + N

�

ψr n = 0 (10)

and

ψT
l m

�

λ2
m M +λm (C + G ) + K + N

�

= 0T , (11)

respectively. It follows from Eqs. (3-6), (10), and (11) that

θr n =

�

ψr n

λnψr n

�

(12)

and

θl m =

�

ψl m

λmψl m

�

. (13)

With Eqs. (4), (12), and (13), the orthogonality relation (9) becomes

ψT
l m (K + N )ψr n −λmλnψ

T
l m Mψr n = 0, (14)

which constitutes the basis of the correlation criterion proposed in this paper.
In the various applications of model correlation, two sets A and B of both right and left eigenvectors are

considered. They may be obtained from theory or by experiment and sometimes they coincide. Omitting the
circulatory matrix for brevity, Eq. (14) suggests the abbreviation

Sm An B =ψ
T
l m A Kψr n B −λm Aλn Bψ

T
l m A Mψr n B ; (15)

using Eq. (15), the elements of the Rotor Correlation Criterion (RCC) matrix are defined as

RCCmn =
|Sm An B | · |Sn B m A |
|Sm Am A | · |Sn B n B |

. (16)

If the two sets of eigenvectors A and B coincide, an auto-RCC is obtained, which should be close to the identity
matrix. In theory, it yields the identity matrix if the circulatory matrix remains in Eq. (15).

Section 4 uses the elements of the classical MAC matrix for comparison. They are given by

MACmn =

�

�ψH
r m Aψr n B

�

� ·
�

�ψH
r n Bψr m A

�

�

�

�ψH
r m Aψr m A

�

� ·
�

�ψH
r n Bψr n B

�

�

, (17)

which is based on the orthogonality relation

ψT
r m Mψr n = 0 (m 6= n ) (18)

for undamped symmetric systems [4].
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Figure 1: Schematic of a flexible rotor.

3 Applications of model correlation

In structural dynamics, the MAC has a wide range of applications; typical uses are listed in [2]. Some
applications of model correlation will be essential for modal testing and model updating of rotor systems. In
practical cases, access to a rotor is limited and vibration measurements are restricted to a small number of
degrees of freedom. The preparation of measurement points may cause a considerable effort, which should
be made for optimal positions to avoid repeated trials. This issue is addressed by optimal sensor placement.
For non-rotating systems, an appropriate method has been described in [11]. It considers the auto-MAC
matrix of Finite Element mode shapes that are sampled at the selected sensor positions. This matrix should
come close to identity. For rotor systems, it can be replaced by the RCC matrix. In the RCC formula, right and
left eigenvectors have to be sampled at the selected sensor positions, and mass and stiffness matrices must
be reduced to the measured degrees of freedom.

In view of the practical difficulties that arise with excitation and measurement under rotation, an exper-
imental modal rotor model should be validated to ensure the quality of measurements. The validation of
experimental modal models was an original intention of the MAC [2]. For non-rotating systems, it requires
an auto-MAC matrix of experimental mode shapes, which can be calculated in the absence of a theoretical
model. If the RCC matrix is calculated for the validation of experimental mode shapes from a rotor system,
the formula also requires experimental left eigenvectors as well as a first estimate of reduced mass and stiff-
ness matrices. It seems easier to use the MAC, but this may lead to misjudgement. For an experimental modal
rotor model, the auto-RCC matrix should be near identity.

The validation and, if possible, the successful correction of a physical model may be considered as the
ultimate goal of modal testing. Once the quality of measurements has been ensured, the correlation between
theoretical and experimental modal models can be used to validate the physical model. For non-rotating
systems, the MAC matrix of theoretical and experimental mode shapes should have main diagonal values
above 0.9 and off-diagonal values below 0.1 to ensure a good correlation [4]. For rotor systems, the RCC matrix
can be used in a similar way. Reduced mass and stiffness matrices can be estimated from the theoretical
model.

Model updating aims at the correction of physical model parameters. The objective function can be com-
posed of theoretical and experimental eigenvalues, eigenvectors, or the correlation criterion itself [12]. For a
reasonable definition of this function, it is essential to identify matching mode pairs, which are indicated by
the correlation criterion. If the MAC is used for rotor mode pairing, the objective function may be misleading
and model updating may fail. The RCC shoud be used instead. In an iterative approach, reduced mass and
stiffness matrices could be recalculated from updated model parameters.
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4 Numerical examples
The rotor under consideration is depicted in Fig. 1. The non-symmetric rotor system consists of a rigid

disc attached to a flexible shaft, which is supported by a bearings at both ends. In the examples, two different
configurations of these bearings will be considered. The coordinate system in Fig. 1 is aligned with the prin-
cipal axes of the left bearing with stiffness constants in directions x and y denoted as kx 1 and ky 1; respective
damping constants cx 1 and cy 1 are used in the first example. The left shaft section with radius r1 and length
l1 is described by its mass m1 =ρl1r 2

1 π and transverse area moment of inertia J1 = r 4
1 π/4;ρ denotes the mass

density. The mass of the disc with radius r2 and thickness l2 is m2 = ρl2r 2
2 π. Its transverse and polar mass

moments of inertia are It 2 = ρl2r 4
2 π/4 and Ip 2 = ρl2r 4

2 π/2, respectively. For the right shaft section with ra-
dius r3 and length l3, m3 =ρl3r 2

3 π and J3 = r 4
3 π/4. The stiffness constants of the right bearing are denoted as

kx 3 and ky 3. Respective damping constants cx 3 and cy 3 are used in the first example. Below, a cross-coupled
stiffness kx y 3 appears in the second example.

To keep the model simple, each of the two shaft sections is described by a beam element neglecting shear
deflection [5]. The displacement vector is defined as

u=
�

x1 β1 x2 β2 x3 β3 y1 α1 y2 α2 y3 α3

�T
(19)

with translations x1, y1, x2, y2, x3, y3 and rotations α1, β1, α2, β2, α3, β3 at the left bearing (index 1), the
disc center (index 2), and the right bearing (index 3); α and β describe rotations about the x - and y -axes,
respectively. The mass matrix associated with the displacement vector u reads

M =

�

M x 0
0 M y

�

(20)

with

M x = M 2+
1

420















156m1l1 22m1l 2
1 54m1l1 −13m1l 2

1 0 0
22m1l 2

1 4m1l 3
1 13m1l 2

1 −3m1l 3
1 0 0

54m1l1 13m1l 2
1 156 (m1l1+m3l3) −22

�

m1l 2
1 −m3l 2

3

�

54m3l3 −13m3l 2
3

−13m1l 2
1 −3m1l 3

1 −22
�

m1l 2
1 −m3l 2

3

�

4
�

m1l 3
1 +m3l 3

3

�

13m3l 2
3 −3m3l 3

3
0 0 54m3l3 13m3l 2

3 156m3l3 −22m3l 2
3

0 0 −13m3l 2
3 −3m3l 3

3 −22m3l 2
3 4m3l 3

3















(21)

and

M y = M 2+
1

420















156m1l1 −22m1l 2
1 54m1l1 13m1l 2

1 0 0
−22m1l 2

1 4m1l 3
1 −13m1l 2

1 −3m1l 3
1 0 0

54m1l1 −13m1l 2
1 156 (m1l1+m3l3) 22

�

m1l 2
1 −m3l 2

3

�

54m3l3 13m3l 2
3

13m1l 2
1 −3m1l 3

1 22
�

m1l 2
1 −m3l 2

3

�

4
�

m1l 3
1 +m3l 3

3

�

−13m3l 2
3 −3m3l 3

3
0 0 54m3l3 −13m3l 2

3 156m3l3 22m3l 2
3

0 0 13m3l 2
3 −3m3l 3

3 22m3l 2
3 4m3l 3

3















, (22)

where

M 2 =















0 0 0 0 0 0
0 0 0 0 0 0
0 0 m2 0 0 0
0 0 0 It 2 0 0
0 0 0 0 0 0
0 0 0 0 0 0















. (23)

Note that signs are changed between Eqs. (21) and (22). The damping matrix is given by

C =

�

C x 0
0 C y

�

(24)
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with

C x =















cx 1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 cx 3 0
0 0 0 0 0 0















and C y =















cy 1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 cy 3 0
0 0 0 0 0 0















. (25)

The gyroscopic matrix reads

G =

�

0 G0

−G T
0 0

�

(26)

with

G0 =















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −Ip 2Ω 0 0
0 0 0 0 0 0
0 0 0 0 0 0















, (27)

in which Ω denotes the rotational speed. The stiffness matrix is given by

K =

�

K x K x y

K T
x y K y

�

(28)

with

K x =















kx 1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 kx 3 0
0 0 0 0 0 0















+E







































12
J1

l 3
1

6
J1

l 2
1

−12
J1

l 3
1

6
J1

l 2
1

0 0

6
J1

l 2
1

4
J1

l1
−6

J1

l 2
1

2
J1

l1
0 0

−12
J1

l 3
1

−6
J1

l 2
1

12

�

J1

l 3
1

+
J3

l 3
3

�

−6

�

J1

l 2
1

−
J3

l 2
3

�

−12
J3

l 3
3

6
J3

l 2
3

6
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l 2
1

2
J1

l1
−6

�

J1

l 2
1

−
J3

l 2
3

�

4
�

J1

l1
+

J3

l3

�

−6
J3

l 2
3

2
J3

l3

0 0 −12
J3

l 3
3

−6
J3

l 2
3

12
J3

l 3
3

−6
J3

l 2
3

0 0 6
J3

l 2
3

2
J3
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−6
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l 2
3

4
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, (29)

K y =















ky 1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 ky 3 0
0 0 0 0 0 0















+E







































12
J1

l 3
1

−6
J1

l 2
1

−12
J1

l 3
1

−6
J1

l 2
1
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l 2
1
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�
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�
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−6
J1

l 2
1

2
J1

l1
6

�
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−
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+
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�
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J3
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12
J3
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3
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l 2
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l 2
3
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, (30)
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and

K x y =















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 kx y 3 0
0 0 0 0 0 0















, (31)

where E denotes the modulus of elasticity. Again, signs are changed between Eqs. (29) and (30).
For a mixture of translations and rotations, the MAC cannot be calculated since this would require an

addition of squared lengths and squared angles. The model is therefore reduced to the translational cooor-
dinates

x=
�

x1 x2 x3 y1 y2 y3

�T
(32)

by a static condensation [5]. The matrix S sorts the displacement vector u so that

�

x
a

�

= Su (33)

with the remaining coordinates x and the condensed coordinates

a=
�

β1 β2 β3 α1 α2 α3

�T
. (34)

The stiffness matrix associated with the sorted displacement vector is partitioned in 6×6 blocks according to

�

S−1
�T

K S−1 =

�

K x x K x a

K a x K a a

�

, (35)

and the static relationship can be expressed by

�

x
a

�

=

�

I (6×6)
−K−1

a a K a x

�

x. (36)

Using the reduction matrix

R = S−1

�

I (6×6)
−K−1

a a K a x

�

, (37)

the condensed system matrices are given by R T M R , R T C R , R T G R , and R T K R .

4.1 Rotor in damped isotropic bearings
The first example considers a rotor system whose parameters are given by r1 = 10 mm, l1 = 100 mm, r2 =

100 mm, l2 = 20 mm, r3 = 5 mm, l3 = 100 mm, ρ = 7860 kg m−3, E = 2.1 · 1011 N m−2, kx 1 = ky 1 = 30E J1/l
3
1 ,

kx 3 = ky 3 = 0.1kx 1, kx y 3 = 0, cx 1 = cy 1 = 0.01
p

kx 1m2/2, cx 3 = cy 3 = 0.01
p

kx 3m2/2, and Ω = 20000 rpm. Both
the original and the reduced model comply with the conditions in [9, 10]. This means that the calculation of
the RCC does not require additional measurements for the experimental determination of left eigenvectors.
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To compare theoretical MAC and RCC matrices, the eigenvalue problem is solved for the reduced model.
The auto-RCC of the reduced model yields the identity matrix. The respective auto-MAC matrix is given by

MAC :















1.0000 0.0000 0.2532 0.0000 0.0153 0.0000
0.0000 1.0000 0.0000 0.2735 0.0000 0.0400
0.2532 0.0000 1.0000 0.0000 0.1249 0.0000
0.0000 0.2735 0.0000 1.0000 0.0000 0.4306
0.0153 0.0000 0.1249 0.0000 1.0000 0.0000
0.0000 0.0400 0.0000 0.4306 0.0000 1.0000















.

Since this matrix contains large off-diagonal values, it should not be used for the validation of an experimental
modal rotor model. Otherwise, perfect measurements might be dismissed.

If the eigenvalue problem is solved for the original model and eigenvectors are sampled at the transla-
tional degrees of freedom, the question of sensor placement can be addressed. There is little alternative to
measuring six translations, which results in the auto-RCC matrix

RCC :















1.0000 0.0000 0.1488 0.0000 0.0009 0.0000
0.0000 1.0000 0.0000 0.0848 0.0000 0.0511
0.1488 0.0000 1.0000 0.0000 0.0488 0.0000
0.0000 0.0848 0.0000 1.0000 0.0000 0.6426
0.0009 0.0000 0.0488 0.0000 1.0000 0.0000
0.0000 0.0511 0.0000 0.6426 0.0000 1.0000















;

relaxing the limit for off-diagonal values to 0.2, it can be concluded that the omission of rotations is acceptable
for the lowest five modes. In contrast, the auto-MAC matrix becomes

MAC :















1.0000 0.0000 0.9827 0.0000 0.0155 0.0000
0.0000 1.0000 0.0000 0.0007 0.0000 0.0040
0.9827 0.0000 1.0000 0.0000 0.0028 0.0000
0.0000 0.0007 0.0000 1.0000 0.0000 0.8001
0.0155 0.0000 0.0028 0.0000 1.0000 0.0000
0.0000 0.0040 0.0000 0.8001 0.0000 1.0000















;

this would mean that the omission of rotations cannot be accepted at all.
It is now assumed that experimental right eigenvectors are available for a rotor system whose actual model

parameters differ from those of the theoretical model. The stiffness constants of the right bearing are kx 3 =
ky 3 = 0.06kx 1 in this assumption. Experimental left eigenvectors can be obtained by changing the signs in the
lower halves of the right eigenvectors [9, 10]. The RCC matrix of theoretical and experimental modal models
reads

RCC :















0.9744 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.9971 0.0000 0.0000 0.0000 0.0000
0.0005 0.0000 0.9939 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0039 0.0000 0.0019
0.0127 0.0000 0.0035 0.0000 0.9874 0.0000
0.0000 0.0016 0.0000 0.0045 0.0000 0.9892















.

Its main diagonal indicates a better correlation than the main diagonal of the MAC matrix

MAC :















0.9946 0.0000 0.1876 0.0000 0.0153 0.0000
0.0000 0.9839 0.0000 0.1595 0.0000 0.0400
0.2191 0.0000 0.9629 0.0000 0.1247 0.0000
0.0000 0.3471 0.0000 0.8429 0.0000 0.4317
0.0384 0.0000 0.2776 0.0000 1.0000 0.0000
0.0000 0.1042 0.0000 0.7483 0.0000 1.0000















,
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which underestimates the theoretical model. This demonstrates that the MAC may not be able to recognize
the quality of a theoretical rotor system model.

4.2 Rotor in undamped bearings with minor anisotropy
In the second example, cx 1 = cy 1 = cx 3 = cy 3 = 0, and kx y 3 = 0.0005kx 3. All the other parameters are

the same as in the first example. Both the original and the reduced model comply with the conditions in [7].
Again, the calculation of the RCC does not require additional measurements for the experimental determina-
tion of left eigenvectors. While the auto-RCC of the reduced model yields the identity matrix, the auto-MAC
matrix

MAC :















1.0000 0.0000 0.2532 0.0000 0.0126 0.0027
0.0000 1.0000 0.0000 0.2699 0.0070 0.0328
0.2532 0.0000 1.0000 0.0000 0.1029 0.0220
0.0000 0.2699 0.0000 1.0000 0.0845 0.3931
0.0126 0.0070 0.1029 0.0845 1.0000 0.0000
0.0027 0.0328 0.0220 0.3931 0.0000 1.0000















would not allow for a fair assessment of measurements. If the eigenvalue problem is solved for the original
model, the auto-RCC matrix with eigenvectors sampled at the translational degrees of freedom reads

RCC :















1.0000 0.0000 0.1488 0.0000 0.0007 0.0003
0.0000 1.0000 0.0000 0.0843 0.0138 0.0361
0.1488 0.0000 1.0000 0.0000 0.0347 0.0134
0.0000 0.0843 0.0000 1.0000 0.1815 0.4737
0.0007 0.0138 0.0347 0.1815 1.0000 0.0000
0.0003 0.0361 0.0134 0.4737 0.0000 1.0000















.

In contrast, the respective auto-MAC matrix

MAC :















1.0000 0.0000 0.9827 0.0000 0.0112 0.0043
0.0000 1.0000 0.0000 0.0006 0.0011 0.0029
0.9827 0.0000 1.0000 0.0000 0.0020 0.0008
0.0000 0.0006 0.0000 1.0000 0.2336 0.6058
0.0112 0.0011 0.0020 0.2336 1.0000 0.0000
0.0043 0.0029 0.0008 0.6058 0.0000 1.0000















would not recommend the omission of rotations.
Experimental right eigenvectors shall now be available for a reduced shaft stiffness according to J1 =

0.7r 4
1 π/4. Experimental left eigenvectors can be obtained as the complex conjugates of the right eigenvectors

[8]. The RCC matrix of theoretical and experimental modal models then reads

RCC :















0.9999 0.0000 0.0000 0.0000 0.0003 0.0000
0.0000 0.9973 0.0000 0.0000 0.0000 0.0003
0.0000 0.0000 0.9963 0.0000 0.0074 0.0009
0.0000 0.0002 0.0000 0.9996 0.0227 0.1876
0.0000 0.0002 0.0016 0.0001 0.7813 0.0090
0.0000 0.0011 0.0003 0.0003 0.0075 0.7811















.

Its main diagonal indicates a worse correlation than the main diagonal of the MAC matrix

MAC :















1.0000 0.0000 0.2123 0.0000 0.0135 0.0016
0.0000 0.9899 0.0000 0.2339 0.0036 0.0307
0.2514 0.0000 0.9789 0.0000 0.0994 0.0118
0.0000 0.3102 0.0000 0.9806 0.0479 0.4028
0.0133 0.0151 0.1938 0.1090 0.9889 0.0102
0.0028 0.0706 0.0415 0.5071 0.0105 0.9889















,
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which overestimates the theoretical model. This demonstrates that the MAC may approve a theoretical rotor
system model that does not comply with measurements.

5 Conclusions
It has been demonstrated by numerical examples that the Modal Assurance Criterion may not be suited

for rotor systems. A Rotor Correlation Criterion has been defined as an alternative. Its advantage concern-
ing the validation of experimental modal models, sensor placement, and the correlation between theoretical
and experimental modal models has been demonstrated numerically. Since the Rotor Correlation Criterion
requires left eigenvectors, the examples discuss rotors for which a relationship between right and left eigen-
vectors is known. Model correlation for other rotors would be facilitated if more general results on the deter-
mination of left eigenvectors were available.
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