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Influencing the oscillation properties
of a control system
A. Weinmann OVE

The operation of shifting the poles to the left in the complex plane is transferred to the method of reducing the main oscillation
frequency of a control system. Influencing the oscillation properties is realized in an unstructured manner without using solution
details of the characteristic equation. The holistic design procedures using the trace of the inverse coefficient matrix and the Michailow
distance are applied to find a gradient-based algorithm for improving the controller, after having executed a double-turning or a
single-turning and shifting of the closed-loop coefficient matrix.

Keywords: turning the spectrum; selective influence on the oscillation behavior; unstructured operations intentionally

Beeinflussung der Schwingungseigenschaften eines Regelungssystems.

Die Operation, die Pole in der komplexen Ebene nach links zu verschieben, wird auf eine Methode übertragen, die Schwingungsfre-
quenz zu reduzieren. Der Einfluss auf das Schwingungsverhalten wird besorgt, ohne detaillierte Strukturen zu verlangen und ohne die
charakteristische Gleichung näher zu untersuchen. Der holistische Entwurfsvorgang benützt die Spur der inversen Koeffizientenmatrix
oder die Michailow-Distanz, um ein Gradientenverfahren für die Verbesserung des Reglers zu entwickeln, nachdem die Koeffizienten-
matrix des Regelkreises in zweifacher oder einfacher Weise gedreht und verschoben wurde.

Schlüsselwörter: Drehung des Spektrums; selektiver Einfluss auf das Schwingungsverhalten; Maßnahmen ohne nähere strukturelle
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1. Motivation. Introduction
When designing a control system or a general dynamical system,
there is often the main interest in influencing the oscillation prop-
erties in a global manner, only, or to get an indicator for such an
operation at least.

Consider a plant with roughly estimated parameters, e.g. in an
agricultural application, and an arbitrarily chosen controller provid-
ing a stable but enthusiastically oscillating system. You only want to
get less vivid oscillation. With respect to the highly unknown or un-
certain plant it is not well-aimed to guess eigenvalue allocation or
to select weighting matrices for improving an index of performance.
The question also arises where the objective parameters should be
taken from.

Motivation arises from the interest to improve or change the os-
cillation properties of a control system as separated as possible by
finding a gradient of the current controller; even though the direc-
tion obeying the controller to follow the gradient is an additional
task. The restriction has to be taken into consideration that current
local data of the system are incomplete.

Holistic control system design [2] is an attempt for improving the
dynamics of a control system, a method which could also be termed
as an unstructured design. Emphasis is put on an action without
needing specialized setpoints (e.g. for pole allocation) and with-
out solving a high-order algebraic equation. Primarily, an attack on
the oscillation properties is executed without needing help from any
eigenvalue assignment.

Using the trace of the inverse of the closed-loop coefficient ma-
trix there are many advantages [2]. By applying the sum of eigen-
values the imaginary parts are cancelled because in physically realiz-
able systems the eigenvalues λ are always complex conjugates. Even

by using the inverse of the eigenvalues, the imaginary parts do no
more play a primary role in the design. In the sum of all eigenval-
ues

∑
λi [A] = tr[A] = ∑

ai ± jbi = 2ai the imaginary parts of the
eigenvalues are cancelled at all. In the sum of inverse eigenvalues
∑

1/(ai ± jbi ) the bi are conserved partly in
∑

2ai /(a2
i + b2

i ).
Repetition for a new approach, that is, λi [jA], yields the same

results in principle only multiplied by j.
The Michailow distance [3] is another opportunity for using a

holistic approach to improve the dynamics behavior. Consider the
determinant of the inverse of the resolvent matrix, i.e., the charac-
teristic polynomial pcl (jω,Acl )

�= det(jωI − Acl ) for s = jω. It must not
include the origin, and should avoid the origin with a distance h0,
where h0 is kept high (or maximized) in modulus.

Supposing the plant and the closed-loop system in state space,
with its matrices A, Acl ∈ Rn×n; B ∈ Rn×m; C = In; D = 0 and the
state controller K ∈ Rm×n, one has the coefficient matrix of the
closed-loop system Acl = A + BK. (For a general dynamical system,
A, K is the fixed and variable part, respectively.)

The starting point of this paper is a mapping operation corre-
sponding to replacing the complex variable s by ±js and by ±js + g,
or to replace Acl by ∓jAcl + gI.

The derivations are carried out in frequency domain. To illustrate
the results in time domain as well, discrete-time system examples
are chosen.
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Fig. 1. Turning and shifting the poles (Example 2)

2. Trace-based influence on the oscillating part.
Continuous-time system

Preassume a stable closed-loop system, �e{λi [A + BK]} < 0 ∀i, even
�e{1/λi [A + BK]} < 0 ∀i. Then its sum is a negative real number as
well.

Omitting particular weights and without defining a specified in-
dex of performance including the actuation effort, optimal dynam-
ics is expected for shifting all the eigenvalues to the left as much as
possible, that is, one has to minimize the following positive-valued
expression of eigenvalues λ and the trace tr

−
∑

i

1
λi [A + BK]

= −tr[A−1
cl ] → min

K
. (1)

The closer a pole is located to the imaginary axis the bigger the
inverse of the pole, and the more influence on the sum in Eq. (1).

Based on the relation ∂tr[M−1]/∂f = −tr[M−2∂M/∂f ], the gradient
of −tr[A−1

cl ] with respect to K and Acl is proportional −[A−2
cl B]T and

−A−2T
cl , respectively, [2] (see also Eq. (34)).

The main idea of this paper is to put the imaginary parts of the
conjugate-complex poles into the role of the real part when influ-
encing the oscillation dynamics is required. Simply replacing s by js
replaces the real-world system with positive constants into polyno-
mials or transfer functions with imaginary constants (see poles after
turn in Fig. 1), touching similar results as in [5]. Stability criteria, e.g.
Routh or Hurwitz, cannot be applied immediately. Besides, the turn
yields a new system where the imaginary parts produce zeros of the
characteristic polynomial in the right half-plane.1

1Shift and rotate: Consider a polynomial p(s) or det(sI − A) and replace s by js,
then the zeros are turned by 90 degrees in clockwise direction. Replacing A by
jA, the eigenvalues are turned in counterclockwise direction. If A is replaced by
A+gI (g > 0) (or s := s−g), the eigenvalues are shifted to the right. Replacing
s by s + g, a shift to the left by g is performed. Although these relations are
very simple they might be got mixed up.

Now, another new system is created. Focussing on the imagi-
nary part of the closed-loop eigenvalues, a turn by 90 degrees is
performed, first, and by −90 degrees, second, by replacing Acl by
±jAcl , respectively. These systems are switched into series thus defin-
ing a new hypothetic system Af of double order 2n

pf (s)
�= det(sIn − jAcl ) × det[(sIn − (−jAcl )] (2)

= det(s2In + A2
cl )

�= det(sI2n − Af ). (3)

In addition, each system is shifted to the left by g (g > 0)

pf (s)
�= det(sIn − jAcl + gIn) (4)

×det[(sIn + jAcl ) + gIn]

= det[(s + g)2In + A2
cl ]

�= det(sI2n − Af ). (5)

The factor g usually is an estimate of the maximum imaginary part
of the eigenvalues

g
�= max

i
|�m λi [Acl ]|. (6)

The system Af is characterized by eigenvalues symmetric to the real
axis. It is suitable for the Routh stability criterion, e.g., of the hypo-
thetic system.

We consider a canonical form Af the last row of which is termed
fT . Its coefficients fi can easily be found by differentiation and equat-
ing s = 0

f1 = −det[(s + g)2In + A2
cl )]

∣
∣
∣
s=0

, (7)

and for i = [1, 2n − 1]

fi+1 = − 1
i!

[
∂ i

∂si
det[(s + g)2In + A2

cl )]

]

s=0

(8)

�= − 1
i!

[
∂ i

∂si
det[sI2n − Af ]

]

s=0

, (9)
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Fig. 2. Eigenvalues of Af of the hypothetic double-turned system during the 9 gradients steps (Example 2)

Af
�=

(
o2n−1 I2n−1

fT

)

∈R2n×2n. (10)

Example 1 Consider the simple second-order system n = 2, a1 =
−5, a2 = −2, λi [Acl ] = −1 ± j2

Acl =
(

0 1
a1 a2

)

, A2
cl =

(
a1 a2

a1a2 a1 + a2
2

)

(11)

f
�= (f1 f2 f3 f4)T , (12)

pf (s) = det(sI2n − Af ) = s2n −
2n∑

i=1

fis
i−1 (13)

= s4 − f4s3 − f3s2 − f2s − f1. (14)

With an additional shift g, one has

pf (s)
�= det[(s + g)2I2 + A2

cl ]
�= det(sI4 − Af ) (15)

f1 = −g4 − (2a1 + a2
2)g2 − a2

1 (16)

f2 = −2g(2g2 + 2a1 + a2
2) (17)

f3 = −(6g2 + 2a1 + a2
2) (18)

f4 = −4g. (19)

For g = 2 one finds λi [Af ] = −4 ± j; 0 ± j from pf (s) = s4 + 8s3 +
18s2 + 8s + 17 = 0 at the stability border.

Example 2 Consider a fourth-order continuous-time control system
with two conjugate-complex poles −0.91 ± j1.99, −8.16 ± j4.43,
g = 5.5 estimated.

Via turning by α = ±π /2 and shifting by g (see Fig. 1) these quan-
tities can be estimated using Routh or Michailow stability criterion.

Establishing Af , the real g is used a little bit larger than the esti-
mated one, in order to keep Af stable. Otherwise the gradient of
tr [A−1B] does not operate, or in specific situations, only. In Fig. 1,
the corresponding eigenvalues are connected by lines for the sake
of better orientation.

There is a remarkable difference between oscillation influence
(this paper) and main damping influence [2]. Returning by ±π /2 and
reshifting by −g cannot be applied directly. When applying oscilla-
tion gradients the double turned eigenvalues are shifted to the left,
and the more shifted by gradients the closer they are located to the
imaginary axis. The result is that returning would yield eigenvalues
which are no more exactly conjugate complex. In spite of this, the
changes �K can be utilized regularly, see Eq. (34).

Changing the imaginary part of the original system, i.e., the real
parts of the eigenvalues of the system after turn, the damping per-
formance is also changed to a certain extent. “The polynomial laws
retain a drawback”.

What are the main advantages using the proposed method with
the trace of the inverse of the system matrix? One could suggest
to solve the problem of oscillation frequency reduction via classi-
cal eigenvalue allocation. Using a full state controller would permit
arbitrary eigenvalue assignment. Troubles arise for partial state con-
troller implementation, then the assignment of eigenvalues must be
specifically interdependent. Analytical solutions usually fail for the
order higher than two.

The trace method puts hands on all the available controller param-
eters ki at once. The reduction progress can be observed via gradient
steps, see Fig. 2. It must be observed carefully as well as the setup
for the step size. In addition, one has to supervise if the eigenvalue
sensitivity is high enough to follow the gradient as intended. The
eigenvalue sensitivity is given by operations using eigenvectors ai ,
a	

i [1, 4]

∂λi [Acl ]
∂K

= (Im ⊗ a	∗T
i )

∂Acl

∂K
(In ⊗ ai ). (20)

48 heft 1.2019 © The Author(s) e&i elektrotechnik und informationstechnik



A. Weinmann Influencing the oscillation properties of a control system ORIGINALARBEIT

Fig. 3. Reduction of the main �m λi[Acl], pole operations (upper subplot, Ah = Acl ) and h2
0D(ω) during 25 gradient steps (lower subplot) for

Example 3

In principle, the method in this chapter would also operate by
selecting jAcl alone without the multiplication in Eq. (3) since the
gradient results from the squared expression (jAcl )−2.

3. Influence based on the Michailow characteristic
The Michailow characteristic results from the characteristic polyno-
mial of the closed-loop control system pcl (s,Acl ) for s being inten-
tionally replaced by jω. Intersection of pcl (jω) with the origin deter-
mines the stability border, i.e., a steady-state oscillation of the closed
loop with frequency ω, if all the other eigenvalues are located in the
left s-plane. The minimum geometrical distance h0 of pcl (jω,Acl ) to
the origin at frequency ω0 is an adequate measure of the stability
margin. The minimum distance h0 squared is

h2
0 = det(ω2

0In + A2
cl ). (21)

Increasing h2
0 usually improves the stability quality. The poles are

shifted to the left primarily, in an unstructured manner. This is also
true in the opposite direction by lowering h2

0.
The gradient or differential sensitivity of h2

0 with respect to Ky is
used to improve stability in an optimal way [3].

Now, if Acl is turned to jAcl , the unstructured relation takes place
between h2

0D and the real parts of the hypothetic turned system, i.e.
the imaginary part of the original system. We replace Acl by jAcl in
the well-known Michailow characteristic, turning counterclockwise
and shifting to the left by g. Then a complex characteristic of the
hypothetic system results

h0(ω)
�= | pcl,D(s, jAcl )|s=jω| (22)

= |det[sIn − jAcl + gIn]|s=jω|. (23)

Using the complex conjugate, the square of the absolute value is

h2
0D(ω)

�= det(jωIn − jAcl + gIn) (24)

×det(−jωIn + jAcl + gIn)

= det[(ωIn − Acl )
2 + g2In]. (25)

We find minω at ω0 by equating ∂(h2
0D)/∂ω = 0. Equating h2

0D = 0 as
well yields g and ω0. Only an estimate of g at the stability border is
required.

Example 3 In Fig. 3 (with the setup in th upper subplot) the original
pole −8.1 + j4.4, after having turned and shifted, is closest to the
imaginary axis and dominantly influences the characteristic h2

0D(ω).
Increasing the minimum distance to the origin [3] forces the turned
poles to the left. This is equivalent to reducing the imaginary value
of the original pole.

The result is illustrated in Fig. 3. Reduction of the oscillation is
demonstrated. In the upper subplot, the original poles are depicted,
and the turned and shifted as well. In addition, a small part of
h2

0D(ω), with ω-axis vertically, is included to demonstrate that the
peak of the characteristic is at −8.1. The lower subplot shows the
turned Michailow characteristic h2

0D(ω) in the course of running 25
gradient steps. The characteristics increase upwards while executing
the steps of h2

0D of Eq. (25). The shift parameter g is included and
used for estimating the largest imaginary value of Acl .

4. Discrete-time system
Establishing a discrete-time system with sampling interval T is per-
formed by using the basic continuous-time system and the general-
ized eigenvalue det(λ[A]Q − A) = 0 to enter the z and w domain.
Via MATLAB: [V,D] = eig(A,Q). The operations are performed in w
domain in similar manner as in the previous sections.

det(zIn − eAT ) = det(
1 + wT /2
1 − wT /2

In − eAT ) = 0 (26)
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Fig. 4. Step changes of the w eigenvalues (left) and the controller K components (right) (Example 4)

Fig. 5. Resulting influence on the step response (Example 4)

det
(
w(In + eAT )T /2 + In − eAT

)
= 0 (27)

λw = eig(expm(AT ) − eye(n), Q) (in MATLAB) (28)

where Q = (In + eAT )T /2. The controller K is operating the system
following the gradient increments �K of the appendix.

The mapping w(z) can be selected with or without inclusion of
T /2. The system target also might be executing the sampling period
T dependent on the deviation. That is, there is a multiple influence

on estimating the shift parameter g and on spreading the inverse

eigenvalues, see Eqs. (1) and (8).

Example 4 For a second-order SISO system, the discrete-time

equivalent with m = 1 is selected. Assume, the initial controller op-

erates the system near the unit circle stability boarder (Point 2 in

Fig. 4 and Fig. 5). Following the gradient steps leads to point 3. For

comparison purpose, the method [2] is demonstrated for gradient

steps from point 1 to 2 which would cause a stability loss.
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Fig. 6. Progress in the z-plane (Example 5)

Fig. 7. Progress in the w-plane (Example 5)

Example 5 In a system of 6th order, a distinct attack on the eigen-
value with maximum imaginary component is executed with three
steps. In Figs. 6 and 7 the progress in z-plane and w-plane is demon-
strated via three steps selective with respect to the eigenvalue with
the highest frequency. The arrows indicate the reduction of oscil-
lation components. In Fig. 8 the change in discrete-time domain is
reported.

5. Outlook and conclusion
The main goal of this paper is to change the oscillation properties
without need of external setup parameters such as used in eigen-

value allocation. Two methods are presented, aiming at primarily
reducing the oscillation properties of a linear time-invarying control
system. The methods do not require structured setup and setpoints
for the design.

However, there is still a lot to do concerning several analytical
proofs, regions of operation, multiple turns, e.g. ejαAcl and shifting,
where det[s2In −2 s cosα+A2] results, or det[(s−h)2In + (A−gIn)2],
or det[s2In + (A−gIn)2] by shifting before turning. One-dimensional
search versus α to check stability border is an opportunity. The
smaller α the more problematic the 90o turn is. Selected action on
the coupled eigenvalues is problematic initially. It is still open if it
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Fig. 8. Discrete-time step response in Example 5 before and after three steps (upper and lower subplot)

is worth while to take the double order of the trace-based method
into account. The Michailow characteristic method does not require
double order but uses a hypothetic imaginary system to establish
the gradient procedure. An opportunity is to combine the methods
of influencing damping and oscillation, alternately.

There are examples where a selective attack on the eigenvalues
with maximum imaginary component is executed. In general, ex-
amples show that the expected operations can be put into action
successfully, even though no guarantee for a perfect operation ex-
ists when opposite to eigenvalue sensitivity.
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Appendix

The question is which increment �K yields an increment �Af of the
holistic setup

det[(s + g)2In + (A + BK)2] = det(sI2n − Af ), (29)

det[(s + g)2In + (A + BK + B�K)2]

= det(sI2n − Af − �Af ). (30)

Based on the correspondences [4]

col(HFG) ≡ (GT ⊗ H) colF, (31)

det(A + �A)
∣
∣
∣‖�A‖F�1

(32)

.= det A + [col(adjAT )]T · col�A, (33)

Equation (5) with Acl = A + BK is applied in w and z domain. Omit-
ting intermediate calculations, one finds the resulting �K

hT
1 col�K = hT

r col�Af (34)

where �Af ∝ A−2T
f [2] and the abbreviations

Ah
�= (s + g)2In + (A + BK)2, (35)

hT
1

�= 2[col(adjAT
h )]T [(A + BK)T ⊗ B], (36)

hr
�= −col[adj(sI2n − Af )

T (37)

have been used. The components of �K are combined with h1 in a
scalar product, i.e. there is a multitude of solutions to fulfil the scalar
product of the right side of the final equation. Minimum square
result, pseudo inverse, or any other actuation signal limitation can
be implemented.
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Transferring a matrix into a vector concatenating all the columns
is performed by the operator col, adj is the adjoint matrix adj(M) =
M−1 · detM. The comparison of the coefficients in Eq. (30) can be
executed for any numeric s if �K is very small in norm sense.
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