Mauterndorf 2020
21st International Winterschool
New Developments in Solid State Physics

Abstract Book

23-28 February 2020

Johannes Kepler
University Linz

Montan Universität

Castle of Mauterndorf
A-5570 Mauterndorf
Province of Salzburg, Austria
www.jku.at/hfp/mauterndorf
winterschool@jku.at
Quantum Cascade Lab-on-a-Chip for Fluid Sensing Applications

F. Pilat1,2*, B. Schwarz1, H. Detz3, A. M. Andrews1, B. Baumgartner4, B. Lendl4, G. Strasser1, B. Hinkov1

1Institute of Solid State Electronics and Center for Micro- and Nanostructures, TU Wien, Gusshausstr. 25-25A, A-1040 Vienna, Austria
2Institute of Solid State Physics, Graz University of Technology, Petersgasse 16, A-8010 Graz, Austria
3CEITEC, Brno University of Technology, Purkyněova 123, 612 00 Brno, Czech Republic
4Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria

In our modern world miniaturization has taken place in various aspects of everyday life. Devices have not only become more powerful regarding computational performance but also gained the ability to detect physical properties of all sorts with the development of downscaled sensors. Extensive research in quantum cascade technology over the last two decades led to infrared lasers and detectors capable of enhancing that trend. In this work we present a monolithically integrated quantum cascade laser (QCL) and detector device for chemical sensing of fluids both inside a microfluidic cell (volume \textsim 60 \mu l, comparable to one water droplet) as well as in-situ within a beaker.

The mid-infrared spectral region has proved extremely useful for highly-sensitive and non-destructive chemical sensing, since molecules show their strongest and distinct absorption features in this so-called “fingerprint region”. QCLs can be designed to directly target these absorption lines, allowing measurements to discriminate between different molecule concentrations [1] and even distinguish structural differences e.g. the secondary structure of proteins [2].

With an appropriate design of a QCL active region the same material, when unbiased, can be used as a detector enabling efficient emission and detection of identical wavelength radiation [1]. A monolithically integrated QC laser and detector can additionally be merged with a dielectric loaded surface plasmon polariton waveguide to enhance the coupling efficiency of up to 45 \% over 100 \mu m, while maximizing the analyte interaction volume [1]. Multiple individual units can be processed in parallel on a single wafer. Additionally, implementing distributed feedback gratings results in devices with individual wavelengths, yielding a small and cost-efficient sensor array.

Such a sensor array with an interaction path length of 50 \mu m has been implemented within a microfluidic cell (Fig. 1a) and for in-situ measurements (Fig. 1b), focusing on the downscaling of the devices. First proof of principle absorption spectroscopy measurements show promising results for water concentration (high absorption) in isopropyl alcohol (low absorption) determination for both concepts (Fig. 2). Two lasers (\nu_1 = 1650 \text{ cm}^{-1}, \nu_2 = 1630 \text{ cm}^{-1}) are operated simultaneously (5 kHz, 100 ns pulses) at room temperature, the respective detector signals are recorded over time. A third laser is used as a fast on-chip temperature sensor. Calibration curves were recorded and applied, leading to good agreement with the theoretical concentration transient. At high water concentrations the signals start to deviate and appear noisy due to the exponentially decaying nature of absorption. Additionally, the in-situ signal even allowed for single droplet detection and volume calculation.

* Corresponding author: email: florian.pilat@tuwien.ac.at
III-25 Ronald Meisels, Montan Universität Leoben
Multilayer Mirrors for Radiation Beyond the Extreme Ultraviolet

III-26 Florian Pilat, TU Vienna, Institut für Festkörperelektronik
Quantum Cascade Lab-on-a-Chip for Fluid Sensing Applications

III-27 Borislav Hinkov, TU Vienna, Institut für Festkörperelektronik
Quantum Cascade Detector on m-plane ZnO/ZnMgO

III-28 Johannes Hillbrand, TU Vienna, Institut für Festkörperelektronik
in-phase and anti-phase synchronization in a laser frequency comb

III-29 Robert Weih, Nanoplus GmbH, Germany
Mid Infrared DFB Interband Cascade Lasers for Gas Sensing Application

III-30 Mario Graml, Johannes Kepler Universität Linz
Nonlinear Charge- and Spin-Response to Longitudinal Fields

III-31 Valeria Butera, CEITEC Brno, Czech Republic
DFT Investigations of Functional Waveguide Materials for MIR Sensors

III-32 Lukas Spindlberger and Johannes Aberl, Johannes Kepler Universität Linz
in-situ defect engineering of epitaxial SiGe Quantum Dots

III-33 Jeffrey Schuster, Johannes Kepler Universität Linz
Near-infrared light source based on the site-control of defect-enhanced SiGe quantum dots

III-34 Erik Hinkelmann, CEITEC Brno, Czech Republic and TU Darmstadt, Germany
Titanium oxide as a material for mid-infrared waveguides

III-35 Benedikt Schwarz, TU Vienna, Institut für Festkörperelektronik
Actively mode-locked mid-infrared quantum cascade laser

IV. Quantum Transport

IV-1 Jan Kühne, Universität Hannover
Fermi Edge Singularity tuned by Local Density of States

IV-2 Josef Oswald, MontanUniversität Leoben
The microscopic details of stripes and bubbles in the Quantum Hall Effect regime

IV-3 Maximilian Kühn, Max Planck Institut für Festkörperforschung Stuttgart
Scanning the Hall potential profile and current distribution in the fractional quantum Hall regime

IV-4 Peter Rickhaus, ETH Zürich
Transport experiments in twisted (double) bilayer graphene

IV-5 Gunnar Schneider, Universität Hannover
Electron-Electron Interactions investigated via 2D-2D Tunneling